
Received 2 October 2022, accepted 7 November 2022, date of publication 17 November 2022, date of current version 23 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222715

Analysis of Continual Learning Models for
Intrusion Detection System
SAI PRASATH1, KAMALAKANTA SETHI 2, DINESH MOHANTY1,
PADMALOCHAN BERA 1, (Member, IEEE),
AND SUBHRANSU RANJAN SAMANTARAY 1, (Senior Member, IEEE)
1IIT Bhubaneswar, Kansapada 752050, India
2Indian Institute of Information Technology Sricity, Sri City 517646, India

Corresponding author: Kamalakanta Sethi (ks23@iitbbs.ac.in)

This work was supported by the Research Scheme on Power Grant, Central Power Research Institute, Bangalore, India.

ABSTRACT Deep Learning based Intrusion Detection Systems (IDSs) have received significant attention
from the research community for their capability to handle modern-day security systems in large-scale
networks. Despite their considerable improvement in performance over machine learning-based techniques
and conventional statistical models, deep neural networks (DNN) suffer from catastrophic forgetting: the
model forgets previously learned information when trained on newer data points. This vulnerability is
specifically exaggerated in large scale systems due to the frequent changes in network architecture and
behaviours, which leads to changes in data distribution and the introduction of zero-day attacks; this
phenomenon is termed as covariate shift. Due to these constant changes in the data distribution, the DNN
models will not be able to consistently perform at high accuracy and low false positive rate (FPR) rates
without regular updates. However, before we update the DNN models, it is essential to understand the
magnitude and nature of the drift in the data distribution. In this paper, to analyze the drift in data distribution,
we propose an eight-stage statistics and machine learning guided implementation framework that objectively
studies and quantifies the changes. Further, to handle the changes in data distribution, most IDS solutions
collect the network packets and store them to retrain the DNN models periodically, but when the network’s
size and complexity increase, those tasks become expensive. To efficiently solve this problem, we explore
the potential of continual learning models to incrementally learn new data patterns while also retaining
their previous knowledge. We perform an experimental and analytical study of advanced intrusion detection
systems using three major continual learning approaches: learning without forgetting, experience replay, and
dark experience replay on the NSL-KDD and the CICIDS 2017 dataset. Through extensive experimentation,
we show that our continual learning models achieve improved accuracy and lower FPR rates when compared
to the state-of-the-art works while also being able to incrementally learn newer data patterns. Finally,
we highlight the drawbacks of traditional statistical and non-gradient based machine learning approaches
in handling the covariate shift problem.

INDEX TERMS Intrusion detection systems, catastrophic forgetting, covariate shift, continual learning.

I. INTRODUCTION
Millions of people use networked services for their day-
to-day activities, from buying groceries online to banking
transactions; networks have become a part of our daily life.
They are only projected to grow given the expanding reach

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

of technology and the need to connect with others. Mon-
itoring large scale complex systems is essential to protect
the privacy and ensure security for the users, but this task
is becoming increasingly complicated due to the size and
the intricate nature of these networks. Many network service
providers and cyber security experts have been developing
robust and reliable solutions to handle this issue. However, the
rise of artificial intelligence as a potential tool to address the

121444 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4986-243X
https://orcid.org/0000-0002-0044-7051
https://orcid.org/0000-0002-7087-6214
https://orcid.org/0000-0002-9285-2555

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

problem has led to significant improvements in IDS solutions.
We have already progressed from ineffective rule-based solu-
tions [34] (where the IDS extracts certain features from the
network packets and monitors them individually to determine
their authenticity) to more advanced machine learning and
deep learning techniques [43] which understands complex
feature interactions and provide robust detection capabilities.

Despite the appreciable success of AI-based solutions, the
path to reliable IDS solutions is still far from reach. While
most research works focus on the performance of AI models
in an offline setting(where the data distribution remains the
same), they ignore evaluating the performance of the models
in an online setting(where data distribution changes contin-
uously), which is more reflective of real-world systems. For
example, a recent survey by The University of Maryland [25]
estimated that a new cyber attack occurs somewhere on the
internet every 39 seconds, and around 64% of all companies
worldwide have experienced web-based attacks. It is also
estimated that the average cost of a data breach in 2020 would
exceed $150 million [30]. Hence, the assumption of changing
and drifting data distribution is practically valid and requires
an efficient and cost-effective solution. Therefore, any mod-
els trying to protect these systems must be able to quickly
learn and dynamically adapt to the changes for performing
well in an online setting. In our research work, instead of
analyzing the offline performance of the AI models, we study
their online performance.

Unfortunately, most AI models today do not have this
capability as they follow the train and deploy technique [41].
Firstly, the models are trained on data previously collected
from the system, and secondly, once the training is complete,
the models are implemented to detect anomalies/intrusions
in the system. In most rapidly evolving systems, the data
encountered after implementing the model might not be from
the same distribution on which the model was initially trained
due to changes in system architecture and behaviours; there-
fore, over time, the model’s performance deteriorates. This
phenomenon is termed covariate shift which is explained in
detail in sections III-B. Thus, in this research work, we ana-
lyze how deep learning models can be continuously updated
to learn the new data distribution during the deployment stage
without forgetting their previous knowledge so that they can
perform well in the online setting.

However, before developing models capable of contin-
uously learning to adapt to new data distributions, it is
necessary to understand the nature and themagnitude of those
changes so that we can accordingly develop the right contin-
ual learning technique for handling the change. To achieve
this goal, we propose a comprehensive eight-step framework
that combines various statistical and ML techniques along
with our feature importance based technique that can help us
detect, quantify and understand the nature of the change.

Once a drift in data has been detected, it is necessary
to update the AI model. Most organizations today update
the model in an offline setting [29]. In this technique, they

collect and store all the data packets they encounter dur-
ing the deployment stage along with the original data on
which the model was trained. Once a drift is detected, they
remove the deployed model and retrain it again on all avail-
able data. After the model is trained, they are deployed once
again, and this process continues over and over. Although
this technique maintains high accuracy levels, it can become
really expensive to store all the data and train the model
from scratch periodically as the system complexity increases.
Therefore, to efficiently handle this problem, we must be
able to achieve high accuracy levels while updating the
model while also minimizing the storage and computational
requirements of the update process. To solve this problem,
we study continual learning algorithms that are usually used
in the computer vision domain and extend them to large scale
systems security. We empirically compare and analyze the
performance of three major categories of continual learning
algorithms on the NSL KDD and CICIDS 2017 datasets.
We also explain why conventional statistical techniques and
non-gradient based ML models fail in addressing this prob-
lem efficiently.

In summary, the major contributions of our current
research work are as follows:

1) Proposed framework for covariate shift analysis:
We present a comprehensive eight-step technique to
understand the nature and the magnitude of the covari-
ate shift by combining multiple statistical and machine
learning-based strategies (univariate and multivariate).

2) Introduction of feature importance based analysis:
As a part of our framework, we introduce novel feature
importance based technique that analyses the impact of
the individual feature drift by comparing it with their
relative importance in the attack classification problem.

3) Emulating real-world distribution: To test and verify
the performance of our models on rapidly changing
attack distributions that emulate real-world characteris-
tics, we generate batches of data with alternating attack
types that arrive sequentially using the NSL KDD and
CICIDS 2017 dataset.

4) Continual Learning for IDS: We compare multi-
ple continual learning algorithms to address the issue
of changing data distribution and also demonstrate
the superiority of memory rehearsal based techniques.
We also reason why conventional strategies and spe-
cific continual learning algorithms fail to address this
problem while others succeed.

The rest of the paper is organized as follows: Related works
in IDS, covariate shift and continual learning are discussed
in Section II, followed by background on covariate shift,
catastrophic forgetting, continual learning, neural networks
and dataset analysis is detailed in Section III. Section IV elab-
orates on the eight-step covariate shift detection framework,
and Section V explains the continual learning experiments,
comparisons and results. Finally, Section VI summarizes and
concludes the research work.

VOLUME 10, 2022 121445

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

II. RELATED WORK
This section presents various research that has analyzed
ML-based IDS solutions and rule-based statistical models.
We also analyze strategies designed to counter the covariate
shift problems along with the computer vision-based con-
tinual learning algorithms that have inspired this research
work.

A. EXISTING IDS MODELS
Most rule-based classifiers fail to detect complex attack pat-
terns and intricate dependencies due to their relatively simple
detection process; therefore, implementing such classifiers
on large scale security systems is not efficient. For instance,
Rastegari et al. [34] tested multiple ruleset-based models,
such as JRip, J48, MPLCS etc., on the NSL-KDD dataset and
only achieved accuracies around 80%.

Whereas ML models have gained popularity because of
their ability to analyze vast amounts of data and detect
attacks efficiently. To this extent, Decision Trees(DT), Sup-
port VectorMachines(SVM), Clustering algorithms, Random
Forests(RF), Artificial Neural Networks(ANN) etc., [2], [4]
have been extensively examined as potential solutions for
IDS. All these models achieve very high accuracies and low
false-positive rates, which are within the acceptable thresh-
old, thus qualifying them as potential options for real-world
implementations. Other strategies such as ensemble learning
[51], dataset analysis based recommendations [31], feature
extraction [20] and feature selection [2] (like stacked fea-
ture selection) [38] have also been successfully utilized to
improve the performance of the models.

Recently, despite the success of ML models, Deep Learn-
ing based solutions have been gaining traction primarily
due to their ability to efficiently comprehend vast amounts
of data and reliably understand the underlying represen-
tations. Deep Neural Networks(DNN) [43], Convolutional
Neural Networks(CNN), and Recurrent Neural Networks
(RNN - GRU and LSTM) [3], [46] have all been exten-
sively analyzed and have been shown to perform better than
ML models. Combining these architectures with denoising
autoencoders [43], residual blocks [47] and attention mech-
anisms [43] has also been shown to increase the model’s
performance.

Siddique et al. [41] have proposed a comprehensive
approach to develop an efficient IDS with emphasis on tack-
ling big data problems in large-scale networks. They used
the ABB technique to select optimal feature subsets and
performed classification tasks using efficient machine learn-
ing techniques. They used the ISCX-UNB dataset (which
is a relatively newer dataset) for their evaluation prob-
lem. They were able to achieve high accuracy with a low
FPR Rate. Neha Yadav et al. [29] proposed Autoencoder
based novel IDS for 5G IoT systems. They used the bench-
mark UNSW-NB15 dataset for training and testing purposes.
They used several Machine Learning and Deep Learning
methods for their implementation and presented a detailed

comparison.Their proposed solution gave higher accuracy
than the state of the art solutions.

