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ABSTRACT Side-Channel Analysis (SCA) allows extracting secret keys manipulated by cryptographic
primitives through leakages of their physical implementations. Supervised attacks, known to be optimal,
can theoretically defeat any countermeasure, including masking, by learning the dependency between the
leakage and the secret through the profiling phase. However, defeating masking is less trivial when it comes
to unsupervised attacks. While classical strategies such as correlation power analysis or linear regression
analysis have been extended to masked implementations, we show that these extensions only hold for
Boolean and arithmetic schemes. Therefore, we propose a new unsupervised strategy, the Joint Moments
Regression (JMR), able to defeat anymasking schemes (multiplicative, affine, polynomial, inner product. . . ),
which are gaining popularity in real implementations. The main idea behind JMR is to directly regress the
leakage model of the shares by fitting a system based on higher-order joint moments conditions. We show
that this idea can be seen as part of a more general framework known as the GeneralizedMethod of Moments
(GMM). This offers mathematical foundations on which we rely to derive optimizations of JMR. Simulations
results confirm the interest of JMR over state-of-the-art attacks, even in the case of Boolean and arithmetic
masking. Eventually, we apply this strategy to real traces and provide, to the best of our knowledge, the first
unsupervised attack on the protected AES implementation proposed by the ANSSI for SCA research, which
embeds an affine masking and shuffling counter-measures.

INDEX TERMS Side-channel, masking, joint moments.

I. INTRODUCTION
A. CONTEXT
Side-Channel Analysis (SCA) is defined as the process of
gaining information on a device holding a secret through its
physical leakage such as power consumption [1] or Electro-
magnetic (EM) emanations [2]. The underlying assumption
is that the secret and the side-channel data are statistically
dependent. This allows an adversary to extract sensitive infor-
mation such as cryptographic keys by carefully exploiting
these dependencies.

Strategies are mainly divided into two categories: super-
vised and unsupervised SCA and their utilization depends on
the considered threat model. In the first one, the adversary
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is supposed to be able to conduct a profiling step of the
target, most likely on a clone device, in which she learns the
leakage model of the intermediate variables and then adopts a
maximum likelihood approach to recover the secret key. This
includes strategies such as Gaussian template attack [3] or
deep learning profiled attacks [4]. If the model is perfectly
learned during the profiling phase, these attacks are known to
be optimal from an information theory point of view.

If the profiling step is not possible, the adversary has to use
an a priori on the leakage model to mount an unsupervised
SCA. As shown in [5] there does not exist a generic strategy
that would work without requiring such an a priori. Differ-
ent approaches have been developed allowing to exploit an
amount of information corresponding to the quality of this
a priori. For example, [6] showed that Mutual Information
Attacks (MIA) can exploit a large part of the information

127412
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0001-9032-8883
https://orcid.org/0000-0002-9985-7586
https://orcid.org/0000-0002-9706-5710


V. Cristiani et al.: Fit the Joint Moments: How to Attack Any Masking Scheme

contained in the traces but require an explicit representation
of the leakage model (recent deep learning based unsuper-
vised SCA [7], [8] also fall into this category).

The main alternatives to MIA are the stochastic attacks,
such as Correlation Power Analysis (CPA) [9] or Linear
regression Analysis (LRA) [10], in which the adversary’s
a priori is reduced to a parameterized statistical model whose
parameters are regressed on the fly. A measure of fitness is
then used as a distinguisher to discriminate key candidates.

To prevent instantaneous leakage of the sensitive variables,
a classical strategy is to protect implementations using mask-
ing techniques. It consists in splitting the internal state of
the processing into multiple random shares following secret
sharing ideas [11]. SCA against masked implementations is
still possible through the so called higher-order attacks which
combine multiple leakage samples corresponding to each
share. However, these attacks are harder to conduct since the
impact of the noise is amplified exponentially with the mask-
ing order [12]. Among unsupervised attacks, the multivariate
CPA described in [13] has often proved to be an efficient
strategy in practice. However, it relies on a Hamming weight
leakage assumption (of the shares) that may not be correct
especially when it comes to local EM measurements. Indeed,
each bit of the intermediate variable can have very different
leakage behavior and even sign inversions of their coefficients
as shown in [14]. To deal with such situations [15] proposed
a generalization of the LRA whose main strength is to offer
flexibility on the a prioriwithout constraining each bit to have
the same impact on the leakage.

This method exploits information hidden in the covari-
ance, i.e., the second order joint moment of the distribution
since the first order moments (the means) are leakage-free
thanks to masking. However, we argue that this method is not
generic enough because it is based on the assumption that the
covariance per class could be expressed as a low algebraic
function, assumption that only holds for Boolean and low
order arithmetic masking as shown in this paper. Indeed, the
proposed attack fails even in theory (on synthetic traces with
zero noise) when dealing with other masking schemes such
as the multiplicative or affine ones. These masking schemes
along with the polynomial and inner product masking are
getting more and more studied recently and begin to be used
in modern implementations. This trend may continue in the
future since these schemes seem to offer better resistance
against side-channel attacks [16]. Mutual information-based
attacks have also been extended to masked implementations
but have not either proven to be valid strategies for any kind of
masking and their applicability is mainly related to the open
questions, raised in [6], about the choice of the partitioning
function. This leads us to the following observation:
To the best of our knowledge, no generic unsupervised

strategy able to defeat any kind of masking outside of
the Hamming weight leakage assumption emerges from the
state-of-the-art.

We propose such a strategy in this paper: the Joint Moment
Regression (JMR). The latter is built on the idea that the

discriminating information, if it exists, is necessarily hidden
in higher-order joint moments since lower-order leakages are
prevented by masking (at least when not considering glitches
from the physical implementation [17]). Intuitively, joint
moments encapsulate information about the corresponding
distribution. The idea is to make a leakage assumption on
each share (for example a linear leakage) and try to directly
regress the leakage model of each share, using joint moments
conditions, instead of trying to regress the joint moment itself
as it is done in [15]. This comes at the cost of the loss of
linearity since the joint moment conditions involve a mul-
tiplication between the leakage parameters of the different
shares which gives rise to a non-linear system of equations.
However, we show that numerical optimization algorithms
can be used to find an estimation of the solution that best fits
the conditions. A measure of fitness is used as a distinguisher
between key candidates. The joint moment conditions depend
on the underlying masking scheme which allows to embed
knowledge of the latter into the system and, therefore, makes
the attack generic.

B. CONTRIBUTIONS
• The first contribution of the paper is to present the
state-of-the-art on the stochastic higher-order attacks,
especially focusing on the method proposed in [15] to
understand its strengths and limitations. This analysis
can be found in section II.

• As a second contribution, we introduce a new attack
strategy: the Joint Moment Regression (JMR) in
section III. It is built to circumvent the issues found in the
state-of-the-art and proposes a method which is agnostic
to the underlying masking scheme.

• We then draw a parallel between the core of JMR and
a more general framework: the Generalized Method of
Moment (GMM) [18] which is a well-studied paradigm
in statistics and economics. This allows to improve our
attack in the case of biased masking schemes such as
the multiplicative and affine ones. This analysis can be
found in section IV.

• Finally, section V-B presents applications of JMR to
real traces and provides at the same time, to the best
of our knowledge, the first unsupervised attack on
the secured AES implementation of the ANSSI, pro-
tected by an affine masking scheme. Attacks that do
and do not exploit the lower-order leakage are both
presented.

