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ABSTRACT In this study, a novel framework using multiple novelty detection filters is developed to learn
a model of the normality of a robot’s visual perception, which is called multichannel novelty detection.
Subsequently, the acquired model was used to highlight dissimilar perceptions when the robot explored an
environment. The main purpose of fusing multiple novelty filters is that each novelty filter performs well
in detecting specific types of novelties; therefore, a new framework is proposed that demonstrates a new
way to combine multiple different purposed novelty detection filters together in order to yield an overall
more robust novelty status on the visual features. To develop a multichannel novelty detection system,
expectation- and appearance-based novelty detection models were used in this study. To become experts
in detecting different types of novelty using these models, different features from the input image were
extracted as inputs for the models. The expectation-based novelty detection model uses the MobileNetV2
deep network to extract the deep features of the input image, which is subsequently used to learn a sequential
and temporal model of normality to detect novelty. By contrast, the appearance-based novelty detection
model uses speeded up robust features (SURF), which provide more region-focused features within the
input image, to identify whether a specific region of the image is novel. The proposed multichannel novelty
detection system is a completely online and real-time approach that is very important for mobile robotics
applications. The proposed framework was tested in three novel environments, and it was reported that the
proposed multichannel novelty detection system performs better than expectation-based and appearance-
based novelty filters separately. Statistically, in the three novel environments, the Matthews correlation
coefficients are reported to be 0.94, 0.97, and 0.93, and F1 scores are reported to be 0.95, 0.97, and 0.93,
respectively, which proves that and can be concluded as almost perfect statistically.

INDEX TERMS Neural networks, incremental learning, novelty detection, robot learning, local invariant
features, transfer learning, deep learning.

I. INTRODUCTION
Novelty detection was employed to identify whether the input
data differed from the previously observed data. It can be a
useful tool for many engineering applications, such as iden-
tifying abnormal jet engine behaviours [1], identifying breast
cancer [2], and detecting abnormal sensory readings for
mobile robotics [3], [4]. In order to develop a novelty detec-
tion system, an appropriate machine learning systemmust be
used in order to ascertain the model of frequently seen data
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(also called ‘normal data’). Subsequently, the obtained model
of normality can be used to filter out any new data that are
not similar to the frequently repeated data (also called ‘novel
data’). The main reason for developing a model of normality
instead of a model of novel data is that it is not possible to
design a system to directly detect novel data; in particular, the
characteristic properties of novel data are unknown because
these data rarely occur [2], [5].

Several novelty detection approaches have been developed
for a variety of applications. A review of these approaches is
provided in [6], [7], and [8]. However, most of the approaches
described in the literature have a model of normality
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developed offline. This means that the data required to train
the model of normality must be available beforehand. Thus,
it is more appropriate to use online learning systems inmobile
robotics. This is because the quantity of data received from
the environment is unknown; therefore, the memory capacity
of the robot may be insufficient to save the received data to
train the model of normality, making this type of training
impossible. Therefore, the main focus is on the online novelty
detection used in mobile robots.

Marsland et al. [9] developed a Grow When Required
(GWR) network for online novelty detection. This network is
based on a self-organising map (SOM) that clusters the input
data in a topological manner. The advantage of this approach
is that the GWR network is dynamic, and its structure
(or feature map) grows by the addition of new nodes when the
input data are novel, and shrinks structurally when the exist-
ing node has not been activated because of a lack of learned,
normal input data (a node represents learned knowledge). The
authors of this study integrated a habituation method [10] at
the top of the network to track the novelty degree of each node
in the network. The proposed novelty detection network was
demonstrated in various mobile robotic applications, where
the robot learned to navigate a corridor on a different floor
of the building and managed to identify novel sonar-range
sensory data received while patrolling [11].

Alternatively, Gatsoulis and McGinnity [12] used a GWR
network to detect whether the complete object was novel,
instead of detecting novelty in each extracted feature vector
at every time step. This is because some features of the
objects can carry similar properties; therefore, in order to
decide whether the object is novel, the objects are viewed at
all angles and the winner of the voting determines whether
the object is novel or known. To learn the properties of the
object, local invariant features from the captured image were
extracted and learned by the GWR network.

Later, Neto and Nehmzow [13], [14] proposed an attention
mechanism to select interesting sensory features from an
input image before presenting this information to the novelty
filter. The authors demonstrated this approach using a GWR
network and novelty filter based on incremental principal
component analysis (PCA) [15] in the visual novelty detec-
tion system of a mobile robot. The attention selection mecha-
nism was found to improve the generalisation performance
of novelty filters by focusing on interesting visual regions
in the input images instead of using the entire input image
to determine the model of normality. In fact, the captured
image did not always carry relevant information. Sometimes,
the camera captured a uniformly patterned floor or wall.
Thus, these types of visual features added to the novelty
filter caused the loss of small interesting regions in the image
when the entire imagewas usedwithout an attention-selection
mechanism in the learning system.

In contrast, Contreras-Cruz et al. [16] used a pretrained
deep convolutional neural network (DCNN) for feature
extraction to present the novelty filter. The authors claimed
that deep features are more robust and reliable than traditional

visual feature extraction methods such as colour histograms,
colour angular indexing, and the GIST descriptor. They con-
ducted experiments and compared deep features and other
feature extraction methods separately using simple evolving
connectionist systems (SECoS) and GWR network-based
novelty filters. The results showed that deep-feature-based
novelty detection outperformed traditional feature extraction
methods.

These two approaches, GWR network and incremental
PCA, examine the current input data to determine whether
they are similar to the models learned by the corresponding
novelty detection approach. The main disadvantage of these
approaches is that they do not consider the sequential relation-
ships between the input data obtained from the environment,
such as the connection between two or more consecutive
input data points at time t, t+1, . . . , t+n. Consequently, it is
impossible to detect any missing input data or changes in the
location of the normal input data received from the environ-
ment. To overcome the temporal model of normality issues
of these robot-based novelty detection approaches, [17], [18]
recently proposed online expectation-based novelty detection
for mobile robots, which models the temporal relationship
between a series of input data received from the robot’s
environment while travelling. This system also processed the
input data online; therefore, its structure also changed dynam-
ically during the learning phase, according to the amount
of novel data presented to the system. In this approach,
novelty can be detected whenever the model of normality is
unsuitable for predicting the forthcoming expected sensory
data.

Importantly, each novelty detection approach is specialised
to detect certain novelties in the environment. For example,
although a GWR network and an attention selection mecha-
nism together yield robust novelty detection, this combination
considers only the selected area of interest in the current input
image with the learned models of normality. By contrast,
the expectation-based novelty detector learns the temporal
relationship between the received sensory data; however,
it ignores and fails to detect small novelties in the current
input image, because its design organisation learns the entire
image without feature engineering.

Consequently, in this paper, a multichannel novelty detec-
tor is proposed that intelligently combines multiple different
purposed novelty detectors, which work in parallel to detect
novelties. This approach was inspired by the behaviour-based
architecture of the robot controller developed by Brooks [19],
where this subsumption architecture combines all the motor
actions obtained from various task-specific controllers to
produce the robot’s final action. Each novelty detector in the
proposed system learns themodel of normality using different
types of features from the input image such that each detector
becomes an expert in specific types of novelties. It is difficult
to identify all types of novelty by using only one model of
normality. Therefore, to avoid missing abnormalities in the
corresponding task, the outputs of multiple novelty detectors
were combined.

