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ABSTRACT A novel meta-heuristic nature-inspired optimization algorithm known as Groundwater Flow
Algorithm (GWFA) is proposed in this paper. GWFA is inspired by the movement of groundwater from
recharge areas to discharge areas. It follows a position update procedure guided by Darcy’s law which
provides a mathematical framework of groundwater flow. The proposed optimization algorithm has been
evaluated on 23 benchmark functions. The significance of the results is statistically validated using the
Wilcoxon rank-sum, Friedman, and Kruskal-Walis tests. To prove the robustness of the algorithm, it has been
further applied on several standard engineering problems. From these exhaustive experiments, it has been
observed that the proposed GWFA can outperform many state-of-the-art optimization algorithms. Source
code of this work is available at: https://github.com/Ritam-Guha/GWFA.

INDEX TERMS Groundwater Flow Algorithm, optimization, hydro-geology, engineering application, meta-

heuristic, uni-modal, multi-modal.

I. INTRODUCTION

Optimization deals with the process of searching for the
best solution in a given scenario. An algorithm employed
to find such a feasible solution is called an optimization
algorithm [1], [2], [3]. The set of optimization algorithms
can be broadly classified into two different categories: deter-
ministic and stochastic. Deterministic optimization algo-
rithms [4], [5] utilize analytical properties of data to search
for the global optimum solution with theoretical guarantees.
These procedures are used when it is absolutely necessary
to find the global optimum solution. On the other hand,
stochastic algorithms try to find near-optimal results through
some approximations. A class of stochastic algorithms is
called heuristic [6], [7]. Although heuristics do not guar-
antee finding the best feasible solution, they surely find
a near-optimal solution within a reasonable time duration.
In the case of NP-hard problems, it is almost impossible to
find the best solution within a finite amount of time. That
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is why heuristic algorithms have become a very popular
and widely-explored research topic in recent times to solve
various time-constrained optimization problems.

Heuristic algorithms consider a particular problem as a
black box with a set of inputs and outputs. The inputs are
the variables of the problem and the outputs are the optimum
solutions and their corresponding values. A heuristic search
starts with creating a set of random inputs as the candidate
solutions to the problem. The search is continued by evaluat-
ing each solution, noting the objectives and values, and modi-
fying the solutions based on their current outputs. These steps
are repeated until a termination criterion is met, which can be
either a threshold on the maximum number of iterations or
the maximum number of function evaluations. Regardless of
the specific structure, at each stage, such algorithms require
a way to compare two solutions to decide which one is better.
An objective function or fitness function is used to evaluate
the merit of each solution.

Although heuristics are very effective in solving real-life
challenging problems, there are many difficulties when
solving optimization problems [8]. Besides, optimization
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problems have diverse characteristics which are not similar
at all. Therefore, it is a challenge for the researchers to
design optimization procedures that are problem-independent
in nature. Heuristic algorithms typically use problem-specific
properties to find better approximations. To overcome such
difficulties, a new class of heuristics has been created, which
is known as meta-heuristics. The word ‘meta-heuristic’ has
been first coined by Fred Glover [9]. It is a high-level
problem-independent framework with some specific strate-
gies used to devise optimization algorithms. In the last
two decades, meta-heuristic algorithms have become quite
popular in the literature [10] due to their (i) simple con-
cepts and structures, (ii) almost derivation-free mechanisms,
(iii) ability to handle local optima, (iv) flexibility, and (v) easy
and effective hardware implementation. The new question
that has surfaced in the field of meta-heuristic is what is
the need for new meta-heuristic algorithms when there are
so many existing algorithms that can solve the problems
efficiently. A lot of researchers have also argued [11], [12],
[13] that most of these algorithms are so similar in nature that
their “novelty” is metaphorical. Some key points to note in
this regard are:

1) Meta-heuristic algorithms are stochastic methods. So,
these methods use the power of randomness to guide
the solutions in a better direction. When the methods
are not deterministic, there is no way to state that one
algorithm will always perform better than the other
algorithms, which eventually supports the same old fact
as stated in the “No Free Lunch” theorem. It basically
says that we cannot conclude that one algorithm is
better than the other for all possible problems. So, it is
anecessity to work on different approaches suitable for
different problem domains.

2) Due to the stochasticity, meta-heuristic algorithms can
never ensure finding the best solution in the search
space. However, the empirical results show that they
can reach a near-optimal solution in a reasonable time.
It is an effort to trade off the best solution with the time
and computational needs.

3) Inspiration from nature is an important part of many
meta-heuristic algorithms. Most of the ideas in the
domain of automation are from the perspective of how
human beings will do the same job, and then replicate
the procedure using computational devices. The same
concept applies to nature-inspired optimization as well.
The researchers are looking for the natural phenomena
which result in different optimizing procedures.

The most important characteristic [14] of a good
meta-heuristic algorithm is to find a good balance in its
exploration and exploitation capabilities. With exploration or
diversification property, the algorithm aims to find out the
‘promising’ areas where the global optima may lie, whereas
the exploitation or intensification property is responsible
for searching the areas already discovered in a more pre-
cise manner in order to pinpoint the solution. Exploration
preserves the diversity and stops the algorithm to converge
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prematurely to some local optima. Exploitation helps the
algorithm converge. Interestingly, many such meta-heuristic
algorithms are intuitively inspired by nature. Simple natu-
ral elements have proved their skills to perform optimiza-
tion in the most trivial way possible. As a result of this,
researchers have developed various nature-inspired meta-
heuristic optimization algorithms such as Genetic Algorithm
(GA) [15] inspired by genetic crossover and mutation, Par-
ticle Swarm Optimization (PSO) [16] based on flocking of
birds, Ant Colony Optimization (ACO) [17] inspired from
foraging behavior of ants, etc. This has motivated us to
carefully observe natural occurrences and propose a novel
meta-heuristic developed based on the flow of groundwater
from recharge areas to discharge areas.

The contributions of this paper are:

1) Developed a novel meta-heuristic nature-inspired opti-
mization algorithm called Groundwater Flow Algo-
rithm (GWFA) inspired by the flow of groundwater.

2) Evaluated GWFA against 23 standard benchmark func-
tions consisting of 7 -uni-modal, 6 multi-modal, and
10 fixed-dimensional multi-modal functions.

3) Compared GWFA with some classic and state-of-the-
art optimization algorithms used in the literature.

4) Explained statistical significance, convergence, and
overall superiority of the algorithm in terms of obtained
results.

5) Applied the algorithm over 5 engineering application
problems to prove its robustness.

The rest of the paper is organized as follows: Section II
provides a brief overview of the research work being carried
out in the domain of nature-inspired optimization, Section III
presents the proposed algorithm in detail with proper explana-
tion of its ability to handle exploration-exploitation balance,
Section IV provides various test results obtained for the pro-
posed algorithm and their comparison with some classic as
well as recently proposed optimization algorithms, Section V
finally concludes the manuscript and provides future scope of
improvement.

Il. RELATED WORK

As a modern trend in optimization, researchers across the
globe are proposing various meta-heuristic algorithms to
tackle different avenues of optimization problems. Meta-
heuristic algorithms can be divided into different cat-
egories based on varied criteria: single solution-based
and population-based [18], nature-inspired and non-nature-
inspired [19], metaphor-based and non-metaphor based [20].
From the ‘inspiration’ point of view, these algorithms can
roughly be divided into four categories [21]: Evolutionary,
Swarm inspired, Physics-based, and Human related.

o Evolutionary algorithms are basically inspired from
biology [22]. They utilize crossover and mutation oper-
ators for the evolution of the initial population, usu-
ally selected in a random fashion, over the iterations
and eliminate the poor solutions, thereby ensuring the
improved solution. GA is a well-known method of this
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category which follows Darwin’s theory of evolution.
Co-evolving algorithm [23], Cultural algorithm [24],
Genetic programming [25], Grammatical evolution [26],
Bio-geography based optimizer [27], Stochastic frac-
tal search [28] etc. are some well-known evolutionary
algorithms.

o Swarm inspired algorithms, on the other hand, imi-
tate individual and social behavior of swarms, herds,
schools, teams, or any group of animals [29]. Every indi-
vidual has their own specific behavior, but the behavior
of the collection of individuals gives us a way to solve
complex optimization problems. A popular algorithm
belonging to this category is PSO, devised by following
the behavior of a flock of birds. Another important algo-
rithm of this category is ACO, designed by mimicking
the foraging process of the ant species. Several popular
and recent algorithms of this category are: Shuffled frog
leaping algorithm [30], Bacterial foraging [31], Artifi-
cial bee colony [32], Firefly algorithm [33], Grey Wolf
optimizer (GWO) [34], Ant Lion optimizer (ALO) [35],
Whale optimization algorithm [36], Grasshopper opti-
mization algorithm (GOA) [37], Squirrel search algo-
rithm [38], Harris Hawks optimization (HHO) [39] etc.

o Physics-based algorithms are inspired following the
rules used to govern a physical process [40]. Some
inspiring physical processes are based on metallurgy,
physics, chemistry, complex dynamic systems, and even
music. The oldest one belonging to this category is Sim-
ulated Annealing (SA) [41], formulated by following
the annealing [42] process of metals in metallurgy and
materials sciences. Another popular method of this cat-
egory is the Gravitational search algorithm (GSA) [43],
designed by following gravity and mass interaction.
Besides, there are other methods belonging to this
category which include Self-propelled particles [44],
Harmony search (HS) algorithm [45], Black hole opti-
mization [46], Sine Cosine algorithm [47], Multi-verse
optimizer [48], Find-Fix-Finish-Exploit-Analyze [49],
Hydrogeological cycle algorithm [50], etc. Rubio et al.
has also provided an overview of recently developed
water-related metaheuristics in [51].

o Human related algorithms look for the global optima
by following human behavior [52]. Teaching-Learning-
Based optimization [53] is a popular one belonging
to this category which is formulated by following
the improving procedure of class grade. Apart from
this, some other important methods of this category
include Society and civilization [54], League champi-
onship algorithm [55], Fireworks algorithm [56], Tug
of war optimization [57], Volleyball Premier League
algorithm [58].