II. RELATED WORK AND LIMITATIONS
A. NOTATIONS
Random variables are represented as upper-case letters such
as X . They take their values in the corresponding set X
depicted with a calligraphic letter. Lower case letters such
as x stand for elements of X . Expectation of X is denoted
E[X ] and covariance between X1 and X2 is noted cov(X1,X2).
Eventually, |X | stands for the cardinal of X .
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B. GENERAL ATTACK FRAMEWORK
In this paper, the attack framework is described consider-
ing that an adversary targets the manipulation of a sensitive
variable Z ∈ Z = Fn2, for a given n ∈ N. This variable
is supposed to functionally depends on a public variable
X ∈ X = Fm2 , for a given m ∈ N, and a secret key
k∗ ∈ K = Fm2 through the relation: Z = f (X , k∗) where f :
X×K→ Z is a known function depending on the underlying
cryptographic algorithm. The adversary is supposed to own a
set {(`i, xi), 1 ≤ i ≤ N } of N side channel traces labeled
with the corresponding public value of X . Traces correspond
to realizations of a leakage variable L ∈ L coming from

a stochastic process S, Z S
−→ L (often separable into a

deterministic and a noise part). The leakage variable L is
supposed to contain information about Z . The general idea
of an unsupervised side-channel attack is to make a series of
hypotheses ki on the key, and to use the dependency between
Z and L to build a distinguisher D : K → R to rank
the different key candidates. One of these distinguishers, the
LRA, is described in the next section.

C. LINEAR REGRESSION ANALYSIS
The following recalls the steps required to perform an LRA
such as suggested in [19]. Traces are assumed to feature one
sample. In a real-life scenario, the same procedure would be
repeated for each sample and the final distinguisher keeps
the best value along all samples according to a chosen
policy (often being the minimum/maximum value of the
distinguisher).
1) Partitioning. Partition the traces into |X | classes: Lx =
{`i, xi = x}.

2) Averaging. Compute the average trace for each class
L̄ = ( ¯̀x)x∈X with

¯̀x =
1
|Lx |

∑
`∈Lx

`

3) Basis choice. Choose a basis of functions (bi)1≤i≤r such
that bi : Z → R.

4) Making hypotheses. For k ∈ K compute the hypotheses
matrix:

Hk =

(
bi ◦ f (x, k)

)
x∈X ,
1≤i≤r

5) Linear regression. For k ∈ K find the parameter vector
θk = (θk,1, . . . , θk,r )T minimizing the euclidean norm
of the error vector:

θk = argmin
θ

||Hk · θ − L̄||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high)1:

D(k) = ||Hk · θk − L̄||2
1Sometimes the coefficient of determination R2 is used instead but the

ranking is strictly equivalent except that one ranks from high to low values
of the distinguisher.

Since step 5 corresponds to a linear regression it has a
closed-form solution:

θk = (Hk
T
·Hk )−1 ·Hk

T
· L̄

However, to highlight similarities with JMR later in the paper,
we decided to keep the generic formulation of the optimiza-
tion problem.

The choice of the basis is important since it should be
large enough for the leakage to be representable as a linear
combination with the bi ◦ f functions when k = k∗ but small
enough so that it is not the case for wrong hypotheses. The
adversary uses his a priori on the leakagemodel, often related
to physical assumptions, to choose the basis.

A common example is to assume that each bit of the
sensitive variable contributes to the leakage independently
from the others. If this assumption holds there exists α =
(α0, . . . , αn) such that `i = α0 +

∑
αj · bitj(zi) + ε with

bitj denoting the projection on the jth bit and ε being sampled
from a noise distribution. In such a case, the basis would be
{1, bit1, . . . , bitn} and θk∗ should be close to α.

Another example is to assume that the leakage is depending
on theHammingWeight (HW) of the sensitive variable so that
`i = α1HW(zi)+α0+ε. The basis is then reduced to {1,HW}
and the attack corresponds to the classical CPA.

D. MASKING
To prevent instantaneous leakages and mitigate the first-order
attacks presented above, one of the most widely used coun-
termeasures is masking [20]. The idea is to split each sen-
sitive intermediate value Z , into d shares: (Zi)1≤i≤d . The
d − 1 shares Z2, . . . ,Zd are randomly chosen and the last
one, Z1 is processed such that:

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (1)

for a group operation ∗ of Z . This has the effect of com-
plexifying the stochastic process S generating L from Z ,
rendering it no longer separable into a deterministic and a
noise part. Assuming the masks are uniformly distributed, the
knowledge of d−1 shares does not tell anything about Z (this
is why such masking is said to be of order d − 1). Therefore,
any sound SCA strategy has to combine leakage samples from
the d shares to perform an attack (which corresponds to at
least d samples if the leakages are disjoint). Such attacks are
called d th order attacks. One of them, the second-order LRA
is presented in the next section.

The uniform assumption is sometimes not strictly realized
in practice depending on the masking scheme being used.
Four of the most common masking schemes that will be stud-
ied in this paper are listed in table 1. The⊕ and⊗ respectively
stand for the addition and the multiplication operation in Fn2.
Since the multiplication by 0 is not invertible the ‘‘multiplica-
tive shares’’ have to be chosen in Fn2 \ {0}. As Z itself can
take the value 0, the multiplicative and affine schemes are
then slightly biased, and therefore, do not guarantee in theory,
SCA resilience to all the (d − 1)th and lower order attacks.
Such attacks will be discussed in section IV.
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TABLE 1. Masking schemes studied in this paper.

E. SECOND-ORDER LRA
This section describes the generalization of the LRA intro-
duced in [15] which aims at defeating a first-order masked
implementation (d = 2). Traces are considered to be com-
posed of 2 samples: L = (L1,L2) where L1 and L2 represent
respectively the leakage of the first and second share. In a
real-life scenario, the attack would be repeated with all the
combinations of two samples from the raw traces. To perform
a second-order LRA the adversary is supposed to own a set of
N traces {(`i1, `

i
2), 1 ≤ i ≤ N }. The idea is to replace the esti-

mated mean per class by the estimated covariance per class
in the classical LRA which naturally combines information
from the two samples. Indeed the covariance Y = cov(L1,L2)
involves the product of the centered variable L1 − µ1 and
L2 − µ2, with (µ1, µ2) = E[L], which has been shown to be
a good combining function for second-order SCA [13]. The
steps to perform a second-order LRA are depicted hereafter.
1) Partitioning. Partition the traces into |X | classes: Lx =
{(`i1, `

i
2), xi = x}.

2) Estimating covariances. Compute the estimated
covariance for each class Ȳ = (ȳx)x∈X with

ȳx =
1
|Lx |

∑
`∈Lx

(`1 − µ̄1)(`2 − µ̄2)

where (µ̄1, µ̄2) stands for the estimated mean of L.
3) Basis choice. Choose a basis of functions (bi)1≤i≤r such

that bi : Z → R.
4) Making hypotheses. For k ∈ K compute the hypotheses

matrix:

Hk =

(
bi ◦ f (x, k)

)
x∈X ,
1≤i≤r

5) Linear regression. For k ∈ K find the parameter vector
θk = (θk,1, . . . , θk,r )T minimizing the euclidean norm
of the error vector:

θk = argmin
θ

||Hk · θ − Ȳ ||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high):

D(k) = ||Hk · θk − Ȳ ||2

The attack may seem very similar to a first-order LRA
except that it is performed on the covariance instead of the
mean (the change happens in step 2). However, the choice of
the basis is much more delicate. The link between the adver-
sary a priori and a basis leading to a successful attack is not
trivial anymore. Indeed, the hypotheses matrix is constructed

using the unmasked variable Z (k)
= f (X , k) while the leakage

a priori concerns the shares. The choice of the basis proposed
in [15] is based on an assumption that is recalled hereafter.

Let us define the set of functions (ϕk )k∈K : Z = Fn2 → R
such that:

ϕk (z) = cov(L1,L2 | Z (k)
= z) (2)

Since all the Boolean functions in Fn2 can be represented by a
multivariate polynomial in R[z1, . . . , zn]/(z21 − z1, . . . , z

2
n −

zn) (i.e. the degree of every zi in every monomial is at
most 1) [23], there exists, for any k , a unique set of coeffi-
cients (αk,u)u∈Fn2 such that:

ϕk (z) =
∑

u=(u1,...,un)∈Fn2

αk,u · zu (3)

where each term zu denotes the monomial (function) z →
zu11 z

u2
2 . . . z

un
n with zuii ∈ F2. Let deg(ϕk ) stands for the degree

of the polynomial representing ϕk .
The assumption on which the attack from [15] relies is the

following:
Assumption 1: ∀k 6= k∗, deg(ϕk∗ ) < deg(ϕk ).
The intuition behind this assumption is that since ϕk =

ϕk∗◦fk◦f
−1
k∗ (where fk = f (·, k)), ϕk is expected to have a high

degree (close to n) if k 6= k∗, due to cryptographic properties
of f which often embeds highly non-linear S-boxes to prevent
algebraic attacks. Note that this reasoning only holds if ϕk∗
itself has a low degree which is implicitly assumed in [15].
This point will be discussed later.
If 1 holds, the basis: (bi)i = {zu, u ∈ Fn2,HW(u) ≤

deg(ϕk∗ )} is a valid basis for the second-order LRA. Indeed,
it spans all the functions of degree less or equal deg(ϕk∗ ).
Therefore there exists a decomposition of ϕk∗ in this basis
while it is not the case for other ϕk , by hypothesis, which
guarantees the success of the attack (provided that the number
of traces allows for a fair approximation of the covariances
per class).