VOLUME 10, 2022 121033



E. Özbilge, E. Ozbilg: Fusion of Novelty Detectors Using Deep and Local Invariant Visual Features

FIGURE 1. Overview of Brooks’ subsumption architecture adapted to
novelty detection tasks.

Two novelty detectors, expectation-based and appearance-
based, were used in this study. Separate deep and local invari-
ant features were extracted to feed these novelty detectors.
Therefore, one detector focuses on local regions in the input
image, whereas the other detector learns the normality model
of more complex features within the input image extracted
from the deep neural network. The main contributions of this
study are as follows:

1) A novel framework was proposed that combined mul-
tiple novelty detectors for robust and reliable novelty
detection.

2) The performances of the deep and local invariant image
features as inputs to the novelty detection system were
analysed and compared.

3) The weaknesses of the sublevel novelty detectors were
identified, and a superior novelty detection perfor-
mance was achieved using a multichannel novelty
detector, which was statistically proven.

The remainder of this paper is organised as follows.
In Section II, the proposed online learning-based multi-
channel novelty detection system for mobile robotics is
described. In Section III, the experimental procedure, envi-
ronment, and performance assessment metrics are described.
The experimental results are discussed in Section IV. Finally,
in Section V, conclusions are presented.

II. THE MULTICHANNEL NOVELTY FILTER
The proposed system comprises three main blocks, namely
observation, feature extraction, and a model of normality,
as shown in Figure 2. The system receives a raw colour
image from the camera of the robot while it is moving
through the environment. The captured image was then sent
to the feature extraction block. In this block, two feature
extraction techniques which yield distinct information from
the environment are performed. First, a raw colour image is
presented to a pretrained DCNN model to extract deep visual
features. In parallel, a raw image is also presented to the
visual attention selection mechanism to obtain visual features
for local interest regions in the input image. Subsequently,
the features extracted from the sensors passed through the

associated novelty detectors. Finally, the degrees of novelty
from both detectors are combined intelligently to make a final
decision regarding the corresponding input image received
from the environment.

The following sections break down the proposed novelty
detection system into separate blocks and provide a detailed
explanation of each block.

A. DEEP CONVOLUTIONAL NEURAL NETWORK
To extract the visual features from the raw image, a pretrained
DCNN was used. This type of network consists of many
hidden layers which are convolutional layers and fully con-
nected dense layers, and contains normalisation and pooling
operations between these layers. Because it comprises a large
network, it is very expensive to train such a large network
on a robot’s computer which requires high memory and a
fast graphics processing unit (GPU). In addition, the DCNN
was trained offline (batch learning) which required many
images. Therefore, a pretrained DCNN model is generally
used to extract features that have already been trained in
more than 14 million images of the ImageNet database [20],
which is called transfer learning. In transfer learning, the
pretrained network layer connection weights are frozen
(i.e. learning-disabled), and the final classification (output)
layer is removed from the network architecture. The acti-
vation values from the last layer of the DCNN model were
used as the extracted deep features for the corresponding
input image, which was presented to the network. Many
different types of DCNN architectures are available; however,
the MobileNetV2 architecture [21] was used for the feature
extraction process. This network has the lowest number of
parameters (≈3.5 million) compared with the other available
ImageNet models in [22] which is very important for mobile
robotics applications when there is limited processing power
available onboard the robot.

The first version of MobileNet [23] introduced depthwise
separable convolution which is computationally cheaper and
faster than regular convolution and yields similar results. Reg-
ular convolution combines all input channels into one output
channel by performing a simple weighted sum of the input
pixels of all channels of the input image covered by a single
kernel (i.e. filter). In practice, there is more than one kernel.
Therefore, the resultant convoluted matrix has the same chan-
nel size as the number of kernels used in the convolutional
layer. In contrast to regular convolution, depthwise separable
convolution has two different convolution operations. First,
a depthwise convolution with a 3×3 kernel is applied, which
performs a convolution operation in each input channel sepa-
rately; therefore, it produces the same number of channels as
the input channels. Then, to combine channels obtained from
depthwise convolution into a one-channel output, similar to
the regular convolution, a pointwise convolution is used. This
convolution is a regular convolution, but it uses a 1×1 kernel
window to combine all the input channels into a one-channel
output.
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FIGURE 2. Proposed online multichannel novelty detection system.

To improve the performance of the first version of
MobileNet, a bottleneck residual block was introduced with
the MobileNetV2 model. In this block, three convolution
operations are performed, where the first convolution is used
1×1 kernel to widen the number of input channels, which is
also known as the expansion layer, and a depthwise convo-
lution with a 3×3 kernel is performed to filter the channels.
At the final convolution, 1×1 kernel is used once again to
reduce the number of channels which are obtained from the
depthwise convolution, which is called the projection layer.
This type of layer is also known as a bottleneck layer, when
the amount of data flowing through the network is reduced.
By contrast, the predecessor model maintains either the num-
ber of output channels of the same or doubled channel size;
hence, it has many more parameters than the newer model.
It is also important to note that in the first two convolutional
layers, instead of using the standard rectified linear unit
(ReLU) activation function, the ReLU6 activation function
is used to clamp the sum of the weighted input values to a
maximum value of six, that is, min(max(x, 0), 6). However,
the projection layer does not have an activation function
(i.e. linear activation) that prevents the loss of relevant
information from the image by using a nonlinear activation
function [21].

Furthermore, the residual connection for the bottleneck
block of the MobileNetV2 model was implemented, and a
copy of the bottleneck block’s input was connected to the
output of the same block. Thus, the network is less prone
to vanishing gradient issues [24]. A residual connection is
added whenever the input and output channel sizes of the
bottleneck block are the same. Figure 3 presents an overview
of theMobileNetV2 architecture used for deep feature extrac-
tion. The final convolutional layer produces 8×10×1280-
dimensional matrix, and the 2D global average pooling
operation is then applied to the resultant matrix to obtain a
feature vector that contains 1,280 features. Global average
pooling averages the outputs of the convolution layer accord-
ing to the channel. After obtaining the deep features, they
were presented to the expectation-based novelty filter.

B. VISUAL ATTENTION SELECTION
One of the issues in using the entire colour image in any
learning system is that the input image carries a large amount
of data, andmost of them come from a uniform colour pattern,

such as the floor or wall of the environment, which can
dominate the entire feature vector presented to the system.
These small regions may be that are interesting and novel.
However, using all data from the input image can not capture
the features of these small novel regions. Hence, the visual
attention selection mechanism plays an important role in
determining the regions of interest within the captured image
for the learning system to pay attention to the selected region
on the corresponding image. A local feature extraction tech-
nique known as speeded up robust features (SURF) [25], [26]
was used to obtain the feature vectors of the regions of the
interest on the received image from the robot’s environment.
The extracted features were scale-, rotation-, brightness-,
and contrast-invariant [27]. Therefore, similar features are
obtained for the same objects which are observed at different
distances, angles, and light angles by the robot while mov-
ing in the environment. This algorithm was inspired by the
scale-invariant feature transform (SIFT) [28], and SURF is
much faster than SIFT [29], [30] which is very important
when working with large image data on the robot in real-time.
The SURF algorithm computes an integral image [31] for the
input grayscale image, which increases the performance of
computing convolution with box filters. The integral image
I6 is the sum of the intensity values above and the corre-
sponding pixel coordinates (x, y), and is formulated as in (1).
Essentially, the integral image is computed rapidly using both
the calculated neighbourhood values of the required pixel
coordinates (x, y) on the integral image and the associative
intensity value of the original image I (x, y) as given in (2).