The presence of such a significant number of meta-heuristic
algorithms clearly raises the question of the need for another
meta-heuristic algorithm. However, as indicated by No Free
Lunch [59] theorem for optimization, there cannot be any
single algorithm that will be equally applicable for all the
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optimization problems desiring optimal solutions. With each
new algorithm following any regular or natural phenomenon,
researchers primarily aim to provide some new facet to the
algorithm where both exploration and exploitation will have
a superior trade-off, thereby trying to get away from the
local optima and eventually compass to the global optima.
Nevertheless, accomplishing these objectives is not straight-
forward, hence motivating researchers to propose a new
algorithm that can be applied to different problem domains.
It is to be noted that many state-of-the-art feature selection
algorithms follow the same architecture as PSO. Krill Herd
(KH) algorithm [60] and GWFA also follow that architecture,
but they are not the same algorithm. The commonalities
are visible because all these algorithms start by initializing
candidate solutions, updating them over the iterations, and
finally providing a result. However, this is considered to be a
very good architecture and it has proved its effectiveness in
multiple scenarios. That is why GWFA has been implemented
following that architecture, however, it has many traits which
are different from both PSO and KH.

IIl. GROUNDWATER FLOW ALGORITHM

In this section, a detailed outline of the proposed algorithm is
provided which is followed by the mathematical description
of the optimization procedure.

A. HYDRO-GEOLOGICAL PERSPECTIVE/INSPIRATION
Three-fourths of the Earth’s surface is covered with water.
Most of this water can be seen with bare eyes when peo-
ple go to beaches or stand at the side of rivers or ponds.
But still, there is water that cannot be seen unless a hole
is dug up in the ground deep enough to reach the water
tables. This water is known as groundwater which accounts
for 1.7% of all of Earth’s water and 30.1% of the freshwa-
ter [61]. The depth of ground water varies from place to
place. In some places (like marsh), water may occur very
close to the ground surface whereas, in some other places,
it may appear hundreds of feet below the ground level (as
in deserts). Water nearing the ground surface may be a few
hours old, at moderate depth, it may be a few hundred years
old and the water nearing the earth’s core may be some
thousand years old flowing from one place to another under-
ground. The level of water underground is known as the water
table.

This water occupies the pores in the soil and moves from
one place to another. But not 100% of the pores are occupied
by water, some space may be occupied by air as well. Espe-
cially the pores of the soil closer to the Earth’s surface are
significantly occupied by air. This part of the soil is called
the unsaturated region whereas the part where all the pores
are occupied by water is known as the saturated region. In the
final stage of the water cycle, i.e. precipitation, water falls on
the Earth’s surface as rain, snow, hail, etc. The precipitated
water either flows over the surface following the slope and
reaches a stream, or it infiltrates the ground and enters into
the unsaturated region. Some of this water gets used by plants
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or evaporates due to heat but the rest of the water goes deeper
into the ground and recharges the groundwater. The area
where the precipitated water flows past the unsaturated zone
to the water table is called the Recharge area (RA) while the
areas where the groundwater flows to (streams, lakes, etc.) are
called Discharge Areas (DAs). Groundwater flow is known as
the flow of groundwater from RAs to DAs. The concept can
be made clear by looking at Figure 1.

.
st Groundwater
----- et = \' flow

Confining unit

FIGURE 1. Image describing the concept of groundwater flow.

The reason for this flow is typically the gravitational force.
Water at RAs has higher potential energy due to their high ele-
vations. So, they move to DAs with lower elevation by over-
coming the internal frictions (determined by viscosity). Due
to the gravitational pull, groundwater slowly flows through
layers of rocks, soil, and sand which are known as aquifers
(originated from two Latin words ‘aqua’ or water and ‘ferre’
or carrier). The flow of groundwater has always been of great
interest to mankind apparent from many Biblical references
as well. Finally, in 1855 and 1856, a French engineer named
Henry Darcy performed various experiments [62] and was
able to mathematically define the flow of groundwater which
has been named the Darcy’s Law. Darcy defined the flow of
water through sand beds during his experimentation but later
it has been generalized for other fluids and porous mediums
as well.

In this work, the flow of groundwater is mathematically
modeled to solve optimization problems. Darcy’s law helps
in the movement of searching agents efficiently while per-
forming optimization.

B. MATHEMATICAL MODEL

The most important aspect of the proposed optimization
approach is the position update policy which is guided by
Darcy’s law. In this section, the mathematical definitions of
Darcy’s law are discussed.

During experimentation, Darcy discovered that the veloc-
ity with which groundwater flows is dependent on two major
factors: height difference and gap in positions. Darcy’s exper-
imental setup has been presented in Figure 2. Consider that
groundwater is flowing from point A to point B as shown in
Figure 2. The velocity of this flow is directly proportional
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Ah=h1-h2

4

FIGURE 2. Setup used by Darcy to conduct experimentation on
groundwater flow. Darcy used sand beds as the medium between the
water sources but later it got generalized for any porous medium.

to the height difference (Ah) between the two points but
inversely proportional to the length of the gap (L) between
them. The ratio of these two factors (7) is termed the Hydraulic
Gradient (HG).

Ak |
=7 (M

HG clearly suggests that when the height gap between the
points is more and the length between them is shorter, the
water flows more rapidly. The velocity is directly propor-
tional to the HG. So, the velocity term can be expressed as:

vg =k xi @

i

where k is the constant of proportionality also known as the
coefficient of permeability. This velocity is known as the
discharge velocity. It is an idealistic term that considers water
flows through the entire soil between the two points but it is
not realistic as water only flows through the pores. So, there
is another term used for defining velocity, called seepage
velocity, which is the velocity of the water flowing through
the pores of the soil. It can be represented as:
Vd
¢
where ¢ is called the porosity of the soil. Porosity is the ratio
of the combined volume of pores to the entire volume of soil.
Seepage velocity is ultimately the velocity with which the
groundwater flows from one place to another. Depending on
the value of the porosity (property of the soil), the seepage
velocity may vary.

The proposed model uses seepage velocity to update the
position of the candidate solutions.

3

Vg =

C. OPTIMIZATION APPROACH

In any population-based meta-heuristic optimization algo-
rithm, it starts with some candidate solutions which act as
the search agents. These search agents traverse various paths
in the search space in pursuit of better solutions. GWFA uses
some groundwater sources (GWSs) as its search agents from
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where water flows in different directions to search for the
global optimum solution. The optimum solutions are repre-
sented by the DAs where the GWSs are guided. Hence, the
objective here is to look for the most optimal DA by flowing
groundwater from the RAs. It is to be noted that in this section
GWSs, agents, and candidate solutions are used to represent
the same thing. In a broader sense, we can say that each GWS
is a search agent which carries a candidate solution. The algo-
rithm consists of three separate phases: initialization, position
update, and exploitation of DAs. A flowchart describing the
entire algorithm is presented in Figure 3.

Initialization of parameters
(no. of Groundwater
Source (GWS), no. of
iterations, k, @, p

Deployment of GWSs in
random starting positions

Evaluate the fitness for all the
GWSs and rank them according
to their fitness measure.

Stat

Reinitialize the GWS,
to completely new
positions

Select top p% of GWSs as
Discharge Areas (DAs) which act
as the global best solutions

Search for n new GWSs in
the neighborhood

5 any neighbor
beter?
Yes
Replace with the fittest
neighbor

Calculate the velocity for each
GWS based on Darcy’s law

e

No

FIGURE 3. Flowchart describing the optimization approach adapted
in GWFA.