F. LIMITATIONS
The first observation is that even if 1 holds, the attack may
fail in practice if deg(ϕk∗ ) is not low enough. Indeed, the
cardinal of the basis, and therefore the number of parameters
to estimate, increases quickly with deg(ϕk∗ ) offering a big
capacity to the statistical model to fit the data whatever the
considered value of k . If the noise is not negligible, this often
means that the wrong hypotheses can reach similar scores
than the correct one which reduces the distinguishability and
therefore the effectiveness of the attack. For example, with
n = 8 and deg(ϕk∗ ) ∈ {1, 2, 3} the cardinal of the basis is
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respectively equal to 9, 37 and 93. In practice authors of [15]
run their attack with the following basis: (bi)i = {zu, u ∈
Fn2,HW(u) ≤ dmax} where dmax ∈ {1, 2, 3}. Choosing
dmax = 3 never led to the best attack even in cases where
deg(ϕk∗ ) was strictly greater than 2 (due to the high model
capacity and lack of distinguishability).

Then, one could ask if 1 holds at all. Since ϕk∗ (z) = cov
(L1,L2|Z (k∗)

= z) it is obviously related to the nature of the
leakage L1 and L2. These variables can be assumed to be
separable into a deterministic and a noise part with respect
to the shares:

Li = li(Zi)+ εi (4)

with li : Z → R representing the leakage of share i and εi
being an independent random noise variable. By bilinearity
of the covariance and independence of εi:

ϕk∗ (z) = cov
(
l1(Z1), l2(Z2) | Z (k∗)

= z
)

= cov
(
l1(z ∗ Z2), l2(Z2)

)
(5)

since Z1 = Z (k∗)
∗ Z2. Both l1 and l2 can be assumed of

low degree (through a physical a priori on the leakage). For
example, it is realistic to assume that both shares follow
a linear leakage. But we argue that this is not enough to
guarantee 1 and that it is still depending on the underlying
masking scheme, especially on the nature of the ∗ operation.

Then, a natural question arises: why does the attack pre-
sented in [15] work? We argue that it is related to the studied
masking schemes in their paper. Indeed, the latter one focuses
on the Boolean and arithmetic masking schemes which are
both exceptions as far as 1 is concerned. This claim is justified
by the two following propositions.
Proposition 1 (Boolean Masking): Let ∗ = ⊕. Let l1 :

Z → R and l2 : Z → R be two leakage functions of
degree 1. Let ϕBool(z) = cov

(
l1(z⊕ Z2), l2(Z2)

)
. Then,

deg(ϕBool) ≤ 1 (6)

Proof can be found in appendix A.
Proposition 2 (Arithmetic Masking): Let ∗ = + mod 2n.

Let l1 : Z → R and l2 : Z → R be two leakage functions of
degree 1. Let ϕArith(z) = cov

(
l1(z+ Z2 [2n]), l2(Z2)

)
. Then,

deg(ϕArith) ≤ 2 (7)

Proof can be found in appendix A.
These two propositions explain the success of the attacks

presented in [15]. However, we could not find equivalent
propositions for other masking schemes, suggesting that
Boolean and arithmetic masking are, in fact, exceptions. This
will be empirically confirmed in section III-D where it is
shown that even without noise, the higher-order LRA fails
against multiplicative or affine masking with a linear leakage
of the shares. Therefore, to the best of our knowledge, there is
no strategy in the literature able to defeat a generic masking
scheme in an unsupervised context, with a simple linear leak-
age assumption of the shares. We introduce such a strategy in
the next section.

III. JOINT MOMENTS REGRESSION
We first introduce the concept of Joint Moment (JM) which
generalizes to any masking order the idea of the covariance,
found in the previous section.

A. JOINT MOMENTS
Moments of probability distributions are quantitative mea-
sures related to the shape of the distribution. The moment of
order d , denoted µd , of the variable X is defined as:

µ
(d)
X = E[Xd ] (8)

For second and higher orders, the centered moments µ̌d of
order d are often used instead and are defined as:

µ̌
(d)
X = E[(X − µ(1)

X )d ] (9)

Joint moments are the generalization of moments to mul-
tivariate variables. Let X = (X1, . . . ,Xn) ∈ Rn be a
multivariate random variable. Let u = (u1, . . . , uk ) ∈
Nn be a vector of positive integers such that

∑
ui = d .

The JM of order d with respect to vector u, denoted jmu,
is defined as:

jm(u)
X = E

[ n∏
i=1

Xuii

]
(10)

Centered JM are also defined as:

ˇjm
(u)
X = E

[ n∏
i=1

(Xi − µ
(i)
Xi )

ui

]
(11)

One important property of JM (and of simple moments) is
that, for distributions defined on a compact set of Rn, the
distribution is fully defined by the list (maybe infinite) of all
its JM. This is also true for the centered JM provided that the
first order JM are also given.

The effect of a d-order masking is that no information
related to the sensitive variable can be found in the d − 1 and
lower JM. That is why the second-order LRA performed a
regression on the second-order centered JM with u = (1, 1)
which happens to be the covariance. Indeed it is the low-
est order JM bringing information on the sensitive variable.
Information could also be found in higher-order JM but they
are harder to estimate. Indeed, more terms are involved in the
product and the noise in each one of them is amplified through
themultiplication. One typically wants to take the JMwith the
lowest standard error (the standard deviation of its estimator).
This also explains why centered JM are preferred: as shown
in [13], they have a lower standard error than their uncentered
counterpart.

B. ATTACK DESCRIPTION
Let an adversary own a set of N traces {`i, 1 ≤ i ≤ N } of
a d order masked implementation. Traces are considered to
be composed of d samples: `i = {(`i1, . . . , `

i
d ). In a real-life

scenario, the attack would be repeated on combinations of d
samples from the raw traces depending on the attacker a priori
on the points of interest. To defeat this implementation a naive

127416 VOLUME 10, 2022



V. Cristiani et al.: Fit the Joint Moments: How to Attack Any Masking Scheme

solution would be to extend the attack proposed in [15] using
centered JM instead of covariance but as stated in section II-F:
there is no obvious link between the physical a priori, which
happens to be on the shares, and the basis that has to be chosen
and applied to the unmasked sensitive variable.

That is why we propose a new strategy where the adversary
chooses d basis, one for each share (in practice they will
often be the same basis), and directly regresses the leakage
of each share using information from the estimated d order
centered JM. The steps of what we call the Joint Moment
Regression (JMR) are depicted hereafter.

JMR Procedure

1) Partitioning. Partition the traces into |X | classes: Lx =
{(`i1, . . . , `

i
d ), xi = x}.

2) Estimating JM. Compute the estimated centered d
order joint moments matrix ¯JM . Each row represents the
estimation for one class:

JM =


1
|L0|

∑
`∈L0

∏d
j=1(`j − µ̄j)

...
1

|L2m−1|

∑
`∈L2m−1

∏d
j=1(`j − µ̄j)


where (µ̄1, . . . , µ̄d ) stands for the estimated mean of L.

3) Basis choice. For j ∈ [1, d], choose a basis of functions
(b(j)i )1≤i≤r such that b(j)i : Z → R. Intuitively, if lj cor-
responds to the leakage of share j, the adversary wants
to choose a basis such that lj(zj) =

∑r
i=1 θj,i ·b

(j)
i (zj)+εj

for some coefficient θj ∈ Rr , with εj representing an
independent random noise variable.

