
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 5 October 2022, accepted 12 November 2022, date of publication 17 November 2022, date of current version 22 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222828

Modeling and Control of Discrete Event and
Hybrid Systems Using Petri Nets and
OPC Unified Architecture
ERIK KUČERA , OTO HAFFNER, PETER DRAHOŠ, AND ALENA KOZÁKOVÁ
Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovakia

Corresponding author: Erik Kučera (erik.kucera@stuba.sk)

This work was supported in part by the Slovak Research and Development Agency under Contract APVV-21-0125; in part by the Cultural
and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, under Grant KEGA
016STU-4/2020 and Grant 039STU-4/2021; and in part by the Scientific Grant Agency of the Ministry of Education, Research and Sport
of the Slovak Republic, under Grant 1/0107/22.

ABSTRACT Discrete event system is a type of system, which changes its state based on asynchronously
occuring events. One of many approaches of describing this category of systems is a mathematical formalism
called the Petri Net. This article introduces an original software solution, leveraging the graphical represen-
tation of this formalism in conjunction with the communication standard OPC Unified Architecture. This
combination enables the user to model and control discrete event and hybrid systems using an intuitive,
user-friendly graphical interface. The software application also brings new possibilities into scope of this
academic domain due to the implementation of a Petri Net formalism extension - continuous elements, which
greatly expands the area of systems, which can be modelled and controlled using this tool. The developed
software tool was successfully verified in control of a virtual systems. Offering a graphical environment for
the design of discrete event / hybrid system control algorithms, it can be used for education, research and
practice in cyber-physical systems (Industry 4.0).

INDEX TERMS Discrete-event system, OPC unified architecture, cyber-physical system, system control,
hybrid system, Petri nets.

I. INTRODUCTION
The expansion of technology into more and more areas of
everyday life brings the need to control these technologies.
A term often mentioned nowadays is the fourth industrial
revolution - Industry 4.0 [1]. This term covers many different
categories of processes, and as each process and technology
brings with it certain specificities, the diversity of control
methods is also necessary to take these specificities into
account. This article is concerned with the design, imple-
mentation and subsequent demonstration of a new control
method based on a mathematical formalism used to describe
processes - Petri net - originally used in the field of discrete
event systems, but applicable in an extended form to the
modelling of continuous systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

An important type of Petri nets that can be used for systems
control are interpreted Petri nets (IPN) [2]. Alternatively, they
are also called Petri nets interpreted for control. As the name
implies, their variations can be found in the description of
software [3], hardware [4] and logic controllers [5], [6]. Their
common application is supervisory control [7].

When discrete and continuous parts of a process are com-
bined in a single model, such a model is called a hybrid Petri
net [8], [9]. For communication with the controlled system,
this work uses the OPC Unified Architecture protocol, which
is making its way to the forefront with the ambition of becom-
ing the de facto standard in industrial automation and poten-
tially the standard in IoT and other Industry 4.0 areas [10].

It was crucial to look for projects and literature on the mod-
elling and control of discrete event or hybrid systems using
high-level Petri nets during the research process. Finding out
whether the current research projects were only interested in

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120735

https://orcid.org/0000-0002-4880-6746
https://orcid.org/0000-0003-1802-0264


E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 1. OPC UA encoding types [33].

theory or whether some open-source software tools were used
or created specifically to support modelling and control using
high-level Petri nets was an important question. For the prac-
tical outcomes of the presented research project, it would be
helpful to find the aforementioned type of research projects.

At first sight, HYPENS [11] appears to be an interesting
tool for modelling discrete-time, continuous and hybrid Petri
nets. It is an open-source tool for use in the Matlab envi-
ronment. However, this tool can no longer be downloaded,
another disadvantage of this software was that in its environ-
ment the modelling of Petri nets was only possible using their
matrix representation, not taking advantage of one of the great
properties of Petri nets - the possibility of an easy to under-
stand graphical representation of themodel. The possibility of
running this tool in current versions of Matlab is also unclear.
Other tools for modelling using hybrid Petri nets include, for
example, SimHPN [12]. Advantages of this tool are various
analytical tools for working with Petri nets and cooperation
with Matlab. The disadvantage is that one of the pillars of
Petri nets is lost, namely the graphical representation. Petri
nets are only displayed in the form of matrices. It is also not
clear whether compatibility with current versions of Matlab
is ensured.

The use of the concept of Petri nets in conjunction with
control is still a largely unexplored area that has not yet
receivedmuch attention from the lay or academic community.
There are works that address this area from several perspec-
tives, but these often do not include the software described in
these works, either in executable form or in source code form.
In the field of cybernetics, in papers [13], [14] the authors
describe the use of hybrid and coloured Petri nets for the
purpose of traffic modelling on intersections and highways.
In other work, the same authors address interesting topics in
the field of manufacturing plants [15], [16]. It is not possible
to determine from these works whether it is only a theoretical
exploration of the field, or whether their findings have also
been used in practical applications.

In [17], a tool is described whose basic idea is to control the
system from a computer, through anArduinomicrocontroller,
using the Firmata protocol. Management of control systems
using microcontrollers is not a suitable approach for indus-
trial use, since industrial applications generally use PLC-type
computers. Moreover, the approach described in this work
requires specific firmware modification in the microcon-
troller, whichmay not be an easy task for the purpose of wider
deployment on a large amount of hardware.

In [18], the authors developed the Matlab application
RCPetri, enabling graphical modelling, simulation and syn-
thesis of control algorithms for PLC-type computers. This
software also includes a module allowing communication
with the controlled system via Modbus and OPC UA proto-
cols. However, this work has the disadvantages of an opaque
user interface and the necessity of a textual definition of
the process through a specific Microsoft Excel document.
Additionally, from the content of this work, it appears that
this application does not support Petri net’s arc weighting,
and has support for marking with only 0 and 1 values.

This summary (Table 1) clearly illustrates the lack of
availability of software tools with interfaces allowing direct
control of systems. The tool proposed in this work has advan-
tages over RCPetri, particularly in supporting continuous and
hybrid Petri nets and extended arc types. Another difference
is the presence of an easy-to-use, integrated user interface,
eliminating the need to create specific external documents.
The developed user interface makes use of the capabilities of
OPC UA protocol - for example, for the purpose of retrieving
available variables corresponding to, for example, sensors
and actuators connected to the PLC. OPCUA communication
is assignable to places and transitions of Petri net. In con-
trast, our work does not aim at synthesising code directly
executable from the PLC environment, which RCPetri tool
enables.

Since the developed application described in our arti-
cle should be compatible with industrial automation,

120736 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

TABLE 1. Summary of selected Petri net editors.

it is necessary to indicate which communication protocols
are used in this area. Despite the large number of available
protocols, the majority of wired protocols follow either the
Fieldbus or Industrial Ethernet standards. For our application,
the relevant protocols are from the second group.