I6(x, y) =
i≤x∑
i=0

j≤y∑
j=0

I (x, y) (1)

I6(x, y) = I (x, y)+ I6(x, y− 1)

+I6(x − 1, y)− I6(x − 1, y− 1) (2)

SURF uses a Hessian matrix to detect the point of interest
within the input image, where the Hessian matrix detects the
local curvature by calculating second-order partial deriva-
tives. The Hessian matrix can be calculated for a given point
p = (x, y) in an image with scale σ :

H(p, σ ) =
[
Lxx(p, σ ) Lxy(p, σ )
Lxy(p, σ ) Lyy(p, σ )

]
(3)
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FIGURE 3. An overview of the MobileNetV2 model used for feature extraction is shown at the bottom of the figure. The top image illustrates the
sequence of convolutional layers in the bottleneck block.

where Lxx(p, σ ) denotes the convolution of the second-order

Gaussian derivative
∂2

∂x2
g(p, σ ) at point p, σ denotes the

width of the Gaussian, and the function g(·) is defined as
follows:

g(x, y, σ ) =
1

2πσ 2 e
−(x2+y2)

2σ2 (4)

The points of interest in the image are extracted by finding
the local maxima in both the space and scale images by
computing the determinant of the Hessian matrix. To cal-
culate the four entries of the Hessian matrix, image I (x, y)
is first convolved with a Gaussian kernel, and then the
image is convolved with the second-order derivative of the
Gaussian. This operation was computationally expensive.
Instead, Hessian values can be approximated using box filters
and can be computed at a very low cost using an integral
image. Therefore, 9×9 box filter with σ = 1.2 provides
a very good approximation of Hessian matrix values. The
determinant of the Hessian is approximated [32] as given
in (5):

det(Happrox) = DxxDyy − (0.9Dxy)2 (5)

where Dxx ,Dyy and Dxy are Hessian value approximations in
x, y and xy directions, respectively.

To detect scale-invariant features, the determinant of the
Hessian matrix was computed for different scales of the input
image. This is typically performed by implementing image
pyramids, where the image size is repeatedly reduced, fol-
lowed by the application of a Gaussian filter to each subsam-
pled image. However, in SURF, instead of reducing the size
of the image, the dimensions of the box filter are increased,
and the width of the Gaussian (σ ) is increased based on the
changing ratio of the filter size. From the algorithm point of

view, these operations can also be implemented in parallel
with the use of a GPU, thus yielding faster computation. Once
all determinant values of the up-scaled region in the image are
computed, a non-maximum suppression algorithm is applied
to localise the point of interest in the image over the scaled
image. To detect the rotation-invariant feature of the detected
interest point, SURF uses Haar-wavelet responses in the hor-
izontal and vertical directions with a circular neighbourhood
of radius 6σ where σ is the value at which the interest point
is detected when the box filter is upscaled. The orientation of
the detected interest point is then computed by determining
finding the largest sum of the horizontal and vertical wavelet
responses which is computed for each 60◦ angle around the
interest point, thereby yielding the orientation vector of the
corresponding point. Finally, the feature vector was computed
using the detected interest points and their corresponding
orientations. For each detected point, a square window of size
20σ was constructed around the point, and the orientation of
this window was adjusted based on the acquired orientation
vector for the associated point. Then, this window is divided
into 4×4 subregions. For each subregion, the Haar wavelet
responses in the horizontal and vertical directions for the
25 sample points were calculated. The sum of the horizontal,
vertical, and absolute values in both directions constitutes the
4-element feature vector vi for the subregion i as given in (6).
Eventually, from 4×4 subregions, 4×4×4 = 64 elements
were obtained as a feature vector sj = [v1, v2, . . . , v16] for
the jth interest point.

vi =
[∑

dx ,
∑

dy,
∑
|dx |,

∑
|dy|

]
(6)

where dx , dy indicate the wavelet responses in horizontal and
vertical direction.
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C. MODEL OF NORMALITY
The model of normality consists of simultaneous training
expectation-based and appearance-based novelty detectors.
This mechanism is described as follows.

FIGURE 4. Graphical representation of EFuNN architecture. The filled
circles at the hidden layer indicates the nodes which are propagated to
compute the outputs of the network. The filled circle at the context layer
is the node which has the highest activation value from the previous
time-step. Solid lines indicate the active connections.

1) EXPECTATION-BASED NOVELTY DETECTOR
The expectation-based novelty detection algorithm was
described in [17]. This novelty detector uses a modified ver-
sion of the evolving fuzzy neural network (EFuNN) inspired
by Kasabov [33], [34]. Figure 4 shows the architecture of
the EFuNN, which consists of input, hidden, context and
output layers. This network can acquire a temporal model
between past observed and current input values through
online and incremental learning, where the model predicts the
expected input values for the current time step. The network
dynamically changes its structure by adding or removing
the nodes (i.e. learned knowledge) from the hidden layer
and its corresponding node from the context layer. Initially,
the network does not contain any node (i.e. no knowledge
has been learned). Whenever the network receives a novel
input, a new node is added to the hidden layer and a node
at the context layer is also created to store the previous
activation of the node which is created for the hidden layer.
The newly created node weights are initialised with the
received previous time-step inputs, and the weights from the
hidden layer to the output layer are set as the current actual
input data. The network prediction is computed using only
the highly activated nodes from the hidden layer, as given
in (7).

d̂i(t) =
|n|∑
j=1

anj∑|n|
k=1 ank

· wi,nj (7)

where n = {n1, n2, . . .} is the index set of the highly
activated nodes and anj indicates the activation value of
the hidden node nj. The activation of a hidden node ai(t)
can be computed as given in (8). After obtaining the acti-
vations of the hidden layer, the maximum activated node
b = argmaxi(ai(t)) can be determined.

ai(t) = min(max(1− Sr · γi + Tr · vc,i, 0), 1) (8)

where Sr and Tr are the spatial and temporal ratios,
respectively; vc,i is the connection weight from the max-
imum activated node from the context layer, that is,
c = argmaxi(ai(t−1)), to the hidden node i; and γi is the nor-
malised Manhattan distance between the input deep feature
vector d(t−1) and weight vector ui of node i as given in (9).

γi =
|d(t − 1)− ui|
|d(t − 1)+ ui|

(9)

The network determines the previous or current input val-
ues as novelty when:

1) The maximum activation of the hidden layer ab is low,
indicating that the novelty is based on past observa-
tions. Each hidden node has an associated node in
the context layer where the copy of the previous acti-
vation value of the hidden nodes is stored, and each
context node has connection weights (vi) to all the
hidden nodes (see Figure 4). The activation of each hid-
den node involves spatial and temporal information as
given in (8). Thus, although the previous input features
(d(t − 1)) do match well with the maximum activated
hidden node (indicating with a low distance value in
equation (9)), if there is no strong context layer connec-
tion weight from the previously activated node, this can
be occurred when the previous and current maximum
hidden node are not fired consecutively before that
indicates the sequence of activation values are novelty.

