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ABSTRACT Video frame interpolation is an important technology in digital video processing, which has
great impact on users’ viewing experience. In particular, in medical or industrial application scenarios, the
accuracy of the frame interpolation algorithm may also influence the diagnosis results. In addition, for videos
based on ionizing radiation (e.g., X-rays), each frame exposure could cause damage to human tissues by
ionizing radiation. Therefore, if a frame interpolation algorithm is introduced to display the same number of
frames, it only needs to sample half of the frames and halve the exposure radiation doses, which is statistically
promising to reduce human cancer rate caused by ionizing radiations (e.g., medical examinations). However,
since there are errors in frame interpolation caused by luminance leap, existing works are not applicable
in such scenarios. To solve this problem, this paper proposes a video interpolation algorithm based on
luminance compensation MEMC (LC-MEMC). Firstly, a luminance compensation method based on the
electromagnetic irradiation attenuation in human tissue is introduced to improve the performance of motion
estimation and motion compensation (MEMC) and reduce matching errors caused by luminance leap.
Secondly, LC-MEMC proposes an improved block matching approach, including i) a new search method
from basic points to local points and ii) a block matching criterion that simplifies the calculation process.
LC-MEMC improves the accuracy and processing speed of video interpolation from three perspectives:
adding luminance compensation, improving the search strategy and optimizing the matching degree calcu-
lation method for each search position. We evaluated LC-MEMC on collected medical videos and achieved
higher accuracy, faster processing speed, and significantly better viewing experience comparing with existing
methods.

INDEX TERMS Video interpolation, luminance compensation, medical video, X-ray, MEMC.

I. INTRODUCTION

Advanced display equipment (e.g., projectors, flat panel TVs,
etc.) usually support frame frequency doubling, which inserts
intermediate frames between consecutive frames, to improve
the users’ viewing experience. Although some deep learn-
ing based approaches claim better performance on certain
datasets, the shortage of training data and high cost of
computation have limited the practical applications of such
algorithms. As a matter of fact, the dominant video frame
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interpolation methods are still based on motion estimation
and motion compensation (MEMC) technique which relies
on none extra training data. However, in spite of success in
common scenarios, MEMC are not applicable in some special
and important areas, such as medical or industrial diagnosis
applications due to the luminance leap in the videos, as shown
in Figure 1.

Specifically, the acquisition of biomedical or industrial
video involves X-ray exposure which changes based on the
target composition and thickness, leading to high error rate
in MEMC based algorithms. On the other hand, such ion-
izing radiation exposure can be hazardous to human health
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(a) Low luminance (b) High luminance

FIGURE 1. The luminance leap between frames in a video.

(which is accumulated over time and doses). A single
full-body CT (electron computed tomography by X-ray)
examination in a 45-year-old adult would result in an
estimated lifetime attributable cancer mortality risk of
around 0.08% [1]. It has been estimated that up to 2% of
all cancers in the United States may be attributable to the
radiation from CT scans [2]. In order to reduce the amount
of radiation received by the patient, the simplest approach is
to reduce the sampling rate and decrease the exposure time,
which can result in the loss of some valuable information as
well as larger layer spacing [3]. However, the reduction in
sampling rate (e.g., a VARIAN X-ray imaging plate typically
supports sampling rates of 30 fps or 15 fps) can cause flick-
ering and incontinuity of medical video, hence frame rates
below 24 fps puts a significant burden on the physician’s
diagnosis. Therefore, the trade-off between video quality and
exposure time is important, and video frame interpolation
seems promising to solve this if the luminance leap problem
can be solved, as shown in Figure 2.

In traditional MEMC algorithms, motion estimation esti-
mates the displacement of the object and get the motion
vector, and motion compensation is used to adjust the dis-
placement due to motion in the previous frame based on
the obtained motion vector to get the predicted frame of
the current frame as accurate as possible. The accuracy and
reliability of the motion vectors are important indicators of
the algorithm and the effectiveness of the video process-
ing, while the selection of the prediction points and search
methods determine the motion vectors. The existing methods
include block matching, optical flow, pixel recursive algo-
rithm, Bayesian algorithm, etc. The pixel blocks are usually
used as a reference for motion estimation, and the sub-block
with the highest similarity to the block to be matched in
the current frame will be chose in the search region of the
previous frame. To improve the speed of motion estimation,
several search methods [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], block matching criteria, starting point predic-
tion methods, and early termination strategies [30], [31], [32]
have been proposed. For the accuracy of motion estimation,
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optimization algorithms such as hierarchical search [39], [40]
and variable block size search [41] have been proposed. These
methods achieve good frame interpolation performance on
continuous motion and stable luminance videos, such as film
and television, but still have high error rates for medical
images. Most medical images are acquired by X-ray irra-
diation, such as Computerized Radiography (CR), Digital
Radiography (DR), Electron computed tomography (CT),
etc. X-rays have a strong penetration ability to “‘observe”
soft tissue. X-rays will interact with different substances in
the body, so that part of the energy is absorbed by different
tissue of the body, while the remaining is received by the
detector at the other end through the body. Therefore, due
to the difference in tissues thickness of human body, there
will be drastic luminance leap with the irradiation tube power
changes during the irradiation imaging (in Figure 2).