In their paper [42], Tama and Lim have presented a sys-
tematic study of various ensemble-based IDS. A total of
124 publications were analyzed and categorized based on
their year of publication, ensemble techniques, IDS tech-
niques, etc. They also mention a new classifier ensemble
approach called stack of ensemble (SoE), which combines
ensemble learners like the random forest, gradient boost-
ing machine, and extreme gradient boosting machine in a
homogeneous manner by leveraging a parallel architecture.
They also provided an empirical investigation of the Stack of
Ensembles classifier ensemble approach. Their investigation
suggested that ensemble techniques generally brought signif-
icant improvements over individual classifiers.

Mahzad Mahdavisharif et al. [24] have proposed a
BDL-IDS algorithm based on the LSTM architecture, which
they claim to capture complex and long term dependen-
cies between the network packets of large scale computer
networks. They perform the experiments on the NSL-KDD
dataset using the BigDL directly on top of the Spark frame-
work. They claim that their BDL-IDS algorithm outperforms
conventional IDS in metrics like detection rate (20%), accu-
racy (15%), false alarm rate (60%), and training time (70%).

Although various IDS models achieve very high accuracy
levels and low false-positive rates, none of the research works
focus on the problem of covariate shift and continual learning
in large scale security systems. All these research works mea-
sure the ability of models to achieve high accuracy and low
fpr in their deployment stage. However, unlike these research
works, we study the ability of models to continuously learn
and adapt to the dynamic nature of today’s systems, where the
data distribution changes constantly. In this research work,
we analyze how to efficiently detect the drifts in the data
distribution and how to handle the drifts to ensure the high
accuracy levels and low fpr rates of the model while also min-
imizing the storage and computational requirements involved
in the process.

B. COVARIATE SHIFT DETECTION
Usually, many research works utilize statistical techniques to
detect covariate shifts in the dataset. Raza et al. [35] imple-
mented Exponentially Weighted Moving Average(EWMA)
and Kolmogorov–Smirnov statistical hypothesis test(KS test)
in a two-step detection process on an EEG dataset. Nair et al.
[48] used reweighting strategies to assign more importance to
points similar to the test set. The weights of the data points
were generated by taking the ratio of the test probability to
the training probability predicted by various models such
as KNN, DT, NB and LDA. Rabanser et al. [33] tested
different dimensionality reduction techniques coupled with
multiple statistical tests to detect covariate shifts in various
datasets. Both univariate and multivariate shifts were ana-
lyzed. Feutry et al. [9] experimented with various mean met-
rics such as quadratic mean, geometric mean and harmonic

121446 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

mean to analyze the change in output probabilities to detect
the shift.

For relatively smaller data sets with fewer features, these
techniques work well; however, in large scale security sys-
tems, the dimensionality of the data is very high. Hence,
to solve this problem efficiently, we combine multiple
ML-based covariate shift detection techniques with the
above-mentioned statistical measures to propose a robust
covariate shift framework that detects, quantifies, and anal-
yses the nature of the drift in the dataset.

C. CONTINUAL LEARNING ALGORITHMS
Once the magnitude and the nature of the drift are detected,
we utilize continual learning algorithms to learn newly
encountered classes and changing attacks distributions incre-
mentally. Lomonaco et al. [22] used a rehearsal free Copy
Weight and Reinitialize(CWR) technique to learn new classes
by increasing the output nodes of the neural network and
used weight-freezing to train the nodes in the network selec-
tively. Li and Hoiem [21] introduced a modified loss function
(Learning Without Forgetting) to learn the new classes with-
out forgetting the older ones by adding a regularization term
with distilled outputs. Buzzega et al. [5] utilized a reservoir
buffer to store the encountered data points and trained the
model periodically on the buffer data with a regularized loss
function termed dark experience replay. They achieved accu-
racy rates as high as 85% for the class-incremental learning
task on the CIFAR-10 dataset over other architecture and reg-
ularization techniques whose accuracy was lesser than 60%.
Many other algorithms in this domain, such as [19], [37],
and [36], fall into one of these three broad categories, namely,
architecture-based, regularization-based or rehearsal-based.

Many works in the domain of continual learning has been
specific to computer vision and has not been extended to
more complex domains such as large scale systems security.
In our research, we empirically study the performance of the
three major categories of continual learning algorithms by
extending them to the field of systems security and testing
them on the NSL KDD and CICIDS 2017 dataset, and also
compare the storage and computational requirements of these
algorithms.

Recent works by Sethi et al. [39] handle the problem
of new attacks and drifting data distribution by utilizing
a Deep-Q-Learning based approach to retrain the neural
network by using constant feedback from the network
administrator. Unfortunately, such strategies suffer from
catastrophic forgetting as the models forget the older classes.
Also, Wiewel and Yang [45] introduced a variational autoen-
coder(VAE) coupled with a rehearsal based continual learn-
ing model to handle the problem of growing datasets in the
anomaly detection problem. They also address the need for
continual learning-based models for IDS but fail to analyze
the issues of covariate shift in the newer datasets. While some
research works have tried to address the problem of continual
learning, they have either failed to analyze the problem of
covariate shifts in the dataset or have failed to create a robust

FIGURE 1. Covariate shift between train and test sets.

TABLE 1. Abbreviation and expansions.

solution for catastrophic forgetting. In our research work,
we efficiently overcome these problems by first detecting
the shift in the dataset using the comprehensive eight-step
covariate shift detection framework, followed by utilizing the
best continual learning algorithm for handling the drift.

The abbreviations used in this research work are listed
in Table 1.

III. BACKGROUND
In this section, we introduce and discuss three major concepts
used in this research work, namely: covariate shift, catas-
trophic forgetting and continual learning.

A. COVARIATE SHIFT
Usually, in most real-world applications, we assume that the
data encountered is independent and identically distributed;
i.e. the data encountered post-training is derived from the
same distribution on which the model was trained. Unfortu-
nately, such an assumption always does not hold. New attack
patterns are created every day in networked systems, which
do not always overlap with the older patterns. For example,
a classifier trained to identify spam mails using specific key-
words extracted from a mail might fail once the spammers
stop using those words and start using other similar words.
The classifier needs to update itself to keep up its performance
by learning the newer words used by spammers. Therefore
without the ability to adapt to the changing conditions, the
classifier becomes obsolete in a short amount of time. This
property of the data to change from the initial training distri-
bution is termed dataset shift.

Dataset shift [13] is a challenging situation where the joint
distribution of inputs and outputs differs between the training
and test stages. Whereas covariate shift is a specific case
of dataset shift where only the input distribution changes
Ptrain(X) 6= Ptest (X), while the conditional distribution of the

VOLUME 10, 2022 121447

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

outputs given the inputs remains unchanged Ptrain(Y | X) =
Ptest (Y | X); meaning the mapping of the input features X to
the output variable y remains unchanged, but the distribution
of X varies between the train and the test set. Although the
underlying decision function remains the same, part of that
relationship is data-sparse, omitted, or misrepresented; the
test set and training set do not reflect the same distribution.

Figure 1 [15] is a pictorial representation of the covariate
shift problem. The blue points represent the training sam-
ple from which the classifier learns the underlying func-
tion(green). However, the test sample(black) has drifted from
the initial train set distribution due to the changing nature of
attacks, which affects themodel’s performance. Therefore the
learnt function fails to perform efficiently on the test samples.

B. CATASTROPHIC FORGETTING
Catastrophic forgetting or catastrophic interference [11] was
first recognized by McCloskey and Cohen [1989]. They
found that when deep learning models are trained on newer
tasks, the neural nets forget what was learnt previously on
older tasks. This phenomenon usually occurs because the
neural net weights are overwritten/fine-tuned by the opti-
mization function applied when the model is trained on the
newer tasks, thus degrading the model’s performance on the
older tasks. Therefore without solving this complexity, neural
networks will never be able to learn new tasks and retain
knowledge from the older ones. This was also referred to
as the stability-plasticity dilemma in [1] by Abraham and
Robins. If a model is too stable, it will not consume new
information from the future training data. On the other hand,
a model with sufficient plasticity suffers from significant
weight changes and forgets previously learned representa-
tions. Hence it is essential to balance the plasticity and the
stability of the models for optimum performance.

A glaring example of this issue is model transferability.
Many organizations directly import well trained convolu-
tional neural network(CNN) models for image classification
such as ImageNet and fine-tune the final few layers to suit
their requirements. Although the model’s performance on the
new taskswill be excellent, the performance on the older tasks
where the model used to excel once would have dropped con-
siderably. This trade-off where the organization compromises
the stability of the model to achieve high performance is an
inherent problem in neural networks. Hence any real-time
long term IDS solutions should address the problem of catas-
trophic forgetting.

C. CONTINUAL LEARNING
In many real-world situations, all the data is not available at
once; instead, we obtain them in batches once every minute,
hour or day, depending on the type and the organization’s
requirement. Continual learning(CL) is a particular class of
algorithms capable of learning and retaining information
from these partial experiences, which are tantamount to the
knowledge earned when trained on the whole data at once.
CL saves a lot of computation and storage costs and improves

the efficiency of the process by reusing previously learnt
knowledge.

They should be able to handle various problems such as
imbalanced or scarce data problems, catastrophic forgetting,
or data distribution shifts. Continual learning can be con-
sidered as a synonym for Incremental Learning, Lifelong
Learning and Never-Ending Learning.

In this research work, we model the problem as a set of
tasks T where

T = {(C1,D1), (C2,D2), (C3,D3), . . . , (Cn,Dn)}

here each task t is a set (C t ,Dt) obtained at time = t , and
C t represents the set of classes encountered at that given
time C t

= {ct1, c
t
2, c

t
3, . . . , c

t
nt } and D

t is the corresponding
training dataset. The total number of classes in the task is

represented as N t
=|

n⋃
i=1

C i
|. The training dataset Dt is a

set of datapoints {(x t1, y
t
1), (x

t
2, y

t
2), . . . (x

t
mt , y

t
mt)} where x are

the input features and y ∈ {0, 1}N
t
is a one hot ground truth

label vector corresponding to x [26]. Note that at any given
time t , we only have access to the corresponding dataset at
time t and all previously encountered data is not available
for training. The theoretical context of applying continual
learning in security based systems is well analysed in [7].

The type of data encountered at each interval can be
divided into two main types, namely new classes and new
instances. As time progresses and we receive the latest data,
new classes that were not previously known can be encoun-
tered. The ability to learn new classes without forgetting
the features of the old classes is termed incremental class
learning. Alongwith new classes, data points belonging to old
classes can also be shifted due to the non-stationary nature of
the environments common among cyberattack domains. This
corresponds to learning under dataset drift. Both these tasks
are considered a part of the CL algorithms.