2) The prediction error between the predicted and actual
input values was significantly high, indicating that nov-
elty was based on the current input values. The predic-
tion error was computed using the Euclidean distance
ε(t) = ||d(t)−d̂(t)|| where d̂(t) and d(t) indicate the
predicted and actual extracted deep feature vectors,
respectively, from the MobileNetV2 model.

The actual extracted deep feature vector d(t) can be high-
lighted as novelty whenever the error ε(t) exceeds the learned
dynamic novelty threshold nt(t) which is estimated for
the current input vector, i.e. IF[ε(t)>nt(t) or ab<Sthr],
where Sthr is the sensitivity threshold. Dynamic novelty
thresholds [35] are the confidence levels of the network
predictions which are learned in each distinct perception
space in the environment independently by the network in an
online manner, along with the network connection weights
during normal environment training. As a result, for different
perception spaces in the environment, there is a different level
of network confidence which has been learned during the
normal environment training; therefore, the network produces
a local novelty threshold for the corresponding perception
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FIGURE 5. An S-shaped membership function (SMF) to calculate the
degree of novelty using the prediction error ε(t) and novelty
threshold nt(t).

space instead of using one global novelty threshold (this is
one of the differences from the regular EFuNN). In fact, the
network cannot make good predictions in some regions of
the normal environment in comparison with other regions
because the input features from these poorly predicted regions
may not appear frequently in the normal environment. Con-
sequently, if one global threshold is selected, it is possible to
lose novelty detection in regions where the network makes
better predictions.

To compute a local novelty threshold for validating the
current received input feature vector, the estimated variances
σi of the hidden nodes highly activated by the previous inputs
to the network (note that every created hidden node is also
associated with a variance parameter to keep track of the
current prediction error whenever these nodes are activated)
are used as follows:

nt(t) = k ·

√√√√ |n|∑
i=1

ani∑|n|
j=1 anj

· σ 2
ni (10)

where k is the scaling constant which was set to 2 in the
following experiments.

The network also removes nodes which are not activated
by inputs received from the environment. This functionality
works as a forgetting property such that when noisy inputs
are added to the network or any inputs are learned previ-
ously but are displaced their locations in the environment
(i.e. becoming a new normal situation), the network waits for
a certain time to ensure that the inserted inputs are no longer a
frequently seen feature in the environment before the network
removes them from its knowledge. A detailed description of
the EFuNN-based novelty filtering algorithm can be found
in [17].

The computed prediction errors of the modified EFuNN
are unnormalised and unbounded values, which makes it
impossible to combine these values with other types of nov-
elty detectors. This is because the network does not yield
a degree of novelty between 0 and 1 as the output of the
network, where the value is close to one indicate strong
novelty; otherwise, it is weak. To overcome this, an S-shaped
membership function (S-MF), as shown in Figure 5 is added

at the top of the network; therefore, the computed unbounded
prediction error is constrained to lie within the desired range
to indicate the strength of the novelty. Both the prediction
error ε(t) and estimated novelty threshold nt(t) of the current
input feature vector are used to compute the novelty degree
µ(ε(t)) of the network, as given in (11).

0, ε(t) < nt(t)

2
(
ε(t)− nt(t)

ñt(t)− nt(t)

)2

, nt(t) ≤ ε(t) ≤
nt(t)+ ñt(t)

2

1− 2
(
ε(t)− ñt(t)

ñt(t)− nt(t)

)2

,
nt(t)+ ñt(t)

2
≤ ε(t) ≤ ñt(t)

1, ε(t) > ñt(t)

(11)

where ñt(t) = nt(t)+β, β is a small constant fraction, [nt, ñt]
indicates the interval of the prediction errors which contain
the novelty degree, and the parameter β is set to 0.5 for the
following experiments.

FIGURE 6. Graphical representation of GWR network architecture. The
filled circle at the cluster layer indicates the winning node. The activated
connections are represented with solid lines. The ticker line between the
nodes represent the neighbouring connection.

2) APPEARANCE-BASED NOVELTY DETECTOR
The appearance-based novelty detector learns only the char-
acteristic properties of the input data, and is called unsuper-
vised learning. This type of novelty detection system does not
consider the context in which inputs occur. The consideration
of novelty depends only on whether the novel input data
come from different distributions that the learning system has
previously learned. An appearance-based novelty detector,
along with an expectation-based novelty detector, is used to
learn the local visual input data. Thus, regions of interest in
the input image can be examined and learned individually,
similar to the work of [14]. A GWR network [3], [5], [9] was
used to implement an appearance-based novelty detection
approach, as shown in Figure 6. This network also performs
an online incremental learning approach like EFuNN, but
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unlike expectation-based network, it clusters the input data
instead of predicting the expected input values. The local
features extracted from the SURF detector are learned using a
GWRnetwork. As the number of interesting regions extracted
from an image varies from image to image, the GWR network
is well suited for learning this type of local feature.

The SURF features of an input image are first extracted;
hence, a set of feature vectors is acquired as S(t) =
{s1(t), s2(t), . . . , sn(t)}where n denotes the number of feature
vectors and is different for each input image. The SURF
features for an image are then sequentially presented to the
GWR network. Initially, there is no knowledge available
about the environment in the GWR network; that is, no nodes
are created on the network. The first node is created when the
first extracted SURF feature of the input image is presented to
the network.When the network receives a new SURF feature,
first, the best matching node (i.e. the winner node) on the
network is found as given in (12):

b = argmin
i∈C
||sj(t)−wi|| (12)

where C indicates the current number of nodes available in
the network and wi is the weight vector of node i. Subse-
quently, the activation of the winner node is computed as:

ab = exp(−||sj(t)−wi||
2) (13)

Each node contains a variable yi(t) indicating the current
strength of habituation which decreases exponentially over
time when an input feature matches the corresponding node,
as given in the first-order differential equation (14):

τi
∂yi(t)
∂t
= α[y0 − yi(t)]− λ (14)

where τ and α are the time constants that control the habit-
uation and recovery rates, respectively; λ is set to one which
indicates that the stimulus is presented; y0 is the initial value
of the habituation, which is set to one; and yi(t) = y0 initially.
The habituation value is in the range of [0,1] and is used
to indicate the degree of novelty of the presented input fea-
tures [10]. The highest novelty degree can be indicated when
the habituation value is close to one; otherwise, a value close
to zero implies the lowest novelty degree, that is, normality.

Novelty can be detected when the novelty degree
(i.e. habituation value) of the winner node yb(t) which is
found in (12), is low, and the presented input SURF feature
sj does not match the winner node sufficiently well, as given
by the condition IF[ab<athr and yb(t)<hthr], where athr
and hthr are the activation and habituation thresholds, respec-
tively. When novelty is detected, the network requires the
addition of a new node to represent the novel input fea-
ture [9]. By contrast, the weight vector of the winner node
and its neighbouring nodes is further adjusted to better fit
the input SURF features. Furthermore, counters (i.e. age) are
created for each neighbouring node which is increased every
time for each neighbourhood node of the winning node. The
neighbourhood connection is removed whenever the age of
the connection exceeds the predefined threshold, and thus

any nodes which have no neighbourhood connections left are
simply removed from the network. More details regarding the
GWR network-learning algorithm can be found in [36].