However, although a delicate intermediate frame can
be obtained via a traditional MEMC algorithm, when the
luminance leaps as irradiation dose changes, it will seri-
ously influence the prediction and matching accuracy. There-
fore, the traditional MEMC-based video frame interpolation
algorithm has several shortcomings in processing ionizing
radiation videos: (1) The video sequences have nonlinear
properties and luminance leaps that lead to non-applicability
in MEMC; (2) The matching algorithm has high error rates
when luminance leap occurs; (3) The search process has high
computational consumption.

To solve the above problems, this paper proposes a video
frame interpolation algorithm based on luminance compen-
sation MEMC (LC-MEMC), to obtain smooth video with
high utilization value without flicker. Firstly, a luminance
compensation for illumination attenuation based on target
thickness in motion estimation and motion compensation
(MEMC) is proposed to solve the image discontinuity prob-
lem caused by luminance leap. Secondly, in order to obtain
more accurate motion vectors, a block matching motion esti-
mation method is also proposed, which introduces a fast
search method from basic points to local points, and the block
matching criterion selects the improved normalized cross-
correlation (NCC) algorithm. The motion vector is obtained
by motion estimation of the luminance-compensated frame,
which then generates interpolation frames in motion compen-
sation process. LC-MEMC aims to improve the accuracy and
speed of video interpolation frames from three perspectives:
adding luminance compensation, changing the search strat-
egy, and optimizing the matching calculation at each search
step.

The major contributions can be summarized as follows:

(1) To our best knowledge, it is the first attempt to introduce
luminance compensation for frame interpolation based on
illumination attenuation of target thickness, and design a
luminance compensation MEMC (LC-MEMC). LC-MEMC
is applicable to the medical area and has been put into the clin-
ical application to reduce the doctors’ visual fatigue, as well
as halve the ionizing radiation exposure doses to the patients
during medical fluoroscopy examinations.
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FIGURE 2. X-rays will appear intensity decay after passing through the human body, resulting in medical imaging affected by the thickness
of human tissue, when the exposure dose or irradiation site changes will occur luminance leap. When filming with 15FPS and displaying at
the same frame rate, there is a relatively strong flicker in the picture. After interpolating the frame to the video and displaying at 30FPS
double frequency, the picture is continuous and smooth with better visual effect.

(2) This paper proposes a block matching method appli-
cable to medical videos with less computation and more
accurate matches. It reduces the complexity of the matching
computation at each position and improves accuracy with
faster searching speed.

(3) Evaluations on medical videos were carried out with
other video frame interpolation algorithms. The experimen-
tal results show it not only improves automatic metrics
(i.e., PSNR and SSIM close to the full search algorithm and
NCP close to the rhombic method), but also has better visual
performance.

Il. RELATED WORKS

Video interpolation aims to increase video frame rate, which
is often applied to tasks such as high frame rate video gener-
ation, slow-motion effect generation [4], view synthesis [5],
video enhancement [6], video compression [7], etc. It has
important practical significance for industries such as film,
television, medical and criminal investigation, etc.

With the progress of video interpolation technology, dif-
ferent kinds of approaches have been proposed. The exist-
ing methods can mainly be classified into three categories:
simple interpolation methods, methods based on motion
estimation and motion compensation (MEMC), and Deep-
learning-based methods. In this section, we briefly introduce
these three kinds of methods.

A. SIMPLE INTERPOLATION METHOD

it is the simplest method in video interpolation, which directly
inserts a repeated frame or a fused frame as the intermedi-
ate frame. Although this method is easy to operate, it does
not take into account the motion information and luminance
changes of the objects in the screen, so that the inserted
frames are not highly continuous frames. For the original
video with poor motion continuity and lag or flicker due to
brightness changes, inserting repeated frames and averaging
the fused frames before and after the two frames cannot
achieve good results and will result in blurring, jittering and
other poor viewing experience.
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B. MOTION ESTIMATION (ME) AND MOTION
COMPENSATION (MC) METHODS

this type of methods improves the insertion accuracy com-
pared with the simple interpolation method. ME analyzes
the current frame and the reference frame, and then per-
forms MC according to the obtained motion vector to gen-
erate a motion continuous intermediate frame. The methods
of motion vector acquisition can be classified into Block
Matching, Bayesian Algorithm, Optical Flow, Pixel Recur-
sive Algorithm, etc.