1) INITIALIZATION

The GWSs act as the search agents in the proposed optimiza-
tion approach traversing various paths in search of a solution
to the problem. At any stage of the algorithm, the solution
represented by any GWS is called a candidate solution. At the
first stage of the algorithm, a certain number of GWSs are
initialized with random candidate solutions. Suppose n GWSs
are initialized and the function under consideration describ-
ing the optimization objective (say f) has D-dimensional
design space. Then the GWSs will be represented as:

xij = Ibj(f)+rand;(1) x (ubj(f) — Ibj(f)) ((Il - 11 . 22 . g))
Q)

where x;; represents the value of i candidate solution in
j™  dimension, ubj(f) and I[b;j(f) are the upper bound
and lower bound of design space of function f respec-
tively and rand;(1) is a random number restricted in
[0, 1]. In this way, n GWS positions are initialized which
act as the initial solutions to the optimization prob-
lem. For the rest of the discussion, x;(¢) represents the
i GWS in the population in ¢ iteration of the algorithm.
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Each candidate solution is guided by a velocity term. The
velocity of every individual GWS is also initialized with 0.

vi(0) =0 (5)
Here viEO) represents the initial velocity of i GWS.

2) POSITION UPDATE

This is the most crucial part of the proposed algorithm. After
getting the initial GWSs, their positions are updated based on
groundwater flow rules and abiding by Darcy’s law. At the
beginning of the position update policy, the quality of all
the solutions is calculated using the objective function. It is
to be noted that the objective function in an optimization
problem is the function whose value needs to be minimized
(minimization problems) or maximized (maximization prob-
lem). The objective function provides a fitness measure for
the solutions. The lower (or higher) the function value is for
the minimization (or maximization) problem, the fitter the
solution is. After getting quality measures for each and every
GWS, the fittest p% of them are assigned as DAs. The rest
of the GWSs are then considered to form RA. The objective
for the GWSs in RA is to approach one of these appropriate
DAs, thereby improving the fitness of the candidate solutions.
Apart from the DA, if there are GWSs in the RA which is fit-
ter than the others then the less fit GWSs will also get guided
toward the fitter GWSs. Intuitively it can be considered that
fitter GWSs in the RA are at lower elevations in RA. Hence,
water from higher GWSs keeps flowing toward these GWSs.
The movement of water will be guided by three important
factors:

1) Previous flow of the water.
2) Flow towards selected DA.
3) Flow towards the fitter GWSs in the RA.

For each of the GWSs in the RA, one DA is selected
randomly as shown in Equation 6. But instead of defining
a flow to every fitter GWS in RA, an average of the lower
GWSs is constructed to reduce computation. The solution
representing GWS is then guided towards the selected DA and
local averaged GWS (LA) using Darcy’s law of groundwater
flow. From the discussion provided in Section III-B, it can be
observed that groundwater is mainly guided by two important
terms: height difference (Ah) and length of gap (L). In the
proposed optimization approach, A# is calculated as the dif-
ference in the current candidate solutions and L represents
the ratio of the maximum difference in the functional values
in the population and the difference in their current functional
values. The mathematical representations of these terms are
shown below:

DA(t) = random;(DA\(t), DA (1), . .., DAg(t))

pxn
100 ) ©

LAK(t) = mean(xj(0) Vj : (1) < foa(t)) (D)

where g = floor(
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where DA:'(I) and LA;(t) represent the selected DA and the
local averaged GWS for i’* GWS.

Ahig(t) = DAY(t) — x,(1) (8)

Ahi(t) = LAi() = xi(1) i ©

Lty = M G0) = £ (o) (10)
If (DAG(1)) —f (xi(D)

Lu(t) = max;z; If (x;(£)) — f ()l (11

If (LA(1)) — f (xi(1)))

Here the subscripts d and ! correspond to the DA and LA
counterparts respectively.

HG for each GWS is then calculated as the ratio of Ah
and L terms. Darcy’s law states that the discharge velocity is
directly proportional to the HG. Therefore, by multiplying the
HG with a constant of proportionality (k), discharge velocity
(vd) for every individual is computed. k is also known as the
coefficient of permeability.

- Ah(n)
HGj4(t) = —Lig(t) (12)

oo Ahy(t)
HGy(t) = T(f) (13)
vdig(t) = k x HGy(t) (14)
vdy(t) = k x HGy(t) (15)

The discharge velocities directed towards the DA and LA
are combined using Equation 16. The weightage provided
to vdiq(t) is o while vd;;(t) gets the weightage of 1 — «
where « is in [0, 1]. The value of « is determined through
experimentation provided in later sections. « controls the
level of importance of guidance provided by DA and LA.

vdi(t) = a x vdig(t) + (1 — ) x vdy(t) (16)

Discharge velocity is velocity of the water when there is
no obstruction along the flow. In general, there are porous
mediums known as aquifers in the path of the groundwater.
So, the water only flows through the pores of the aquifers.
Hence, a new term is introduced which is known as the seep-
age velocity (vs). Seepage velocity is determined by dividing
the discharge velocity by the porosity of the intermediate
medium. The expression for seepage velocity can be repre-
sented as:

vdi(r)

bi
where ¢ is the porosity of the medium. ¢ is a very spe-
cial term in the algorithm because it helps to control the
exploration-exploitation balance in the process. When the
position of a GWS gets updated, all the dimensions of
the solution are not updated. The number of dimensions to

be updated (d) is guided by a factor called the control factor
(CF) which is changed over the iterations as:

vs;(t) =

(a7

CF(t):(l—%)xD (18)
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where T is the maximum number of iterations. The number
of dimensions to be updated is selected by randomly choos-
ing an integer d in the range [CF(¢), D]. As evident from
expression 18, the value of CF(¢) decreases as the iterations
progress. Therefore, in the beginning, there are more chances
of a high number of dimensions getting updated (i.e. ensur-
ing exploration) compared to the later stages (i.e. ensuring
exploitation). The value of ¢ can be expressed as:
di 1
$i=5 (19)
Finally, the velocity of any individual GWS can be cal-
culated by taking the combination of its previous velocity
(learning from past experience) and its seepage velocity
(learning from recent experience). The contributions of both
factors to the velocity is the same. The velocity can be repre-
sented as:

vi(t) = B X vit = 1)+ y x vsi(1) (20)

Here 8 = y = 0.5. The value of the velocity is used to
update the positions of the GWSs (i.e. candidate solutions).
For each individual, d random dimensions are selected from
the entire set. The values of these positions are modified
according to the velocity:

liEt,‘ = (random;[CF(t), D])1xd @1
(1) 4 vi0) if j € list;

X+ =1"
it ) x;i(t) otherwise

(22)

After the update, it may so happen that the GWSs get
converged. At this situation, every GWS will represent the
same candidate solution. It can be identified when all the
GWSs are having same fitness measure. If such a situation
occurs, the algorithm stores the best GWS found till now,
discard all the solutions and re-initialize every GWS in the
same way as discussed in the Initialization section.

3) DA EXPLOITATION

In this procedure, the GWSs flow towards DAs. So, if the
DAs are not changed over iterations, the solutions will auto-
matically get converged. In order to avoid that scenario, the
DAs perform exploitation by checking their neighborhoods.
Some dimensions of every DA are selected and their values
are changed to find a neighborhood solution. In this way, for
each DA, 5 neighborhood solutions are constructed and the
one with the best fitness measure is selected to replace the
older and less fit DA. If there is no fitter neighbor, DA is not
changed. If at a certain point, the solutions get converged, the
DAs do not participate in the exploitation and they also get
re-initialized.

a: EXPLORATION-EXPLOITATION BALANCE

One of the major concerns in any optimization procedure is
to maintain a good balance between the exploration and the
exploitation of the search. It is a dilemma requiring the pro-
cess to make a choice between searching an unexplored area
of the search space and searching the same area with deeper
insights. Hence, one needs to make an appropriate decision at
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this point to proceed. GWFA tries to control the trade-off in
a very effective way. GWFA uses not one but multiple DAs
which are treated as the global best of the current iteration
which are followed by the other GWSs. For each GWS,
a DA is selected randomly. It gives rise to the exploration
of the search space because more avenues are to be looked
for. Had it been only one DA, all the other GWSs would
have followed its path, and finally the searching procedure
would have found limited or only a small region of the search
space. The next important term which helps in achieving the
balance is the CF. As discussed before, CF supervises how
many dimensions of the GWSs get updated by the velocity.
At the beginning of the algorithm, there are chances of many
dimensions getting modified but during later stages, the num-
ber of dimensions gets updated is restricted to a lower value.
More updates of dimensions lead to exploration because it
helps to inspect new areas of the search space. On the other
hand, when the lesser number of dimensions get updated,
only nearby neighborhoods are checked, thus enhancing the
exploitation capability of the algorithm. In the later stages
of the algorithm, DAs participate in exhaustive exploitation
to intensify the exploitation in the search space. Therefore,
as evident from the discussion, GWFA has the ability to
maintain a good trade-off between the exploration and the
exploitation phases.

b: COMPUTATIONAL COMPLEXITY

The complexity of the algorithm depends on the number of
GWSs (n), the number of iterations (), and the number of
dimensions in the objective function (d). The computational
complexity is described in terms of big-O notation. From the
pseudo-code of GWFA presented in Algorithm 1, it is clear
that the functional values are being evaluated only in two
occasions: computation of fitness values and DA exploitation.
The time complexity of each function evaluation is O(d). Dur-
ing the computation of fitness values, each GWS is evaluated
once. So, for [ iterations and n GWSs, there will be (n x I)
function evaluations. On the other hand, DA exploitation is

nxp

performed for only (755) DAs. For each DA, 5 neighbors
are evaluated. So, for [ iterations, there will be (5 x %)
function evaluations. The time requirement in the case of all
the other computations is O(1). Therefore, the overall time

complexity (TC) of all the models can be calculated as:

Fitness computation: O(n x I x d)
nxpxl

DA exploitation:  O(5 x d x T)
Overall TC: OnxIxd)+
0G x d nxpx I)
xdx ————
100
Omax(nar, "L,
= O(max(ndl, ——
20
= O(ndl)

From the discussion, it can be seen that GWFA requires
polynomial time for computation. This proves that it is a
time-efficient algorithm and is applicable to optimization.
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D. NOVELTIES OF GWFA

A literature survey reveals that nature-inspired algorithms
have gained enormous popularity over the last decade. How-
ever, there is a reason why researchers find inspiration and
come up with new optimization algorithms. First of all,
as suggested in [63], researchers often use ’No Free Lunch”
theorem to justify the need for new optimization algorithms
as no single optimization algorithm can work efficiently for
every optimization problem. Thus, novel algorithms diversify
the usage of optimization for different kinds of problems.
Although most of the nature-inspired optimization algorithms
follow a common framework mentioned in [64], they are
derived from separate natural phenomena and use a differ-
ent method to adjust the exploration-exploitation trade-offs.
Secondly, these algorithms have proved their effectiveness
in various scenarios. When an idea from a different field
of research is transferred to another field of application,
it actually tries to support interdisciplinary activities, This
eventually widens the scope of the research, as many people
from varied domains come up with their very own and unique
ideas to fit such algorithms into different research problems.
The novelties of the proposed algorithm can be expressed
using the following points:

o Hydro-geological Perspective: GWFA is inspired by
the natural flow of groundwater from RAs to DAs. The
motion is guided by Darcy’s law of groundwater veloc-
ity. This hydro-geological perspective behind the forma-
tion of GWFA makes it very intuitive and innovative.

« Distributed Elitism: Most of the nature-inspired algo-
rithms use a single elite candidate solution to guide the
other solutions. However, in GWFA, every RA (solu-
tion) is guided by a randomly selected DA (elite solu-
tion) and other RAs which are better than the current
RA. This step clearly expands the search area of the
individual RAs and helps them circumvent local optima.
When the candidate solutions keep on following a single
elite solution, their probability of premature conver-
gence becomes very high.

o Quality-based Exploration-Exploitation Balance:
The key to a successful search over the large search
space is the trade-off between exploration and exploita-
tion of the searching algorithm. Usually, this is achieved
by adding a local search procedure to enhance exploita-
tion or a global searching technique to bring in explo-
ration. However, GWFA achieves this by performing
two simple operations. First, for RAs, the CF is used to
support exploration in the first phases of the algorithm
and exploitation in the later stages. Secondly, the algo-
rithm uses a very simple local search technique to exploit
the DAs to find better solutions. This kind of updated
policy is inspired by a very natural hypothesis. The scope
of improvement for a level 50 agent is not as much as
the scope of improvement for a level 5 agent. Hence,
instead of trying to improve the best solutions, GWFA
tries to improve the poorer solutions through exploration
in the first phase and exploitation in later phases and the

132199



IEEE Access

R. Guha et al.: Groundwater Flow Algorithm: A Novel Hydro-Geology Based Optimization Algorithm

Algorithm 1 Pseudo Code of Groundwater Flow Algorithm

1: Initialize n GWSs with their random positions x;(0) where (i = 1, ..., n).

2: t <0
3. while t < Max_Iter do

4: for i=1tondo
5: Calculate fitness value of each GWS as fit (i) = f (x;(1)).
6: end for
7:
8: if fit(1) == fit(n) then
9: Store the best GWS, re-initialize all GWSs.
10: t<—t+1.
11: Goto Step 3.
12: end if

13: Select the top p% (or j = floor(55)) of the GWSs as DAs.

Sort the GWSs according to increasing (or decreasing) order of fitness values for minimization (or maximization) problem.

14: DA={DA1, DA, ... DA;}
15: CFit)=1-— m.
16: for i=1tondo
17: if x;(t) ¢ DA then -
18: Compute DA; and LA;. (Equations-6,7)
19: Determine the HGs. (Equations-12,13)
20: Compute discharge velocities of the flow towards DA and LA. (Equations-14,15)
21: Combine the two discharge velocities. (Equation-16)
22: Calculate the seepage velocity v;(t). (Equation-17)
23: Find the overall velocity of the flow. (Equation-20)
24: Create the list of dimensigns to be updated list;.
. - Xii(t) + vii(2) if j € list;
25 Xt +1) < {},;-(t) othejrwise
26: else
27: Create 5 neighbors from x;(¢) through perturbation
28: if Fitter neighbor found then
29: Replace the fittest neighbor with x;(z)
30: end if
31: end if

32: end for
33: end while

best solutions are improved by a simple local search,
So, we can see that more efforts are provided to improve
the poorer solutions as compared to improving the best
solutions.

All these factors make GWFA very unique and better
than many algorithms in the field. The results provided in
Section IV clearly demonstrate this superiority over other
well-established algorithms.

IV. EXPERIMENTATION

This section includes the performance of the proposed opti-
mization algorithm called GWFA over some standard bench-
mark functions and a comparative study with some other
state-of-the-art methods. The section is further divided into
six sub-sections. The first sub-section contains the demon-
stration of the benchmark functions. The second sub-section
comprises parameter tuning experimentation for GWFA.
The third sub-section reports the obtained results and a
detailed comparative study with other optimization meth-
ods. The next two sub-sections consist of testing outcomes
for convergence and statistical significance respectively.
The final sub-section includes the outcomes of the pro-
posed algorithm when evaluated on five standard engineering
applications.
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A. BENCHMARK FUNCTION DESCRIPTION

In order to evaluate the proposed approach, 23 benchmark
functions stated in [65] are selected. All the functions are
exactly the same, except we have used ‘F’, instead ‘f’ to
denote a function (e.g. we have used Fj, instead of fi).
The 23 benchmark functions can be broadly classified into
three categories: 7 uni-modal functions (Fp to F7), 6 multi-
modal functions (Fg to Fy3), and 10 multi-modal functions
with fixed dimensions (F4 to F73). Please refer to [65] for
the detailed description of the uni-modal, multi-modal, and
multi-modal functions with fixed dimensions. The uni-modal
functions have only one optimal value, and obtaining this
value helps estimate the exploitation ability of any algo-
rithm. The multi-modal functions have more than one optimal
value, which essentially tests the exploration ability of the
algorithm. The final category is similar to the multi-modal
functions but with small dimensions.

B. PARAMETER TUNING

The proposed algorithm has two control parameters namely
o and k. This section mainly focuses on finding the
most optimal parameter combination. For this purpose, two
functions from each category are selected: Fp, Fg from
uni-modal functions, Fg, Fj1 from multi-modal functions,

VOLUME 10, 2022



R. Guha et al.: Groundwater Flow Algorithm: A Novel Hydro-Geology Based Optimization Algorithm

IEEE Access

and F»q, F22 from multi-modal functions with fixed dimen-
sions. The values considered for each parameter are
as follows: ¢ = [0.5,0.55,0.6,0.65,0.7] and £k =
[0.4,0.5,0.6,0.7]. As a result, a total of 20 (5 x 4 = 20)
combinations are checked. During the testing, the num-
ber of runs, GWSs, and iterations remains fixed as
30, 50 and 1000 respectively.

The best values obtained for each function are recorded and
summed for every parameter combination. The best param-
eter combination is the one that has produced the best sum
value. A visual interpretation of the obtained results is pro-
vided in Figure 4. From the experimentation, the best values
of o and k are found to be 0.65 and 0.7 respectively. The final
values for all the parameters are provided in Table 1.

Variation in the sum of 6 functional values for 20 parameter
combinations used for the tuning experimentation

-13.7247
a=0.5 a=0.55 a=0.6 a=0.65 a=0.7

-13.72475

-13.7248

-13.72485

-13.7249 \-’—" = s

-13.72495

\

<

——k=0.4 k=0.5 k=0.6 k=0.7

FIGURE 4. Results obtained by varying the parameters of GWFA.

TABLE 1. Final values of all the parameters.

Parameters Final Values
Number of runs 30
Number of Water Source 50
Number of Iteration 1000
« 0.65
k 0.7
P 20

Even though it is always a good idea to tune the parameters
of an algorithm for a particular application, there are certain
intuitions that can be used to tune them in an appropriate way,
thereby reducing the effort. The parameter « determines the
importance of the DA and the LA in the movement of the
current RA. If it is known that the function is uni-modal,
it would be better to provide more importance to the DA
and the value of o should be increased. On the other hand,
if there is no information about the functions in hand, its
value should be closer to 0.5 (equal importance to the DA
and the LA). The value of p denotes the percentage of DAs
in the population. This number is very useful in guiding
candidates in multiple directions. It helps when we deal with
multi-modal functions. Hence, this value should be increased
when it is known that the underlying function is a multi-
modal function, else it should be reduced. The value of 20 is
a reasonable choice to maintain the appropriate diversity and
is recommended for use when the user has no idea about the
test function. Another important parameter in our algorithm
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is k. It basically converts the hydraulic gradients to velocity
information and is a scaling mechanism. We have found the
value 0.7 through experimentation and readers can use this
value to find the scaling required for the application function.

