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ABSTRACT Collaborative learning is an educational approach to teaching and learning that involves groups
of learners collaborating to solve a problem, complete a task, or create a product. To enhance the performance
of collaborative learning, the studies in Yamaguchi et al. (2021, 2021, 2021, and 2022) develop an IoT system
and quantitatively extract collaboration between learners. The studies acquire sensor data from IoT badges
on learners and analyze learning activities with the acquired sensor data on a computer. However, existing
studies are not user-friendly for learning analysts who are unfamiliar with information technology owing to
complex software installation and command line interface (CLI) operation. Such drawbacks hinder the wide
expansion of technology and the exploration of new learning patterns in learning science. Considering high
usability for analysts, this paper proposes novel web services named Sensor-based Regulation Profiler Web
Services (SRP Web Services) for collaboration analysis with IoT badges. The proposed web application
consists of front-end on Next.js and back-end on FastAPI, SQLite, and Python and extracts key points in
learning activities for the analysts from the acquired sensor data on a web browser. Experimental evaluations
showed that the proposed web services support learning analysts in quantitative analysis of learning activities
with high usability. In addition, SRP Web Services are scalable with hundreds of users.

INDEX TERMS Collaborative learning, human activity recognition, IoT, sensor networks, wearable sensor,
web services.

I. INTRODUCTION
Collaborative learning, which involves collaborating to cre-
atively solve a problem, is an educational approach to teach-
ing and learning in learning science. Learners integrate new
ideas from other learners and enhance their social abilities
through collaboration with other learners. Researchers have
qualitatively analyzed collaborative learning and revealed
various patterns to improve learning performance in learning
science [5], [6], [7], [8], [9]. However, existing studies require
much time since the researchers were forced to repeat-
edly observe recorded video of collaborative learning. Such
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qualitative analysis is inapplicable for actual learning envi-
ronments, such as a class composed of several groups.

The studies in [1], [2], [3], and [4] support existing
qualitative analysis by learning analysts with a novel IoT
system named the Sensor-based Regulation Profiler (SRP).
The studies consist of IoT badges named SRP Badges to
acquire sensor data from learners and learning analysis algo-
rithms named SRP Analysis for the acquired sensor data.
SRP Badges accurately acquire sound pressure, acceleration,
and infrared from learners and the learning environment
while synchronizing across the SRP Badges. SRP Analy-
sis automatically extracts key points for qualitative learning
analysis, such as face-to-face interaction, learning phases,
speakers, and activity with the acquired sensor data. Owing to
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FIGURE 1. Overview of the proposed web services.

precise synchronization across SRP Badges within an error
of ±30µs, SRP Analysis accurately extracts the key points in
learning activities even on a short time scale.

While the above studies support qualitative analysis of
collaborative learning, they have drawbacks in usability
for learning analysts who are unfamiliar with information
technology. First, the studies force the users to understand
software attribution. The studies involve the use of Python
and C-based AutoPlait [10]. The users must install Python
considering the versions, packages, and operating system
(OS) of the installation destination. In addition, the users
must place AutoPlait on an appointed directory to activate
the analysis algorithms. Such a process hinders users who
are unfamiliar with the software from utilizing the algorithms.
Second, the studies force the users to operate on an unfamiliar
interface. The studies assume CLI operation on UNIX to
build binaries in AutoPlait and to execute the algorithms in
Python. The users are obliged to construct a UNIX environ-
ment on each computer and to operate CLI to analyze learning
activities with the algorithms. Such a technical assumption
limits learning analysts who are unfamiliar with information
technology to start learning analysis with the algorithms.

To overcome the above problems, an earlier and briefer
version of this article was presented in the study of [11].
The study in [11] proposed a web application with IoT
badges [2] named the Sensor-based Regulation Profiler Web
(SRP Web) to support qualitative analysis for collaborative
learning. The proposed scheme consists of an SRP Badge
and a web application for learning analysis that extracts and
visualizes collaborative learning activity from the acquired
sensor data. The SRP Web was developed in Django, a web
application framework that is based on Python. Any users
can access and utilize the application on a web browser. Fun-
damental evaluations qualitatively show that the SRP Web
reduces the analysis cost of learning activities by extracting
and visualizing collaboration, such as face-to-face interaction
across learners, learning phases, learners speech, and learners
activity from sensor data.