4) Making hypotheses. Let l̃j(zj) stand for the leakage
prediction of share j according to the chosen basis:

l̃j(zj) =
r∑
i=1

θj,i · b
(j)
i (zj) (12)

For k ∈ K, define the theoretical JM vector JMk (θ )
with respect to θ ∈ Rd×r , that traduces the leakage
assumption of step 3 into |X | = 2m JM per class
expressions:

JMk (θ )

=


a0
∑

(z1,...,zd )∈A0

∏d
j=1

(
l̃j(zj)− µθj

)
...

a2m−1
∑

(z1,...,zd )∈A2m−1

∏d
j=1

(
l̃j(zj)− µθj

)


with Ax = {(z1, . . . , zd )|Z = f (x, k)} and ax = 1
|Ax |

.
Here, µθj stands for the theoretical mean of the leakage
of share j under the assumption of θj:

µθj = EZj
[ r∑
i=1

θj,i · b
(1)
i (Zj)

]
5) Non-linear regression. For k ∈ K, find through numer-

ical optimization techniques (see subsection III-C), the

parameter vector θ (k) ∈ Rd
× Rr minimizing the

euclidean norm of the error vector:

θ (k) = argmin
θ

||JMk (θ )− JM ||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high):

D(k) = ||JMk (θ (k))− JM ||2

C. ATTACK SOUNDNESS
The general attack structure of JMR is very similar to the
LRA and second-order LRA. The main difference with the
latter one is that the assumption is done on the leakage of
the shares and is therefore directly related to the physical
a priori. These assumptions are then combined to build a
parameterized system of unknown θ ∈ Rd×r :

JMk (θ )− JM = 0 (13)

where each line represents a condition on the JM knowing
that X = x. Note that by the independence assumption, the
noise terms εj are canceled from the theoretical equations of
the JM per class, listed in the JMk (θ ) vectors. The goal is
then to find the solution θ (k) that fits the most the system
and to use a measure of fitness as distinguisher. Note that the
knowledge of the underlying masking scheme is embedded
in the system through theAx sets which describe the possible
values (z1, . . . , zd ) of the shares given the value of Z . This
is what ensures the genericity of JMR regarding the masking
scheme.

When the number of traces N tends towards infinity, the
estimated JM per class JM tends towards the true JM per
class. If the leakage assumptions are correct there exists
θ (k
∗)
∈ Rd×r such that JMk∗ (θ (k

∗)) is equal to the true JM
per class. Therefore:

lim
N→∞

D(k∗) = 0 (14)

while it is unlikely to be the case for k 6= k∗ due to cryp-
tographic property of f , which assures the soundness of the
attack.

However, this multi-shares assumption comes at the cost
of linearity. Indeed, even if all the shares are assumed to
leak linearly, the system that JMR regresses is not linear
anymore: it is of degree d . Therefore there is no closed-form
solution and one has to use numerical optimization tools to
find an approximation of the solution. Numerical optimiza-
tion is a research field in itself and is out of the scope of
this paper. There exist multiple ready-to-use implementations
in different programming languages, which is enough for
our concern. Note that since the system is of degree d , the
uniqueness of the solution of step 5 is not guaranteed. This
is not a problem for the attack: as long as one solution can
be found and that equation 14 holds only for the correct key
hypothesis, the attack will succeed for a sufficient number of
traces.
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D. SIMULATION EXPERIMENTS
This section provides simulation experiments to assess the
feasibility of JMR in practice against the masking schemes
presented in table 1. Its efficiency is compared with state-of-
the-art attacks at second and third order.

1) IMPLEMENTATION
We implemented the core of the JMR attack using the
least_squares function from the python scipy.
optimize package [24]. It solves a non-linear least-squares
fitting problem using the Levenberg-Marquardt (LM) algo-
rithm [25], [26] which is itself based on the Gauss-Newton
algorithm and the method of gradient descent. The attack
time or complexity is mostly constant regarding the number
of traces because the latter does not affect the number of
parameters nor equations in the system. The only part that
scales with the number of traces is the estimation of the JM
per class which is just a product and a sum and that can be
handled with numpy [27] array manipulations.
Since the least-squares problems related to the differ-

ent key hypotheses are independent, the implementation is
highly parallelizable. We exploited this using a 48 cores
Xeon Platinium 8168 processor which speeded up the attack
by a significant factor since the implementation of the
least_squares function is not parallelized in itself.
Other implementation optimization could be explored such
as using the fast GPU version of the LM algorithm proposed
in [28] but this is not in the scope of this paper. To give an
order of magnitude, with our setup, running the full JMR pro-
cedure as described in subsection III-B for a d−tuple of time
samples, requires around 10 and 15 seconds for respectively
a second and third-order attack (assuming one trace for each
possible values of the shares: 216 and 224 respectively).

2) GENERATING DATASETS
To assess the JMR method and to compare it with state-of-
the-art attacks, synthetic trace datasets with linear leakage
of the shares have been generated for first and second-order
masking (d ∈ {2, 3}). Boolean, arithmetic, multiplicative
and affine (only with d = 3) schemes are used to mask the
classical sensitive variable of an AES: Z = Sbox[k∗ ⊕ P]
(k∗ and P are both supposed to be 8 bits long). To be able to
average the results of 100 different attacks, performed with
100 different linear leakage models, we have generated a
matrix of random coefficients Ci for each share (1 ≤ i ≤ d):

Ci =
(
αa,b

)
0≤a≤99
0≤b≤8

(15)

where all the αa,b are uniformly drawn from [−1, 1]. Each
row represents a different linear leakage model.

To avoid any kind of estimation error (the error coming
from sampling), each dataset contains one trace for each of
the possible values of the shares (z1, . . . , zd ) ∈ Zd (for
multiplicative and affine schemes the multiplicative shares
can not be 0 so we take them from J1, 255K instead). The
trace `(a)(z1,...,zd )

corresponding to the d-tuple (z1, . . . , zd ) is

Algorithm 1 Generate Traces
Input: k∗, The correct key byte
Input: a, representing a row in the matrices Ci
Input: d , the masking order
Input: ?, a group operation with / the associated division
Input: σ , the value of the noise
Output: L, a (28∗d , d) array
Output: P, a (28∗d ) array
L ← empty list
P← empty list
for (z, z2, . . . , zd ) ∈ Zd do

z1← z ? · · · ? zd
l ← `

(a)
(z1,...,zd )

(Equation 16)
p← Sbox−1[z]⊕ k∗

Append l to L
Append p to P

end
R← Draw a (28∗d , d) array from N (0, σ 2)
L ← L + R
return L, P

FIGURE 1. Guessing entropies versus standard deviation of the noise for
the considered second-order attacks after the processing of a) 216,
b) 216, c) 28 × 255 traces.

generated by concatenating the leakage of each shares (rep-
resented by the ath row of the Ci matrices) as follows:

`
(a)
(z1,...,zd )

=

[
l(a)1 (z1), · · · , l

(a)
d (zd )

]
(16)

with

l(a)i (zi) = Ci[i, 0]+
8∑

b=1

Ci[a, b] · zi[b]+ εi(σ ) (17)

where zi[b] corresponds to the bth bit of zi and εi is drawn
from a normal distribution N (0, σ 2). The exact procedure
that generates the traces considering the the ath leakagemodel
is depicted in algorithm 1.
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3) RESULTS
Second-order attacks results are presented in Figure 1. Each
point represents the average rank of k∗ over the 100 datasets
for a given value of σ . We recall that we are using exhaustive
datasets, therefore, a failed attack for a given value of σ does
not mean that the attack is impossible but rather that the
adversary would need more traces than one per possible value
of the shares. We compare JMR with
• A higher-order CPA, denoted HO-CPA, computed with
a Hamming weight prediction model and using the JM
of order d as combining function which happens to be
the same as the centered product described in [13].