C. RESULTS AND COMPARISON

The proposed algorithm is evaluated over 23 benchmark func-
tions mentioned in Section I'V-A. For proper experimentation,
the algorithm is run 30 times, and the best, average, and stan-
dard deviation of the obtained values are stored. The result
obtained for GWFA is compared with other state-of-the-
art methods that include GSA, PSO, Gravitational Particle
Swarm (GPS), PSOGSA, Grey Wolf Optimizer (GWO), Coy-
ote Optimization Algorithm (COA) and Equilibrium Opti-
mizer (EO). To maintain a fair comparison environment,
population size and the number of iterations for each algo-
rithm is taken as 50 and 1000 respectively (same as GWFA).
The best value, average value, and standard deviation are
also calculated for every method. All the compared methods
have some manually tuned parameters. The values of those
parameters for each algorithm are tabulated in Table 2.

TABLE 2. Parameter settings of the methods with which the proposed
method is compared.

Algorithm | Parameters and their corresponding values
GSA 61:2762:2,G0:1
PSO Cc1 = 27 C2 = 2
GPS C1 = 2,82 = 2,03 = 0.5,84 =15

PSOGSA ci=05,c=15
GWO d = 2(linearly decreased over iterations)
COA nfevalmaee = 20000, n, = 20,n. =5

SOGWO d = 2(linearlydecreasedoveriterations)

EO al=2,a2=1,GP=05

The detailed comparative study is separately carried out for
all three categories of functions. Tables 3, 4 and 5 contain the
results for uni-modal functions, multi-modal functions and
multi-modal functions with fixed dimensions respectively.
A method is said to have the best result for a particular
function if it has obtained the lowest best value. If multi-
ple methods have the same best values, average values are
checked and if still some methods are indistinguishable in
terms of average value, finally standard deviation is checked
to decide the best one.

The uni-modal functions mainly test the exploitation abil-
ity of any algorithm. As it is evident from Table 3, the pro-
posed GWFA has outperformed all the other algorithms in six
(F — F4, Fe, F7) out of seven uni-modal functions. Not only
that, the proposed algorithm has also surpassed all the other
algorithms in terms of average value and standard deviation
for these six functions, which proves the superiority of the
algorithm. Though the proposed algorithm has not achieved
the best outcome in Fs, the result is indeed competitive
with others. Hence, based on the properties of the uni-modal
functions, it can be stated that GWFA is capable of handling
exploitation in a competent way.
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Multi-modal functions are predominantly used for analyz-
ing the exploration property due to its large number of local
optima. Tables 4 show the outstanding performance of the
proposed GWFA. GWFA has achieved the best result in three
(Fs, F9 and Fi1) out of six functions not only in terms of
best value but also in terms of average value and standard
deviation. GWFA achieves the second best result in Fjg and
the result difference is marginal. Obtained outcomes in the
other two functions (F2, F13) are very close to the global
optima. The performance in multi-modal functions clearly
reveals the strong exploration ability of GWFA. Apart from
GWFA, EO is the next best performer with 5 best results
(2 multi-modal and 3 fixed-dimensional multi-modal func-
tions) and SOGWO is the third best performer with 4 best
values (3 multi-modal and 1 fixed-dimensional multi-modal
functions).

Table 5 shows the result of GWFA in multi-modal func-
tions with fixed dimensions. In this category, GWFA has
achieved impressive results as well. It has outperformed oth-
ers in three (F7, F2g, F»2) out 10 functions. If we consider
only the best values, GWFA is able to achieve the best result
for 7 out of the 10 functions. In the case of Fig and Fg,
the difference between the best result and GWFA result is
only in terms of standard deviation. So, it is a clear indication
that although GWFA has not achieved the best results in
certain situations, it has given a very close competition to the
best method in such situations.

In total, the proposed GWFA has achieved the best results
for 12 out of 23 (approx 52%) benchmark functions. The
outcomes in other functions are also very close to global
optima and competitive with other algorithms. Excellent per-
formance on both uni-modal and multi-modal functions also
establishes the strong exploration and exploitation abilities
of GWFA.

D. CONVERGENCE TESTING
For any optimization algorithm, convergence is one of the
most important criteria for comparison. A good optimization
approach should be able to provide fast but steady conver-
gence, which means that the approach should provide fast
reduction in the objective score, but it should not oscil-
late too much. That is why a convergence test is necessary
for any optimization algorithm to prove its efficiency. This
section describes the convergence capability of the proposed
GWFA. Figures 5, 6 and 7 demonstrate the convergence
graphs for uni-modal functions, multi-modal functions, and
multi-modal functions with fixed dimensions respectively.
There are two sub-parts of each convergence graph: param-
eter space and objective space. Parameter space provides
the visual representation of the functions in 2D, while the
objective space contains the convergence curves. The X-axis
in objective space indicates the iteration number, whereas the
Y-axis depicts the global best value among all populations
obtained till the current iteration.

The number of GWSs is kept at 50 and 500 itera-
tions are used to test the convergence capability of GWFA.
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For comparison of convergence, we have selected the top
three algorithms according to Section IV-C namely GWFA,
EO, and SOGWO. The convergence experiments clearly indi-
cate that GWFA has the ability to provide steady convergence.
However, it is also clear that EO and SOGWO are good
performers, in terms of convergence. GWFA has provided
marginally better convergence compared to both its competi-
tors over the uni-modal functions. The trend remains almost
the same in the case of multi-modal functions, except for
function Fg, where SOGWO provides better convergence.
But in the case of fixed-dimensional multi-modal func-
tions, EO displays the best convergence capabilities in most
cases.

E. APPLICATION OF GWFA IN ENGINEERING PROBLEMS
Engineering problems are some real-world problems that
involve designing and building systems and/or products. It is
basically a decision-making process that contains complex
objective functions and a large number of decision vari-
ables. Generally, meta-heuristic algorithms perform better
than any traditional algorithm due to the proper convergence
of the former to an optimal solution. Besides, meta-heuristic
algorithms also have the ability to handle non-convex and
non-differentiable functions. Mainly complex engineering
problems involve a large number of design variables. The
influence of those variables on the objective function, which
is to be optimized, turns out to be very troublesome and
non-linear in nature. Five classical engineering design prob-
lems namely, spring, gear train, welded beam, pressure vessel
and closed coil helical spring design are considered in this
study. The problems are explained in this section. These prob-
lems have many local optima, but the task of the algorithm is
to find the global optimum. Hence, an efficient optimization
algorithm is required to solve the problems.

1) TENSION/COMPRESSION SPRING DESIGN PROBLEM
In this problem, the main objective is to minimize the weight
of the coil involving three decision parameters - wire diame-
ter d, mean coil diameter D, and the number of active coils N
along with four inequality constraints. The objective function
is given in equation 23. Any solution to this problem can
be represented as: X = [x;xox3] = [dDN]. The variable
ranges are: x; € [0.05,2.00], xo € [0.25,1.30] and x3 €
[2.00, 15.00].

The visual description of this problem is provided
in Figure 8.

EF| =03+ 2)xx2 *X12 (23)

2) GEAR TRAIN DESIGN PROBLEM

The aim of this design problem is to minimize the cost of
the gear ratio of the gear train. The four decision parameters
present in this problem are T, Tp, Ty and Ty. There are
no inequality constraints present in this problem. A picto-
rial representation of the gear train design problem is given
in Figure 9. The gear ratio is formulated as TpTy/T;T,.
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TABLE 3. Comparison of obtained results over 7 uni-modal functions.