The local extracted feature vectors from the input image
when presented to the GWR network sequentially can lead to
localised novelty in the corresponding image. This can be a
useful tool to direct the robot in the direction of novel stimuli
located on the image to examine the area inmore detail during
patrolling, which can be developed more effectively by con-
tinually seeking to discover new, unseen (novelty) features.
This can be observed in Figure 7, where the extracted SURF
feature vectors are from the region in which the yellow ball
is highlighted as novel by the GWR network. The habituation
values from the network for these feature vectors are reported
as ybi = 1.0 where bi indicates the winning node on the
GWR network for the corresponding SURF feature vector
s{i=2,3,6,7,8}, indicating a strong novelty.

FIGURE 7. The GWR network novelty outputs for 10-SURF feature vectors
extracted from the input image.

The overall degree of novelty ȳ(t) for the input image can
then be computed by averaging all the habituation values
obtained for the current set of SURF feature vectors S(t),
as given in (15):

ȳ(t) =
1
n

n∑
i=1

ybi (t) (15)

where bi is the index of the winning node in the network for
ith SURF feature vector si.

3) NOVELTY DETECTORS FUSION
Both novelty filters represent different types of novelty; the
expectation-based novelty filter detects context-based novel-
ties, whereas the appearance-based novelty filter highlights
novelties depending on the current input features. It is also
possible that one filter can detect the novelty situation, but
the other cannot; therefore, it is important to combine both
novelty filter outputs to obtain the final degree of novelty.
The sum of the weighted novelty filter outputs is computed
by defining the contribution of each filter, as given in (16).
Thus, the weight of each filter is θi, where

∑2
i θi = 1.
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Equal weights were set to θ1 = 0.5 and θ2 = 0.5 for both
filters used in the following experiments.

z(t) =

{
θ1 · µ (ε(t))+ θ2 · ȳ(t), if S(t) 6= {}
θ1 · µ (ε(t)) , else

(16)

where z(t) is a value in the range [0,1]; a zero value indicates
that no novelty data is observed; a value close to zero implies
there is a small deviation from the normal model; otherwise,
a value close to one implies a very high deviation from the
normality.
A summary of the multiple-novelty filter fusion and online

training steps is provided in Algorithm 1. It is important to
note that the modified EFuNN and GWR network algorithms
are represented with trainEfunNet function at line 4, and
trainGwrNet at line 8, respectively.

Algorithm 1 Feature Extraction and Multiple Net-
work Normality Model Fusion for Multichannel Novelty
Detection
Input : Input colour image I(t), modified EFuNN

nete(t) and GWR network netg(t).
Output: Updated modified EFuNN nete(t), updated

GWR network netg(t), resultant overall novelty
degree z(t).

1 Obtain the deep features: d(t)=MobileNetV2 (I(t))
2 Convert colour image to grayscale image:
G(t)=RGB2GRAY (I(t))

3 Obtain SURF features: S(t)=detectSurfFeatures
(G(t))

4 Train modified EFuNN by presenting current deep
features d(t): [nete(t), ε(t), nt(t)]= trainEfunNet
(nete(t),d(t−1),d(t))

5 Perform S-shape membership function to obtain the
novelty degree of the modified EFuNN prediction error
ε(t) using equation (11)

6 Train GWR network by presenting current SURF
features S(t):

7 for sk (t) in S(t) do
8 [netg(t), yk (t)]=trainGwrNet (netg(t), sk (t))
9 end
10 Compute mean habituation value ȳ(t) using

equation (15)
11 Fusing the novelty degrees obtained from the networks

using equation (16)

III. EXPERIMENTAL METHODS
A. THE ROBOT AND SOFTWARE SPECIFICATION
To perform the following experiments, a Scitos-G5 mobile
robot equipped with 24 ultrasonic range finders, an SICK
S300 laser rangefinder, and a camera was used. The camera
was fixed at the front of the robot, which was connected
externally to an Intel Core i7 laptop placed on the robot with
an NVIDIA GeForce RTX 2060 6GB computing processor

featuring 1920 CUDA cores. During the experiments, all
the input images captured by the robot, their correspond-
ing EFuNN, GWR network, multichannel novelty detection
outputs, and the robot’s global coordinates from the Vicon
tracking system were logged to the external laptop for fur-
ther performance evaluation of the proposed system. All
the software for the multichannel novelty filter was imple-
mented by using Python programming language, the Keras
framework [22] which is built on top of the TensorFlow,
was used to implement MobileNetV2 model, and SURF was
implemented using OpenCV library [37] for the following
experiments.

B. EXPERIMENTAL ENVIRONMENT
The robot environment, which is used for learning the models
of the normal camera images of the robot and then using
these models as the novelty detector, is shown in Figure 8.
During the acquisition of the network models, it is important
that the robot follows a stable route every time it learns the
model of the captured images from the current environment,
particularly when the purpose of the experiment is to detect
novelties in the same environment. Otherwise, the sensory
data becomes significantly different from what it has already
learned; therefore, the acquired normality network models
can easily fail to highlight the novelties in the correspond-
ing environment. In fact, any machine learning applications,
when the training and test data come from the different distri-
bution, the generalisation performance of the learned model
becomes poor [38]. To overcome this, a left-hand side wall
follower controller was implemented using laser rangefinder
readings for the robot to move autonomously and stably in
the experimental environment. Figure 8 shows the observed
landmarks in the environment, such as pillars, posters, red
panels, and the sticked green panel on the blue wall which
were all perceived during robot exploration. It is also impor-
tant to note that the reflective floor generates noise in the
camera of the robot, especially when the lighting conditions
of the environment are changed.

C. EXPERIMENTAL PROCEDURE
In the following experiments, four environments are used to
verify the proposed multichannel novelty detection system.
These are environments A-1, A-2, A-3, and A-4. Environ-
ment A-1 is shown in Figure 8 which is a normal environment
in which the networks are trained. The original environment
was slightly modified for each novel environment to test the
trained network model as a novelty detector. First, a new red
panel was introduced into environment A-2, then in envi-
ronment A-3, a yellow coloured ball was placed into the
environment, and in the final environment A-4, the posters
were removed from the environment. During the learning of
both (EFuNN and GWR network) models of normality, the
robot travelled in the environment A-1 in five training laps,
where both models on the robot were enabled to learn the
input images of the robot from the unchanged environment
online by training both models every time an input image was
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FIGURE 8. Robot environment where models of normality are trained.

captured from the robot’s camera. Subsequently, the learning
of both network models was disabled after the trained laps,
which were then used as a multichannel novelty detector to
highlight any abnormal input images from the environments
A-1, A-2, A-3, and A-4 in the other five laps.

D. PERFORMANCE EVALUATION METRICS
To evaluate the performance of novelty detection systems,
the ground truth of the perceived images must first be iden-
tified. To do this, approximately 6900 test images from four
environments logged during the test laps were individually
analysed, and all the introduced novel objects within the
images weremanuallymarked as novel. Here, only controlled
novelties were identified, which were modified in the initial
environment A-1 by the experimenter. It is possible that
while a robot travels in the environment, it might perceive
different regions of the environment because of deviations in
its training route. These novelties cannot be marked manually
and were not considered to confirm the validity of the novelty
detection system proposed in this study. To evaluate the
novelty detection system, a binary 2×2 confusion matrix was
constructed for each evaluated system, as listed in Table 1.
Then, the true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) were computed. Once the
correspondingmatrix is filled, the accuracy (ACC),Matthews
correlation coefficient (MCC), and F1 score are computed for
each novelty detection system. The most important statistical
metric considered for the performance of the systems is MCC
according to [40] and [41]. It is important to emphasise that
the value of the evaluation metrics becomes one, implying
a perfect outcome. The evaluation metrics were defined in
Equations (17) to (19).