This paper proposes an extended version of the SRP Web
named SRP Web Services to easily extract and visualize

sensor data acquired from SRP Badges for high usability in
collaborative learning analysis (Fig. 1). The proposed web
application consists of front-end on Next.js and back-end on
FastAPI, SQLite, and Python and extracts key points in learn-
ing activities for learning analysts from the acquired sensor
data on a web browser. While the existing studies force the
users to construct specific and complex environments on their
computers, constructing such an environment is not necessary
to use SRP Web Services. The users just access the webpage
provided by the server preparing the above environment.
Compared with the CLI operation in the existing studies, SRP
Web Services are user-friendly for learning analysts owing
to the graphical user interface (GUI) operation. Experimental
evaluations showed that the proposed web services support
learning analysts in quantitative analysis of learning activi-
ties with high usability. In addition, our SRP Web Services
improve the scalability of the SRP Web and promote an IoT
system to support collaborative learning analysis for learning
analysts who are unfamiliar with information technology.

The remainder of this paper is organized as follows:
Section II describes related studies. Section III presents the
proposed web services for collaboration analysis with SRP
Badges. Section IV conducts a qualitative evaluation of the
proposed web services in terms of user experience. Section V
conducts a quantitative evaluation of the proposed web appli-
cation in terms of load testing. Section VI concludes our
paper.

II. RELATED WORKS
This study is related to studies on collaboration analysis
with IoT badges, web services for sensor data analysis, and
sensor-based activity recognition.

A. COLLABORATION ANALYSIS WITH IoT BADGES
Some studies have extracted human collaboration with IoT
badges on users [1], [2], [3], [4], [12], [13], [14], [15], [16],
[17]. Table 1 shows the taxonomy of the earlier studies.
Hitachi proposed an IoT badge named Business Microscope
equipped with an accelerometer and infrared sensor [12].
Business Microscope revealed that an appropriate frequency
of meetings had an impact on work efficiency in organization
management with face-to-face interaction from its infrared
sensors. While there is no need for any users to install
software and operate on unfamiliar interfaces, such as CLI,
Business Microscope has a drawback in usability for learning
analysts owing to outsourcing collaboration analysis. Out-
sourcing hinders the immediate feedback of learning analysis
to the learning environment.

MIT Media Lab. developed IoT badges and algorithms
named Sociometric Badge [13], [14], [15], OpenBadges [16],
and Rhythm [17] for human collaboration analysis in 2008,
2016, and 2018, respectively. Sociometric Badge mounted
an accelerometer, Bluetooth, an infrared sensor, and a sound
pressure sensor and was applied to various domains such as
organization management [13], health care [14], and orga-
nization engineering [15]. For example, the study in [13]

VOLUME 10, 2022 121319



S. Yamaguchi et al.: Web Services for Collaboration Analysis With IoT Badges

TABLE 1. Taxonomy of earlier studies.

demonstrated the importance of face-to-face social networks
in predicting worker productivity with Sociometric Badge in
organization management. Open Badges downsized Socio-
metric Badge for low power consumption and preliminar-
ily visualized face-to-face interactions between users with
sound pressure and the Bluetooth Received Signal Strength
Indicator (RSSI). Rhythm realized a unified measurement
platformwithOpenBadges for organizationmanagement and
measured interaction across users in colocated and distributed
contexts with online applications. However, the studies have
drawbacks in usability for learning analysts who are unfamil-
iar with information technology. Rhythm, even the pioneer
study of the MIT Media Lab., requires analysts to install
software and operate on a CLI to start collaboration analysis
on the GUI application. Concretely, Rhythm requires Python
for collecting and preprocessing sensor data and constructing
a back-end server to start collaboration analysis on the GUI.
Such a technical assumption limits analysts’ ability to start
learning analysis with the developed systems.

The studies in [1], [2], [3], and [4] proposed an IoT sys-
tem with wearable badges for collaborative learning analysis
named the Sensor-based Regulation Profiler (SRP). Owing
to precise synchronization across the proposed IoT badges,
named SRP Badges within an error of ±30µs, the system
accurately extracted key points with learning analysis algo-
rithms named SRP Analysis in learning activities even on a
short time scale. However, the studies also have drawbacks
in usability for learning analysts who are unfamiliar with
information technology. The studies require analysts to install
software such as Python andC-basedAutoPlait [10] and oper-
ate on a CLI to start collaboration analysis on a GUI. Such
a technical assumption limits the analysts to start learning
analysis with the developed systems.