• Higher order LRA, denoted HO-LRA-dmax where dmax
is the assumed degree of ϕk∗ as defined in Equation 5.
Therefore the basis used in HO-LRA-dmax is (bi)i =
{zu, u ∈ Fn2,HW(u) ≤ dmax}. The combining function
is also the JM of order d which for d = 3 is a straight-
forward extension of the second order attack described
in [15].

• Mutual Information Analysis, denoted MIA-f , where
the distinguisher used isMI (f (Zk ),L). MIA requires the
use of a non-injective function f to create distinguisha-
bility for the correct hypothesis. Since the leakagemodel
is unknown we used very generic models: f = MSB and
f = 7B, where MSB stands for the most significant bit
of Zk and 7B stands for the 7 most significant bits of Zk .
The MI has been estimated using the histogram method
described in [29].

(a) For the Boolean case, JMR and HO-LRA-1 performs
approximately the same which is not surprising since,
by 1, 1 holds for HO-LRA1. It also holds for HO-LRA-
2/3 but HO-LRA-1 perfectly explains the data with fewer
parameters, and thus, performs better. One can notice
that even without noise the HO-CPA is not converging
towards 0 which confirms that it relies on the Hamming
weight leakage assumption. Also, MIA strategies do not
perform well which is not surprising since the underlying
leakage model is unknown and it is, therefore, hard to
select a good non-injective function.

(b) For the arithmetic scheme, JMR outperforms all the other
attacks even, HO-LRA-2 in which 1 holds by 2. Again
this is explained by the fact that JMR only needs (9× 2)
parameters to predict the data while HO-LRA-2 needs
37 parameters. Even without noise, the data can not be
perfectly explained in an HO-CPA or HO-LRA-1 model
since their curves do not converge towards 0.

(c) For the multiplicative scheme, as predicted, none of the
state-of-the-art attacks perform better than random even
without noise which confirms that Assumption 1 does not
hold at all for such masking scheme. JMR is the only
sound attack in this case.

Results for third-order attacks are presented in Figure 2.
In this case, HO-LRA-dmax represents the generalization
of the second-order LRA replacing the covariance by the
third-order joint moment. Conclusions are the same than
for the second-order attacks. Among the considered attack

FIGURE 2. Guessing entropies versus standard deviation of the noise for
the considered third-order attacks after the processing of a) 224, b) 224,
c) 28 × 2552, d) 216 × 255 traces.

strategies, one can observe that, as for the multiplicative case,
JMR is the only sound option to attack affine masking under
a linear leakage of the shares.

4) ABOUT THE BIASED SCHEMES
Both multiplicative and affine schemes are slightly biased
which can induce lower-order leakage. We argue that such
leakage has not been exploited in this section since the
estimated JM were computed with the leakage of all the
shares (thus, the variance of the estimation result from d
multiplications of noisy leakages). To confirm this statement,
we repeated the previous experiments for the biased schemes
removing Z = 0 from the possible values, thus, simulating
non-biased schemes. The results being essentially the same
than those presented in Figures 1c, 2c and 2d so we do not
plot them. Since the multiplicative and affine masking do not
seem to have special algebraic properties like the Boolean and
arithmetic scheme as shown in propositions 1 and 2, we argue
that these results could be extended to any other masking
scheme. Indeed, the real added value of JMR is its ability
to encode the scheme knowledge in the system’s equation
making it generic and able to work even for non-biased
schemes with a high algebraic degree2 where other attacks
would not.

However, in the specific case of biased schemes, lower-
order leakage could be exploited with simpler attacks such as
a classical CPA with a zero-valued based power model. One
could also perform more advanced attacks taking advantage
of leakages at multiple orders at the same time. All these
attacks are discussed in the next section where we introduce
the generalized method of moment paradigm.

IV. GENERALIZED METHOD OF MOMENTS PARADIGM
Looking from a broader perspective, it appears that the core
of the JMR attack can be seen as part of a more general

2Formally, we refer to the degree of the function f representing the joint
moments per class f (z) = JM (l1(Z1), . . . , ld (Zd ) | Z = z according to the
degree of the leakage function li.
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framework known as the Generalized Method of Moments
(GMM) [18]. This method comes from the field of statistics
and economy and its main purpose is to estimate parameters
in a statistical model. Embracing this paradigm requires to
gain a level of abstraction but it allows to use the power-
ful mathematical foundations behind it. In particular, it will
tell us how to optimally combine information from different
orders, which is useful when the masking scheme is biased.

A. BACKGROUND ON GMM
Let suppose that the available data consists of N observations
(Li)1≤i≤N of a random variable L ∈ Rn. This data is assumed
to come from a stochastic process defined up to an unknown
parameter vector θ ∈ Rp. The goal is to find the true value
θ0 of this parameter or at least a reasonably close estimate.
In order to apply GMM the data must come from a weakly

stationary ergodic stochastic process (independent and iden-
tically distributed (iid) variables are a special case of these
conditions). Then one needs to have c ‘‘moment conditions’’
defined as a function g(`, θ) : Rn

× Rp
→ Rc such that:

E[g(L, θ0)] = 0 (18)

The idea is then to replace the theoretical expectation with its
empirical analog:

m(θ ) =
1
N

N∑
i=1

g(`i, θ) (19)

and to minimize the norm of m(θ ) with respect to θ . The
properties of the GMM estimator depend on the chosen
norm and therefore the theory considers the entire family
of norms defined up to a positive-definite weighting matrix
W ∈ Mc(R):

||m(θ )||W =
√
m(θ )TWm(θ) (20)

The GMM estimator is then defined as:

θ̂ = argmin
θ

||m(θ )||W (21)

The way of solving this optimization problem is not specified
in the GMM theory. It is left to the numerical optimization
field.

The purpose of W is to weigh the different conditions.
Choosing W = Idc leads to consider the classical euclidean
norm and is equivalent to considering that all conditions
should weigh the same. The intuition behind the fact that one
may prefer another norm is that some conditions may be less
informative, redundant, or more volatile in their empirical
estimation. One typically wants to use the norm minimizing
the asymptotic variance of the resulting estimator. This prob-
lem has a closed-form solution with the following theorem:
Theorem 1 (Hansen 1982): Let θ̂N be the random vari-

able representing the output of the GMM estimator with
N data observations. Let also define � as the covari-
ance matrix of the conditions function g evaluated at θ0:

� = cov-mat
(
g(L, θ0)

)
. Then,

argmin
W

lim
N→∞

var(θ̂N ) = �−1 (22)

In the particular case where conditions are independent the
matrix �−1 is diagonal and choosing W = �−1 sim-
ply means that the moments’ condition should be weighted
inversely proportionally to their underlying variance. This is
in line with the intuition that conditions with high variance
are less informative.

B. PARALLEL WITH THE JMR ATTACK
This section exhibits the similarities between the GMM and
JMR. The core of the JMR attack relies on an estimation
of the true parameters θ0 ∈ 2 = Rd

× Rr of a chosen
statistical model (encoded in the choice of the basis) in order
to explain the leakage of each share. Let L = (L1, . . . ,Ld )
represents the observed leakage variable and Lθ the predicted
leakage variable under the assumption of θ so that, under the
assumption that the chosen model is correct, L = Lθ0 .
Since the moment conditions in JMR depend on the value

of another public variable X , let define, for each key hypoth-
esis k , a condition function gk : Rd

× X ×2→ R|X | as:

gk (`, x, θ) = ex ·
(
ˇjm
(1d )
Lθ |Z=f (x,k) −

d∏
i=1

(`i − µ̄i)
)

(23)

where ex = (0, . . . , 1, . . . , 0) ∈ R|X | stands for a vector of
0 with one 1 at position3 x, 1d stands for a vector of d ones:
1d = (1, . . . , 1) and ˇjm

(u)
L is defined as in Equation 11. This

definition of gk may seem very artificial but it is designed
so that Equation 18 holds for the correct hypothesis k = k∗

(under the assumption that L = Lθ0 ):

E[gk∗ (L,X , θ0)] =
1
|X |

(
ˇjm
(1d )
Lθ0 |Z=f (x,k

∗) −
ˇjm
(1d )
L|X=x

)
x∈X

= 0 (24)

Therefore applying GMM with gk∗ as condition function is
sound while it is not for wrong key hypotheses. In fact this
property is the one exploited by JMR since step 1 to 5 of JMR
are equivalent to apply |K| GMM estimations, one for each
of the gk condition functions, withW = Id|X |.