D. DEEP NEURAL NETWORK
Deep Neural Network(DNN) has become the state of the art
model for multiple tasks such as image classification, time-
series analysis and security solutions. DNNs can be described
as layers(of nodes) that extract complex and non-linear fea-
tures from the input to perform the assigned task. Each layer
can be represented as li, and the input to layer li is the output
of layer li−1 meaning they are structured as a nested function.
Therefore the final output of the model y = ln(ln−1(. . . l1(x)))
is a series of nested layers. Each layer has its parameters
that process the input and produce the outputs; there are two
major classes of parameters, i.e. weights and biases. Consider
the output of li as hi, which is fed as the input to layer li+1
where the input is processed as hi+1 = g(wTi+1hi+bi+1). The
‘‘w’’ in the equation represents the layer’s weights, and the
‘‘b’’ represents the biases. Function g creates the non-linearity
in the model without which the learnt function will be a
weighted sum of the inputs. The same set of computations
is repeated until the final layer to calculate the model’s
prediction y. At the final layer, the error is computed using

121448 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

TABLE 2. NSLKDD dataset distribution.

loss functions such as mean squared error for regression,
binary cross-entropy for binary classification, and categorical
cross-entropy for multi-class classification by comparing the
prediction with the expected output.

To optimize the model’s performance, the losses com-
puted at the final layer have to be minimized by tuning
the model’s parameters. In this context, the weights and
biases of each layer are the parameters; therefore, the task
is to find the ideal values of these parameters such that the
loss is minimized. This task is achieved by computing the
gradients of the parameters and utilizing a gradient-based
optimization function such as stochastic descent or ADAM to
backpropagate through the model. At each layer, the param-
eters are fine-tuned by updating them using their respective
gradients. Note that as the model uses gradient-based opti-
mization, all the layers, parameters and the function of the
model must be differentiable. This ability to train the model
using gradient-based approaches is efficiently utilized in our
research work.

E. DATASET DESCRIPTION
In this section, the dataset is analyzed, and certain inher-
ent biases/inconsistencies are discussed. We also discuss
pre-processing the dataset and why we refrain from feature
selection/reduction strategies.

1) NSL KDD DATASET
a: DATASET ANALYSIS
The MIT Lincoln Labs generated the original KDD-CUP99
dataset in 1999, where the US Air Force Lan was simulated
and multiple attacks were performed. The TCP packets were
collected as binary dumps across seven weeks, and multiple
network features were extracted from the raw dataset. The
researchers ensured that the distribution of the training and
the test attacks were not from the same distribution to emulate
real-life scenarios. The NSL-KDD dataset [28] is a refined
version of the KDD-CUP99 dataset where particular imbal-
ances and inconsistencies in the dataset were eliminated by
removing recurrent data points. The dataset was also reduced
to a reasonable size for more accessible analysis and testing.

Table 2 summarizes the attack distribution in the train
and test set. The train set consists of 23 different types of
attacks, but the test set consists of 38, some of which are
day 0 attacks meaning the ML model was not trained on
these attacks. All the data points are divided into five major
categories: Normal, DDOS, Probe, U2R and R2L for the
multi-class classification task.

Further analysis of the dataset reveals that both the train
and the test set share 21 different attack types, constituting
99.29% and 83.36% of the data points in their respective

datasets. Two attacks are exclusive to the training dataset,
which accounts for the remaining 0.71% of the training
dataset and seventeen attacks are exclusive to the test dataset
accounting for the remaining 16.64% of the test dataset. The
introduction of new attacks which were not initially present
leads to the change in the distribution causing the covariate
shift between the training and the testing dataset.

There are only around 1,50,000 data points which are com-
paratively less to train sophisticated neural networks. Many
research works point out this shortcoming of the dataset,
which restricts them from training massive neural networks
because they might overfit when trained on a smaller dataset.
Also, such small datasets might not thoroughly test and verify
the various requirements of a robust NIDS. The NSL-KDD
dataset itself is outdated and does not reflect the current state
of the network attacks. Nevertheless, the compact nature of
the dataset and the dataset shift between the train and the
test set, which we will explore later, makes it suitable for our
analysis to test and compare various continual learning-based
models.

b: DATASET PREPROCESSING
The raw dataset consists of 41 features values for each
data point describing the various network parameters.
Three(‘protocol-type’, ‘service’, ‘flag’) out of the forty-one
values are categorical, and all else are continuous. We con-
vert all the categorical values to continuous by applying the
one-hot encoder technique, creating a dataset with 122 fea-
tures. All the features are then scaled between 0 and 1 using
min-max normalization to help the models learn the pattern
easily and prevent any feature bias.

2) CICIDS 2017 DATASET
a: DATASET ANALYSIS
Unlike the NSL KDD dataset, the CICIDS 2017 dataset
is a more recent and relevant dataset with the most up-to-
date attacks present in the dataset. They closely simulate
real-world data packets (PCAP) and also extract more infor-
mation using network traffic analysis tools that are included
in the dataset. To create a realistic dataset, the dataset cap-
tures the abstract behaviour of 25 users based on the HTTP,
HTTPS, FTP, SSH, and email protocols using the B-Profile
system [40].

The data is captured across five days where on each day,
new attacks are being introduced. The day and the type of
attack introduced are listed in Table 3. In our research work,
we divide these five days into two classes to compare the
ability of various models to continually learn new attack
distributions. The first three days, Monday, Tuesday and
Wednesday, are grouped as Class 1, whereas the remaining
days, that is, Thursday and Friday, are grouped as Class 2.
We consider Class 1 as the train set and Class 2 as the test
set.

Unlike the NSL KDD dataset, there is no overlap in the
attack traffic between Class 1 and 2. All attacks present in

VOLUME 10, 2022 121449

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

TABLE 3. Distribution of attacks.

Class 2 are exclusive to the class and have not been encoun-
tered in Class 1. The attacks present in Class 2 contribute
around 25.06% of the whole Class 2 data. Therefore, the
task of learning these attacks is more difficult in the CICIDS
2017 dataset when compared to the NSL KDD dataset. This
introduction of new attacks not present in Class 1 leads to a
covariate shift in the dataset and therefore requires continual
learning models to learn the distribution of these new attack
types. A distinguishing feature of the CICIDS 2017 dataset is
that it is more realistic and also has a reliable benchmarking
that follows the 11 step approach proposed in [40].

b: DATASET PREPROCESSING
The dataset contains 78 features values for each data
point describing both network traffic parameters and PCAP
data. Ten features, namely (‘Bwd PSH Flags’, ‘Fwd URG
Flags’, ‘Bwd URG Flags’, ‘CWE Flag Count’, ‘Fwd Avg
Bytes/Bulk’, ‘Fwd Avg Packets/Bulk’, ‘Fwd Avg Bulk Rate’,
‘Bwd Avg Bytes/Bulk’, ‘Bwd Avg Packets/Bulk’, ‘Bwd Avg
Bulk Rate’) have a constant value across all the data points;
therefore, we remove these features because they do not
contribute to our model’s learning process. The dataset also
contains eight binary features and no categorical variables.
All other features which are continuous are scaled between
0-1 using themin-max normalization, which helps themodels
learn better by removing any bias between the features. The
final pre-processed dataset contains 68 features.

Note that we do not perform any feature selection/
reduction algorithms due to changing nature of the attack pat-
terns in the long term, which might affect the relative impor-
tance of the features across various attacks. Thus we expect
our models to learn the importance of features by themselves
and adapt to the changing circumstances when required.
The importance of features describing an attack might also
vary across time, considering the non-stationary nature of
the attack domains. Therefore, as the features’ importance
changes through time and across attacks, we abstain from
implementing any selection/reduction algorithms.

TABLE 4. RF and DNN performance on the dataset.

IV. PROPOSED COVARIATE SHIFT ANALYSIS
FRAMEWORK
This section presents a detailed description of our proposed
eight-stage framework for analyzing any shift in the dataset.
We objectively tried to visualize, quantify and justify the
nature of the shift, which will help us in analyzing CL algo-
rithms. We describe the proposed techniques in the following
subsections.

A. EVALUATING PERFORMANCE
In the first technique, we directly verify whether there is any
shift by analyzing the accuracy of machine learning and deep
learning models. If the drop in accuracy across the training
and the test set is considerable, then there is reason to consider
that the dataset distribution might have shifted. We evaluate
the performance of the Random Forest(RF) model and the
DNNmodel on the NSL-KDD and CICIDS 2017 dataset for a
binary classification problem. Table 4 summarizes the results
of the analysis:

Both the Random Forest model and the DNN model per-
formed well on the NSL KDD training dataset, but their
performance in accuracy dropped by 22% on the test set.
The analysis results agree with the previous analysis of the
dataset, where we found that 16.63% of points in the test
dataset are unique to the test set attack types, which affects
the performance of our models. Similarly, in the case of the
CICIDS 2017 dataset, the models perform exceedingly well
on the train set but their performance drops by around 20% on
the test set. The introduction of new attack types in the test set,
which contributes around 25% of the set, clearly explains this
drop.We ensured that the models did not overfit by restricting
the depth and size of the RF and the DNN. No significant
change was achieved in the model’s performance after an
extensive hyperparameter search.

Multiple research works develop complex and sophis-
ticated models to address this issue, but the performance
remains relatively unchanged despite their best efforts. The
problem, in this case, is with the data itself and not the model;
hence altering the model would not create any significant
changes in the performance. Instead, concentrating on devel-
oping algorithms to continuous learning the changing data
distribution is necessary; this process is termed continual
learning, which is explored in detail in this research work.

B. DATASET SHUFFLING
To ensure that the drop inaccuracy from the train to the test
set is not due to the inherent lack of patterns or features but
only occurs due to the data drifting, we implement a shuffling

121450 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 2. Histogram overlap for feature dst_host_count.

TABLE 5. Top 10 least feature histogram overlap.

based analysis. The train and the test set data points are mixed
and shuffled, ensuring that when this combined dataset is split
into train-test for analysis, the attacks points are uniformly
distributed, meaning there are no new attack types in the test
set. This effectively removes the dataset shift between the
newly created train and test set. A binary attack classification
is performed on the combined dataset. The random forest
classifier achieves a very high 10-fold cross-validated accu-
racy of 99.49% and an fpr value of 0.39% on the NSL KDD
dataset. Similarly, on the CICIDS 2017 dataset, the random
forest classifier achieved an accuracy of 99.56% and an fpr
of 0.33%.