As the first, we can mention PROFINET [23]. In gen-
eral, PROFINET networks are quicker than those of its
rivals. Siemens provides a selection of PROFINET-capable

hardware that makes it simple to upgrade or replace Siemens
control systems. However, when other brands are involved,
upgrades are less adaptable. However, PROFINET infrastruc-
ture is generally more expensive than other types. Although
tree and star topologies are also supported, line topology
is typically used to deploy PROFINET networks because it
requires less cable.

Due to the use of commercially available components
and its object-oriented foundation, Ethernet/IP [24] is the
more adaptable and compatible protocol. It is slower than
PROFINET but also more economical. Although ring and
tree topologies are frequently used in Ethernet/IP networks
to increase redundancy, star topologies are their preferred
configuration.

An important protocol is Modbus TCP/IP [25]. This proto-
col is an improved version of Modbus RTU with a TCP inter-
face. Modbus-formatted data is processed, but it is wrapped
and sent over Ethernet. In contrast to PROFINET and Eth-
ernet/IP, which are merely configured using a configura-
tion tool, a Modbus TCP network is typically programmed
directly into the controller’s source code using function
blocks or other libraries.

An interesting protocol is EtherCAT [26]. This protocol
substitutes Ethernet communication for TCP/IP, allowing a
telegram to build on itself as it travels through the network
after each node. The telegram returns to the EtherCATmaster
at the end of the cycle. Due to the fact that a message only
needs to pass through each node once, communication is very
effective. The determinism levels that EtherCAT nodes can
adhere to are in the range of a few milliseconds. However,
because special EtherCAT-ready devices must be used, Ether-
CAT is not a flexible network. Despite the higher average cost
of EtherCATdevices, there are some cost savings in a network
as a whole because there are fewer components required.
Managed network switches, for instance, are not required.

In the presented application OPCUA communication stan-
dard was used, which is described in the next section.

II. MATERIALS AND METHODS
The aim of this work is to design and implement a solution
that allows the use of the mathematical formalism of discrete,
continuous, or hybrid Petri nets in system control.

A. OPC UNIFIED ARCHITECTURE
The specific focus of this work is on the control of industrial
automation systems through the control of PLCs from a
standard computer environment. This will be done without
the need for PLC software programming, which allows the
tuning of control algorithms through changes in the control
Petri net, a much quicker response to potential problems,
and also makes it possible to use processing and memory
resources of a standard computer. The connection with the
graphical interface brings high user friendliness. Since mod-
ern PLCs include a server supporting OPC UA protocol [27],
we decided to use it. The disadvantage of this approach may
be the impossibility of real-time control, if the surrounding

VOLUME 10, 2022 120737



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 2. Basic scheme of proposed solution.

TABLE 2. Summary of selected industrial communication protocols.

infrastructure, including the computer and operating system
on which the control algorithm runs, is not adapted for such
operation. However, this limitation can be minimised or elim-
inated by using means supporting real-time communication,
such as real-time operating systems, industrial Ethernet and
others [28].

The original OPC (OLE for Process Control) standard
appeared in 1995 and allowed interoperability and secure
data exchange between operating devices from different
manufacturers and any client application [29]. Systems sup-
porting the original version of OPC provide a standard-
ized way of accessing data from industrial processes, which
prior to the emergence of this standard was hampered by
differences between proprietary approaches from different
manufacturers.

The current OPC UA (Open Platform Communication
Unified Architecture) standard was released in 2006. This
standard provides specifications for the exchange of informa-
tion in industrial communication, and beyond. It is platform-
independent, suitable for a variety of device types, from

embedded systems to large cloud solutions, which promotes
interoperability. Its development is actively supported by the
OPC Foundation. Compared to the original OPC, it retains
the features of secure and reliable data transfer between
operational devices, and introduces enhancements especially
in the transfer mechanisms and data modelling [30].

OPC UA defines the possibility of access using client-
server architecture, and also the publish-subscribe mecha-
nism. In the case of using the client-server architecture, the
server provides services that clients can interact with (cen-
tralized architecture, one-to-many or many-to-one access).
In contrast, publish-subscribe is more suitable for situations
where many-to-many communication is required, i.e. data
is distributed from multiple publishers to multiple subscrip-
tions. The standard defines 3 data encoding models - UA
Binary, UA XML and UA JSON [31]. Data encoded in this
way can then be transmitted using TCP, WebSocket Secure,
or HTTPS protocols - Fig. 1.

This standard also includes a prescribed method of data
modelling, enabling the process data provided by industrial
equipment to be effectively captured in a structured form.
For this purpose, the OPC UA standard defines a hierarchical
structure consisting of nodes and mutual references between
these nodes. The information model made according to this
standard is then stored in the address space of the OPC UA
server, where it can be accessed by any OPC UA client.
OPCUA also defines so-called companion specifications that
define the information model and its semantics for specific
domain areas, which again facilitates interoperability [32].

B. SELECTION OF EXTENSIBLE PETRI NET EDITOR
Several freely available Petri net editors were analyzed for
the basis of this work. Since practically the entire further
implementation part depended on this choice, it required care-
ful consideration. The editors analyzed included PIPE2 [34],
[35], Renew [36], CPN Tools [37], and PNEditor [38]. The
selection conditions were:
• Friendly and simple user interface
• Availability of source codes
• Multiplatform
• Cleanliness of the source code and its extensibility
We wanted to realize the solution in such a way that it

was as easy as possible to implement, extend and use for
educational purposes. That is why we wanted to use the Petri
net editor, whose code is written in a clear and understandable
way, as a base. This criterion was more important to us than
any advanced analytical functionality of the editor.

120738 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

After considering these criteria, we decided to use the
PNEditor editor as the basis of our implementation. PNEditor
is a graphical Petri net editor programmed in Java, which
makes it multiplatform. The clean design of this software,
the adherence to design patterns and the clarity of the code
are huge advantages. In particular, because of the use of the
Action and Command design patterns [39], it is very easy
to extend the actions that this editor allows, while removing
functionality that is not necessary or appropriate for the pur-
poses of this work.

Basic scheme of proposed solution can be seen in Fig. 2.

III. IMPLEMENTATION
At the beginning of the technical part of the paper it is
necessary to mention the main application benefits of the
developed solution:

• The possibility of implementing a control algorithm
using Petri nets and the advantages that this mathemati-
cal formalism brings with it.

• The use of hybrid Petri nets, which brings the possibil-
ity of control not only discrete event systems, but also
systems with continuous components.