ACC =
TP+ TN

TP+ TN+ FP+ FN
(17)

MCC =
TP · TN− FP · FN

√
(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN)

(18)

F1 =
2 · TP

2TP+ FP+ FN
(19)

TABLE 1. Sample 2×2 confusion matrix for the evaluation of novelty
detection systems.

The training parameters of the modified EFuNN and GWR
network used in subsequent experiments are listed in Table 2.
Detailed descriptions of these parameters are provided
in [17] and [36].

IV. EXPERIMENTAL RESULTS
A. ENVIRONMENT A-1
Initially, the robot had no knowledge of its environment. The
learning of both the modified EFuNN and GWR network is
enabled to learn the models of the normal images received
by the robot from the environment. After the robot com-
pletes the first training lap, the learning is disabled, and the
acquired network models are used in the same environment
as a multichannel novelty filter to detect any difference in
the deep features and SURF features from what it has been
learned by the models in the first training lap. As can be seen
clearly in Figure 9a with red-coloured indicators on the plot,
the robot highlights many abnormalities in the area where
the novel landmarks are perceived, such as when receiving
images from the red panel, green panel, pillars, and posters,
these can be seen with the raised novelty indicators. The
high-magnitude novelty values decrease in the second train-
ing lap especially for location (x, y)≈(0, 2) m. This location
is the starting location of the robot, and the network models
have only been trained with only one lap in the environment.
Therefore, the input features for continuous transition when
the robot passes through the starting location have not been
sufficiently learned, which is why this location is contin-
uously highlighted with high novelty values in Figure 9a.
However, after the second training lap is completed, the
novelty status when approaching the end of one lap is com-
pletely learned, as shown clearly in Figure 9b where the com-
bined novelty degrees of the models are approximately zero
(i.e. no novelty). Eventually, the networks are trained more
in the unchanged environment; they become more expert and
reliable to predict (with modified EFuNN) or cluster (with
GWR network) normal sensory data which is later used as a
novelty detection system. It is also important to note that there
are very low novelty values even after the 5th training lap
(see Figure 9e), because the robot does not always follow
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TABLE 2. Training parameters for modified EFuNN and GWR network.

TABLE 3. Novelty detection performance of the GWR network, modified EFuNN, and multichannel novelty filter in each experimental environment. Each
novelty filter was tested in each environment using the colour images perceived by the robot in five test laps. Each environment contained approximately
1723 images received during the five test laps.

its route perfectly, and there are some deviations in the ori-
entation of the robot’s heading, which causes the robot to
receive slightly different sensory data from the environment.
To overcome this problem, it is necessary to run the robot
further in an environment to reduce false detections.

B. ENVIRONMENT A-2
Another red panel was introduced into the environment which
was placed on the floor immediately before the learned pillars
were perceived. The red panel is not a completely new object
because another red panel has already been learned. In other
words, the newly introduced red panel is not a novelty based
on its appearance, but it is novelty based on the context in
which the panel is perceived within the incorrect region. The
modified EFuNN learns the sequence of deep features, where
the acquired model maps the inputs of the past extracted
deep features to the current expected deep features. This
is done by having the context layer on the network archi-
tecture that behaves as short-term memory. Therefore, the
network easily highlights sequence-based abnormalities even
if the appearance of the object is not novel. However, the
SURF detector also produces some relevant features to the

GWR network, even though the red panel has a uniform
colour surface which is not very interesting to the SURF
detector. This is also shown in Figure 10e where the relevant
features of the red panel are extracted after the novel panel is
observed over 33 time steps. Nevertheless, both the novelty
filters highlight the novel red panel separately, as shown in
Figures 11a and 11b. After the novelty degrees of both filters
are fused, the overall novelty degree for the final novelty
decision is as shown in Figure 11c.

Similar results are also reported statistically in Table 3
where a smaller number of relevant SURF features causes
the GWR network novelty filter to not strongly highlight the
novel red panel. Therefore, the contribution of this filter was
less than that of the multichannel novelty detector. It can
be seen that the MCC and F1 score measurements for the
GWR network were much lower than those calculated for
the modified EFuNN. However, the fused novelty degrees
from both novelty filters improve the novelty detection per-
formance in environment A-2 which is also clearly shown
in the multichannel novelty detector’s MCC and F1 score
measurements which are higher than those of both novelty
filters separately.
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FIGURE 9. Learning progress in the environment A-1. The acquired models were tested five laps after each training lap.

C. ENVIRONMENT A-3
A novel yellow ball was introduced into the environment in
which it was placed on the learned red panel. The colour
distribution of the ball has never been observed before while
learning the initial environment A-1; therefore, it is expected
to be easily highlighted as novel by both the novelty filters.
Figure 12 shows the extracted SURF features when the robot
perceived the ball. It can also be observed that the SURF
algorithm produces intense and strong features when there
is a colour riot on the objects. Even in the first instance,
the ball is seen in the input image (see Figure 12a) and the
SURF detector yields relevant and object-focused features to
the corresponding novelty filter.

In contrast, the lower convolutional layers of the
MobileNetV2 network detect low-level features, such as
edges in the input image, such that it retains almost all the
information of the raw input image. Each filter of the lower
convolutional layers presents different edge-detection filters
which were previously learned from the ImageNet database.
However, while going to the deeper layers of the network,
the activations of these layers become abstract, carrying less
information but extracting more relevant features about the
recognised objects within the input image. Therefore, the
sparsity of the activations in the final convolutional layer is
higher than that in the initial convolutional layers. Figure 13
shows the activation of various filters from selected layers
on MobileNetV2 when the ball was observed for the first
time (i.e. the raw version of Figure 12a, which has no SURF
points). As can be seen clearly, the first convolutional layer
(see Figure 13a) yields dense activation outputs which are

FIGURE 10. SURF features are extracted in environment A-2 while
perceiving a novel red panel. For (a) 4-SURF, (b) 6-SURF, (c) 8-SURF,
(d) 12-SURF, (e) 5-SURF, and (f) 6-SURF are extracted, respectively.

indicated in yellow (i.e. higher activations in viridis colour
maps), Figure 13b shows the activations of the filter in
bottleneck block 5, and Figure 13c shows the activations of
the final deepest convolutional layer where some filters are
not activated at all by showing with blue colour because those
filters present different object features which are not found in
the input image. The relevant ball features are also obtained
from the deep network along with the features of other recog-
nised objects, which were extracted from the filters of the
deepest layer. For example, some convolutional filters yield
strong activation values for the detected ball, which are shown
with yellow-coloured activation values at the top and centre
of each filter (this is the location of the ball in the input image)
in Figure 13c. These filter outputs are combined without

VOLUME 10, 2022 121043



E. Özbilge, E. Ozbilg: Fusion of Novelty Detectors Using Deep and Local Invariant Visual Features

FIGURE 11. Novelty detection in environment A-2. (a) GWR network novelty detection, (b) modified EFuNN novelty detection, and
(c) multichannel novelty detection.