C. IMPROVING JMR USING GMM THEORY
This section describes two ways of improving JMR using the
GMM theory. The first one is generic and the second one
focuses on the unbalanced masking schemes.

1) USING THE OPTIMAL WEIGHTING MATRIX
Since the GMM theory recommends to use�−1 as weighting
matrix, one could ask if using the identity matrix was opti-
mal. Indeed, the adversary typically wants to minimize the
variance of the GMM estimator for the correct key k = k∗.
Therefore it would be natural to replace the identity matrix

3Here x ∈ X = Fm2 is seen as an element of Z/2mZ.
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with �−1 where � = cov-mat
(
gk∗ (L,X , θ0)

)
. The problem

is that � is hard to estimate with data since θ0 is unknown.
The solution to this problem is usually to apply the so-called
two-step estimator where an estimation of θ0 is first computed
with JMR with a sub-optimal weighting matrix (for exam-
ple the identity) which allows estimating � and eventually
apply GMM with the latter estimation as weighting matrix.
However, in our case, � does not depend on θ0 which makes
the process easier. Indeed, the variance of the components of
gk∗ (and therefore the covariance matrix) only comes from
the right term of Equation 23 which does not depend on θ .
Therefore the equation of � can be re-written as:

� = cov-mat
[
eX

( d∏
i=1

(Li − µ̄i)
)]

(25)

In addition, since for a fixed x, only one component of
gk∗ (`, x, θ) is non-zero,� is diagonal. Then, one can estimate
the diagonal terms of � using the observed data and then
apply GMM. We denote by JMR++ the JMR attack with
W = �−1 where� is an estimation of the optimal weighting
matrix.

To confirm the soundness of this approach, we performed
the same experiments as those described in subsection III-D
to compare JMR and JMR++. Figures 3a and 3b show the
results for the second-order Boolean and arithmetic masking
and, according to the theory, JMR++ performs a little better
than JMR. It can be noticed that in the case of Boolean
masking JMR++ also outperforms HO-LRA-1, which has
approximately the same performance as JMR, despite having
more parameters to estimate.

2) THE CASE OF BIASED SCHEMES
Some masking schemes, such as the multiplicative or the
affine one, violate the assumption of shares uniformity.
Therefore the resilience to (d − 1)th-order attack is not guar-
anteed anymore. For example, Z = 0 implies Z1 = 0 in a
multiplicative scheme inducing a first-order leakage. As well,
when Z = 0, the affine scheme becomes a Boolean scheme
of order 2 inducing second-order leakages. Since lower order
JM are informative in these cases, a first idea to exploit this
weakness is to apply JMR but at a lower-order. This means
that the considered conditions concern only the first-order
moments for a multiplicative scheme and the second-order
JM for an affine scheme. Such an attack is denoted JMRLower.
Since this would only exploit the difference between the class
Z = 0 and Z 6= 0 this attack would be very close to a
CPA computed with a zero-valued model considering only
two classes: Z = 0 and Z 6= 0, denoted CPA-0 (or HOCPA-0
in the affine case) afterward.

Figures 3c and 3d confirm this intuition by showing that
both CPA-0 and JMRLower behave very similarly and have
better results than JMR for high noise values but worse results
for low noise values. Indeed, since the main advantage of
masking is to amplify the impact of the noise exponentially
with the order of the mask [12] or more accurately, with the

order of the attack required to defeat it. For low values of σ
the JM conditions used in JMRLower are less informative than
the one used by JMR (they only exploit a difference between
the class Z = 0 and the other classes) but the impact of the
noise is amplified by a lower order which explains the better
results of JMRLower for high σ .
A natural challenge is to design an attack benefiting from

the best of both worlds: JMR and JMRLower. To this aim,
we propose to use the flexibility of the GMM paradigm
to develop an attack with conditions from both informative
orders at the same time. This corresponds to building a system
with 512 conditions instead of 256 when attacking a key byte.
In this case, the weighting matrix is very important since each
half of the system concerns conditions with very different
variances (estimating joint moments is exponentially hard
with the order). To highlight this fact we denote by JMRFull
and JMR++Full the version of JMRwith both order conditions
respectively withW = Id512 and W = �−1.

Results are presented in figures 3c and 3d. As expected,
JMRFull outperforms JMR but is impacted by the variance
of the d-order conditions and therefore performs worse than
JMRLower for high values of σ . However, JMR++Full benefits
from the advantage of exploiting the d-order conditions for
low values of σ but still converges towards JMRLower for
high noise values thanks to the well-chosen weighting of
these conditions. Indeed, it is proven in [18] that adding more
moments conditions can only improve the performance of the
GMM estimator (by lowering its variance) when using the
optimal weighting matrix �−1.

We highlight the fact that for the multiplicative scheme,
there is an interest in using JMR++Full over CPA-0 since for
example it would give a successful attack at σ = 1 where
CPA-0 would rank the correct key at the 20th position which
is not enumerable considering the full 16 bytes key. However,
for the affine case, the curves look very similar and we argue
that the overhead in time complexity of using JMR++Full (or
JMRLower ) over CPA-0 is not worth it.

V. EXPERIMENTS ON REAL TRACES
To assess the performance of JMR on real traces, we decided
to attack two open source protected AES implementations.
The first one is protected by a first-order Boolean masking
scheme (ASCAD) [30]. The second one embeds an affine
scheme and a shuffling countermeasure (ASCADv2) [31]).

A. ATTACK ON A FIRST-ORDER BOOLEAN MASKED AES
(ASCAD)
As a first experiment, we performed the different stochas-
tic attacks discussed in this paper on the public dataset of
ASCAD. It is a common set of side-channel traces, intro-
duced for research purposes on deep learning-based side-
channel attacks. The targeted implementation is a software
AES, protected with a first-order Boolean masking, running
on an 8-bit ATMega8515 board.

We performed guessing entropies for the different attacks,
using the training dataset containing 50k traces. We extracted
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FIGURE 3. Guessing entropies for the improved JMR attacks, using the
GMM theory, and for (HO)CPA-0 after the processing of a) 216, b) 216,
c) 28 × 255, d) 216 × 255 traces.

from the dataset, the two Point-of-Interests (PoI) correspond-
ing to the highest signal-to-noise ratio, one for each share.
This step requires the knowledge of the shares and would not
be feasible by a non-profiled adversary. In a real scenario,
a visual analysis of the trace combined with knowledge on
the implementation can be used to perform a PoI selection
to reduce the number of sample combinations to be tested.
Our goal here is to assess the security supposing that the
adversary is able to apply the methodology on the best sample
combination.

1) RESULTS
Results are depicted in Figure 4.We observe similar outcomes
than in the first-order Boolean simulations. As expected the
results of JMR++ and HO-LRA-1 are very close since it is
a Boolean masking (and thus, Assumption 1 holds). Simi-
larly to Figure 3a., the slight advantage of JMR++ may be
explained by the use of the optimal weighting matrix. One
may notice that the HO-CPA performs better than in the sim-
ulations. It outperforms all the other attacks for low numbers
of traces even though attacks with an average correct key rank
higher than 25 does not allow for a successful enumeration in
a reasonable time. The better performance of HO-CPA can be
explained by the fact that the leakage model of the ASCAD
traces is much closer to a Hamming weight leakage model
than those used in the simulated experiments. In such cases,
regression-based attacks benefits less from their genericity.
As the execution time has a low dependency to the number of
traces, running JMR++ took approximately 10 seconds as in
the simulations.

B. ATTACK OF AN OPEN SOURCE HARDENED AES
IMPLEMENTATION (ASCADv2)
As a second experiment, we decided to attack the sec-
ond protected AES implementation proposed by the Agence
Nationale de la Sécurité des Systèmes d’Information
(ANSSI) [31]. They published a library implementing an

FIGURE 4. Comparison of different attacks’ guessing entropies on ASCAD.