• The use of Petri nets and their graphical representation
allows a simple and quick change of the control algo-
rithm using a graphical editor.

• The developed solution communicates using the uni-
versal and widely adopted OPC Unified Architecture
communication standard.

This section will describe the implementation and func-
tionality of a new tool for system control using hybrid and
discrete Petri nets. Communication takes place via OPC UA.

A. HYBRID PETRI NETS
Since the selected Petri net editor PNEditor did not include
support for continuous and hybrid Petri nets [40], this was the
first task that needed to be addressed. Initially, the marking
and weighting values of all places and arcs were represented
using the int data type, a Java representation of a primitive
data type used for storing integer values. At first glance, the
reader may find it easy to change this data type to another
primitive data type used for storing decimal numbers, such as
the float and double types in Java, but these are not suitable
for use for this purpose because these values are not only
stored in the application, but arithmetic operations are also
performed on them. Because of the way in which the storage
of such variables is implemented at the hardware level, it is
impossible to represent some values accurately in mathemat-
ical operations on them. For Java (and also other languages
running in a virtual machine), we are not referring to a direct
hardware implementation, but to an implementation in the
virtual machine in which the program is run.

For these reasons, we decided to use the BigDecimal class
from Java standard library to store these numeric values,
whose original purpose was to provide a way to implement
mathematical operations that depend on very high precision,

FIGURE 3. Class diagram - assigning OPC UA variable to Petri net place.

such as financial operations. Since objects are handled dif-
ferently in Java than primitive data types, this modification
required identifying all user-accessible entry points in the
application, as well as modifying the implementation of all
arithmetic operations, from the triggering of Petri net tran-
sitions, including the correct behaviour in the case, to the
behaviour of extended arc types. This change also required
modifying the serialization of the classes representing points
and edges for the purpose of storing them in pflow format.

B. OPC UA CLIENT
Another of the tasks set out for this work was to enable sys-
tems control using Petri net formalism via OPC UA protocol.
For this purpose, it was necessary to first define the relation-
ship between the variables located in the address space of the
OPC UA server and the elements of the Petri net. A natural
way, which at the same time does not contradict the formal
properties of Petri nets, turned out to be to ‘‘pair’’ the marking
of selected places with selected variables on the server, and to
write the same marking to a variable on the server whenever
the marking (value) of a relevant place changes.

At first glance, it may seem that for this principle to work,
it is absolutely necessary that the values of variables in the
OPC UA server environment are not changed during the
control by other clients. The solution to this problem brings
us to the involvement of the role of transitions in the Petri
net in the operation of this mechanism, in a way where a
transition is triggered by a user-defined event associated with
a variable of the OPC UA server. In this way, we can use such
external changes (they can be, for example, changes in the
values sensed by the sensors) in the control. Since variables
in the OPC UA standard are typed, and the editor at this point
allows to use real-number marking of places in addition to
integer marking, it is necessary to define a mapping between
the place marking and the value written to the variable on the
server.

VOLUME 10, 2022 120739



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

TABLE 3. Mapping of OPC UA data types and examples of marking values.

In this paper, we propose and implement the following
mapping - Table 3.

For data types defined in OPC UA standard other than
those listed in Table 3, our implementation does not define
a mapping, and if a variable is of a different type, the user
interface does not allow such a variable to be assigned to a
place or transition.

We chose the Eclipse Milo library [41] as the basis for the
actual implementation of the OPC UA client interface. There
are several Java libraries providing similar functionality, but
none of them reaches the quality of Eclipse Milo in terms
of price, open source, complete documentation, existence of
implementation examples, active development and support
from its author. In addition, it wins when comparing data
throughput with other implementations [42]. Eclipse Milo is
a project developed under under the auspices of the Eclipse
Foundation, and its terms of use are defined by the license
EPL-2.0 [43].

The actual implementation of howOPCUA server variable
is assigned to Petri net place is illustrated in Fig. 3.

After each marking change, if such an assignment exists,
the current marking value on the relevant Petri net place (after
the mapping corresponding to Table 3) is written to a variable
on OPC UA server that is uniquely identified by its NodeId,
which is stored in OpcUaNode object.

The implementation of assigning events to transitions is
a bit more complex. The basis of the implementation is the
abstract class Operator, and its concrete implementations
(Fig. 4). In this figure, the blue arrows indicate ‘‘extends’’
and the green arrows indicate ‘‘implements’’. The figure
was generated directly in the IntelliJ IDEA development
environment [44]. The way, in which the connection to Tran-
sition class is implemented, is illustrated by the diagram in
Fig. 5.

The basic principle that is used in the automatic triggering
of transitions is publish-subscribe principle, which is imple-
mented by Eclipse Milo library through ManagedSubscrip-
tion class. Using this class, it is possible to ask the server to
send information to our application (as a client) whenever the

value of a variable changes. This variable is again specified
by its NodeId.

Then the application evaluates whether the received value
meets the condition defined in the OpcUaVariableCondition
class. If it does, it attempts to trigger (fire) the transition that
is bound to this condition. Of course, such a transition is only
triggered if the conditions defined by Petri net formalism are
also satisfied, i.e., all the entry places of the transition have
enough tokens (marking), depending on the weight of the
entry arc of this transition.

Using the graphical user interface (GUI), it is also possible,
in addition to the above assignments, to specify minimum
sampling interval the server should send potential changes
to the values of a variable that is marked as ‘‘of interest’’
using the publish-subscribe mechanism. This value can be
specified in common for all conditions during the connection
to OPC UA server (Fig. 6). It is also possible to specify a
separate value for each defined condition, using GUI used for
assignment (Fig. 7). This is then stored in the variable sam-
plingInterval (in the OpcUaNodeTransitionBinding class).
This value is taken into account independently of the global
sampling interval.

C. MODIFICATIONS OF PNEditor’s GRAPHICAL USER
INTERFACE
The following section summarizes the graphical modifica-
tions in the editor environment that have been made to enable
the use of aforementioned functionalities.

1) SETTING PETRI NET ELEMENTS TO CONTINUOUS
To allow changing the place or arc to continuous, this option
has been added to the context menu of the individual ele-
ments on the canvas (available by right-clicking - Fig. 8).
To maintain compatibility with the way the original editor
functionality works, the same options are also accessible in
the panel at the top of the window, under the Element menu
item (Fig. 9). These buttons work in a ‘‘toggle’’ manner, i.e.
switching between discrete and continuous place/arc types,
again in line with the existing buttons of the same menu.
An arc can only be set as continuous if the place to which
it is connected is set as continuous. Also, the GUI will not
allow the location from which a continuous arc originates to
be set as discrete.