FIGURE 12. SURF features are extracted in environment A-3 while
perceiving a novel yellow ball. For (a) 6-SURF, (b) 12-SURF, (c) 19-SURF,
(d) 22-SURF, (e) 44-SURF, and (f) 61-SURF are extracted, respectively.

extracting only the features of the novel object, and are then
presented to the expectation-based novelty detection model.
Therefore, this action spreads the impact of all the recognised
object features when presented to the model. This is the
desired behaviour because all objects must be identified, and
the novelty is unknown. Consequently, the expectation-based
novelty filter cannot highlight the novel ball when observed
for the first time (see Figure 14b). In fact, the prediction errors
from the modified EFuNN slightly increase at the first time
ball is seen, but from the far detecting small novel ball among
other recognised objects does not dominate the feature vector
to increase the prediction errors dramatically. Conversely, the
ball was detected as novel for the first time, as shown by the
GWR network novelty filter in Figures 14a. This issue is also
reported in the statistical assessments with MCC = 0.42 and
F1 = 0.35 in Table 3 where expectation-based novelty
detection missed many novelty indications at the beginning
when the ball was being perceived. However, when the robot
approaches the near of the ball, the field of view becomes
narrow, so more ball-oriented features are obtained, which
is why the deviation from the expectation model becomes
higher to identify the novelties. Eventually, both models
demonstrated strong and confident novelty indications. The
final fused novelty degrees are illustrated in Figure 14c.

FIGURE 13. Activations of selected convolutional layers on MobileNetV2
feature extraction network. Each square image represents the activation
of a corresponding filter. Note that bottleneck block 5 and the final
convolutional layer have 192 and 1280 filters, respectively; however, for
visualisation purposes, every sixth and fortieth filter is illustrated.

After both novelty filters are fused, the multichannel nov-
elty detection system performs almost perfectly in environ-
ment A-3, as reported with MCC = 0.97 and F1 = 0.97.
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FIGURE 14. Novelty detection in environment A-3. (a) GWR network novelty detection, (b) modified EFuNN novelty detection, and
(c) multichannel novelty detection.

FIGURE 15. Extracted SURF features for (a) posters and (b) absence of
posters in environment A-4.

D. ENVIRONMENT A-4
Posters were removed from the final experimental
environment A-4. If only an appearance-based novelty detec-
tor is used, the removed posters will not be detected as
novel in the environment. This is a sequence-based novelty;
it requires a model that represents the temporal relationship
between the inputs and outputs of the novelty detection
system. To predict the posters on the wall, the system must
first perceive the sequence of known objects on its route
before predicting the forthcoming object based on observed
evidence. Another issue is that after removing the posters, the
uniformly coloured blue box is not found to be interesting;
therefore, the SURF detector does not yield any features

to feed the GWR network novelty filter. This problem is
illustrated in Figure 15. Consequently, the corresponding
novelty filter becomes inactive when no features are pro-
vided by the environment, as shown in Figure 16a. Sta-
tistical analysis also proves the poor performance of the
GWR network novelty filter when using SURF features,
as reported in Table 3 as MCC = −0.03; that is, it is not
better than random prediction. In contrast, novelty indications
arise from the modified EFuNN when missing posters are
perceived, as shown in Figure 16b. The expectation-based
model predicts the expected posters on the wall, but the
actual (i.e. missing posters) does not match the predicted
one. MobileNetV2 yields one large feature vector for the
entire input image, and some features of this vector have
higher activation values that indicate more relevant infor-
mation on the specific part of the input image, and are all
eventually presented to the modified EFuNN. By using the
features computed from the entire image, there is no chance
of losing any information, unlike SURF feature detection.
After both novelty filters are fused, the overall degree of
novelty in the environment is shown in Figure 16c and all
contributions to the multichannel novelty detection system
are provided by the modified EFuNN novelty filter, as statis-
tically revealed in Table 3with the values ofMCC = 0.93 and
F1 = 0.93.

FIGURE 16. Novelty detection in environment A-4. (a) GWR network novelty detection, (b) modified EFuNN novelty detection, and
(c) multichannel novelty detection.
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V. CONCLUSION
In this study, a multichannel novelty detection system is
proposed that combines multiple different purposed models
of normality. This system consists of two novelty filters:
the modified EFuNN and GWR network, which are used to
learn the colour images received from the robot. Each novelty
filter has different characteristics for learning the data: the
modified EFuNN learns the temporal relationship between
the inputs and future values of the forthcoming inputs, and
then predicts the expected input values to highlight any novel
situation whenever the prediction error exceeds the learned
local novelty threshold; however, the GWR network clusters
the data topological, and then any input datamatches with low
activation output with one of the cluster nodes on the network
is detected as novel. To provide robust novelty detection, each
filter focuses on different extracted features within the input
image, such that the networks learn better to distinguish those
features from the novel class. Therefore, they have a lower
generalisation error for the corresponding features, which is
called a feature-specific model of normality, such as the sub-
sumption architecture developed by [19] for behaviour-based
controllers. Eventually, the modified EFuNN is trained using
deep features extracted from the pretrained MobileNetV2
deep network model, which provides high-level features of
the input image instead of using all the information in the
image, and an abstract representation of the image is learned.
By contrast, the GWR network focuses only on the regions
of interest in the input image for attention selection and
learns the features extracted from these regions. Thus, the
network focuses on small details instead of losing them when
extracting the global features from an input image. This is
because global feature extraction can eliminate these small
features in an image by considering them noise. To extract
fast and reliable invariant features from the regions of interest
within the input image, the SURF local feature extraction
technique was used to generate the input features. To verify
the proposed novelty detection system, three novel objects are
introduced into the training environment. The outputs of both
novelty filters (modified EFuNN and GWR network), as well
as the merged outputs in the multichannel novelty filter, were
all visualised side by side to identify their weaknesses and
robustness. Consequently, when normal (learned) data are
removed from the trained environment or uniformly coloured
objects are introduced into the environment, the SURF detec-
tor fails to yield features relevant to theGWRnetwork novelty
filter. However, this weakness is addressed by the modified
EFuNN novelty filter because it learns the temporal relation-
ship of the inputs and uses all the activation outputs from the
filters of the final convolutional layer in the MobileNetV2
model. However, the use of all activation outputs carries
all recognised object information, and the response of the
novelty filter can be slower than when only local SURF fea-
tures are presented to the novelty filter. Although there were
very small deviations from the typical input data, the GWR
network with the attention selection mechanism highlighted
these abnormalities, whereas the modified EFuNN detected

more evident and novel features. A multichannel novelty
filter can be used to obtain more robust and reliable novelty
decisions.

REFERENCES
[1] P. Hayton, S. Utete, D. King, S. King, P. Anuzis, and L. Tarassenko, ‘‘Static

and dynamic novelty detection methods for jet engine health monitoring,’’
Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 365, no. 1851,
pp. 493–514, Feb. 2007.

[2] L. Tarassenko, ‘‘Novelty detection for the identification of masses in mam-
mograms,’’ in Proc. 4th Int. Conf. Artif. Neural Netw., 1995, pp. 442–447.

[3] S. Marsland, U. Nehmzow, and J. Shapiro, ‘‘On-line novelty detection
for autonomous mobile robots,’’ Robot. Auto. Syst., vol. 51, nos. 2–3,
pp. 191–206, May 2005.

[4] H. V. Neto and U. Nehmzow, ‘‘Automated exploration and inspection:
Comparing two visual novelty detectors,’’ Int. J. Adv. Robot. Syst., vol. 2,
no. 4, pp. 355–362, 2005.