This helps us conclude that MLmodels can learn the attack
patterns in the dataset and perform well if all the attacks
were available during the training stage itself. This concludes
that there is no inherent lack of patterns or features, but the
poor performance is due to the dataset shift that changes the
distribution of the existing attacks and introduces new attacks
in the test dataset.

C. HISTOGRAM OVERLAP COMPUTATIONS
In this technique, we analyze whether any particular features
are responsible for the drift. To identify the particular fea-
tures, we bin the corresponding feature values in the train
and test sets separately into 100 bins. The values in the bin
are then normalized for a fair comparison across multiple
features. The value of the histogram overlap is computed to
compare the similarity between the distribution of features
in the train and test set. The higher the overlap(closer to 1),

the more the similarity and the lesser the overlap(closer to 0),
the more diverse the distribution is. Any features that have an
overlap of less than 70% can be considered as shifted.

Figure 2 visualizes the histogram overlap of the feature
dst_host_count, which is then used for our calculations.
Table 5 summarizes the top 5 drifted features of the NSL
KDD and the CICIDS 2017 dataset obtained using the his-
togram overlap computations. Usually, a set of features that
drift a lot are dropped from the dataset to improve the per-
formance of our models as it reduces the bias across the
datasets, provided that the feature itself is not essential for
the classification task. However, in the NSLKDD dataset, the
maximum drifted feature has an overlap of 94.7%, meaning
that the drift of the features is minimal. Similarly, in the case
of the CICIDS 2017 dataset, the maximum drifted feature has
an overlap of 84.3%, which is higher than the 70% threshold
considered for this technique. Therefore, we conclude that
there are no significant drifts of individual features, and hence
we refrain from dropping any features.

D. KOLMOGOROV SMIRNOV TEST
Kolmogorov–Smirnov Test or KS Test is a non-parametric
statistical testing technique used to determine whether a given
continuous sample distribution is similar to a reference dis-
tribution (such as normal distribution, binomial distribution)
or another sample distribution. It computes the empirical
distribution function Fn for all the n data points for both
the considered samples and from that computes the supre-
mum distance between the computed empirical distribution
functions.

Fn =
1
n

n∑
i=1

I[− inf,x](Xi) (1)

I[− inf,x](Xi) =

{
1, Xi ≤ x
0, Xi > x

(2)

Dn,m = sup
x
| F1,n(x)− F2,m(x) | (3)

Dα = c(α)

√
l1 + l2
l1.l2

(4)

Equation 1 is the definition of the empirical distribution
function, where the indicator function I is computed using
equation 2. Once the sample distributions’ empirical distribu-
tion is computed, the supremum distance between the distri-
butions is calculated using equation 3. The KS statistics value
computed by the function is compared with the critical value
obtained from equation 4. The ln values in equation 4 are the
corresponding lengths of the datasets. The distributions are
considered to be different if:
• p_value of the distribution < 0.05 (Standard)
• KS Statistics > Critical value
The above-described computations are applied to every

feature individually, and the following results were obtained:
a total of 47 features has a p-value less than 0.05, meaning
that they might have different distributions, but upon further

VOLUME 10, 2022 121451

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

analysis when compared with the critical value of 0.00983
[critical_value(0.05) = 1.36] none of the KS statistics was
above this limit. Similarly, for the CICIDS 2017 dataset,
66 features have a p-value lesser than 0.5, but none of those
features has a significant KS statistic of 0.00126. Hence,
we can conclude that all the features are derived from the
same distribution for a p-value of 0.05, i.e., no individual fea-
ture shift. Similarly, other statistical tests such as chi-squared
analysis andMann-Whitney test can also be used to verify the
shift in the distribution.

E. 2D VISUALIZATION
One of the best ways to understand and study the dataset
drift is to plot the values and visualize the changes. How-
ever, in most cases, visualizing is not always possible due
to the size of the dataset. In the NSL KDD dataset, we have
122 features after processing, and 68 features in the CICIDS
2017 dataset, thus, comparing the data points will be diffi-
cult. Hence we reduce our dataset to 2 dimensions using the
Principle Component Analysis(PCA) algorithm, which helps
us visualize the data points using a scatter plot. These two
top features account for 71.35% of the total variance in the
dataset in the NSL KDD dataset and 60.46% in the CICIDS
2017 dataset.

In figure 3, the blue and the red data points represent the
shared attacks of the train and test set, respectively. Whereas
the yellow data points represent the day-0 attacks introduced
in the test set(exclusive test attack types). From this plot,
we can observe that the distribution of the shared attacks
points has drifted. Also, the day-0 attacks have a different dis-
tribution than what was initially learnt. However, figure 3b,
which visualizes the normal(no attack) points, has a perfect
overlap between the train and the test set. We conclude from
these plots that although the normal(no attack) points remain
unchanged, new attack types have been introduced(yellow),
and the shared attacks have drifted from their previous distri-
bution. Therefore due to the change in distribution, relying
on the previous decision boundaries will lead to poor per-
formances; hence the decisions boundaries need to be learnt
again to accommodate these changes.

Similarly, for the CICIDS 2017 dataset, from figure 3d
we can see that the normal points overlap between the train
and the test set. However, we can also observe that new
distributions have been introduced as there are regions where
the red points do not overlap with the blue ones. In the case
of the attack distribution, we conclude from figure 3c that all
the attacks present in the test set are day-0 attacks as there
are only yellow points visible(exclusive test attacks) which
are covering the red points. Although in some regions, the
yellow data points overlap with the blue points, there are
many other regions where they do not. Therefore, in this case,
the model needs to learn both the changes in the distribution
of the normal data points and the new attacks introduced in
the test set.

TABLE 6. Novelty detection.

F. NOVELTY DETECTION
It is the identification of new or unknown data or signals that
a machine learning technique is not aware of during training.
Novelty detection techniques try to identify outliers that differ
from the distribution of ordinary data, more specifically, the
training dataset whose distribution the model learns.

The Local Outlier Factor function [32] available in the
sklearn library is used to analyze and visualize the data
distribution. It measures the local deviation of the density
of a data point with respect to its neighbours. The anomaly
score of a data point depends on how isolated the object is to
the surrounding neighbourhood. More precisely, the locality
is given by k-nearest neighbours, whose distance is used to
estimate the local density. By comparing the local density
of a sample to the local densities of its neighbours, one can
identify samples that have a substantially lower density than
their neighbours. These are considered outliers.

The local outlier detection algorithm creates boundaries to
differentiate between inliers and outliers. All the data points
within the boundary are considered inliers, and the points
outside are considered outliers, meaning they do not belong
to the data distribution that these models previously fit on.

Along with the Local Outlier Factor algorithm, we also use
a One-Class SVM that can be used to detect outliers in data
by fitting an SVM model on a dataset containing a single
class. We use a constant ν to represent the training dataset’s
impurity (These fractions of ν points are considered outliers
in the training process). The impure points are labelled as -1,
whereas all the other points are labelled as 1. Using this
labelled dataset, we train the SVMClassifier, which is applied
to the test set to determine the shift in the dataset.

Table 6 summarizes the results of the novelty detection
algorithm: For both the NSLKDD dataset and the CICIDS
2017 dataset, we set the ν value to 2% for the training stage.
As expected, the test outliers in the case of the NSL KDD
dataset are around 17-19%, which is in accordance with the
16.64% of data points that are exclusive to the test set. In the
case of the CICIDS 2017 dataset, the outliers are around
21-23%, as 25% of data in the test set corresponds to the
new attack types introduced as day-0 attacks. Therefore this
technique helps us conclude that there are significant changes
in the distribution between the train and the test set, which
requires us to relearn the decision boundaries.

G. DISCRIMINATIVE DISTANCE
All the above analyses performed in the dataset involved
individual features or 2 PCA components but not the whole

121452 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 3. Distribution of data points.

dataset. To utilize thewhole dataset, we use the discriminative
distance metric to quantify the shift.

Discriminative distance technique tries to differentiate
between the training and the testing data usingML classifiers.
The intuition behind the technique is that if the classifier can-
not distinguish between the data points, they share the same
distribution, whereas if the classifier can distinguish them
with high accuracy rates, they are from different distributions.
The classifier can learn complex patterns that the previous
analysis might not have considered. Although this technique
is more time consuming, it is much more potent than the
previous ones.

We label all the train set data as ‘‘1’’ and test set as
‘‘0’’. A random forest classifier is used to classify the data

point as either 0 or 1, i.e. whether the data point is from
the train or the test set. We refer to this as the train-test
problem in the following sections. The logic behind this
technique is that the accuracy of such a classification can
only be high if the data points from the train and test set
are different, meaning they come from a different distribu-
tion, but if they are from the same distribution, then the
accuracy will be low. This technique considers the complex
interaction between multiple features that were neglected
in the previous analysis. It might so happen that no indi-
vidual feature is responsible for this change, but rather a
combination of subtle changes might result in the final drift;
these unique cases can also be efficiently analyzed using this
technique.

VOLUME 10, 2022 121453

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

TABLE 7. Feature importance for top-5 drifted features.

The RF classifier successfully classified the train and the
test set with a 10-fold cross-validation accuracy of 91.28%
on the NSL KDD dataset and 87.17% on the CICIDS
2017 dataset; clearly showing the change in distribution
between the train and the test set. An accuracy higher than
80% is a strong indication of the drift; thus, there is a need to
address this problem using continual learning algorithms.

H. FEATURE IMPORTANCE
In this subsection, we propose a unique technique to ana-
lyze the impact of the individual features by comparing
their importance in the train-test classification task with the
binary attack classification problem. The importance of var-
ious features is computed using the Extra Tree Classifier
algorithm for both the tasks individually. In the case of the
train-test classification problem, the higher the importance,
the more the drift, as the features that have drifted the most
can help distinguish between the train and the test set data
points. Whereas the features that have not drifted cannot help
distinguish between the train and the test set data points,
hence they have little importance to this task. In the case
of the binary attack classification problem, the importance
of the features reflects their direct contribution to efficiently
identifying the attack data points. Therefore by comparing the
importance of features in both these tasks, we can understand
the relation between the drifted features and their relative
importance in the binary attack classification problem. This
analysis helps us identify features with large drifts that do not
have significant importance in the binary attack classification
problem. We can drop such features to reduce the bias in
the dataset without affecting the model’s performance. Fea-
tures with high importance need to be retained to ensure the
model’s performance, whereas features with low importance
but low drift can be either retained or ignored depending on
the problem.