Block Matching Algorithm (BMA) is the most commonly
used MEMC method, which uses a pixel block as a reference
for motion estimation, finding the sub-block with the highest
similarity to the block to be matched of the current frame
in the search area of the previous frame, so that the motion
of the object in each area can be well characterized by a
parametric model. Therefore, the accuracy and efficiency of
the block matching method depend on the choice of the block
matching criterion and the search method. The commonly
used block matching criteria are Sum of Absolute Difference
(SAD), Absolute Mean Error Function (MAD), Minimum
Mean Square Error Function (MSE) and Normalized Corre-
lation Function (NCC), among which MSE has the highest
accuracy but complex operation; MAD is slightly less accu-
rate but easy to implement; SAD not only has a matching
value that is equivalent to MSE, but also a greatly reduced
computational effort; NCC is highly accurate and robust but
slightly more computationally intensive. The choice of search
methods has a great impact on the speed and accuracy of
motion estimation, so researchers have worked on different
fast search algorithms based on full search (FS) [8]. For exam-
ple, Three-step Search (TSS) [9], New Three-step Search
(NTSS) [10], Two Minimal Three-step Search [11], Four-
step Search (FSS) [12], Simple Efficient Search (SES) [13],
Diamond Search (DS) [14], [15], Diamond Cross Search
(DCS) [16], Hexagonal Diamond Search (HDS) [17], Star-
shaped Diamond Search (SD) [18], Adaptive Rood Pattern
Search (ARPS), and many other methods [19], [20], [21].
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FIGURE 3. In the motion estimation and motion compensation framework, the Luminance compensation for
illumination attenuation at target thickness is added to compensate the luminance difference between the current

frame and the reference frame.

Block matching algorithms have been widely used as basic
and accurate methods in regular videos. The disadvantages
of such methods are that the accuracy of motion estimation is
limited by the block size and it is not suitable for dealing with
discontinuous values in the motion field. Therefore when the
video has luminance instability based on ionizing radiation
imaging, matching errors due to luminance leaps may occur
regardless of the block matching criterion and search method
chosen if compensation for luminance is not considered.

Bayesian method is an improved BMA; it is based on prob-
abilistic statistical knowledge for data classification, which
uses the motion vector of adjacent blocks to select the best
search pattern adaptively [30] and develops an early termi-
nation strategy to reduce the number of invalid searches.
Shen et al [31] proposed a Bayesian-decision-rule-based
decision algorithm for coding unit size, and [32] proposed
a new transformation unit decision algorithm based on it,
which gives a specified early termination strategy based on
the residual coefficients and block correlation. This method
improves the accuracy and reduces the computational effort
compared with BMA, but it still has limitations in dealing
with luminance discontinuity values in motion fields and is
only applicable to conventional videos such as movies and
animations.

From the study of image pixel intensities, the optical flow
method, which uses the time-domain variation and corre-
lation of pixel intensities in an image to determine pixel
locations, is also an advanced and effective method. Horn and
Schunck [22] proposed to associate image grayscale values
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with a two-dimensional velocity field to allow efficient com-
putation of the optical flow field; Lucas and Kanade [23] have
since introduced constraints on the solution of the optical flow
method by assuming that the optical flow field in space vector
motion remains constant within the space, and the optical
flow is calculated using the weighted least squares method.
The actual motion scenes have motion blur, non-rigid motion,
light reflection, and occluded regions causing poor robust-
ness in computation, so methods to improve the optical flow
objective function such as EpicFlow [24], EPPM [25], SPM-
BP [26], and FullFlow [27] have also emerged successively,
but they still do not overcome the limitation of algorithm
complexity. Besides, the biggest limitation of the optical flow
method is that it is only applicable to videos with small
motion speed and distance and constant luminance, because
the method is sensitive to light and the light change is very
easy to affect the recognition effect. When the method is
used for video interpolation of medical videos, the leap in
luminance will cause the optical flow field to fail to reflect
the motion of the target.

The Pixel Recursive Algorithm (PRA) uses the idea of
recursion to perform pixel iterative operations around pixels
in the gradient direction for the pixel data changes caused
by object displacement, so that the successive operations
converge to a motion vector. Pixel recursive search was intro-
duced to motion estimation algorithms by Haan et al [28],
which enabled motion vector computation to achieve sub-
pixel precision; Tashlinskii [29] et al. proposed the stochastic
gradient method to improve processing efficiency. However,

120755



IEEE Access

Z. Xu et al.: Luminance Compensation MEMC for Video Frame Interpolation

since each pixel of PRA is involved in the operation and the
pixel spacing is small, such methods still have the limitations
of high computational complexity and poor displacement
tracking capability in practical application scenarios such as
medical and industrial.

In general, the MEMC-based video frame interpolation
algorithm still has research value, but it lacks the consider-
ation of luminance variation and has limited application. The
matching accuracy of this type of method still needs to be
improved in real scenes, medical scenes and other changing
complex situations, and the corresponding search speed also
needs to be accelerated.

C. DEEP-LEARNING-BASED VIDEO INTERPOLATION
METHODS

such methods, with Flow-Based Methods [4], [6], [33], [34],
[43] and Kernel-Based Methods [35], [36], [37], [38] as the
mainstream, have been actively developed. Among them, the
representative methods with good performance are QVI [43]
and DAIN [35], but the performance of both types of methods
is limited by the underlying estimator, which may generate
noise when complex occlusions are present in the video,
resulting in noticeable artifacts. Later, Kalluri [42] et al.
proposed FLAVR (CVPR2021) by using 3D CNN to reason
about motion trajectories and attributes, with better inter-
polation accuracy and speed than previous work. However,
deep learning-based methods rely on a large amount of data,
which is more difficult to collect in most practical application
scenarios, so this type of method also has a large limitation
of use. Particularly, limited by their attributes such as uninter-
pretability and large data dependence, deep-learning methods
and other methods still show the development trend of mutual
promotion and complementary advantages in detail-sensitive
video interpolation tasks such as medical and military.