2) GRAPHICAL ELEMENTS RELATED TO OPC UA
CONNECTION
Another significant change in the GUI is the addition of an
item in the main manu - OPC-UA and the buttons associated
with this item (Fig. 10). You can use this menu to access
the editor functionality related to the connection to OPC UA
server. Using the OPC-UA server connection. . . item, it is
possible to display a modal dialog box, which is used to
configure the address of the OPC UA server. In this window
it is also possible to set the global sampling interval valid for
all connection transitions and variables of the OPCUA server
(Fig. 6).

120740 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 4. Class diagram - Operator class and its implementations.

Once connected to the server, you can view and assign
OPC UA address space variables to locations and transitions
of the Petri net by selecting the item Edit OPC-UA bind-
ings. . . in this menu (Fig. 7). If this window is accessed
from the top panel, the listbox at the top of the window
allows to switch between all places and transitions of the
Petri net. This same window can also be accessed by select-
ing the Bind OPC-UA variable option in the context menu
of any of the places and transitions on the canvas. In this
case, the Petri net element from which this window was
invoked is preselected in the top listbox and cannot be
changed.

The middle panel of this window changes depending on
whether a place or a transition is selected in the top listbox.
In the case of places, it is only possible to simply assign a
variable to which the marking of the place will be written;
in the case of variables with Boolean data type, it is possible
to additionally select whether the marking value should be
written directly (corresponding to Table 3) or inverted, i.e.
the opposite value to the markup value, using the Inverted
checkbox.

In the case of transitions, depending on the data type
of the variable, it is possible to define, by selecting an

operator-value pair, a condition that should cause the transi-
tion to be triggered. In this case, it is also possible to specify
an individual sampling interval for each transition triggering
(firing) condition, different from the globally defined one
(Fig. 7).

The last menu item in the top panel is a checkbox that the
user can use to hide or show the rendering of existing site
assignments and transitions (Fig. 11).

IV. CASE STUDIES
Virtual models of a discrete event and hybrid system were
used to validate the functionality. For this purpose, the Fac-
tory I/O simulation software [45] was used as a training
software for teaching the programming of control algorithms.
It is also widespread in use as training software for positions
of workers managing the physical operation of automated
factories or assembly shops. It can be used to model com-
mon components of automated operation, including sensors
or actuators. It can simulate real interactions between these
components and also fault conditions. Factory I/O supports
control input from a number of real PLC control circuits,
but also using Modbus, OPC DA and OPC UA protocols.

VOLUME 10, 2022 120741



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 5. Class diagram - assigning event to Petri net transition.

Of course, for us the support of the OPC UA protocol was
relevant.

For the demonstration, 2 pre-prepared automated lines
(called scenes in the Factory I/O environment) were selected,
which will be introduced later in the text.

Our implemented solution (extension of PNEditor) is OPC
UA client (since PLC type computers usually provide OPC
UA server), and Factory I/O is also implemented as a client.
Direct client-to-client communication is not possible using
the protocol, so we needed to use an intermediate link (mid-
dleware) to simulate the operation of OPC UA server to
validate our solution. There are several solutions for this,
either from Unified Automation [46], or it is possible to
program the server [47]. For the purposes of experimental
validation, both of these approaches proved to be complex
and time consuming, with no obvious benefit to presented
work and article.

By further research, we found a more suitable solution
based on the Node-RED software [48]. Node-RED is both
a platform and a tool for flow-based programming. It is a
programming paradigm that allows to describe the behaviour
of an application as a network of nodes. Each of the nodes has
a clearly defined role; data enters the node, the node modifies
the data, and again the modified data exits the node. It is the
responsibility of the network of nodes to appropriately trans-
fer this data between the nodes. This programming paradigm
is very easy to visualise and therefore more accessible and
understandable to a wider range of users [49] (Fig.12).

The basic functionality of Node-RED does not provide the
ability to configure and run an OPC UA server. The node-
red-contrib-opcua add-on package was used for this purpose.
The method of configuring the address space of the OPC UA
server included in this package is illustrated here:

msg.payload = { “opcuaCommand”:
“addVariable” }
msg.topic = “ns=1;s=variableName;

datatype=Boolean”
The example illustrates the format in which configuration

data is transferred between an inject node and an OpcUa-
Server node.

The architecture of the test environment can be seen in
Fig. 13.

After configuring the address space of the OPC UA server
using the above syntax, modeling the Petri net and creating
the appropriate interconnections, correct automatic control
takes place for the following case studies.

A. CASE STUDY: CONTROL OF DISCRETE EVENT SYSTEM
USING PETRI NET
The first case study uses a scene from Factory I/O called
Sorting by Height (Basic). It is an industrial line used for
sorting of packages by their height. This is done based on
input from a light sensor. Using this line, the functionality
of interfacing discrete Petri nets with OPC UA protocol was
demonstrated (Figure 14).

In terms of the structure of the Petri net modelled for the
control of Sorting by Height, these are 3 disjunctive nets that
could also run in separate control processes. However, for
clarity we have placed them on a single canvas (Fig. 15). Only
discrete places and simple arcs are used in this Petri net, all
with weight 1. The places of Petri net are described in Table 4.
The transitions of Petri net are described in Table 5.
All places in Petri net (with the exception of the Sensed

low and Sensed high places) correspond to the state of one of
the actuators (conveyors) of the system, and thus there is an
assignment to a variable of the address space of the OPC UA
server, which is assigned on the software side of the Factory
I/O to control these actuators.

Transitions in Petri net are in contrast assigned to the sensor
members of the system. And when a defined condition is met,
they react to a change in the state of the system - they reflect
it in the corresponding places of Petri net.

For illustrative purposes, some of these assignments are
duplicated in our case study. For example, in Petri net detail
in Fig. 16, the variable fiooEntryConveyor does not need to
be assigned to both the Entry Conveyor running place and
the Entry Conveyor stopped place, with the flag of writing an
inverted marking value. In this case, the same value is written
to the variable twice, and control of this system would of
course be functional without this redundancy.

The Sensed low and Sensed high places, and the way they
are connected in the Petri net, serve a purpose analogous to
the Boolean variable used in other forms of control for the
purpose of deciding which way the package should proceed,
i.e., how the state of the system should evolve.

The control of the Sorting by Height scene starts with a
situation where the entry conveyor belt is started by automatic
detection using the At right entry/At left entry sensors and
the corresponding assignment to the Start entry conveyor.

120742 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

TABLE 4. Description of Petri net places for first case study - Sorting by Height (Basic) scene.

TABLE 5. Description of Petri net transitions for first case study - Sorting by Height (Basic) scene.