Function GWFA GSA PSO GPS PSOGSA GWO COA SOGWO EO
Best | 2.08E-134 1.10E-17 1.10E-15 6.60E-19 3.29E-19 9.07E-73 1.0300E -12 3.81E-79 1.95E-44
Fi Avg 4.03E-133 2.00E-17 1.30E-11 1.20E-18 4.74E-19 1.36E-70 1.20E-10 6.05E-77 3.32E-40
SD 4.05E-133  5.50E-18 8.80E-11 3.00E-19 8.04E-19 2.57E-70 1.03E-10 1.49E-76 6.78E-40
Best 1.44E-66 1.40E-08 4.40E-09 3.30E-09 2.47E-09 3.59E-42 1.0308-10 3.50E-46 4.64E-24
F> Avg 7.05E-66 2.40E-08 2.90E-06 5.20E-09 2.93E-09 5.64E-41 1.01E-09 1.18E-44 7.12E-23
SD 3.37E-66 4.40E-09 1.30E-05 9.00E-10 2.64E-10 6.43E-41 4.54E-08 1.34E-44 6.36E-23
Best | 8.49E-116  7.50E+01 1.90E+01  3.10E+00  2.92E+02  2.56E-25 3.38E+09 1.17E-28 7.17E-13
F3 Avg 8.61E-115  2.30E+02 1.20E+02  9.70E+01 1.82E+03 1.09E-19 3.38E+09 5.40E-22 8.06E-09
SD 9.19E-115 1.00E+02  7.50E+01 1.10E+02  4.82E+02 3.11E-19 0.00E+00 2.60E-21 1.60E-08
Best 1.64E-64 2.10E-09 1.40E-01 8.20E-10 1.30E+01 1.28E-18 1.00E+02 7.08E-21 2.01E-11
Fy Avg 4.79E-64 6.40E-02 4.20E-01 1.30E+00  2.20E+01 1.94E-17 1.00E+02 1.18E-19 5.39E-10
SD 2.75E-64 2.50E-01 1.90E-01 9.80E-01 3.89E+00  3.68E-17 0.00E+00 1.51E-19 1.38E-09
Best 2.81E+01 2.60E+01  2.50E+01  2.30E+01 1.60E+01  2.51E+01 7.49E+09 2.50E+01  2.49E+01
Fs Avg 2.86E+01 2.80E+01 2.70E+01 2.60E+01 2.60E+01 2.63E+01 7.49E+09 2.65E+01 2.53E+01
SD 1.96E-01 1.00E+01  8.40E+00  8.80E+00  2.50E+00  6.69E-0O1 0.00E+00 7.62E-01 1.70E-01
Best | 0.00E+00 7.40E-18 8.30E-16 6.00E-19 3.30E-19 1.09E-05 1.01E+06 6.19E-06 1.90E-06
Fs Avg 0.00E+00 1.90E-17 1.30E-12 1.20E-18 5.05E-19 4.12E-01 1.01E+06 2.83E-01 8.29E-06
SD 0.00E+00 6.40E-18 7.10E-12 3.30E-19 9.40E-20 2.45E-01 0.00E+00 2.47E-01 5.02E-06
Best 3.99E-07 8.40E-03 1.70E-03 1.10E-03 1.50E-02 1.49E-04 1.36E+04 8.06E-05 3.46E-04
Fr Avg 2.64E-05 2.80E-02 7.00E-03 3.10E-03 3.30E-02 5.68E-04 1.36E+04 4.93E-04 1.17E-03
SD 3.10E-05 1.70E-02 2.50E-03 1.20E-03 9.30E-03 3.54E-04 8.09E-05 2.71E-04 6.54E-04
TABLE 4. Comparison of obtained results over 6 multi-modal functions.
Function GWFA GSA PSO GPS PSOGSA GWO COA SOGWO EO
Best | -1.L10E+04  -420E+03 -1.00E+04 -8.90E+03  -8.85E+03  -7.09E+03 1.81E+04  -8.18E+03  -1.07E+04
Fy Avg -1.05E+04  -2.70E+03  -9.00E+03  -7.50E+03  -8.09E+03  -6.07E+03 1.81E+04  -6.57E+03  -9.02E+03
SD 2.78E+02 4.70E+02 5.20E+02 7.70E+02 4. 71E+02 5.37E+02 3.83E-12 8.03E+02 5.95E+02
Best 0.00E+00 9.00E+00 1.80E+01 9.00E+00 4.48E+01 0.00E+00 2.89E+03 0.00E+00 0.00E+00
Fy Avg 0.00E+00 1.70E+01 4.10E+01 2.10E+01 7.42E+01 5.20E+00 2.89E+03 0.00E+00 0.00E+00
SD 0.00E+00 4.30E+00 1.50E+01 6.10E+00 1.10E+01 1.89E+00 4.79E-13 0.00E+00 0.00E+00
Best 4.00E-15 2.20E-09 4.60E-09 5.40E-10 4.32E-10 7.99E-15 2.00E+01 8.88E-16 7.99E-15
Fio Avg 4.00E-15 3.40E-09 9.10E-08 8.80E-10 5.07E-10 1.31E-14 2.00E+01 8.88E-16 8.34E-14
SD 2.41E-30 4.10E-10 2.00E-07 1.30E-10 4.70E-11 2.73E-15 0.00E+00 0.00E+00 2.53E-14
Best 0.00E+00 2.00E+00 5.10E-15 0.00E+00 2.86E-06 0.00E+00 9.00E+03 0.00E+00 0.00E+00
Fiq Avg 0.00E+00 4.30E+00 1.20E-02 2.30E-02 2.33E-01 5.23E-04 9.00E+03 0.00E+00 0.00E+00
SD 0.00E+00 1.60E+00 1.20E-02 3.00E-02 3.50E-01 2.61E-03 0.00E+00 0.00E+00 0.00E+00
Best 6.76E-02 6.20E-20 1.60E-18 4.70E-21 1.01E+00 6.57E-03 2.56E+10 2.62E-02 3.63E-08
Fio Avg 1.26E-01 2.50E-02 1.50E-02 5.00E-02 4.46E+00 2.66E-02 2.56E+10 5.61E-02 7.97E-07
SD 3.97E-02 6.10E-02 3.60E-02 1.30E-01 1.80E+00 1.55E-02 0.00E+00 1.42E-02 7.69E-07
Best 9.79E-01 1.22E-18 9.90E-131 3.75E-08 9.29E-20 1.58E-05 4.10E+10 1.42E-05 1.84E-06
Fi3 Avg 1.53E+00 2.10E-18 2.00E-31 8.48E-02 2.20E-03 3.25E-01 4.10E+10 3.53E-01 2.93E-02
SD 2.97E-01 5.00E-19 4.30E-31 8.00E-02 4.50E-03 1.56E-01 0.00E+00 1.28E-01 3.53E-02
TABLE 5. Comparison of obtained results over 10 fixed dimension multi-modal functions.
Function GWFA GSA PSO GPS PSOGSA GWO COA SOGWO EO
Best 9.98E-01 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.98E-01 5.00E+02 9.98E-01 9.98E-01
Fiq Avg 8.03E+00 3.80E+00 1.00E+00 1.00E+00 1.39E+00 3.11E+00 5.00E+02 3.43E+00 9.98E-01
SD 4.16E+00 2.60E+00 3.20E-17 5.80E-01 8.75E-01 3.73E+00 5.99E-14 3.72E+00 1.54E-16
Best 3.08E-04 1.40E-03 3.10E-04 3.10E-04 3.10E-04 3.07E-04 4.10E+01 3.07E-04 3.08E-04
Fis Avg 3.09E-04 4.10E-03 1.20E-03 4.10E-04 4.10E-04 4.36E-03 4.10E+01 2.38E-03 2.40E-03
SD 1.42E-06 3.20E-03 4.00E-03 3.40E-04 3.40E-04 8.17E-03 7.49E-15 6.03E-03 6.10E-03
Best | -1.03E+00  -1.00E+00  -1.00E+00  -1.00E+00  -1.00E+00  -1.03E+00 6.42E+03 -1.03E+00  -1.03E+00
Fie Avg -1.03E+00  -1.00E+00  -1.00E+00  -1.00E+00  -1.00E+00  -1.02E+00 6.42E+03 -1.03E+00  -1.03E+00
SD 8.73E-08 4.00E-16 2.30E-16 2.80E-16 2.80E-16 4.80E-09 9.59E-13 3.75E-09 6.04E-16
Best 3.98E-01 4.00E-01 4.00E-01 4.00E-01 3.98E-01 3.98E-01 9.00E+03 3.98E-01 3.98E-01
Fi7 Avg 3.98E-01 4.00E-01 4.00E-01 4.00E-01 3.98E-01 3.98E-01 9.00E+03 3.97E-01 3.98E-01
SD 0.00E+00 3.40E-16 3.40E-16 3.40E-16 0.00E+00 3.36E-07 0.00E+00 4.86E-07 0.00E+00
Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 7.67TE+04 3.00E+00 3.00E+00
Fig Avg 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 7.67E+04 3.00E+00 3.00E+00
SD 3.85E-06 2.20E-15 3.10E-15 1.60E-15 8.40E-16 4.88E-06 0.00E+00 4.63E-06 1.56E-15
Best | -3.86E+00  -3.90E+00 -3.90E+00 -3.90E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
Fig Avg -3.86E+00  -3.60E+00  -3.90E+00 -3.90E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
SD 4.02E-07 3.00E-01 3.10E-15 3.10E-15 2.19E-15 1.05E-03 4.55E-13 2.71E-03 2.59E-15
Best | -3.32E+00 -3.30E+00 -3.30E+00 -3.31E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00  -3.32E+00
Fao Avg -3.32E+00  -1.90E+00  -3.30E+00 -3.30E+00  -3.31E+00 -3.25E+00 -3.32E+00 -3.27E+00 -3.27E+00
SD 1.97E-05 5.40E-01 5.50E-02 2.40E-02 6.07E-01 7.04E-02 6.66E-05 7.37E-02 5.70E-02
Best | -1.02E+01 -5.10E+00  -1.00E+01 -1.00E+01  -1.02E+01  -1.02E+01  -1.02E+01  -1.02E+01 -1.02E+01
Fo1 Avg -9.97E+00  -5.10E+00  -7.20E+00  -8.50E+00  -6.17E+00 -9.95E+00 -1.02E+01 -9.66E+00  -8.55E+00
SD 9.30E-01 7.40E-03 3.30E+00 3.10E+00 3.74E+00 1.01E+00 1.63E-04 1.51E+00 2.76E+00
Best | -1.04E+01 -1.00E+01 -1.00E+01 -1.00E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01
Fao Avg | -1.04E+01  -7.50E+00  -9.10E+00  -1.00E+01 -8.87E+00  -1.02E+01 -1.04E+01 -1.04E+01 -9.34E+00
SD 2.66E-04 2.70E+00 2.80E+00 7.20E-15 3.14E+00 1.05E+00 2.94E-03 4.43E-04 2.44E+00
Best | -1.05E+01 -1.10E+01  -1.10E+01 -1.10E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01
Fbs Avg -1.04E+01 -1.00E+01  -9.40E+00 -1.00E+01 -7.90E+00  -1.03E+01 -1.05E+01 -1.05E+01 -9.64E+00
SD 9.87E-01 7.80E-01 2.80E+00 1.60E+00 3.69E+00 1.08E+00 9.45E-05 5.41E-01 2.39E+00
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FIGURE 6. 2-D representations and convergence curves for 6 multi-modal benchmark functions.