In summary, all three types of existing methods have been
well developed, especially the MEMC method is one of the
most widely studied and has been applied tovarious com-
modity display devices, but there are still some limitations
in the application in special fields such as medicine. Most of
their implementations are based on the premise of luminance
stability, ignoring the impact of luminance leaps on accuracy,
thus failing to obtain smooth intermediate frames to form
good visual effects, and even more failing to realize the
practical use value in the medical field.

lIl. OUR APPROACH

In this section, we will first introduce the luminance com-
pensation based on the illumination attenuation of the tar-
get thickness; then we will introduce the block matching
algorithm we use. The overall illustration of the proposed
LC-MEMC algorithm is shown in Figure 3.

A. LUMINANCE COMPENSATION FOR ILLUMINATION
ATTENUATION AT TARGET THICKNESS

Biomedical video, for example, is primarily used to look
inside the body and thus analyze lesions in bones and soft
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FIGURE 4. Motion estimation using block matching methods.

tissue, and therefore requires the aid of penetrating X-rays.
The imaging principle of X-rays can be summarized as
follows: electromagnetic wave starts from one end, passes
through the body and is received by the detector at the other
end, resulting in a two-dimensional image.

The brightness compensation of video interpolation is
mainly aimed at the interpolation error caused by the bright-
ness jump between adjacent frames in the imaging process.
When X-rays pass through the target, they will be scattered
and absorbed to form intensity attenuation. The degree of
attenuation in the human body is mainly determined by
atomic number and density and thickness of the tissue and
organs. Therefore, when the imaging equipment irradiates
different parts of the human body, there will be large bright-
ness differences between adjacent frames of the video. Based
on the fact above, this paper mainly compensates the bright-
ness attenuation caused by different atomic numbers and
density and thicknesses when inserting video frames. The
attenuation amount is expressed by attenuation probability
(determined by atomic number) and attenuation coefficient
(determined by density and thickness).

1) ATTENUATION PROBABILITY

The attenuation probability is used to indicate the possibility
of intensity attenuation and luminance leap occurring during
the imaging process. After continuous X-rays pass through
the human body, the low-energy part where the photoelec-
tric effect occurs forms an intensity attenuation, and the
high-energy part where the Compton effect occurs forms an
intensity attenuation. The probability of occurrence of photo-
electric effect is expressed by P, P « Z 3. the probability of
occurrence of Compton effect is expressed by P, P, o« Z 3
where Z represents atomic number. Because the composition
of different organs in the human body is different, the atomic
number of different organs is also different, and thus the prob-
ability of forming attenuation of two effects is also different.
In the human body, the attenuation of various soft tissue to
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X-rays is low, while the attenuation of bones and teeth to
X-rays is high.

2) ATTENUATION VALUE

The attenuation coefficient indicates the degree of attenua-
tion, and likewise indicates the degree of luminance leap.
The fractional value of intensity attenuation that occurs when
X-rays pass through a unit thickness of a material layer is
expressed by the linear attenuation coefficient w. In this
paper, we approximated the intensity of X-rays after passing
through the human body with I = Ipe™"*, where Iy denotes
the incident intensity and x denotes the thickness of the
material layer.

3) COMPENSATION BASED ON LUMINANCE ATTENUATION

We define F (f1, f>) to denote the luminance compensation
function and f;(x, t) to denote the luminance attenuation func-
tion, with ¢ denoting the irradiation site. For different irradi-
ation sites and layer thicknesses, the luminance attenuation
relative to the original X-ray should be fi(x,#) = Iy — I.
In the video interpolation algorithm, we compensate the lumi-
nance of the previous frame compared to the reference frame,
either positively or negatively, thus avoiding the effect of
luminance leap on the motion vector calculation, denoted as

F(f1.f2) = ((fi —f2))/2.