During the passage of the pallet with the package through the
light gate, it is recorded whether the package has crossed the
lower or also the higher positioned sensor. When the pallet
arrives at the chain rectifier, at the end of which there is a
sensor called Loaded tracking the presence of the pallet (rep-
resented in the network as the condition fiooLoaded==true),

the entry conveyor is stopped by automatically firing the
Stop entry conveyor transition. And the pallet, based on the
previous recorded height sensor value, is sent to the right
or left conveyor. These conveyors are only switched on if
there is a package on them that has not yet reached the end
of the conveyor, which is monitored by the At left exit/At

VOLUME 10, 2022 120743



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 6. Graphical user interface - connection to OPC UA server.

FIGURE 7. Graphical user interface - variable assignment dialog - transition view.

FIGURE 8. Graphical user interface - setting the arc/place of Petri net to a continuous type.

120744 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 9. Graphical user interface - setting the arc/place of Petri net to a continuous type.

FIGURE 10. Graphical user interface - OPC UA - main menu.

FIGURE 11. Graphical user interface - transition with associated firing
conditions.

right exit sensors, and the number of these packages on each
conveyor can be monitored at the On left conveyor and On
right conveyor places of Petri net.
If the pallet with the package reaches the end of the con-

veyor, the marking is removed from the conveyor by auto-
matically firing the Remove from left conveyor/Remove from
right conveyor transition again. And the value of the marking
located at the corresponding place (according to the mapping
shown in Table 3) is written to the corresponding variable on
the server. This entire decision process is cyclically iterated.

We can conclude that the ability of discrete event control
with our extended software application was successfully ver-
ified and can be generalised for other applications.

B. CASE STUDY: CONTROL OF HYBRID SYSTEM USING
HYBRID PETRI NET
The second case study uses a scene from Factory I/O called
Assembler (Analog). It is an industrial line, the purpose of
which is to assemble a part from a base and a lid by means
of a two-axis arm controlled by analogue values. This means
that this case required a functional implementation of contin-
uous or hybrid Petri nets and their interfacing with OPC UA
protocol (Fig. 17).

To model the Petri net used to control the Assembler (Ana-
log) system (Fig. 18), it was necessary to use a wider range of
editor functionalities, including continuous places and arcs,
and also reset arcs. During modelling, it was also necessary
to determine the values of the continuous arcs weights cor-
responding to the displacements/increments of the X and Z
coordinates of the biaxial arm - this was done experimentally.
The places of Petri net are described in Table 6. The transi-
tions of Petri net are described in Table 7.

To start the control, you need to set the initial marking of
Petri net manually by triggering (firing) the Start transition.
This has to be done in order to bring the industrial line,
and therefore the corresponding variable values in the OPC

VOLUME 10, 2022 120745



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 12. Graphical user interface of Node-RED.

FIGURE 13. Graphical user interface of Node-RED.

FIGURE 14. Factory I/O - Sorting by Height (Basic) scene.

UA server, into a deterministic state. Subsequently, automatic
control takes place.

Starting the Start transition:

• starts the Lids conveyor 1 and Bases conveyor 1 con-
veyor belts, of which the Lids conveyor 1 conveyor
contains the top of the two-piece component and the

Bases conveyor 1 conveyor contains the bottom of the
two-piece
component

• moves the arm to the correct position in which it begins
its operation,

• and also brings the stopping blades of both conveyors to
the upper position.

When the top part arrives under the suction cup of the arm,
which is detected by the Lid at place light sensor, and then
the value false is written to the fioiLidAtPlace variable, the
conveyor carrying this part is stopped. The two-axis arm with
suction cup will come to rest by automatically firingGo down
transition, which causes the marking to be set at the Z place
corresponding to the Z axis position value of the arm, to the
height at which the Item detected sensor at the end of this arm
detects the top of the two-piece part and initiates the suction
cup mechanism to be turned on by firing Grab transition.
Initiation of the Grab transition shall write a value indicating
the attachment of the part to the place associated with the
fiooGrab variable corresponding to the gripping mechanism.
The next Go up above base transition (which is coupled

with the GfiooGrab variable) moves the arm by writing
specific marking to the places corresponding to the X and
Z coordinates above the base of the two-part component.
If this bottom part is located there (indicated by the GBase at
place light sensor and the corresponding GfiooBaseAtPlace
variable), it places the top part of the component on top of it
by appropriately incrementing the Z coordinate and releasing
the suction mechanism.

120746 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 15. Petri net for control of scene Sorting by Height (Basic).

TABLE 6. Description of Petri net places for second case study - Sorting by Assembler (Analog) scene.

The release of the suction mechanism is combined in the
Petri net with the automatic movement of the arm above the
point at which it expects the next upper part, the setting of
the stop blade (preventing the complete part from moving)
to the lower position, and the lowering of the conveyor belts
providing the pieces of the parts of the two-part part (in the
Remove finished and go up above lid transition).
The last control step is to start the third conveyor belt,

Bases conveyor 2, taking the completed part further.

The Petri net also contains Above base and
Above lid places, which are not coupled with any
of the OPC UA server’s address space, and are only
used for simplified monitoring of the model/Petri net’s
state.

We can conclude that the ability of hybrid sys-
tems control with our extended software application was
successfully verified and can be generalised for other
applications.

VOLUME 10, 2022 120747



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

TABLE 7. Description of Petri net transitions for second case study - Sorting by Assembler (Analog) scene.

FIGURE 16. Petri net for control of scene Sorting by Height (Basic) -
control of entry conveyor (detail).

FIGURE 17. Factory I/O - Assembler (Analog) scene.

V. CONCLUSION
The article presents an extension of the PNEditor able to con-
trol systems using OPC UA communication protocol. This
new software tool enables to control discrete event or hybrid
systems using discrete, continuous or hybrid Petri nets thus

supporting the control paradigm according to which the Petri
net control logic is implemented in personal computer and
control commands are sent usingOPCUA. Themain virtue of
the upgraded software tool is its capability to control complex
discrete event and hybrid systems exploiting the Petri nets for-
malism able to support many challenging scenarios inmodern
production systems operating in the Industry 4.0 framework.

Modelling systems using Petri nets has the huge advantage
of being clear and easy to understand and visualise. Com-
bining this feature with the ability to control in the manner
described in this article is a significant simplification over
commonly used control methods. This, and the architecture
where the system is controlled directly from within the oper-
ating system environment, allows the ‘‘control algorithm’’ to
be changed extremely quickly, and to react to changes in the
system. This can be useful, for example, in the design and
prototyping phase of a controlled system.