On the other hand, the objective function is demonstrated in by x; € [12, 60]
equation 24. Representation of a solution can be given as:
X = [x1x2x3x4] = [T,TpT4Ty]. The variable range is given EF; = ((1/6.931) — (x3x2/x1x4))? (24
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pe —P |D

FIGURE 8. Pictorial representation of Tension/Compression Spring design
problem.

3) WELDED BEAM DESIGN PROBLEM

The welded beam design problem is mainly a minimization
problem consisting of four variables. The variables are weld
thickness (), length of the bar attached to the weld (),
bar’s height (¢), and bar’s thickness (b). The available con-
straints for this problem include bending stress (6), bean
deflection (8), shear stress (t), buckling load (P.), and other
side constraints. The problem is displayed in Figure 10.

VOLUME 10, 2022

FIGURE 9. Pictorial representation of Gear Train design problem.

The population of this problem is represented as X
[x1x2x3x4] = [hith]. The variable ranges are: x; € [0.1, 2],
x € [0.1,10], x3 e [0.1,10] and x4 € [0.1,2]. The
objective function is formulated in equation 25

EF3 = 1.1047x7x; + 0.04811x3x4(14.0 + x2)  (25)
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N

FIGURE 10. Pictorial representation of Welded Beam design problem.

4) PRESSURE DESIGN VESSEL PROBLEM

The main objective of this problem is to minimize the man-
ufacturing, welding, and material cost of the pressure vessel.
Four variables associated with this problem are - the thickness
of shell (Ts), the thickness of the head (7}) which are discrete
decision variables, the inner radius (R), and length of the
cylindrical section of the vessel (L) those are continuous
decision variables.

An image is provided in Figure 11 for better visualiza-
tion of the problem. Any population is formulated as: ¥ =
[x1x2x3x4) = [TsTHRL]. The objective function is described
in equation 26. The variables lie in a certain range of values,
which are as follows - x; € [0, 100], x; € [0, 100], x3 €
[10,200] and x4 € [10, 200].

EF 4 =0.6224x1x3x4+1.7781x2x2 43.166 1x?x4 +19.84x7x3
(26)

FIGURE 11. Pictorial representation of Pressure Design Vessel problem.

5) CLOSED COIL HELICAL SPRING DESIGN PROBLEM

The main aim of this design constraint problem is to decrease
the volume of closed coil helical springs. A helical spring
consists of closed coiled wire having the shape of a helix
and is intended for the tensile and compressive load. The
two variables related to this problem are as follows - coil
diameter(D) and wire diameter(d). There is another param-
eter, the number of coils (n), which can be set before-
hand. The pictorial description of the problem is given in
Figure 12. Any population of this problem can be devised
as X = [xixox3] = [dDn]. The variables maintain cer-
tain range of values which are provided as follows: x; €
[0.508, 1.016], x e [1.270,7.620], and x3 € [15,25].
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FIGURE 12. Pictorial representation of Closed Coil Helical Spring design
problem.

The objective function is formulated in Equation 27.
EFs = (m*/4)(x3 + 2)xox{ 27)

All the experiments are carried out using the optimal values
of the two parameters - o and k. The number of iterations is
kept at 1000 and the number of runs is 30. The detailed result
obtained on the five engineering design problems is given in
Table 6. The best value, average value, and standard deviation
of all runs are also provided in Table 6. The outcomes are
compared with six other state-of-the-art methods - PSOGSA,
GPS, PSO, GWO, SOGWO, and EO. It is to be noted that
the proposed GWFA algorithm is able to achieve the lowest
value for three out of five engineering problems. For the rest
two functions, GWFA has achieved results very close to the
global optimum. Thus, this test clearly indicates that GWFA
is highly robust in nature and is applicable to a large variety
of mathematical optimization problems.

F. STATISTICAL ANALYSIS

For statistical analysis of the results of the proposed method,
we have relied on three methods namely, Wilcoxon rank-
sum test, Friedman test, and Kruskal-Walli’s test. Broadly,
in any statistical test, we compare samples from two or more
groups to determine how the independent and the dependent
variable relate to each other. These statistical tests consider
a null hypothesis of no relationship between the groups.
After that, they find whether the observed data fall outside
of the range of values predicted by the null hypothesis. The
p-value (probability value) determines how probable it is that
you would perceive the change defined by the test statistic
if the null hypothesis of no relationship were true. If the
value of the test statistic exceeds the statistic calculated from
the null hypothesis, then it can be inferred that there is a
statistically significant relationship between the predictor and
outcome variables. If the value of the test statistic is less than
the one calculated from the null hypothesis, then it can be
inferred that no statistically significant relationship between
the predictor and outcome variables exists. In general, sta-
tistical tests are divided into two types, namely, parametric
and nonparametric tests. Non-parametric tests do not make as
many assumptions about the data and are useful when one or
more of the common statistical assumptions are not satisfied.
So, non-parametric tests are considered in our work.
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TABLE 6. Results of GWFA on five standard Engineering Applications along with the comparative study that contains methods like - PSOGSA, GPS, PSO,

GWO, SOGWO, and EO.

Function GWFA PSOGSA GPS PSO GWO SOGWO EO
best | 2.50E-03 2.50E-03 6.90E-03 2.50E-03 2.50E-03 2.50E-03 2.50E-03
EF1 | Avg | 2.50E-03 2.50E-03 1.07E-01 2.50E-03 2.50E-03 2.50E-03 2.50E-03
Std | 4.34E-19 8.64E-10 | 2.50E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
best | 1.14E-15 3.60E-03 2.88E-07 | 0.00E+00 | 3.05E-17 2.43E-14 | 0.00E+00
EF2 | Avg | 9.00E-12 | 2.00E-03 2.00E-03 | 0.00E+00 | 3.05E-17 2.43E-14 | 0.00E+00
Std 1.25E-11 4.93E-09 | 4.00E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
best | 7.89E-03 | 0.00E+00 | 0.00E+00 | 7.89E-03 | 7.89E-03 | 7.89E-03 7.89E-03
EF3 | Avg | 7.89E-03 | 0.00E+00 | 0.00E+00 | 7.89E-03 | 7.89E-03 | 7.89E-03 | 7.89E-03
Std 1.73E-18 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
EF4 | Avg | 0.00E+00 | 3.33E+02 | 8.88E+03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
Std | 0.00E+00 | 4.79E+02 | 4.48E+04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
best | 1.37E+01 | 1.38E+01 | 1.38E+01 | 1.37E+01 | 1.37E+01 | 1.37E+01 | 1.37E+01
EF5 | Avg | 1.37E+01 | 1.38E+01 | 1.38E+01 | 1.37E+01 | 1.37E+01 | 1.37E+01 | 1.37E+01
Std | 3.55E-15 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
TABLE 7. p-values generated by Wilcoxon rank-sum test for 23 benchmark functions and 5 engineering applications.
Functions EO GWO PSO PSOGSA SOGWO GPS
F1 8.86E-05 0.0317311 8.86E-05 8.86E-05 0.020433 8.86E-05
F2 8.86E-05 0.032142 8.86E-05 8.86E-05 0.04793217 8.86E-05
F3 8.86E-05 0.0336411 8.86E-05 8.86E-05 0.0350656 8.86E-05
F4 8.86E-05 0.0267331 8.86E-05 8.86E-05 0.01708905 8.86E-05
F5 0.000103203 0.0114311 0.01654159 | 0.00601213 0.04156004 | 0.012681322
F6 0.000140134 0.00317 8.86E-05 0.00150729 0.0478575 0.00718917
F7 0.00021908 0.01171 8.86E-05 8.86E-05 0.04525653 8.86E-05
F8 8.86E-05 0.030071 0.03881293 8.86E-05 0.03681322 0.00220394
F9 0.01654721 0.04417 8.84E-05 8.82E-05 0.0461451 8.84E-05
F10 7.91E-05 0.001457 8.86E-05 8.81E-05 0.01857082 8.84E-05
F11 0.0108809 0.003241 0.036545 0.000389774 0.0465209 0.00116127
F12 8.86E-05 0.01245 8.86E-05 8.86E-05 0.0501591 8.86E-05
F13 8.86E-05 0.007458 8.86E-05 0.000390231 | 0.01455273 | 0.000779593
F14 0.00106795 0.0004123 0.00856092 0.0465672 0.0128084 0.0168331
F15 0.0342414 0.037854 0.00247145 0.04501161 0.02243615 0.01708881
F16 0.00317311 0.003214 0.01317311 0.0317311 0.0317311 7.74E-06
F17 0.012412 0.0000412 0.000415 0.0000412 0.003247 7.74E-06
F18 0.004156 0.004126 0.01436 0.0.007895 0.0.0098741 7.74E-06
F19 0.0255968 0.003173 0.0255968 0.0255968 0.00958816 7.39E-05
F20 0.00775619 0.011012 0.046032 0.01775619 0.03706289 8.72E-05
F21 0.0473289 0.01317311 0.00647529 | 0.00151651 0.0230876 0.00145619
F22 0.0501447 0.0317311 0.0188669 0.00746347 0.0084469 0.00050402
F23 0.00655997 0.036317311 0.0157299 0.00282514 0.0039875 7.61E-05
EF1 0.014789 0.0045687 8.86E-05 0.00317311 0.04317311 7.74E-06
EF2 0.000189012 0.032415 8.86E-05 8.86E-05 0.0278965 0.0473546
EF3 0.001456 0.00317311 8.86E-05 0.017854 0.004569 7.74E-06
EF4 0.0412311 0.015478 0.01313463 0.03317311 0.0417311 0.04156
EF5 0.00145 0.049857 8.86E-05 0.01748 0.016358 7.74E-06