B. BLOCK MATCHING VIDEO INTERPOLATION METHOD
WITH LUMINANCE COMPENSATION

Based on the idea of motion estimation and motion com-
pensation, LC-MEMC uses an improved block matching
method incorporating luminance compensation to find the
best matching position by calculating the similarity between
image blocks. As shown in Figure 4, an image block of
certain size (Block A) is set in the current frame, and the
corresponding image block in the reference frame is Block A’.
According to the search method and block matching criteria
proposed in this paper, the image block with the highest sim-
ilarity to block A is searched within a certain region (Search
region B) near block A, and the displacement between the
matched image blocks is analyzed to obtain the motion
vector v (the motion vector v = v/2 used in motion
compensation).
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Algorithm 1 Proposed Search of LC-MEMC
1: Function Found (int * x, int * y, int * max, intxy, intyy)

if Matchingcriterion(x1, yl) > max then

smax < Matchingcriterion(x1, yl);

*X < X1|;

*Y <= V13
end if
Procedure Search ()
int x, y, X2, y2, max;
//Basic points search
10: max <— Matchingcriterion(a, b);
11: Found (x, y, max, a 4+ range, b + range);
12: .../ /Calculation for 16 surrounding basic points except

the origin(a,b)
13: rangel < abs(x);
14: //Local area search
15: while rangel/2! = 1 do
rangel < rangel/2;

16:  max <— Matchingcriterion(xy +rangel, y2+rangel);

17:  x < xp + rangel;

18: y < y» + rangel;

19:  Found (x, y, max, xo + rangel, y»);

20:  ...//Calculate for 7 surrounding points except the
current search origin

21: end while

22: return (X,y);

1) SEARCH METHOD
The search method used by LC-MEMC is divided into two
steps, as shown in Algorithm 1.

(1) Basic points search: as shown in Figure 5(a), the
basic points search looks for 17 points consisting the origin,
8 points of the length of range from the origin, 4 points
of range/2 from the origin and 4 points of range/4 from
the origin, where the step range size is determined by the
average speed of the human body moving in the image,
which is set to 16 in this paper. In this step, block match-
ing calculation and comparison are performed at 17 points
(the block matching calculation guidelines are explained
in detail in the next section). The point with the largest
matching function value is the search result of the cur-
rent step (CurrentResult). The search ends when the point
with the largest value of the matching function is the cen-
ter point, which is the final result (BestMatchPoint); other-
wise the position of the point (CurrentResult) and the step
between that position and the origin corresponding to rangel
(as in Figure 5(b)) are recorded, and then the Local area
search is entered.

(2) Local area search: the search steps of local area search
are shown in Figure 6(a). Specifically, as in Figure 6(b),
the search result (CurrentResult) of the basic point search
is used as the search origin in Step(i), and the step is set
to rangel /2, searching the surrounding 8 points and finding
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(d) The last step

the point with the largest value of the matching function as
the new best matching point (Result2). As in Figure 6(c),
in Step(ii), search again with the new best matching point
(Result2) as the origin, with the step set to rangel /4, and
find the point (Result3) with the largest value of the matching
function again. Repeat the above steps, as in Figure 6(d),
when the search step is 1 for the last step to find the point
with the largest value of the matching function and the end.
The result (BestMatchPoint) is the peak point of the matching
function in the region, and the coordinates of this point are the
coordinates of the motion offset vector vy.

The algorithm needs to search 33 points in the best case and
49 points in the worst case to find the peak point of the search
area. Compared with the full search algorithm (FS)—which
has the highest accuracy, it greatly reduces the number of
matching operations and increases the speed a lot; compared
with the diamond search algorithm (DS)—which has fewer
search points, this algorithm slightly increases the number of
search points and improves the accuracy of the search in the
case of luminance change without significantly reducing the
search speed.

2) BLOCK MATCHING CRITERION
An improved NCC block matching algorithm is also
designed. The NCC algorithm has high accuracy and adapt-
ability, is not affected by the linear transformation of the
image gray value, and has a certain robustness for images
with luminance leap. However, it is computationally com-
plex, so we use the difference sum operation to simplify the
algorithm to improve the matching efficiency.

The NCC matching algorithm determines the degree of
matching by calculating the correlation value between the
template image and the search image, and the position with

120758

the largest correlation value is the best position for the current
template search. The size of the search image S is assumed
to be M x M and the size of the template 7" is assumed to be
N x N (where M and N represent image pixels, M > N).
Template T translates the search on image S. The covered
subgraph is denoted as S/, and (i, j) is the coordinate of the
top left vertex of the subgraph, then the normalized mutual
correlation matching is defined as

SM SN S Gm, )T (m, n)

\/2%21 25:1 [Sti(m, n) — S‘i’j]z

o Lot Yot SHom T )

X S (T an ) - TP

The product of two arrays f(x) and g(x) of the same size
Nx =1,2,...,K) is equivalently expressed as the product
of one difference and the other progressive summation using
the method of difference summation operation,

NCC(, j) =

K K
Y fgk) =Y Fx)Gx) ©)

x=1 x=1

where

F(x) =f()—f(x+1) 3)
Gx)=Gx—1)—gx+1) “4)
GO0)=0 (%)
fEK+1)=0 6)

When this operation is used in Equation (1), all points
within the template T are saved as an one-dimensional array
f(x), and the points corresponding to the template within
the subgraph S%/ are saved as g(x), with F(x) denoting the
difference array to f(x) (as shown in Equation (3) and G(x)
denoting the progressive summation array to g(x) (as shown
in Equation (4), so that it is possible to transform the tem-
plate 7 and the subgraph S’/ into a product operation on
F(x) and G(x) according to Equation (2). In an image, the
grayscale values of adjacent pixels do not differ much, and the
differentiated array largely consists of Os, 1s, and -1s, which
can be ignored by multiplication operations, reducing the
number of multiplication operations to a large extent. More-
over, in the actual template matching process, the template is
fixed, so the differentiation on the template only needs to be
performed once, which greatly reduces the time consumption.