Petri nets provide a very clear and graphical way of design-
ing a control algorithm. This is due to the fact that Petri nets
can represent the state of a system by decomposing it into its
individual sub-states. In practice, it may be necessary to opti-
mise the control system. This requirement may arise because
a production process needs to be optimised or the production
process has changed. If the control system is programmed in a
common text-based programming language, this change can
take the programmer quite a long time. The graphical nature
of Petri nets makes it relatively easy to change the control
algorithm and put it into practice. There are alsomathematical
methods for analysing Petri nets that can be used for the
purpose of determining whether a Petri net has been designed
correctly.

As our research has documented, there is a lack of appli-
cations that enable automatic control by taking advantage of
the formalism of Petri nets. As industrialization grows, so do
the requirements for control capabilities, and it is important
for commercial companies to be able to get systems up and
running as quickly as possible, i.e., at the lowest possible cost.

120748 VOLUME 10, 2022



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

FIGURE 18. Petri net for control of scene Assembler (Analog).

We believe that the present approach can be a more suitable
alternative in certain areas and applications than other control
methods that are widely used nowadays.

The aim of this work was to implement an application
that enables modelling of discrete, continuous and hybrid
systems, and to enable their direct automated control via the
OPC UA standard. This objective has been demonstrably ful-
filled. The application has been developed with an emphasis
on user-friendliness.

The application developed in this work can also serve as
a teaching tool, as it extends the capabilities of the clear and
simple editor by using continuous Petri net elements, and thus
allows to easily demonstrate the usefulness of modelling with
hybrid Petri nets, which was not possible before.

The application can be further extended and adapted. One
possible enhancement is to extend the implementation to
include the secure connection capabilities defined by the

OPC UA standard, which are also supported by the Eclipse
Milo library. Another potential enhancement that may be
implemented in the future is the support of a so-called dis-
covery server, i.e. the automatic discovery of OPCUA servers
accessible in the network. There is also potential for enhance-
ment in the user interface, for example, in better defining
conditions for firing transitions - allowing the creation of
conditions composed of the states of multiple variables.

There is also room for improvement in terms of extending
the potential of Petri net formalism. For example, functional-
ity that may prove useful in the course of using the application
may include the ability to define the capacity of places in Petri
net, the ability to define the timing of individual transitions,
etc.

There are other challenges and opportunities to improve
the developed application solution. It is possible to list some
of them:

VOLUME 10, 2022 120749



E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

• If the system to be controlled is very complex, the Petri
net will also be quite complex. In this case, it would
be useful to develop functionalities for labeling (or log-
ically grouping) the different components (subnets) of
the net. Alternatively, it would be possible to add a
comment to these groups. The bigger challenge is the
implementation of hierarchical Petri nets for this pur-
pose.

• Petri nets are based on a strong mathematical formal-
ism. Various functionalities related to Petri net analysis
(reachability of states, deadlock analysis, etc.) could be
implemented in the tool.

• Petri net analysis tools could support graphical output of
those analyses in the form of matrices or graphs. Since
several properties of the Petri net (e.g., coverability tree,
P/T invariants) are useful to display in such a form.

The scientific and application contributions as declared in
this section describe the developed original modelling and
control procedures and solutions for discrete event systems,
and can further be modified for the next research and practice
in Industry 4.0.

Petri nets are a very versatile and insightful tool for mod-
elling and control of discrete-event systems. Hybrid Petri
nets, of which there are still only few applications for con-
trol, bring new and interesting possibilities for control not
only discrete-event systems, but also systems that also have
a continuous component. For the purpose of controlling
manufacturing processes, a hybrid system model represents
the behaviour of dynamical systems in which the states
can change both continuously and instantly. Such systems
develop as a result of the inherent dynamics or when con-
trol algorithms involving digital smart devices are applied
to continuous-time systems (e.g. mechatronic systems with
bumps, electrical and mechanical devices for switching con-
trol). Due to the interaction between digital and analog parts
of a complex manufacturing system, hybrid dynamics may be
unavoidable, and hybrid control may be used to improve per-
formance and robustness compared to conventional control
(PID).

SUPPLEMENTARY MATERIAL
Video examples can be found here: https://www.youtube.
com/watch?v=SHjZ7VDZ8E0 and https://www.youtube.com/
watch?v=U33glvqCctw.

ACKNOWLEDGMENT
The authors would like to thank to Matej Marton for propos-
ing the design concept, programming the implementation,
and his all-round support.

REFERENCES
[1] L. J. Planke, Y. Lim, A. Gardi, R. Sabatini, T. Kistan, and N. Ezer,

‘‘A cyber-physical-human system for one-to-many UAS operations: Cog-
nitive load analysis,’’ Sensors, vol. 20, no. 19, p. 5467, Sep. 2020.

[2] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets, vol. 1.
Berlin, Germany: Springer, 2010.

[3] H.-S. Chiang, M.-Y. Chen, and Y.-J. Huang, ‘‘Wavelet-based EEG
processing for epilepsy detection using fuzzy entropy and associa-
tive Petri net,’’ IEEE Access, vol. 7, pp. 103255–103262, 2019, doi:
10.1109/ACCESS.2019.2929266.

[4] R. Wiśniewski, G. Bazydło, P. Szcześniak, and M. Wojnakowski, ‘‘Petri
net-based specification of cyber-physical systems oriented to control direct
matrix converters with space vector modulation,’’ IEEE Access, vol. 7,
pp. 23407–23420, 2019, doi: 10.1109/ACCESS.2019.2899316.

[5] Z. Hajduk and J. Wojtowicz, ‘‘FPGA implementation of fuzzy inter-
preted Petri net,’’ IEEE Access, vol. 8, pp. 61442–61452, 2020, doi:
10.1109/ACCESS.2020.2983276.

[6] R. Wiśniewski, ‘‘Dynamic partial reconfiguration of concurrent con-
trol systems specified by Petri nets and implemented in Xilinx
FPGA devices,’’ IEEE Access, vol. 6, pp. 32376–32391, 2018, doi:
10.1109/ACCESS.2018.2836858.

[7] M. Bashir, J. Zhou, and B. B. Muhammad, ‘‘Optimal supervisory con-
trol for flexible manufacturing systems model with Petri nets: A place-
transition control,’’ IEEE Access, vol. 9, pp. 58566–58578, 2021, doi:
10.1109/ACCESS.2021.3072892.

[8] C. Blume, S. Blume, S. Thiede, and C. Herrmann, ‘‘Data-driven digital
twins for technical building services operation in factories: A cooling tower
case study,’’ J. Manuf. Mater. Process., vol. 4, no. 4, p. 97, Sep. 2020.

[9] H. Kaid, A. Al-Ahmari, Z. Li, and R. Davidrajuh, ‘‘Intelligent colored
token Petri nets for modeling, control, and validation of dynamic changes
in reconfigurable manufacturing systems,’’ Processes, vol. 8, no. 3, p. 358,
Mar. 2020.