AES-128 on an ARM Cortex-M4 architecture using state-of-
the-art counter-measures. Indeed, this implementation uses
an affine masking as well as random shuffling of independent
operations [32]. It is accompanied by a publicly available
dataset called ASCADv2 providing 800,000 traces acquired
on an STM32F303 microcontroller running this protected
AES. A detailed leakage analysis of this dataset has been
published in [33]. Following their terminology we tried to
attack the unmasked variable Z = Sbox[k∗ ⊕ P] using the
leakage of the three shares:

Z1 = Z ⊗ rmul ⊕ rout
Z2 = rmul
Z3 = rout (26)

Unfortunately, the number of traces turned out to be too low
to analyze the unsupervised attacks discussed in this paper.
Thus, we reproduced a similar experimental setup, described
in the next section, in order to collect significantly more
traces.

1) ACQUISITION SETUP
Our setup has the following features:
• The acquisitions have been performed on a NUCLEO-
F303RE board, which embeds the same STM32F303
micro-controller as used in ASCADv2.

• The device is clocked at 8MHz, while ASCADv2 device
is clocked a 4MHz. This allows faster acquisitions
without altering the execution behavior (e.g., introduc-
ing FLASH wait cycles). Being in an evaluation setup,
we had the labels of the shares and validated that it did
not affect the signal-to-noise ratio of these intermediate
variables.

• We measured the magnetic field produced by the circuit
with a Langer H-field probe (RF-U 5-2). This differs
from ASCADv2 setup, which measures the current of
the device through a ChipWhisperer [34]. However,
we observed better signal to noise ratios on the EMfield.
The probe covers a large portion of the CPU and no
specific tuning of the probe placement was performed.

• The scope was configured at 3.125GS/s and acquired a
window of 8µs, which represents 25,000 time samples.
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• The masked AES implementation was taken ‘‘as-is’’
from the SecAESSTM32 repository [31]. We only made
the following changes to the assembly code:
– a GPIO is raised in the Load_random function,

which manipulates rmul and rout .
– a GPIO is raised in the first round of the AES, just

after the Xor_Word operation.
To further speed up the acquisitions, we do not transfer the

plaintext and masking inputs through the serial port. Indeed,
this represents 54 bytes (16+ 19× 2) per encryption, which
quickly becomes a bottleneck for acquisitions. Instead, the
device runs a PCG32 Pseudo-Random Number Generator
(PRNG) [35] to generate those data on the fly. This PRNG
is re-seeded randomly (by sending 8 bytes on the serial port)
every 250 acquisitions. This allows to regenerate (from the
stored seeds) the plaintexts and randommasks offline, to label
the dataset.

For each encryption, the scope triggers twice and acquires
50,000 samples. The final dataset contains 100M traces and
took 14 days to acquire. In summary, we used the same AES
implementation and micro-controller as in the ASCADv2
setup.We onlymade some changes in the instrumentation and
measurement chain to reduce the number of traces needed and
improve the speed of acquisition.

2) SIMULATING AN UNSHUFFLED VERSION
The implementation uses random permutation of the 16
Sboxes applications. However, using the same idea as
developed in technical analysis of the ANSSI repository [31],
one can simulate (through the knowledge of the key and the
permutation Sh being used) an attack on an unshuffled version
even if the acquired traces are shuffled. Instead of targeting
the first byte Z = Sbox[k∗[0]⊕ P[0]] one may target:

Z = Sbox[k∗[Sh−1(0)]⊕ P[Sh−1(0)]] (27)

where Sh−1(0) denotes the index of the byte that is computed
first through the permutation Sh. Then such an attack would
uses Z (k̄)

= Sbox[k̄ ⊕ k∗[Sh−1(0)]⊕ P[Sh−1(0)]] as hypoth-
esis intermediate variable, the attack being successful if the
best hypothesis is 0.

3) RESULTS
In a similar way to the first experiment from subsec-
tion V-A, we extracted from the dataset described in
subsubsection V-B1, the three Point-of-Interests (PoI) cor-
responding to the highest signal-to-noise ratio, one for each
share. We performed the attacks on both the shuffled and
unshuffled versions. The attacks on the shuffled version only
use the leakage of the first Sbox computation. Shuffling adds
a lot of noise since even for the correct key hypothesis the
predicted value of Z is only correct once out of 16 in average.
Results are presented in Figure 5. Each point represents the

mean ranking of the correct key over 100 attacks performed
with the corresponding number of traces. For each attack,
traces are randomly drawn among the 100M dataset. Both
JMR++Full and JMR++ converge towards a guessing entropy

FIGURE 5. Comparison of different attacks’ guessing entropies on the
secured ANSSI’s AES.

of 0 which provides by the same token, the first unsupervised
attack on the secured ANSSI’s AES implementation.

a: USING THE SCHEME BIAS
Not surprisingly, JMR++Full and HOCPA-0, which exploits
the bias in the masking scheme, gives the best results. These
attacks require 30k4 and 15M traces to converge towards
0 for the unshuffled and shuffled version respectively. This
confirms that for high noise value, a lower-order leakage
induces attacks with at least one order of magnitude smaller
data complexity. Thus, it confirms that even though d shares
are used tomask the sensitive value, a biased d-order masking
should not be considered of order d as far as security is
concerned.

b: NOT USING THE SCHEME BIAS
When this lower-order leakage is not considered in the attack,
JMR++ outperforms the other state-of-the-art attacks and is
the only attack able to converge toward a guessing entropy
of 0 with the considered number of traces. As in the sim-
ulations, the amount of time required to run this attack is
approximately 15 seconds.

For biasedmasking schemes, there is no interest to perform
this attack over CPA-0. However, we argue that this result
is interesting since it shows how JMR would perform on a
generic (with a high algebraic degree) unbiased second-order
masking schemes.

C. DISCUSSION
Results obtained on the real traces collected on AES
implementations (proposed by the ANSSI) protected with
boolean and affine masking are in line with the simula-
tion results. It confirms that JMR gives a sound methodol-
ogy, able to work with flexible leakage model assumptions
(linear, quadratic. . . ), which is applicable to any masking
scheme, even newly invented ones. Such strategy widens the
state-of-the-art.5

4It should be noted that even if some of the presented attacks require less
than 800k traces, they have not been successful on the original ASCADv2
dataset. We have confirmed that our traces have a better SNR on the leakage
of each of the shares which could explain this difference.

5Onemay notice that the other attacks perform better than in the simulated
experiments. We explain this by the fact that in this case, the leakage model
is fixed and may be closer to a Hamming weight model.
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VI. CONCLUSION
This paper introduced a new unsupervised strategy, JMR,
which embeds the masking structure within it, allowing
it to defeat arbitrary masking schemes. It is based on a
non-linear system regression which allows to derive the leak-
age model of each share by carefully exploiting higher-order
joint moments conditions. JMR outperforms state-of-the-art
attacks which are limited to Boolean and arithmetic masking,
especially when the Hamming weight leakage assumption
does not hold. We reduced the core of JMR into a more
general framework: the generalized method of moments and
derived optimizations of JMR from it. Experiments per-
formed on synthetic data confirmed the effectiveness of the
proposed attack, especially against multiplicative and affine
masking schemes. Eventually, this new strategy has been
confirmed on real traces, allowing a fully unsupervised attack
of the ANSSI’s protectedAES implementationwhich embeds
an affine masking and shuffling counter-measures.

The JMR method is not highly multi-dimensional in the
sense that it only exploits d times sample when applied on a
d th-order masking. It is well known that sensitive variables
can leak several times in a single trace. Strategies able to
extend JMR approach to use more informative time samples
simultaneously (i.e. exploit more of the available informa-
tion) would be of great interest for further research.