IV. EXPERIMENTS

A. EXPERIMENTAL CONFIGURATION

1) EXPERIMENTAL ENVIRONMENT

the experiments in this paper were programmed with MAT-
LAB R2018b. The hardware environment was Intel(R)
Core(TM) CPU of 2.50GHz, 8G running memory. The soft-
ware environment was Windows 10 operating system. The
experiments used Toshiba X-ray tube, VARIAN DR flat panel
detector,and the radiation frequency were 15 fps.
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FIGURE 7. Luminance leap statistics.

2) DATA

we collected a large number of human clinical X-ray videos
for research. Due to privacy related reasons, the data cannot
be made public at present, and we reported the results of the
experiments in this paper.

B. EXPERIMENTS FOR ISSUE ANALYSIS

In order to verify the role of luminance compensation on
medical video interpolation, we first counted the luminance
variation of medical video. Then we analysed the effect of
luminance variation on motion vectors, and obtain the effect
on video quality, that is, video interpolation effects, so as to
prove the necessity of luminance compensation.

1) LUMINANCE LEAPING PHENOMENON IN MEDICAL VIDEO
We divided the video sequence into 200 consecutive frames,
and computed the average luminance of each frame and the
luminance variation between adjacent frames. The statistical
results in Figure 7 show that due to the special nature of
the imaging device, the transmitter will automatically adjust
the transmitting power according to the thickness of the
human body, thus causing a luminance jump on the dis-
play, for example, the luminance difference between frame
16 and frame 17 is -8.3245, between frame 23 and frame 24
is -10.6134, etc. Such a luminance difference will greatly
affect the visual effect of the video.

2) MOTION VECTOR DIRECTION STATISTICS

We analyzed the effect of luminance change on motion
vectors and inferred the effect on video interpolation by
dividing the direction of motion vectors into 8 regions
in the plane according to angles (Figure 8) 0°~45°,
45°~90°, - - -, 215°~360° respectively. We selected adjacent
frames in the video, recorded the motion vectors with values
less than 0.5 between two frames as fixedly, and counted the
distribution of other motion vectors in the 8 regions. The
results in Figure 9 show that in the case of normal lumi-
nance change, most of the motion vectors are concentrated
in the same region and a few are distributed in other regions;
however, when there is a luminance leap, the motion vectors
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TABLE 1. The impact of luminance compensation on video quality.

Methods/Criteria PSNR  SSIM
With Luminance Compensation  34.8033 0.9224
Without Luminance Compensation 32.3409 0.9001

are almost evenly distributed in all regions. It can be seen
that when there is a leap in luminance, some blocks are
incorrectly matched, and the distribution of motion vectors is
scattered, which affects the generation of motion estimation
and transition frames.

3) THE NECESSITY OF LUMINANCE COMPENSATION

We used the same search method and matching function
to conduct experiments with and without adding luminance
compensation, and counted the PSNR, SSIM and their
average values for 200 consecutive frames. As the results
shown in Table 1 and Figure 10, the mean values of PSNR
and SSIM with luminance compensation are higher than
without luminance compensation, and this is also the case
in the statistics of most frames. In addition, we analyze
the luminance change against Figure 7 and get that when
there is a luminance leap in a certain frame of the video
(e.g., the 17th and 24th frames), the video frame interpolation
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FIGURE 10. The impact of luminance compensation on video quality
(PSNR and SSIM).

method without luminance compensation has lower PSNR
and SSIM. After adding luminance compensation, PSNR 7
increased from 25.1787 to 29.3788, SSIM 7 increased from
0.7317 to 0.9082 while PSNRy4 increased from 27.4693 to
38.7607, SSIMy4 increased from 0.8536 to 0.9777, and the
interpolation quality of the nearby frames also improved. This
shows that adding luminance compensation can reduce the
impact of luminance leap when doing video interpolation,
thereby improving the accuracy of interpolation and video
quality.

C. COMPARISON EXPERIMENTS

In order to reflect the advancedness of LC-MEMC com-
pared with other methods, besides reflecting the necessity of
luminance compensation in the previous section, we also
make comparative experiments with traditional MEMC meth-
ods from two perspectives of search method and matching
function, respectively. In addition to that, we also compare
with advanced deep learning methods. Finally, several visual
effect examples are used to further demonstrate the differ-
ences of several methods distinctly.

1) COMPARISON OF DIFFERENT SEARCH METHODS
We conducted comparative studies between the proposed
method in this paper (LC-MEMC) and the following methods
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FIGURE 11. The video quality (expressed by PSNR and SSIM) of some
consecutive frames of LC-MEMC, SD and FS reference results.