[10] I. Pombo, L. Godino, J. A. Sánchez, and R. Lizarralde, ‘‘Expectations and
limitations of cyber-physical systems (CPS) for advanced manufacturing:
A view from the grinding industry,’’ Future Internet, vol. 12, no. 9, p. 159,
Sep. 2020.

[11] A. Giua; C. Seatzu; F. Sessego, ‘‘Simulation and analysis of hybrid Petri
nets using the MATLAB tool HYPENS,’’ in Proc. IEEE Int. Conf. Syst.,
Man Cybern., Oct. 2008, pp. 1922–1928.

[12] J. Julvez, C. Mahulea, and C.-R. Vazquez, ‘‘Analysis and simulation of
manufacturing systems using SimHPN toolbox,’’ in Proc. IEEE Int. Conf.
Autom. Sci. Eng., Aug. 2011, pp. 432–437.

[13] M. Dotoli, M. P. Fanti, and G. Iacobellis, ‘‘A freeway traffic control model
by first order hybrid Petri nets,’’ in Proc. IEEE Int. Conf. Autom. Sci. Eng.,
Aug. 2011, pp. 425–431.

[14] M. P. Fanti, G. Iacobellis, A. M. Mangini, and W. Ukovich, ‘‘Freeway
traffic modeling and control in a first-order hybrid Petri net framework,’’
IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1, pp. 90–102, Jan. 2014.

[15] M. Dotoli, M. P. Fanti, and A.M.Mangini, ‘‘Fault monitoring of automated
manufacturing systems by first order hybrid Petri nets,’’ in Proc. IEEE Int.
Conf. Autom. Sci. Eng., Aug. 2008, pp. 181–186.

[16] N. Costantino, M. Dotoli, M. Falagario, M. P. Fanti, and A. M. Mangini,
‘‘A model for supply management of agile manufacturing supply chains,’’
Int. J. Prod. Econ., vol. 135, no. 1, pp. 451–457, Jan. 2012.

[17] E. Kučera, O. Haffner, P. Drahoš, J. Cigánek, J. Štefanovič, and Š. Kozák,
‘‘New software tool for modelling and control of discrete-event and hybrid
systems using Petri nets,’’ Comput. Informat., vol. 39, no. 3, pp. 568–586,
2020.

[18] A. C. Gaona, J. M. Chavez, and C. R. Vazquez, ‘‘RCPetri: AMATLAB app
for the synthesis of Petri net regulation controllers for industrial automa-
tion,’’ in Proc. 26th IEEE Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2021, pp. 1–7, doi: 10.1109/ETFA45728.2021.9613441.

[19] R. Nunes, L. Gomes, and J. P. Barros, ‘‘A graphical editor for the
input-output place-transition Petri net class,’’ in Proc. IEEE Conf.
Emerg. Technol. Factory Autom. (EFTA), Sep. 2007, pp. 788–791, doi:
10.1109/EFTA.2007.4416858.

[20] M. A. Drighiciu, G. Manolea, D. C. Cismaru, and A. Petrisor, ‘‘Hybrid
Petri nets as a new formalism for modeling electrical drives,’’ in Proc. Int.
Symp. Power Electron., Electr. Drives, Autom. Motion, Jun. 2008, pp. 626–
631, doi: 10.1109/SPEEDHAM.2008.4581168.

[21] R. Davidrajuh, ‘‘Revisiting Petri net modeling of the cigarette Smokers’
problem: A GPenSIM approach,’’ in Proc. Eur. Model. Symp., Nov. 2013,
pp. 195–200, doi: 10.1109/EMS.2013.34.

[22] K. Jensen, L. M. Kristensen, and L. Wells, ‘‘Coloured Petri nets and CPN
tools for modelling and validation of concurrent systems,’’ Int. J. Softw.
Tools Technol. Transf., vol. 9, nos. 3–4, pp. 213–254, 2007.

[23] A. L. Dias, G. S. Sestito, A. C. Turcato, and D. Brandao, ‘‘Panorama,
challenges and opportunities in PROFINET protocol research,’’ in Proc.
13th IEEE Int. Conf. Ind. Appl. (INDUSCON), Nov. 2018, pp. 186–193,
doi: 10.1109/INDUSCON.2018.8627173.

120750 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2019.2929266
http://dx.doi.org/10.1109/ACCESS.2019.2899316
http://dx.doi.org/10.1109/ACCESS.2020.2983276
http://dx.doi.org/10.1109/ACCESS.2018.2836858
http://dx.doi.org/10.1109/ACCESS.2021.3072892
http://dx.doi.org/10.1109/ETFA45728.2021.9613441
http://dx.doi.org/10.1109/EFTA.2007.4416858
http://dx.doi.org/10.1109/SPEEDHAM.2008.4581168
http://dx.doi.org/10.1109/EMS.2013.34
http://dx.doi.org/10.1109/INDUSCON.2018.8627173


E. Kučera et al.: Modeling and Control of Discrete Event and Hybrid Systems

[24] L. Zhang and N. Xie, ‘‘Research of Ethernet/IP and development of its
network node,’’ in Proc. 2nd Int. Conf. Consum. Electron., Commun. Netw.
(CECNet), Apr. 2012, pp. 486–489, doi: 10.1109/CECNet.2012.6201680.

[25] S. Chen, C.-L. Li, S.-C. Han, and F. Pan, ‘‘The design and implementation
of Modbus/TCP communication on WinCE platform,’’ in Proc. 30th Chin.
Control Conf., 2011, pp. 4710–4713.

[26] V. Q. Nguyen and J. W. Jeon, ‘‘EtherCAT network latency analysis,’’ in
Proc. Int. Conf. Comput., Commun. Autom. (ICCCA), Apr. 2016, pp. 432–
436, doi: 10.1109/CCAA.2016.7813815.

[27] T. Hannelius, M. Salmenpera, and S. Kuikka, ‘‘Roadmap to adopting OPC
UA,’’ in Proc. 6th IEEE Int. Conf. Ind. Inform., Jul. 2008, pp. 756–761.

[28] B. M. Wilamowski and J. D. Irwin, Industrial Communication Systems.
Boca Raton, FL, USA: CRC Press, 2018.

[29] L. Zheng and H. Nakagawa, ‘‘OPC (OLE for process control) specification
and its developments,’’ in Proc. 41st SICE Annu. Conf., 2002, pp. 917–920,
doi: 10.1109/SICE.2002.1195286.

[30] S. Cavalieri, ‘‘A proposal to improve interoperability in the Industry 4.0
based on the open platform communications unified architecture stan-
dard,’’ Computers, vol. 10, no. 6, p. 70, May 2021, doi: 10.3390/comput-
ers10060070.