One of the standard techniques to address the shift in the
data is to drop the drifted features; it is based on the fact that
dropping those features reduces the bias between the datasets
hence providing similar distributions. However, suppose the
feature is essential for the binary classification problem; in
that case, we will have to compromise the accuracy of the
task, whereas if the feature is not essential, then dropping the

features does not necessarily improve the performance of the
binary classification task. Therefore this trade-off between
the feature importance and drift has to be handled efficiently
to ensure good performances.

From Table 7 it is straightforward that none of the features
drifts(in terms of importance) a lot; the maximum drift is
6.10% for the NSL KDD dataset and 7.12% for the CICIDS
2017 dataset which corresponds to our results from the sta-
tistical analysis that there is no significant drift in the indi-
vidual features. Also, these top-5 drifted features contribute
towards 42.07% importance and 19.33% importance in the
train set attack classification of the NSL KDD and CICIDS
2017 dataset, respectively. Hence dropping these features to
reduce the bias in the dataset will affect the attack classifi-
cation problem as they are significantly crucial for that task.
Therefore, directly dropping these features is not viable due
to their little drift and high importance values.

Therefore, the feature importance based analysis helps us
determine the nature and the impact of the feature drifts on
the binary attack classification problem that was previously
unknown. With the help of the analysis, we conclude that
the feature drifts are minimal, but the drifted features are
important in the binary attack classification problem; hence
dropping those features is not an option.

V. EXPERIMENTAL STUDY OF CONTINUAL
LEARNING MODELS
In the previous section, we have analyzed various problems
associated with implementing IDS solutions in large scale
networks with rapid changes in attack patterns. We have also
created a framework to detect and quantify such drifts in
the dataset. This section studies various solutions and how a
specific technique performs better than others. The work flow
of the covariate shift detection framework and the continual
learning algorithm is depicted in Fig.4

A. REWEIGHTING DATA POINTS
In general model training, all data points are given equal
weightage, meaning no point is given more priority over the
rest. We can allot weights to the data points in the training set
such that the ones with higher weights are given more priority
over the ones with the lower weights; this is reflected in the

121454 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 4. Work Flow of the Algorithm.

loss function that the model is optimizing.

total_loss =
1
n

n∑
i=1

wi ∗ loss_function(y, f (xi)) (5)

n∑
i=1

wi = 1 (6)

In equation 5 which is a generalised loss function the
parameter wi (constraint on equation 6) represents the weight
allotted to the data point xi. In general, the weights are set to
1
n , but to assign more importance to certain points over the
others, the weights corresponding to those points could be
modified. In our case, we assign higher weights to points in
the train set that are similar to a small set of points that we
sampled from the test set. This technique provides a platform
for the model to alter its predictions based on what might be
expected in the future and not completely focus on the current
data distribution.

To implement the technique, we use a random forest clas-
sifier to generate the weights of the data points in the train set.
We randomly sample 2000 points from the test dataset, rep-
resenting the test set distribution, and the whole train dataset
is considered for this analysis. The newly created test set data
points are labelled as ‘0’, and the new train set data points are
labelled as ‘1’ (similar to the train-test classification problem

discussed in section IV-G). After combining and shuffling the
labelled dataset, we use a 10-fold cross-validation technique
to generate the weights of the train set data points by using
the output of the random forest classifier.

ri =
(

1
f (xi)

− 1
)

(7)

wi = c1 + c2 ∗
ri∑n
i=1 ri

(8)

If the classifier’s output f (xi) is closer to ‘0’, then the point
is similar to the test dataset distribution; hence should be
givenmoreweight. On the other hand, if the output is closer to
‘1’, the point should be given lesser weight as it is not similar
to the test set distribution. The weights are computed using
equations 7 and 8, where ri is the prediction probability of
the random forest classifier and c1 and c2 are constants.

In figure 5a and 5b, the size of the points correspond to the
weights allotted to them. Most of the significant points are
located where there is considerable overlap with the test set
distribution, and in locationswhere the overlap is less, the size
of the points is small. We use the first two components of the
PCA algorithm to plot the above figure. Although the test set
accuracy improved by 2.53 % to 79.75% for the NSL KDD
dataset and 3.19% to 83.02% for the CICIDS 2017 dataset,
the train set accuracy dropped by 1.63% to 94.79% and 2.16%
to 97.50% respectively. This trade-off is expected due to
the different weights allotted to the train set’s data points.
The 2-3% improvement in performance is not enough as the
accuracy is only around 80%.

One of the primary reasons for the insufficient improve-
ment in accuracy is the nature of the shift. Along with the
existing attack points that have shifted significantly, new
attacks have been introduced that follow entirely different
distributions. Therefore just reweighting the data points is
not an ideal solution due to the magnitude and the nature
of the shift. Hence we need to explore algorithms that can
handle such significant drifts and ensure good performance
levels. Also, note that getting adequate test data to train our
classifiers in real-time scenarios is not always practically
feasible due to the unpredictable nature of the changing data
distributions.

B. NON-GRADIENT-BASED MACHINE LEARNING MODELS
To solve covariate shift and the arrival of new classes,
we need a model that can be tuned to remember previous
patterns and learn new ones simultaneously. Unfortunately,
most ML-based models are offline models meaning they are
trained before deployment, and their parameters cannot be
changed after the initial training phase. For example, in ran-
dom forests, the branches and their associated conditions
generated during the training phase cannot be altered if the
data distribution changes; instead, we are forced to retrain
the whole model once again. When the model is retrained,
the previously available knowledge is not utilized, leading to
a wastage of computational power and storage. Although in
random forests, one potential solution is to add more trees

VOLUME 10, 2022 121455

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 5. Reweighting data points.

to the existing classifier to retain previous knowledge; this
increases the model’s complexity and does not guarantee
any significant improvement in the model’s performance.
Therefore the only solution is to store all the encountered data
packets and retrain the model periodically.

Hence the use of non-gradient based models in the con-
tinual learning algorithms require massive computational
power and storage capacity due to their need to be frequently
retrained, especially in the case of large scale security sys-
tems. Whereas in gradient-based optimization models, the
parameters can be fine-tuned to adapt to the changing attack
patterns without any additional requirements. In conclusion,
any non-gradient basedmodels cannot continually learn with-
out significant aid. Hence we explore gradient-based models
that can be trained online and can sequentially learn new data
patterns without significant additional requirements.

C. FINETUNING
In many real-world applications, deep learning models are
often tuned to match the changing data distribution. This
helps the models stay updated and generate accurate pre-
dictions based on the existing requirements. For instance,
in fast fashion, the trend keeps changing rapidly; hence the
recommendation engines should adapt themselves to these
changes to serve their customers efficiently, even at the cost of
forgetting previous trends. Unfortunately, in the cybersecurity
domain, this is not the case; although new attacks emerge
every day, the older attacks remain in use. Therefore, tuning
the models to detect new patterns might lead to significant
consequences due to the catastrophic forgetting nature of such
models where the model fails to detect previously learned
patterns. Hence there is a need to learn new attack patterns
without forgetting the older ones.

121456 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

Batch Creation: The NSL-KDD dataset contains four dif-
ferent attack types, out of which two (U2R and R2L) amount
to less than 1% of the dataset. Hence we avoid them and focus
on the remaining two attacks, namely Attack Type 1 - DOS
and Attack Type 2 - Probe. Similar to the NSLKDD dataset,
where DOS and Probe attacks are considered as the two
different types of attacks, in the case of the CICIDS dataset,
we consider the attacks in Class 1 and Class 2 as the two
major attack distributions. Therefore, in Class 1 we have
Attack Type 1 - {SSH-Patator, FTP-Patator, DoS Hulk,
Dos GoldenEye, DoS Slowloris, DoS Slowhttptest, Heart-
bleed} and in Class 2 we have Attack Type 2 - {Web
Attack - Brute Force, Web Attack SQL Injection, Web
Attack XSS, Infiltration, Bot, Portscan, DDoS}.

We create a total of 30 batches, each of size 5000 for the
NSLKDD dataset and 20000 for the CICIDS 2017 dataset.
Each batch contains around 40-60% of benign data points
and the remaining with attack data points. The nature of the
attack alternates after every five batches meaning the first
five batches are of attack type 1, the next five are of attack
type 2, the next five once again attack type 1 and so on.
In order to mimic a real-world scenario, we assume that the
batches arrive sequentially and the model only has access to
the batch available at that time, meaning the model can access
no previous or future batches. As batches become available
one after another, the neural network model is fine-tuned to
fit the latest batch without enforcing any constraints, and the
model is tested on the subsequent batch of data. We repeat
this for all 30 batches.

In this section, we demonstrate the effects of catastrophic
forgetting by fine-tuning the model without any constraints
and additional resources by emulating a real-world scenario
using batches of alternating attack patterns. From Figure 5a
and figure 6a, we can observe that the accuracy rates in
the neural network models keep fluctuating when it moves
from one attack type to another. The network forgets the
patterns and properties of attack type 1 when it encounters
attack type 2 and vice versa. This is reflective of the net-
work’s problems of forgetting old learnt patterns when new
data distributions are encountered. In this simulation, the
model’s accuracy in detecting DOS attacks falls from 99.9%
to 86.6%(-13.3%) from batch 5 to batch 10 for the NSL KDD
dataset. Similarly, in the case of the CICIDS 2017 dataset, the
accuracy of the model falls from 98.7% to 84.2%(-14.5%)
when we transition from class 1 to class 2 attacks. When
the model is tuned on attack type 2, it forgets the previously
learned attack type 1 patterns, thereby decreasing its ability
to detect them. This is a severe concern as the model cannot
retain previous knowledge once it is fine-tuned on new data.
This phenomenon is termed catastrophic forgetting in neural
networks.

The standard solution to this problem is joint training
which stores the previously encountered data and retrains
the models periodically to retain the model’s performance.
This approach is computationally expensive and requires high
amounts of storage to ensure good performance levels. Given

the rapidly changing nature of the attack patterns, the fre-
quency of retraining will also be high; therefore, this is not a
viable solution. To counter the inefficiencies of these standard
algorithms, we explore replay and network structure based
continual learning models to achieve similar performance
levels without significant additional requirements.

D. CONTINUAL LEARNING MODELS
There are three main continual learning strategies namely:

• Architecture Based
• Regularization Based
• Rehearsal Based

Architecture-Based models manipulate the design of the
neural network by adding more layers/nodes to the existing
structure to learn new data distributions and mitigate for-
getting. By increasing the model’s parameters, it can learn
new attack classes and other dataset shifts. In comparison,
regularization based models achieve continual learning by
altering the loss functions and using distillations for selective
weight consolidation to help the model retain past memories.
Alternatively, buffer based algorithms utilize a replay buffer
to store a subset of data and fine-tune the model on this buffer
data periodically to remember all the encountered attack
classes. Many other techniques also exist that are a hybrid
version of the above techniques. This section analyses which
classes of algorithms can and cannot be applicable for our
intrusion detection task and the reasons for such distinctions.
In this research work, we explore regularization based and
rehearsal based strategies.