Full Search (FS), Three-step Search (TSS), New Three-step
Search (NTSS), Four-step Search (FSS), Diamond Search
(DS), Diamond Cross Search (DCS), Star-shaped Diamond
Search (SD) on medical images (all based on luminance com-
pensation and the same block matching criteria). We used the
video processed by FS as the reference results, the mean peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM)
as video quality measures, and the average Number of Calcu-
lated Points (NCP) required per macroblock and the average
time to process a video as evaluation criteria for method
complexity. As shown by the results in the conventional
MEMC methods section of Table 2, compared with the FS
reference results, SD has the lowest NCP and processing time
(only 20.81, 0.5613), but its PSNR and SSIM are at a lower
level, so the SD algorithm processes fastest but with lower
accuracy; similarly, other fast search algorithms (TSS, NTSS,
FSS, DS, and DCS) have fewer NCP and Time but PSNR
and SSIM are also much lower than the reference results,
which means these algorithms have the fastest processing
speed but lower accuracy in medical images. In contrast,
our LC-MEMC has the PSNR and SSIM closest to the FS
reference results, possessing high accuracy, and the NCP and
Time are not significantly increased compared to the fast
search algorithm, which has improved the processing speed
to a great extent compared to FS reference results.

Therefore, LC-MEMC is a method that combines the
advantages of FS (reference results) and fast search algo-
rithm, and is able to achieve fast and high accuracy in the
processing of medical images.

VOLUME 10, 2022



Z. Xu et al.: Luminance Compensation MEMC for Video Frame Interpolation

IEEE Access

TABLE 2. Comparison of our method with other methods.

Methods/Criteria PSNR SSIM NCP Time(s)
FS(reference results) [8]  35.3101 0.9231 201.43 3.7452
TSS [9] 32.0782 0.8919 26 0.5929
NTSS [10] 32.7514  0.8987 28 0.5933
Conventional MEMC FSS [12] 32.2891  0.8993 24.93 0.5902
Methods DS [14] [15] 31.7681  0.8861 21.13 0.5867
DCS [16] 32.0284  0.8876 21 0.5835
SD [18] 30.5743  0.8789 20.83 0.5613
LC-MEMC 34.8033  0.9224 34.1 0.5947
Deep Learnin QVI [43] 31.8746  0.8742 / 0.7044
Moo € DAIN [35] 30.9753  0.8700 / 0.6911
) FLAVR [42] 33.9443  0.9047 / 0.5934
TABLE 3. Comparison of different block matching functions. == LC-MEMC ES sD
—— LC-MEMC——FS —sD
Methods/Criteria NCP  Time(s) PSNR
LC — MEMCysE 34.1 0.3012  34.4727
LC —MEMCprap 341 0.2653 34.1675
LC—MEMCgsp 341 02064 344812 1004 ¥
LC — MEMCpyncco 34.1 0.2472  34.6605
LC-MEMC 34.1 0.2035  34.8033
_ - _J - - _ 1 _J r ] e |
5 ]
. . o
Since LC-MEMC has the highest accuracy and SD has the z =
fastest search speed, we counted the video quality (expressed 10+ ro-1
by PSNR and SSIM) and processing speed (expressed by
NCP and Time) of LC-MEMC, SD and FS reference results
for some consecutive frames to show the difference between
them. The results in Figure 11 indicate that for almost all 1 L T —L_———>= lon
1 2 3 4 5 6 7 8 9 10

frames, the video quality of our method is comparable to
that of the FS reference results, even surpassing the reference
results around frames 9-13 and 36, while the DS method is
slightly inferior. In Figure 12, we counted the NCP and pro-
cessing time of several methods for 10 consecutive frames.
We can see that, LC-MEMC is close to the most efficient SD
algorithm with respect to the reference results. The NCP of
LC-MEMC is usually only about 1/6 of that of FS reference
results, and the NCP of SD is 1/10 of that of FS, with only
about 6% difference between the two; in terms of processing
time, LC-MEMC is also close to SD, only 1/10 of that of
reference results. In summary, LC-MEMC achieves a much
higher processing speed while maintaining a high accuracy
rate.

2) COMPARISON OF DIFFERENT BLOCK MATCHING
FUNCTIONS

In our method, an improved NCC matching criterion is
used in order to reduce the computational complexity of the
algorithm. Experiments compare our method with different
classical matching functions (using luminance compensation
and our proposed search method). The methods include
LC — MEMCyse, LC —MEMCyap, LC —MEMCsap,
LC — MEMCycc and LC-MEMC. We calculated the NCP,
computing time and PSNR for 50 consecutive frames of
video. The results in Table 3 below show that replacing the
matching function does not affect NCP; MSE is considerably
accurate but the processing speed is significantly slower;
MAD slightly improved the processing speed but the accu-
racy is the lowest; SAD and NCC have better performance
with medium processing speed and accuracy; in contrast,
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FIGURE 12. NCP and processing time of the methods in this paper
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FIGURE 13. Comparison of accuracy and processing time of LC-MEMC,
QVl, DAIN and FLAVR.

our improved NCC has the fastest processing speed and the
highest accuracy.