[31] A. Eckhardt, S. Müller, and L. Leurs, ‘‘An evaluation of the applicability
of OPC UA publish subscribe on factory automation use cases,’’ in Proc.
IEEE 23rd Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2018,
pp. 1071–1074, doi: 10.1109/ETFA.2018.8502445.

[32] C. P. Iatrou and L. Urbas, ‘‘Efficient OPC UA binary encoding considera-
tions for embedded devices,’’ in Proc. IEEE 14th Int. Conf. Ind. Informat.
(INDIN), Jul. 2016, pp. 1148–1153, doi: 10.1109/INDIN.2016.7819339.

[33] K. Manditereza. (2021). OPC UA Technology Mapping: Data Encoding,
Data Security and Transport Protocols. Accessed: Aug. 3, 2022. [Online].
Available: https://www.youtube.com/watch?v=zYjKK0F3RDg

[34] N. J. Dingle, W. J. Knottenbelt, and T. Suto, ‘‘PIPE2: A tool for the perfor-
mance evaluation of generalised stochastic Petri nets,’’ACMSIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 34–39, 2009.

[35] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knottenbelt, ‘‘PIPE
v2. 5: A Petri net tool for performance modelling,’’ in Proc. 23rd
Latin Amer. Conf. Inform. (CLEI), Oct. 2007. [Online]. Available:
https://sarahtattersall.github.io/PIPE/

[36] O. Kummer, F. Wienberg, M. Duvigneau, M. Köhler, D. Moldt, and
H. Rölke, ‘‘Renew-the reference net workshop,’’ in Proc. 21st Int. Conf.
Appl. Petri Nets Tool Demonstrations. Aarhus, Denmark: Aarhus Univer-
sity, 2000, pp. 87–89.

[37] A. Ratzer, ‘‘CPN tools for editing, simulating, and analysing coloured Petri
nets,’’ in Proc. Int. Conf. Appl. Petri Nets. Berlin, Germany: Springer,
Jun. 2003, pp. 450–462.

[38] M. Riesz, M. Seckár, and G. Juhás, ‘‘PetriFlow: A Petri net based
framework for modelling and control of workflow processes,’’ in Proc.
ACSD/Petri Nets Workshops, 2010, pp. 191–205.

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. London, U.K.: Pearson,
1995.

[40] H. Alla and R. David, ‘‘Continuous and hybrid Petri nets,’’ J. Circuits,
Syst., Comput., vol. 8, no. 1, pp. 159–188, 1998.

[41] Eclipse Milo. Accessed: Aug. 3, 2022. [Online]. Available:
https://projects.eclipse.org/projects/iot.milo

[42] Simple OPC UA Stack Benchmarking Results. Accessed: Aug. 3, 2022.
[Online]. Available: https://github.com/kevinherron/stack-bench#results

[43] Eclipse Public License—V 2.0. Accessed: Aug. 3, 2022. [Online]. Avail-
able: https://www.eclipse.org/legal/epl-2.0/

[44] H. Böck, ‘‘IntelliJ IDEA and the NetBeans platform,’’ in Platform, vol. 7.
New York, NY, USA: Apress, 2012, pp. 431–437.

[45] B. Riera and B. Vigário, ‘‘HOME I/O and FACTORY I/O: A virtual house
and a virtual plant for control education,’’ IFAC-PapersOnLine, vol. 50,
no. 1, pp. 9144–9149, Jul. 2017.

[46] OPC UA Servers. Accessed: Aug. 3, 2022. [Online]. Available:
https://www.unified-automation.com/downloads/opc-ua-servers.html

[47] OPC UA Server Implementation. Accessed: Aug. 3, 2022. [Online]. Avail-
able: https://github.com/eclipse/milo/blob/master/milo-examples/

[48] About: Node-RED. Accessed: Aug. 3, 2022. [Online]. Available:
https://nodered.org/about/

[49] W. P. Stevens, ‘‘How data flow can improve application development
productivity,’’ IBM Syst. J., vol. 21, no. 2, pp. 162–178, 1982.

ERIK KUČERA received the graduate degree from
the Faculty of Electrical Engineering, Slovak Uni-
versity of Technology in Bratislava (FEI STU),
Slovakia, in 2013, and the Ph.D. degree in mecha-
tronic systems, in 2016.

He is with the Faculty of Electrical Engineering
and Information Technology, Institute of Automo-
tive Mechatronics, Slovak University of Technol-
ogy in Bratislava. His focus is mainly on modern
information and communication technologies and

their use in the context of fourth industrial revolution Industry 4.0. His
research interests include the Internet of Things, virtual and mixed reality,
cloud computing, and new microcontrollers.

OTO HAFFNER received the graduate degree
from the Faculty of Electrical Engineering, Slovak
University of Technology in Bratislava (FEI STU),
Slovakia, in 2013, and the Ph.D. degree in mecha-
tronic systems, in 2016.

He is with the Faculty of Electrical Engineering
and Information Technology, Institute of Automo-
tive Mechatronics, Slovak University of Technol-
ogy in Bratislava. His focus is mainly on modern
machine vision methods and their use in the con-

text of fourth industrial revolution Industry 4.0. His research interests include
artificial intelligence and deep learning.

PETER DRAHOŠ received the graduate degree
from the Faculty of Electrical Engineering, Slovak
University of Technology in Bratislava (FEI STU),
in 1985, and the Ph.D. degree in automation and
control, in 2003.

Since 2012, he has been with the Faculty
of Electrical Engineering and Information Tech-
nology, Slovak University of Technology in
Bratislava, where he is currently an Associate Pro-
fessor. His main research interests include smart

material actuators, sensors and automatic control, and industrial communi-
cation systems.

ALENA KOZÁKOVÁ received the graduate degree
from the Faculty of Electrical Engineering, Slovak
University of Technology in Bratislava (FEI STU),
in 1985, and the Ph.D. degree in technical cyber-
netics, in 1996.

Since 2013, she has been with the Faculty of
Electrical Engineering and Information Technol-
ogy, Institute of Automotive Mechatronics, Slovak
University of Technology in Bratislava, where she
is currently a Professor. She is one of the leading

experts in automatic control theory in Slovakia. Her specialty is mainly in
the field of optimal control.

VOLUME 10, 2022 120751

http://dx.doi.org/10.1109/CECNet.2012.6201680
http://dx.doi.org/10.1109/CCAA.2016.7813815
http://dx.doi.org/10.1109/SICE.2002.1195286
http://dx.doi.org/10.3390/computers10060070
http://dx.doi.org/10.3390/computers10060070
http://dx.doi.org/10.1109/ETFA.2018.8502445
http://dx.doi.org/10.1109/INDIN.2016.7819339