1) LEARNING WITHOUT FORGETTING (LwF)
Regularization-based techniques such as LwF [21] handle the
new attack types by increasing the nodes in the final layer,
thereby creating an updated neural network. This is achieved
by adding additional nodes to the existing neural network,
thereby increasing the model’s parameters thus increasing
their ability to adapt to new distributions. They rely on a com-
bined training approachwhere the weights of the newly added
nodes can be learnt without disrupting the knowledge gained
through previous iterations stored in the existing nodes.

In this model, each known class(i.e. attack types) is allotted
a node in the final layer, and all the classes share all the
layers except the last layer. The shared layer parameters
are θs, and θo is the class-specific parameter of the known
classes. LwF adds θn more parameters to the final layer to
include the newly encountered classes. The model aims to
find the optimal values of θn, which will help perform well
on the newer attacks but also constrain any changes in the θs
and θo values so that catastrophic forgetting can be avoided.
Unlike standard models, which depend on high storage and
computational capacity, regularization-based models do not
require additional resources.

To ensure that the model performs well on both the old
and new attacks, the joint training approach uses different
loss functions for training the old and new attack nodes in

VOLUME 10, 2022 121457

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

the final layer. The training algorithm follows a cross-entropy
loss for the new nodes, which helps the model fit nicely
on the new attack data points. Whereas for the older nodes,
KnowledgeDistillation Loss designed byHinton [16] is being
used, allowing the current model to approximate the pre-
diction distribution of the previous model, ensuring that the
past knowledge is not lost. The total loss of the model is
a weighted sum of the old and the new attack losses; the
model’s weights ensure that no one task is given more priority
over the other.

Notably, compared to the joint training approach, the
regularization technique requires no additional storage
requirements and avoids retraining the model periodically.
Using the previous model’s logits and comparing it with
the current model using the distillation loss has voided any
storage requirements. Furthermore, instead of completely
retraining the model, we combinedly train the old and new
attack nodes collectively, thus efficiently utilizing the existing
knowledge.

Algorithm 1: Learning Without Forgetting

1 Input:
2 Shared parameters θs, old task parameters θo,
3 New training data (Xn,Yn), Trained DNN model
4 Yo←− DNN (Xn, θs, θo)
5 θn←− randomly_initialize(| θn |)
6 Train:
7 Ŷo = DNN (Xn, θ̂s, θ̂o)
8 Ŷn = DNN (Xn, θ̂s, θ̂n)
9 θ∗s , θ

∗
o , θ
∗
n ←−

10 argmin
θ̂s,θ̂o,θ̂n

(
λoLold (Yo, Ŷo)+ Lnew(Yn, Ŷn)+ R(θ̂s, θ̂o, θ̂n)

)

In algorithm 1, the Lnew is the categorical cross-entropy
loss, whereas the Lold is the modified cross-entropy with the
Knowledge Distillation, which increases the weight assigned
to lower probabilities and performs well in approximating the
output of two networks.

2) EXPERIENCE REPLAY
Rehearsal based strategies such as experience replay rely on
a reservoir buffer of a predefined size to store a subset of the
data points encountered thus far. Introduced as an off-policy
learning algorithm to store various experiences in the rein-
forcement learning(RL) domain, the stored experiences are
then used to fine-tune the RL models. This ensures that the
model utilizes the older experiences for future iterations and
helps stabilize the model’s performance. Similarly, this tech-
nique can be extended to continual learning domains where
there is a need to efficiently store and retain knowledge about
the attack pattern encountered.

The model relies on creating a buffer of data points rep-
resenting the distribution of all the attack patterns encoun-
tered. The buffer itself is a subset of the data points selected
using the reservoir sampling algorithm that selects points

at random. Algorithm 2 summarizes the sample selection
process; up until the buffer has empty spaces, the encountered
data points are directly added to the buffer; however, once the
buffer is full, we generate a random number to decide whether
or not that particular data point will replace an existing point
in the buffer.

Algorithm 2: Reservoir Sampling

1 Input:Memory buffer M, number of samples
encountered N, datapoints (x, y)

2 ifM < N then
3 M[N]←− (x, y);
4 else
5 j = sample random integer (min = 0, max = N);
6 if j <| M | then
7 M[N]←− (x, y)
8 end
9 end

As soon as a new batch of data is encountered, the neural
network is fine-tuned using the dataset generated by combin-
ing the current batch with a subset of data points sampled
from the buffer and the binary cross-entropy loss optimizing
the model. Once the model is tuned, the buffer is updated by
using the reservoir sampling algorithm.

3) DARK EXPERIENCE REPLAY (DER)
Dark Experience Replay [5] is an updated version of the expe-
rience replay technique where each sample’s output probabil-
ity distribution (softmax) is stored along with its labels. This
helps the model to approximate the original predictions of the
models on past samples as described in Algorithm 3. The loss
function is also modified to optimize both the current batch’s
performance and retain the knowledge of past tasks.

Algorithm 3: Dark Experience Replay

1 Input: dataset D, parameter θ , trade-off value α and
learning rate λ

2 M←− {}
3 for (x,y) in D do
4 (x ′, z′)←− sample(M)
5 z←− hθ (x)
6 reg←− α || z′ − hθ (x ′) ||22
7 θ ←− θ + λ.∇θ [l(y, fθ (x))+ reg]
8 M ←− reservoir(M , (x, z))
9 end

The approximation function of the neural network is f, the
corresponding output logits are represented by hθ (x) and the
distribution of the output probabilities over various classes is
fθ (x) = softmax(hθ (x)). The goal of the continual learning
model is to optimize the parameters θ of the neural network
model such that the combined loss function in equation 9
where Lt is defined in equation 10 of all the encountered tasks

121458 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 6. Comparison of continual learning models on NSL KDD.

tc thus far is minimized:

argmin
θ

tc∑
t=1

Lt (9)

Lt = E(x,y)∼Dt [l(y, fθ (x))] (10)

However, as we do not store all the data points from
the previous batches due to the limited memory available,
computing the loss for batches 1, 2, . . . tc − 1 is not possible.
Therefore the loss function in equation 9 is modified such
that we search for the best parameters that fit our current

batch tc along with a regularization term that mimics the
outputs of the previous batches. As the parameter values
cannot be stored after every intermediate batch optimization,
we store the probability outputs for all the data points in
each batch directly in the memory buffer as soon as the batch
is available. Therefore instead of only the class y, we store
the complete probability distribution z(softmax) for each data
point x.

Ltc + α
tc−1∑
t=1

Ex∼M
[
|| z− hθ (x) ||22

]
(11)

VOLUME 10, 2022 121459

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

FIGURE 7. Comparison of continual learning models on CICIDS 2017.

The continual learning algorithm aims to minimize the
loss function in equation 11 by tuning the model’s param-
eters. To fine-tune the model, we utilize data points from
both the current batch and the buffer. We sample a
subset of the points from the buffer from which we com-
pute the regularization loss, and the binary cross-entropy
loss is computed for the current batch. The gradient of
the parameters is computed with respect to the sum of
these losses, using which they are fine-tuned in an iterative
process.

E. COMPARISON OF CONTINUAL LEARNING
ALGORITHMS
We use the batches created in section V-C for analyzing the
performance of all the models.

1) LwF
The results of the LwF (regularization based) technique are
displayed in Figure 5b and 6b. From these figures, we can
understand that the catastrophic forgetting problem is elim-
inated as the accuracy rates remain almost constant even
across attack transitions. Therefore the model does not forget
one attack when trained on the other. However, the model’s
overall accuracy is only 84.92% and 88.35% for the NSL
KDD and the CICIDS 2017 dataset, respectively, which is
considerably lesser than our requirements for values above
95%.Although in batches 1-5, themodel can reach accuracies
as high as 98%, it drops as soon as we transition from Class
1 to Class 2 attacks.

The drop in accuracy post-transition can be attributed to the
lack of discriminative training. Even though we train both the

121460 VOLUME 10, 2022

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

TABLE 8. Performance comparison of algorithms.

old and the new nodes simultaneously, the losses computed
for both the classes are independent of each other, meaning
the predictions of the old and new nodes are never compared
with one another. Therefore regularization based strategies
work well when applied to classes significantly different
from the existing ones as they can be easily differentiated.
However, the accuracy drops when applied to classes with
similar properties (such as DOS and Probe). For instance,
regularization based strategies can distinguish a car and an
apple more accurately than a car and a truck due to the dissim-
ilarity between the classes. Therefore, when comparing two
attack types from the same system, the model cannot easily
distinguish between them because of their shared properties.
Similar results were obtained by [44], where numbers were
learnt on an incremental basis from the MNIST dataset.

Although catastrophic forgetting was eliminated, regular-
ization based models are not a practical solution due to the
lack of discriminative training in classes with similar dis-
tributions, which leads to poor performances. Therefore we
explore efficient buffer based solutions that allow discrimi-
native training between multiple similar classes, thus helping
them differentiate efficiently.

2) EXPERIENCE REPLAY
In the fine-tuning technique, the model is trained on the
current batch of data which contains either Class 1 or Class 2
attacks and not both. Therefore, at any given time, the model
learns only one class of attacks. This leads to fluctuating accu-
racy rates during attack transitions. However, these issues are
eliminated in the replay based models due to the presence
of both Class 1 and Class 2 attacks in the buffer. Also, the
presence of both the attacks classes in the buffer ensures that
the models are trained in a discriminative setting, therefore,
allowing the models to achieve high accuracy levels, unlike
the regularization based techniques.

The accuracy of the model highly depends on the size
of the buffer being utilized. Larger buffer sizes ensure that
more information can be stored, consequently improving
the model’s accuracy but demands more resources. Whereas
smaller buffer sizes require far fewer additional resources
but the model’s performance levels will decrease. In our
experiments, we fix the buffer size to 10000 samples. Note
that specific algorithms such as EXSTREAM [14] exist that
help us select the data points intelligently by creating clusters
for each class and determining the value of each point by

measuring the distance from its label class. Depending on the
value of the data point, it is either selected or rejected. Note
that we achieve high-performance levels in our tasks despite
ignoring such algorithms due to their high computational
requirements.