3) COMPARISON WITH ADVANCED METHODS OF DEEP
LEARNING

We compare the approach in this paper with representa-
tive state-of-the-art methods for deep learning on our data
by counting their average PSNR, SSIM and the average
time to process a video. Methods include QVI [43] for
Flow-Based Methods, DAIN [35] for Kernel-Based Meth-
ods, and the advanced FLAVR [42]. It should be mentioned
that the experiments in this section were run on a Quadro
RTX 5000 GPU. The results in the deep learning methods
section of Table 2 and Figure 13 indicate that the QVI
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FIGURE 15. Comparison of our proposed method LC-MEMC with FS reference results and five existing methods.The pictures are from the

medical image dataset we collected.

and DAIN methods have a slower processing speed, and
the PSNR below 32 dB and SSIM below 0.9, so it has a
lower utilization value. FLAVR has improved its process-
ing speed and accuracy to a large extent, with an accuracy
of 33.9443 PSNR and 0.9047 SSIM. LC-MEMC improves
PSNR by 0.859 and SSIM by 0.0177 compared to the
advanced method FLAVR, and the runtime is comparable
to the advanced method FLAVR (0.5947s vs. 0.5934s). So,
in comparison, LC-MEMC has the highest utilization value
in medical imaging.

In addition, we focus on the visual effects of the inter-
polated frames generated by the deep learning method and
LC-MEMC when there is a large leap in luminance. Take
frames 17, 24, and 31 as example, the borders around the
bones and organs are clear and the lines around the metal clips
are smooth in the original image, but the interpolated frames
generated by the three deep learning methods have different
degrees of errors. As shown in Figure 14, the three rows
indicate the interpolated frames generated by the different
methods, with frames 17, 24 and 31 as the reference frames,
respectively. In the interpolated frames generated by QVI,
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missing and overlapping metal clips and large blurs around
bones and organs; With DAIN, the two metal clips appear
offset and overlapped respectively, while the bones appear
truncated; FLAVR similarly left two metal clips with varying
degrees of loss and cheapness, and small truncations of the
bone. These errors have a significant impact on the doctor’s
diagnosis in practical medical applications, while there are
no obvious errors in any of the three interpolated frames
generated by the method LC-MEMC in this paper. Therefore,
it is shown that the deep learning method also cannot achieve
good interpolation of frames for medical videos with lumi-
nance leaps.

D. VISUAL EFFECT COMPARISON AND CASE STUDY

Itis well known that existing quantitative evaluations can only
measure the performance of algorithms to a certain extent
and are not a substitute for human visual perception, and that
the continuity of videos cannot be measured by numerical
standards. We find that the visual qualitative difference and
exploitable value of our method compared with other meth-
ods is much larger than the numerical difference. Therefore,
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we again compared the visual effects of LC-MEMC with
other conventional MEMC methods on the acquired medical
images. Figure 15 shows the interpolated frames generated by
different methods. Different methods have different matching
results in detail positions such as metal clip and around
organs. We mark three details with circles in red, green and
blue respectively. At the locations of the metal clip with clear
boundary (red and green circles), the five rapid methods TSS,
FSS, DS SD and ARPS have matching errors, in which TSS
causes partial boundary blurring, FSS has partial boundary
duplicate matching, DS and SD make part of the clip mis-
aligned, ARPS also has a small range of misalignment and
absence, and LC-MEMC has similar effect with FS (reference
results) and is close to ground truth. At the location of the
around organs, FS, TSS and FSS are blurred to some extent,
TSS and FSS are blurred more severely, DS is partially
misaligned, SD is partially wrong and has distorted lines,
ARPS is also partially distorted and missing, and LC-MEMC
results are similar to the reference results, with only a small
degree of shadow diffusion, closest to ground truth. In terms
of the number of markers in error, TSS and FSS have two
serious errors and one minor error that can be ignored,;
DS and SD have three serious errors; ARPS has two serious
errors and one minor error; and LC-MEMC has only one
negligible minor error similar to the FS reference result.

To sum up, for ionizing radiation videos, when the irra-
diation dose changes or the local motion speed is large,
the matching errors of traditional MEMC methods will
greatly increase, resulting in visual discontinuity. In contrast,
LC-MEMC shows the best ability to process details in
inserted frames, which obtains delicate and smooth transition
frames and reaches higher processing speed.

V. CONCLUSION

In this paper, we propose a video interpolation algorithm
based on luminance compensation MEMC (LC-MEMC).
For ionizing radiation videos where luminance leaps exist
and thus are difficult to process with existing image pro-
cessing methods, we propose a luminance compensation of
electromagnetic wave irradiation attenuation based on target
thickness, which, together with the simplified block match-
ing method proposed in this paper for searching accurate
computation, maximizes processing speed while improving
accuracy. To the best of our knowledge, this paper is the first
to propose luminance compensation to assist video interpo-
lation and put it into clinical application in the medical field.
We have experimentally verified that the medical video pro-
cessed by this method is smooth and fluent without flickering,
achieving high utilization value of reducing the visual fatigue
of doctors and halving the radiation to patients.
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