[5] S. Marsland, ‘‘Novelty detection in learning systems,’’ Neural Comput.
Surv., vol. 3, pp. 157–195, Jan. 2003.

[6] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, ‘‘A review
of novelty detection,’’ Signal Process., vol. 99, pp. 215–249, Jun. 2014.

[7] M.Markou and S. Singh, ‘‘Novelty detection: A review—Part 1: Statistical
approaches,’’ Signal Process., vol. 83, no. 12, pp. 2481–2497, 2003.

[8] M. Markou and S. Singh, ‘‘Novelty detection: A review—Part 2:
Neural network based approaches,’’ Signal Process., vol. 83, no. 12,
pp. 2499–2521, 2003.

[9] S. Marsland, J. Shapiro, and U. Nehmzow, ‘‘A self-organising network that
grows when required,’’ Neural Netw., vol. 15, nos. 8–9, pp. 1041–1058,
2002.

[10] S. Marsland, ‘‘Using habituation in machine learning,’’ Neurobiol. Learn.
Memory, vol. 92, no. 2, pp. 260–266, Sep. 2009.

[11] S. Marsland, U. Nehmzow, and J. Shapiro, ‘‘Detecting novel features of an
environment using habituation,’’ in Proc. Simulation Adapt. Behav., 2000,
pp. 1–10.

[12] Y. Gatsoulis and T. M. McGinnity, ‘‘Intrinsically motivated learning sys-
tems based on biologically-inspired novelty detection,’’ Robot. Auto. Syst.,
vol. 68, pp. 12–20, Jun. 2015.

[13] H. Vieira Neto and U. Nehmzow, ‘‘Visual novelty detection with automatic
scale selection,’’ Robot. Auto. Syst., vol. 55, no. 9, pp. 693–701, Sep. 2007.

[14] H.V.Neto andU.Nehmzow, ‘‘Real-time automated visual inspection using
mobile robots,’’ J. Intell. Robot. Syst., vol. 49, no. 3, pp. 293–307, 2007.

[15] M. Artac, M. Jogan, and A. Leonardis, ‘‘Incremental PCA for on-line
visual learning and recognition,’’ in Proc. Int. Conf. Pattern Recognit.,
vol. 3, Aug. 2002, pp. 781–784.

[16] M. A. Contreras-Cruz, J. P. Ramirez-Paredes, U. H. Hernandez-Belmonte,
and V. Ayala-Ramirez, ‘‘Vision-based novelty detection using deep fea-
tures and evolved novelty filters for specific robotic exploration and inspec-
tion tasks,’’ Sensors, vol. 19, no. 13, p. 2965, Jul. 2019.

[17] E. Özbilge, ‘‘On-line expectation-based novelty detection for mobile
robots,’’ Robot. Auto. Syst., vol. 81, pp. 33–47, Jul. 2016.

[18] E. Özbilge, ‘‘Experiments in online expectation-based novelty-detection
using 3D shape and colour perceptions for mobile robot inspection,’’
Robot. Auto. Syst., vol. 117, pp. 68–79, Jul. 2019.

[19] R. Brooks, ‘‘A robust layered control system for a mobile robot,’’ IEEE
J. Robot. Autom., vol. RA-2, no. 1, pp. 14–23, Mar. 1986.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, 2015.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[22] (2022). Keras Applications. Accessed: Sep. 16, 2022. [Online]. Available:
https://keras.io/api/applications/

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

121046 VOLUME 10, 2022



E. Özbilge, E. Ozbilg: Fusion of Novelty Detectors Using Deep and Local Invariant Visual Features

[25] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[26] H. Bay, ‘‘From wide-baseline point and line correspondences to 3D,’’
Ph.D. dissertation, Dept. Inf. Technol. Elect. Eng., Swiss Federal Inst.
Technol., ETH Zürich, Zürich, Switzerland, 2009.

[27] C. Evans, ‘‘Notes on the opensurf library,’’ Univ. Bristol, Bristol, U.K.,
Tech. Rep., CSTR-09-001, Jan. 2009.

[28] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2003.

[29] K. Mikolajczyk and C. Schmid, ‘‘A performance evaluation of local
descriptors,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[30] P. Drews, R. de Bem, and A. de Melo, ‘‘Analyzing and exploring feature
detectors in images,’’ in Proc. 9th IEEE Int. Conf. Ind. Informat., Jul. 2011,
pp. 305–310.

[31] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2001, pp. 1–11.

[32] H. Bay, T. Tuytelaars, and L. V. Gool, ‘‘SURF: Speeded up robust fea-
tures,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, Germany: Springer, 2006,
pp. 404–417.

[33] N. K. Kasabov, Evolving Connectionist Systems: The Knowledge Engi-
neering Approach, 2nd ed. London, U.K.: Springer-Verlag, 2007.

[34] N. Kasabov, ‘‘Evolving fuzzy neural networks for supervised/unsupervised
online knowledge-based learning,’’ IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 31, no. 6, pp. 902–918, Dec. 2001.

[35] E. Özbilge, ‘‘Detecting static and dynamic novelties using dynamic neural
network,’’ Proc. Comput. Sci., vol. 120, pp. 877–886, Jan. 2017.

[36] H. V. Neto, ‘‘On-line visual novelty detection in autonomous mobile
robots,’’ Introduction Mod. Robot., vol. 2, pp. 241–265, Jan. 2011.

[37] (2022). OpenCV Library. Accessed: Sep. 23, 2022. [Online]. Available:
https://opencv.org/

[38] A. Ng. (2019). Machine Learning Yearning: Technical Strategy for
AI Engineers, in the Era of Deep Learning. [Online]. Available:
https://www.mlyearning.org

[39] D. Chicco and G. Jurman, ‘‘The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,’’ BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020.

[40] D. Chicco and G. Jurman, ‘‘An invitation to greater use of Matthews
correlation coefficient in robotics and artificial intelligence,’’ Frontiers
Robot. AI, vol. 9, p. 78, Mar. 2022.

EMRE ÖZBİLGE received the B.Sc. degree in
computer engineering fromEasternMediterranean
University, Cyprus, in 2006, the double M.Sc.
degrees in intelligent systems from the Univer-
sity of Sussex, U.K., and in computer science
from the University of Essex, U.K., in 2007 and
2008, respectively, and the Ph.D. degree in cogni-
tive robotics from the University of Ulster, U.K.,
in 2013. He is currently a Lecturer in the Com-
puter Engineering Department, Cyprus Interna-

tional University. His research interests include deep learning, time-series
modeling, disease identification, mobile robotics, novelty detection, machine
learning, and image processing.

EBRU OZBILGE received the B.S. and M.S.
degrees from the Department of Mathemat-
ics, Eastern Mediterranean University, Northern
Cyprus, in 2000 and 2002, respectively, and the
Ph.D. degree from the Department of Mathe-
matics, Kocaeli University, Turkey, in 2006. She
was worked with the Department of Mathemat-
ics, İzmir University of Economics, from 2006
to 2016. Since August 2016, she has been working
with the Department of Mathematics and Statis-

tics, American University of the Middle East, Kuwait. She is currently a
Full-Time Professor with the department and serves as the Department Chair.
Her current research interests include inverse problems, fractional partial
differential equations, and numerical methods.

VOLUME 10, 2022 121047