Figures 5c and 6c summarize the results of the model;
compared to the fine-tuning based model, the reservoir buffer
achieves an accuracy of 98.93% for the NSL KDD dataset
and 98.95% for the CICIDS 2017 dataset, and more impor-
tantly the accuracy does not drop significantly during attack
transitions. Also, as more batches of data become available,
the drop in accuracy gradually reduces, thus stabilizing the
model’s performance.

3) DARK EXPERIENCE REPLAY
The results of the analysis are presented in Figures 5d and 6d.
Figures 5c, 5d, 6c and 6d conclude that, unlike the fine-
tuning technique, there is no catastrophic forgetting due to
the presence of both the attack classes in the buffer, and unlike
regularization based techniques, the replay based techniques
can achieve high accuracy levels due to discriminative train-
ing. Especially in the case of DER, the model’s accuracy
stabilizes after batch 15, therefore ensuring consistent results.
From Figures 5e and 6e, we can observe that the accuracy of
the DER model stays above the rest across multiple batches,
closely followed by the ER model and then the fine-tuning
based approach. Table 7 summarizes the overall performance
of the algorithms on the batches of data from which we
can observe that the overall accuracy of the DER model is
0.43% and 0.49% higher than the ER model for the NSL
KDD and CICIDS 2017 dataset, respectively. This increase
in accuracy is due to the nature of training, where the model
is tuned to approximate its previous probability distribution
rather than being forced to train on hard labels. The regu-
larization loss ensures that the model creates smooth bound-
aries that, in turn, help them to generalize better. We can
also observe that the replay strategies perform much better
(around+15%) than the regularization based strategies. Also,
note that although the fine-tuning based technique has better
accuracy than the LwF technique, the problem of catastrophic
forgetting is never addressed in that approach, whereas the
LwF technique eliminates catastrophic forgetting at the cost
of reduced performance.

Hence from the above analysis, it is clear that buffer
based replay techniques perform better than other continual
learning models but requires additional storage capacities.
Considering that only buffer based models allow discrimi-
native training, which is essential for differentiating between
similar attack types in the continual learning setting, we con-
clude that the requirement of additional resources is an
acceptable trade-off.

4) EXISTING WORKS
In tables 9 and 10, we compare the performance of various
state of the art IDS models with our DER technique for both
the NSL KDD and CICIDS 2017 dataset respectively. While

VOLUME 10, 2022 121461

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

TABLE 9. Performance comparison with other IDS (NSL-KDD Dataset).

TABLE 10. Performance comparison with other IDS(CIC-IDS dataset).

various models such as boosting techniques [27], [50] [17],
LSTMs [24] and DNNs [12], [23] listed in table 9 and 10
perform well in the anomaly detection task and achieve
accuracy over 95%, they do not have the capabilities to
continuous learn new attack patterns. When the attack dis-
tribution changes and new patterns are introduced, none of
these existing works will be able to efficiently update the
models to adapt to the dynamic changes in the systems.
Therefore, over time the performance of these models drops
significantly. However, unlike these techniques, our continual
learning models have the ability to learn new attack patterns
and changes in data distribution while also maintaining high
accuracy levels with low false-positive rates. Further, com-
pared to existing works, our continual learning models are
more robust and adaptable to changing system properties and
handling day-0 attacks. The dark experience replay(DER)
technique achieves an accuracy of 99.36% and 99.46% for
the NSL KDD and the CICIDS 2017 dataset, respectively,
while also handling constant changes in the data distribution
without suffering from the catastrophic forgetting problem.

VI. CONCLUSION
In this research work, we introduced the problem of covariate
shift and catastrophic forgetting in the context of intrusion
detection systems for addressing the online learning prob-
lem. We propose an extensive eight-stage framework to help
understand the nature and the magnitude of the shift in the
dataset. As a part of the framework, we designed a novel fea-
ture importance based technique that determines the impact
of individual feature drift on the performance of our IDS.
We analyze the NSL KDD and the CICIDS 2017 dataset
using the framework for understanding the nature and mag-
nitude of drifts in the dataset, thus exemplifying the need for
continual learning algorithms. After measuring the drift in
the dataset, we efficiently address the problem by extending
image-domain continual learning algorithms to cyber security

in general and intrusion detection systems in specific and
testing them on the NSL KDD and CICIDS 2017 data sets.
We developed and compared the performance of three major
continual learning models: learning without forgetting, expe-
rience replay and dark experience replay by analyzing their
performances on alternating batches of attacks that emulate
real-world distributions. We also demonstrate that the con-
tinual learning-based approaches can achieve an accuracy
as high as 99% with false-positive rates below 0.5% with
minimal additional requirements in storage capacity. From
our analysis, we conclude that replay based continual learning
models outperform traditional statistical techniques and state
of the art boosting and DNNmodels in handling the covariate
shift problem. To the best of our knowledge, this is the first
application of continual learning strategies in the domain
of large scale systems security to address the problems of
covariate shift without suffering from catastrophic forgetting.

While doing the experimentation of the proposed study,
we have used NSL-KDD and CICIDS 2017 dataset.
We observed that there is reduction in degradation during
change in attack dynamics. However we feel that there is
a need to use formal real-world context-sensitive datasets
related to various large-scale cyber–physical systems like
cloud and smart grid networks. Therefore in future we plan
to conduct extensive experimentation in real world large scale
cyber-physical systems to further validate our study.

REFERENCES
[1] W. C. Abraham and A. Robins, ‘‘Memory retention—The synaptic sta-

bility versus plasticity dilemma,’’ Trends Neurosciences, vol. 28, no. 2,
pp. 73–78, Feb. 2005.

[2] I. Abrar, Z. Ayub, F. Masoodi, and A. M. Bamhdi, ‘‘A machine learning
approach for intrusion detection system on NSL-KDD dataset,’’ in Proc.
Int. Conf. Smart Electron. Commun. (ICOSEC), Sep. 2020, pp. 919–924.

[3] M. Ahsan and K. Nygard, ‘‘Convolutional neural networks with LSTM for
intrusion detection,’’ EPiC Ser. Comput., vol. 69, pp. 69–79, 2020, doi:
10.13140/RG.2.2.24796.82567.

121462 VOLUME 10, 2022

http://dx.doi.org/10.13140/RG.2.2.24796.82567

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

[4] A. O. Alzahrani and M. J. F. Alenazi, ‘‘Designing a network intru-
sion detection system based on machine learning for software defined
networks,’’ Future Internet, vol. 13, no. 5, p. 111, Apr. 2021, doi:
10.3390/fi13050111.

[5] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, ‘‘Dark
experience for general continual learning: A strong, simple baseline,’’
2020, arXiv:2004.07211.

[6] M. Catillo, M. Rak, and U. Villano, ‘‘2L-ZED-IDS: A two-level anomaly
detector for multiple attack classes,’’ in Proc. AINA Workshops, 2020,
pp. 687–696.

[7] M. Choraś, R. Kozik, R. Renk, and W. Hołubowicz, ‘‘The concept of
applying lifelong learning paradigm to cybersecurity,’’ in Proc. Int. Conf.
Intell. Comput. Cham, Switzerland: Springer, 2017, pp. 663–671.

[8] L. D’hooge, T. Wauters, B. Volckaert, and F. D. Turck, ‘‘Inter-dataset gen-
eralization strength of supervised machine learning methods for intrusion
detection,’’ J. Inf. Secur. Appl., vol. 54, Oct. 2020, Art. no. 102564, doi:
10.1016/j.jisa.2020.102564.

[9] C. Feutry, P. Piantanida, F. Alberge, and P. Duhamel, ‘‘A simple statistical
method to detect covariate shift,’’ inProc. 27th ÉmeColloque Francophone
de Traitement du Signal et Des Images (Gretsi), 2019, pp. 1–4.

[10] Q. R. S. Fitni and K. Ramli, ‘‘Implementation of ensemble learning and
feature selection for performance improvements in anomaly-based intru-
sion detection systems,’’ in Proc. IEEE Int. Conf. Ind. 4.0, Artif. Intell.,
Commun. Technol. (IAICT), Jul. 2020, pp. 118–124.

[11] R. M. French, ‘‘Catastrophic forgetting in connectionist networks,’’ Trends
Cogn. Sci., vol. 3, no. 4, pp. 128–135, Apr. 1999.

[12] S. Gamage and J. Samarabandu, ‘‘Deep learning methods in network intru-
sion detection: A survey and an objective comparison,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102767.

[13] A. Gepperth and B. Hammer, ‘‘Incremental learning algorithms and appli-
cations,’’ in Proc. ESANN, 2016.

[14] T. L. Hayes, N. D. Cahill, and C. Kanan, ‘‘Memory efcient expe-
rience replay for streaming learning,’’ 2018, arXiv:1809.05922, doi:
10.1109/ICRA.2019.8793982.

[15] F. Herrera. (2011). Dataset Shift in Classification: Approaches and
Problems. Accessed: Dec. 21, 2022. [Online]. Available: http://iwann.
ugr.es/2011/pdf/InvitedTalk-FHerrera-IWANN11.pdf

[16] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[17] G. Karatas, O. Demir, and O. K. Sahingoz, ‘‘Increasing the performance
of machine learning-based IDSs on an imbalanced and up-to-date dataset,’’
IEEE Access, vol. 8, pp. 32150–32162, 2020.

[18] J. Kevric, S. Jukic, and A. Subasi, ‘‘An effective combining classifier
approach using tree algorithms for network intrusion detection,’’ Neural
Comput. Appl., vol. 28, no. S1, pp. 1051–1058, Dec. 2017.

[19] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, and A. Grabska-Barwinska,
‘‘Overcoming catastrophic forgetting in neural networks,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

[20] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, and J. Firdaus, ‘‘Auto-
matic features extraction using autoencoder in intrusion detection sys-
tem,’’ in Proc. Int. Conf. Electr. Eng. Comput. Sci. (ICECOS), Oct. 2018,
pp. 219–224, doi: 10.1109/ICECOS.2018.8605181.

[21] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[22] V. Lomonaco, D. Maltoni, and L. Pellegrini, ‘‘Rehearsal-free continual
learning over small non-I.I.D. batches,’’ in Proc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 989–998.

[23] S. A. Ludwig, ‘‘Intrusion detection of multiple attack classes using a deep
neural net ensemble,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Nov. 2017, pp. 1–7, doi: 10.1109/SSCI.2017.8280825.

[24] M. Mahdavisharif, S. Jamali, and R. Fotohi, ‘‘Big data-aware intrusion
detection system in communication networks: A deep learning approach,’’
J. Grid Comput., vol. 19, no. 4, pp. 1–28, Dec. 2021.