APPENDICES
PROOFS
Proposition 1 (Boolean Masking): Let ∗ = ⊕. Let l1 :

Z → R and l2 : Z → R be two leakage functions of
degree 1. Let ϕBool(z) = cov

(
l1(z⊕ Z2), l2(Z2)

)
. Then,

deg(ϕBool) ≤ 1 (28)

Proof 1: Since both l1 and l2 are of degree 1, there exist two
unique sets of coefficients (α(1)i )0≤i≤n ∈ R and (α(2)i )1≤i≤n ∈
R such that:

lj(z) = α
(j)
0 +

n∑
i=1

α
(j)
i · z[i] (29)

where z[i] stands for the ith bit of z. Since the covariance
involves a centered product, one can suppose without loss of
generality that α(j)0 = 0 (we removed α(j)0 for readability rea-
sons but it does not change anything to the proof). Injecting
Equation 29 into the expression of ϕBool :

ϕBool(z) =
1
|Z|

∑
z2∈Z

( n∑
i=1

α
(1)
i · (z⊕ z2)[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1
|Z|

∑
z2∈Z

( n∑
i=1

α
(1)
i · (z[i]⊕ z2[i])− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
(30)

Using the identity: z[i]⊕ z2[i] = z[i]+ z2[i]−2 · (z[i]∧ z2[i])
where ∧ stands for the Boolean AND:

ϕBool(z)

=
1
|Z|

∑
z2∈Z

( n∑
i=1

α
(1)
i · (z[i]+ z2[i]− 2(z[i] ∧ z2[i]))− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1
|Z|

∑
z2∈Z

n∑
i=1

(
α
(1)
i · (z[i]+ z2[i]− 2(z[i] ∧ z2[i]))− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1
|Z|

n∑
i=1

∑
z2∈Z

(
α
(1)
i · (z[i]+ z2[i]− 2(z[i] ∧ z2[i]))− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1
|Z|

n∑
i=1

∑
z2∈Z
z2[i]=0

(
α
(1)
i · (z[i]+ z2[i])− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

+

n∑
i=1

∑
z2∈Z
z2[i]=1

(
α
(1)
i · (−z[i]+ z2[i])− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1
|Z|

n∑
i=1

z[i] ·
[ ∑

z2∈Z
z2[i]=1

(
α
(1)
i · z2[i]− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

−

n∑
i=1

∑
z2∈Z
z2[i]=1

(
α
(1)
i · z2[i]− µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)]
(31)

which is of degree at most 1 since the z[i] terms are not mixed.
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Proposition 2 (Arithmetic Masking): Let ∗ = + mod 2n.
Let l1 : Z → R and l2 : Z → R be two leakage functions of
degree 1. Let ϕArith(z) = cov

(
l1(z+ Z2 [2n]), l2(Z2)

)
. Then,

deg(ϕArith) ≤ 2 (32)

Proof 2:
We give a proof by induction. Let define the property Pn:
Pn : For any l1 and l2 of degree 1, deg(ϕn) ≤ 2, where for

z ∈ Z = Fn2:

ϕn(z) = cov
(
l1(z+ Z2 [2n]), l2(Z2)

)
Initialisation. The case n = 1 is trivial since deg(ϕArith) is

at most 1 in this case.
Induction. Let suppose that Pn holds. We are going

to prove that Pn+1 also holds. Since both l1 and l2 are
of degree 1, there exists two unique sets of coefficients
(α(1)i )0≤i≤n+1 ∈ R and (α(2)i )0≤i≤n+1 ∈ R such that:

lj(z) = α
(j)
0 +

n+1∑
i=1

α
(j)
i · z[i] (33)

where z[i] stands for the ith bit of z. Since the covariance
involves a centered product, one can suppose without loss of
generality that α(j)0 = 0 (we removed α(j)0 for readability rea-
sons but it does not change anything to the proof). Injecting
this into the expression of ϕn+1 one has:

ϕn+1(z) =
2n+1−1∑
z2=0

( n+1∑
i=1

α
(1)
i · (z+ z2 [2

n+1])[i]− µ1
)

·
( n+1∑
i=1

α
(2)
i · z2[i]− µ2

)
(34)

for i ∈ J1, n + 1K, the following identity holds: (z +
z2 [2n+1])[i] = (z+z2)[i]. Indeed, the modulo corresponds to
either doing nothing or subtracting 2n+1 when z+ z2 ≥ 2n+1.
Then:

ϕn+1(z)

=

2n+1−1∑
z2=0

( n+1∑
i=1

α
(1)
i ·(z+ z2)[i]−µ1

)
·
( n+1∑
i=1

α
(2)
i ·z2[i]− µ2

)

=

2n−1∑
z2=0

( n+1∑
i=1

α
(1)
i · (z+ z2)[i]−µ1

)
·
( n+1∑
i=1

α
(2)
i · z2[i]− µ2

)

+

2n+1−1∑
z2=2n

( n+1∑
i=1

α
(1)
i · (z+ z2)[i]−µ1

)

·
( n+1∑
i=1

α
(2)
i · z2[i]− µ2

)

=

2n−1∑
z2=0

( n∑
i=1

α
(1)
i ·(z+ z2)[i]+α

(1)
n+1 · (z+ z2)[n+ 1]−µ1

)

·
( n∑
i=1

α
(2)
i · z2[i] + α

(2)
n+1 · z2[n+ 1]− µ2

)

+

2n+1−1∑
z2=2n

( n∑
i=1

α
(1)
i ·(z+z2)[i]+α

(1)
n+1 ·(z+z2)[n+ 1]−µ1

)

·
( n∑
i=1

α
(2)
i · z2[i]+ α

(2)
n+1 · z2[n+ 1]− µ2

)
(35)

Again, one can add a [2n] in the (z+ z2)[i] terms since it does
not change anything for i ∈ J1, nK. Then:

ϕn+1(z) =
2n−1∑
z2=0

( n∑
i=1

α
(1)
i · (z+ z2 [2

n])[i]− µ1
)

·
( n∑
i=1

α
(2)
i · z2[i] − µ2

)

+

2n+1−1∑
z2=2n

( n∑
i=1

α
(1)
i · (z+ z2 [2

n])[i]− µ1
)

·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

+

2n+1−1∑
z2=0

(
α
(1)
n+1 · (z+ z2)[n+ 1]

)
·
(
α
(2)
n+1 · z2[n+ 1]

)
(36)

The second line of Equation 36 can be re-indexed summing
from 0 to 2n−1. Then, byPn, the first two line of Equation 36
are of degree atmost 2. So let us focus on the last term denoted
A and prove that it is also of degree at most 2:

A =
2n+1−1∑
z2=0

(
α
(1)
n+1 · (z+ z2)[n+ 1]

)
·
(
α
(2)
n+1 · z2[n+ 1]

)
= α

(1)
n+1 · α

(2)
n+1 ·

2n+1−1∑
z2=2n

(z+ z2)[n+ 1] (37)

since z2[n + 1] = 0 implies that all the term in the sum are
equal to 0.

One can notice that the latter sum has two expression
depending on the (n+ 1)th bit of z:

2n+1−1∑
z2=2n

(z+ z2)[n+ 1] =

{
2n−z if z[n+ 1] = 0
z− 2n if z[n+ 1] = 1

(38)

Therefore:

A = α(1)n+1 · α
(2)
n+1 · (z− 2n) · (2 · z[n+ 1]− 1)

= α
(1)
n+1 · α

(2)
n+1 · (

n+1∑
k=1

2k−1 · z[k]− 2n) · (2 · z[n+ 1]− 1)

(39)
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which is of degree at most 2 since developing the latter sum
involves product of at most 2 bits of z together.
Injecting this into Equation 36 show that deg(ϕn+1) ≤ 2

and therefore that Pn+1 holds. This concludes the induction
and therefore the proof of 2.
For the interested reader, we give as a bonus the coeffi-

cients of ϕArith in terms of α(j)i :

ϕArith = α0 +

n∑
i=1

αi · z[i]+
n∑
i=1

n∑
j=i+1

αi,j · z[i]z[j] (40)

With:

α0 =
1
4
·

n∑
k=1

α
(1)
k α

(2)
k

αi = −

i∑
k=1

α
(1)
k α

(2)
k

2i−k
, for 1 ≤ i ≤ n

αi,j =
α
(1)
i α

(2)
i

2j−i
, for 1 ≤ i < j ≤ n (41)
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