Firstly, a non-parametric statistical test, known as
Wilcoxon rank-sum test [66], has been performed. This is
done in order to check whether the results of an algorithm
are statistically different from other algorithms [67]. The null
hypothesis states that if two sets of results are from the same
distribution, any difference in the two mean ranks comes only
from the sampling error. If the distributions of the two results
are statistically different, then the generated p-value from the
test statistics will be < 0.05 (level of significance), as we
have performed the test at 0.05% significance level, resulting
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in the rejection of the null hypothesis. To obtain the p value,
we have considered two lists obtained from the proposed
algorithm and the comparing methods for each function. The
test is performed for 23 benchmark functions and 5 engineer-
ing applications. The final results of the Wilcoxon test are
provided in Table 7.

Kruskal-Walli’s test [68] is also performed to prove the
consistency of the proposed GWFA. This is a non-parametric
method that compares two or more groups of results obtained.
To obtain the p value, we have considered two lists obtained
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TABLE 8. p-values generated by Kruskal-Walli's test for 23 benchmark functions and 5 engineering applications.

Functions EO GWO PSO PSOGSA SOGWO GPS
F1 6.30E-08 0.004125 6.30E-08 6.30E-08 0.0123985 6.30E-08
F2 6.30E-08 0.0061465 6.30E-08 6.30E-08 0.0563654 6.30E-08
F3 6.30E-08 0.0083974 6.30E-08 6.30E-08 0.0206304 6.30E-08
F4 6.30E-08 0.00989741 6.30E-08 6.30E-08 0.0354985 6.30E-08
F5 7.40E-07 0.00987145 | 0.0129822 0.001 0.0039975 0.0304665
Fo6 2.75E-07 0.0199987 6.30E-08 1.12E-06 0.0014695 0.0304658
F7 1.50E-05 0.0157364 6.30E-08 6.30E-08 | 0.05013985 0.010965
F8 6.30E-08 0.0181365 0.0082864 9.78E-07 | 0.00413978 6.30E-08
F9 0.0197143 0.0072145 1.03E-08 1.03E-08 0.003259 0.008699
F10 1.85E-08 0.01198465 3.58E-08 3.56E-08 0.019554 1.03E-08
F11 0.01756412 | 0.04554124 3.01E-05 1.71E-06 0.039859 5.11E-06
F12 6.30E-08 0.001423 6.30E-08 6.30E-08 0.033566 3.18E-07
F13 6.45E-07 0.007489 0.018273 8.77TE-05 | 0.01465985 0.0003214
F14 2.12E-05 0.006347 0.00009052 | 0.0199874 | 0.0448965 0.0485822
F15 0.000501007 0.541254 0.004123 0.0184911 0.010402 0.0061836
F16 0.013745 0.0014625 0.0071036 0.01978 0.0430064 4.24E-10
F17 0.0014365 0.00014652 0.039685 0.0221546 | 0.0052699 4.24E-10
F18 0.004126 0.0445398 0.001298 0.00198 0.0421665 4.24E-10
F19 0.0089745 0.004123 0.0008953 0.008951 0.0065487 2.62E-08
F20 0.018713 0.032014 0.0431331 0.00895 0.0103249 4.08E-08
F21 0.0396854 0.0300102 0.041252 0.0001214 | 0.03336545 0.0172224
F22 0.037647 0.0031711 0.0151943 | 0.0203227 0.029658 0.000010609
F23 0.039845 0.012403 0.04413 0.0001475 | 0.0041665 6.04E-09
EF1 2.72E-07 0.004103 7.35E-09 0.004198 | 0.00413985 4.24E-10
EF2 0.0331457 0.041783 5.34E-08 6.26E-08 0.043265 0.0132512
EF3 0.0013744 0.0063145 0.024745 0.0047495 0.00198 4.24E-10
EF4 0.0074513 0.004135 7.35E-09 0.03998 0.0132689 | 0.005329685
EF5 0.0480134 0.0143652 7.35E-09 0.00465 0.04519685 4.24E-10

TABLE 9. p-values generated by Friedman test for 23 benchmark
functions and 5 engineering functions.
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Function | p-value of Friedman test
Fy 6.18E-22
P 2.32E-22
F3 3.73E-22
Fy 3.85E-20
Fs 0.000402981
Fs 1.65E-17
Fr 1.87E-20
Fy 1.33E-15
Fy 1.65E-15
Fio 6.67E-22
Fiu 9.22E-17
Fio 3.37E-22
Fi3 1.23E-16
Fiy 2.47E-05
Fis 0.000346182
Fig 1.63E-23
Fir 1.45E-20
Fig 1.33E-18
Fig 6.17E-17
Fyo 2.01E-10
Fy 6.14E-06
Faa 2.59E-06
Fys 4.62E-13

EFy 1.63E-23
EF 9.09E-18
EF3 1.24E-21
EF, 0.00569709
EFs 1.66E-14

from the proposed algorithm and the comparing methods for
each function. This test is conducted at 0.05% significance
level for 23 benchmark functions and 5 engineering applica-
tions and the obtained results, reported in Table 8, prove the
significance of the proposed method.

Friedman test [69] is also performed for determining the
statistical significance of the results obtained by GWFA.
Friedman test is a non-parametric statistical test that provides
the measure of the differences between multiple methods. It is
normally used for answering the following kind of question:
in a set of n number of results (where n > 2), does at least two
of the sets represent results with different median values? The
null hypothesis considered here is no significant difference
in the results of the methods at 0.05% significance level.
To obtain the p value, we have considered two lists obtained
from the proposed algorithm and all the comparing methods
for each function. Table 9 contains the p values obtained
from 23 benchmark functions and 5 engineering applications.
From the test results provided in Table 9, all the obtained
p-values are < 0.05. This clearly proves the presence of at
least one set of significant results.

V. CONCLUSION

In this paper, we have proposed an optimization algorithm
based on a hydro-geological phenomenon known as ground-
water flow. The algorithm, named GWFA, is inspired by the
movement of groundwater from recharge areas to discharge
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areas following Darcy’s law. The Exploration and exploita-
tion abilities of the algorithm are carefully taken care of
through the usage of the control factor. From the experimen-
tal outcomes and associated discussion, we have shown the
applicability of GWFA for mathematical optimization. The
algorithm has been tested over 23 benchmark functions and
5 classical engineering problems. Some classical and recently
published algorithms are compared with the proposed algo-
rithm. GWFA has been able to outperform the other meth-
ods over 12 out of the 23 functions. Besides, significant
tests are conducted to ensure the statistical significance of
the proposed algorithm. Therefore, by analyzing the results
and related discussion, it can be concluded that GWFA is
comparable to most state-of-the-art algorithms and applicable
to a variety of optimization problems. Every optimization
algorithm suffers from certain limitations and GWFA is no
exception to that. GWFA has a slower convergence speed
due to the presence of multiple DAs and guidance direc-
tions. GWFA also uses a very simplistic local search for
the DA exploitation procedure, however, it helps to keep
the computational requirements to a minimum. In the future,
we want to modify the model further by hybridization with
some other meta-heuristic methods and apply the new model
in other areas like hyperparameter optimization of neural
networks, fast source estimation, feature selection, image
contrast enhancement, etc.
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