[25] University of Maryland. (2021). Study: Hackers Attack Every
39 Seconds. Accessed: Feb. 18, 2021. [Online]. Available:
https://eng.umd.edu/news/story/study-hackers-attack-every-39-seconds

[26] A. Soutif–Cormerais, M. Masana, J. Van de Weijer, and B. Twardowski,
‘‘On the importance of cross-task features for class-incremental learning,’’
2021, arXiv:2106.11930.

[27] M. Mazini, B. Shirazi, and I. Mahdavi, ‘‘Anomaly network-based
intrusion detection system using a reliable hybrid artificial bee
colony and AdaBoost algorithms,’’ J. King Saud Univ. Comput. Inf.
Sci., vol. 31, no. 4, pp. 541–553, Oct. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157817304287

[28] G. Mohi-ud-din, ‘‘NSL-KDD,’’ IEEE Dataport, Dec. 2018, doi:
10.21227/425a-3e55.

[29] N. Yadav, S. Pande, A. Khamparia, and D. Gupta, ‘‘Intrusion detection
system on IoT with 5G network using deep learning,’’ Wireless Commun.
Mobile Comput., vol. 2022, pp. 1–13, Mar. 2022.

[30] University of North Georgia. (2021). Cybersecurity: A Global Priority
Career Opportunity. Accessed: Feb. 3, 2021. https://ung.edu/continuing-
education/news-and-media/cybersecurity.php

[31] S. Pande, A. Kamparia, and D. Gupta, ‘‘Recommendations for DDOS
attack-based intrusion detection system through data analysis,’’ in Proc.
2nd Doctoral Symp. Comput. Intell., D. Gupta, A. Khanna, V. Kansal,
G. Fortino, and A. E. Hassanien, Eds. Singapore: Springer, 2022,
pp. 899–909.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[33] S. Rabanser, S. Günnemann, and Z. C. Lipton, ‘‘Failing loudly: An
empirical study of methods for detecting dataset shift,’’ in Proc. Adv.
Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst.,
(NeurIPS), H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, Eds. Vancouver, BC, Canada, 2019,
pp. 1394–1406. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/hash/846c260d715e5b854ffad5f7%0a516c88-Abstract.html

[34] S. Rastegari, P. Hingston, and C.-P. Lam, ‘‘Evolving statistical rulesets for
network intrusion detection,’’ Appl. Soft Comput., vol. 33, pp. 348–359,
Aug. 2015, doi: 10.1016/j.asoc.2015.04.041.

[35] H. Raza, G. Prasad, and Y. Li, ‘‘EWMA model based shift-detection
methods for detecting covariate shifts in non-stationary environments,’’
Pattern Recognit., vol. 48, no. 3, pp. 659–669, Mar. 2015, doi:
10.1016/j.patcog.2014.07.028.

[36] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘‘ICaRL:
Incremental classifier and representation learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001–2010.

[37] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive neural net-
works,’’ 2016, arXiv:1606.04671.

[38] S. Pande, A. Khamparia, and D. Gupta, ‘‘Feature selection and comparison
of classification algorithms for wireless sensor networks,’’ J. Ambient
Intell. Hum. Comput., Aug. 2021, doi: 10.1007/s12652-021-03411-6.

[39] K. Sethi, E. S. Rupesh, R. Kumar, P. Bera, and Y. V. Madhav, ‘‘A context-
aware robust intrusion detection system: A reinforcement learning-based
approach,’’ Int. J. Inf. Secur., vol. 19, no. 6, pp. 657–678, Dec. 2020.

[40] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, vol. 1, Jan. 2018, pp. 108–116.

[41] K. Siddique, Z. Akhtar, M. A. Khan, Y.-H. Jung, and Y. K. and, ‘‘Devel-
oping an intrusion detection framework for high-speed big data networks:
A comprehensive approach,’’ KSII Trans. Internet Inf. Syst., vol. 12, no. 8,
pp. 4021–4037, Aug. 2018, doi: 10.3837/tiis.2018.08.026.

[42] B. A. Tama and S. Lim, ‘‘Ensemble learning for intrusion detec-
tion systems: A systematic mapping study and cross-benchmark eval-
uation,’’ Comput. Sci. Rev., vol. 39, Feb. 2021, Art. no. 100357, doi:
10.1016/j.cosrev.2020.100357.

[43] C. Tang, N. Luktarhan, and Y. Zhao, ‘‘SAAE-DNN: Deep learning method
on intrusion detection,’’ Symmetry, vol. 12, no. 10, p. 1695, Oct. 2020, doi:
10.3390/sym12101695.

[44] G. M. van de Ven and A. S. Tolias, ‘‘Generative replay with feed-
back connections as a general strategy for continual learning,’’ 2018,
arXiv:1809.10635.

[45] F. Wiewel and B. Yang, ‘‘Continual learning for anomaly detection with
variational autoencoder,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2019, pp. 3837–3841.

[46] P. Wu and H. Guo, ‘‘LuNet: A deep neural network for network intrusion
detection,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2019,
pp. 617–624, doi: 10.1109/SSCI44817.2019.9003126.

[47] Y. Xiao and X. Xiao, ‘‘An intrusion detection system based on a simplified
residual network,’’ Information, vol. 10, no. 11, p. 356, Nov. 2019, doi:
10.3390/info10110356.

[48] N. G. Nair, P. Satpathy, and J. Christopher, ‘‘Covariate shift: A review
and analysis on classifiers,’’ in Proc. Global Conf. Advancement Technol.
(GCAT), Oct. 2019, pp. 1–6, doi: 10.1109/GCAT47503.2019.8978471.

VOLUME 10, 2022 121463

http://dx.doi.org/10.3390/fi13050111
http://dx.doi.org/10.1016/j.jisa.2020.102564
http://dx.doi.org/10.1109/ICRA.2019.8793982
http://dx.doi.org/10.1109/ICECOS.2018.8605181
http://dx.doi.org/10.1109/SSCI.2017.8280825
http://dx.doi.org/10.21227/425a-3e55
http://dx.doi.org/10.1016/j.asoc.2015.04.041
http://dx.doi.org/10.1016/j.patcog.2014.07.028
http://dx.doi.org/10.1007/s12652-021-03411-6
http://dx.doi.org/10.3837/tiis.2018.08.026
http://dx.doi.org/10.1016/j.cosrev.2020.100357
http://dx.doi.org/10.3390/sym12101695
http://dx.doi.org/10.1109/SSCI44817.2019.9003126
http://dx.doi.org/10.3390/info10110356
http://dx.doi.org/10.1109/GCAT47503.2019.8978471

S. Prasath et al.: Analysis of Continual Learning Models for Intrusion Detection System

[49] Y. Hua, ‘‘An efficient traffic classification scheme using embedded feature
selection and LightGBM,’’ in Proc. Inf. Commun. Technol. Conf. (ICTC),
May 2020, pp. 125–130.

[50] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
‘‘Autoencoder-based feature learning for cyber security applications,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3854–3861.

[51] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, ‘‘Building an efficient intrusion
detection system based on feature selection and ensemble classifier,’’
Comput. Netw., vol. 174, Jun. 2020, Art. no. 107247. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128619314203

SAI PRASATH is currently pursuing the under-
graduate degree with the School of Electrical
Sciences, IIT Bhubaneswar, India. He has exper-
tise in machine learning and cyber security.

KAMALAKANTA SETHI received the B.Tech.
degree in information science from the National
Institute of Science and Technology, Berhampur,
India, in 2009, the M.Tech. degree from the
National Institute of Technology Warangal, India,
in 2014, and the Ph.D. degree from the School
of Electrical Sciences, IIT Bhubaneswar, India,
in 2021. He is working as an Assistant Pro-
fessor with the Indian Institute of Information
Technology, Sri City, India. He has expertise in
cryptography and network security.

DINESH MOHANTY received the B.Tech. degree
in computer science and engineering from the
IIT Bhubaneswar, in May 2021. His research
interests include wireless network security, cloud
security, intrusion detection systems, and rein-
forcement learning.

PADMALOCHAN BERA (Member, IEEE)
received the Ph.D. degree from the IIT Kharagpur,
India, in 2011. He is currently working as an
Associate Professor with the School of Electrical
Sciences, IIT Bhubaneswar, India. He has more
than ten years of applied research experience in
his research areas. His work essentially focus on
formal modeling and analysis of network config-
urations and security protocols for verification of
different safety and security constraints towards

detection and prevention of threats in networks. He also works on design-
ing processes and protocols for software defined networks and applied
cryptography. He has a number of research funding from Government
agencies (DRDO, SERB, Meity) and Industries (BEL, CPRI, Cisco, Intel)
on security assessment of defense networks, cryptography and software
defined networks. He has published more than 40 research papers in reputed
journals and conferences. His major research interests include network and
cyber-physical systems security, cloud computing, formal verification and
optimization, and cryptography. He is a member of ACM. He has research
collaborations with various international academic institutes, such as Purdue
University, University of North Carolina, University of Missouri, Oxford
University, and Florida International University. He served on the editorial
board and organizing committee in various journal and conferences.

SUBHRANSU RANJAN SAMANTARAY (Senior
Member, IEEE) received the B.Tech. degree from
UCE Burla, the Ph.D. degree from NIT Rourkela,
and the postdoctoral degree from McGill Univer-
sity, Canada.

Currently, he is a Professor, a OPTCL Chair
Professor, and the Head of the School of School of
Electrical Sciences, IIT Bhubaneswar, India. His
major research interests include PMU and wide
area measurement, intelligent protection for trans-

mission systems, including FACTs, micro-grid protection including dis-
tributed generation, micro-grid planning, wide-area based dynamic security
assessment in large power networks, and smart-grid technologies.

He is a member of IEEE Power Systems Stability Sub-Committee. He is
a fellow of Indian National Academy of Engineering (INAE) and a fellow
of Institution of Engineering and Technology (IET), U.K. He has received
the Prestigious SERB STAR Award-2021, the Director’s Commendation for
Outstanding Research-2021, the IEEE PES Chapter Outstanding Engineer
Award-2020, the NASI-SCOPUS Young Scientists Awards-2015, the IEEE
PES Technical Committee Prize Paper Award-2012, the Samanta Chandra
Sekhar Award, and the Odisha Bigyana Acadmey-2010. He was a Editor
of IEEE TRANSACTIONS ON SMART GRID and IEEE TRANSACTIONS ON POWER

DELIVERY, an Associate Editor of IET, Generation, Transmission & Distribu-
tion, and a Guest Editor of IEEE SENSOR JOURNAL. He is an Associate Editor
of IEEE SYSTEMS JOURNAL.

121464 VOLUME 10, 2022