To solve these drawbacks, an earlier and briefer version
of this article was presented in the study of [11]. The study
in [11] proposed a Django-based web application with SRP
Badges, named the Sensor-based Regulation Profiler Web
(SRP Web), to support collaborative learning analysis. This
paper proposes an extended version of the SRP Web, named
SRP Web Services, as user-friendly web services for quali-
tative analysis of collaborative learning. The proposed web
services do not require the installation of complex software
and the operation of the developed systems on CLI. Any users
just access the webpage and immediately analyze learning

activities on a web browser. Our SRP Web Services improve
the scalability of the SRP Web and promote an IoT system to
support collaborative learning analysis for learning analysts
who are unfamiliar with information technology.

B. WEB SERVICES FOR SENSOR DATA ANALYSIS
Some studies have developed user-friendly web services for
sensor data analysis [11], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29]. For example, the study
in [23] presented a model for smart agriculture to monitor
real-time soil properties and to remotely control various oper-
ations of the field anytime by mobile and web application.
The proposed structure provided an environment in which
users could easily monitor data processed by the components
through a web browser anywhere and anytime. The study
in [29] proposed a novel SaaS platform namedmotch to easily
operate IoT systems for end users with a web front end. The
proposed web front end enabled the users to easily check the
availability of each IoT device on a web browser.

An earlier and briefer version of this article was pre-
sented in the study of [11]. The study in [11] proposed
a Django-based web application with SRP Badges named
the SRP Web to support collaborative learning analysis.
Fundamental evaluations showed that the SRP Web reduced
the analysis costs of learning activities by extracting and
visualizing collaboration, such as face-to-face interactions
across learners, learning phases, learners speech, and learners
activity from sensor data. This study proposes an extended
version of the SRP Web, named SRP Web Services, to easily
extract and visualize sensor data acquired from SRP Badges
for high usability in collaborative learning analysis. Our SRP
Web Services expand the possibility that analysts who are
unfamiliar with information technology start learning anal-
ysis with learning analysis algorithms owing to the improve-
ment of scalability in the SRP Web.

C. SENSOR-BASED ACTIVITY RECOGNITION
Some studies have recognized human activity with sen-
sors [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44]. For example, the study in [32]
proposed an action tutor system that achieved high-level
evaluation of human actionmovements with the aid of Kinect.
Experimental results showed that the proposed human action
descriptor was representative for action video retrieval and
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FIGURE 2. Interface of the proposed web application.

that the tutor system could effectively help the user while
learning action movements. The study in [34] proposed a
feature extraction algorithm to recognize hand gestures with
a sliding window and a graph-based approach to identify
the relations between signals sensed by an array of force
sensor resistors. Experimental evaluations showed that the
proposed method achieved acceptable results by provid-
ing good features, which helped obtain a more accurate
classification. The study in [41] proposed a novel, multi-
stage training methodology from multimodal wearable sen-
sor data to increase the diversity in the feature extraction
process by efficiently employing a multitude of time-series
transformations that facilitated the exploration of diversified
feature spaces. Extensive experiments showed that the pro-
posed scheme consistently provided outstanding performance
with average fivefold cross-validation accuracies of 99.29%,
99.02%, and 97.21% in three publicly available datasets with
some activities.

This paper acquires sound pressure, acceleration, and
infrared acquired from IoT badges and extracts learning activ-
ity for learning analysis, such as face-to-face interaction,
learning phases, speakers, and activity with the acquired sen-
sor data on a web browser. Our proposed scheme supports
qualitative analysis of collaborative learning through the visu-
alization of key points in the learning activity.

III. PROPOSED SYSTEM: WEB SERVICES FOR
COLLABORATION ANALYSIS
Figures 1 and 2 show an overview of the proposed web ser-
vices named Sensor-based Regulation Profiler Web Services
(SRP Web Services) and the interface of the proposed web
application for collaboration analysis with SRP Badges [2].
SRP Badge is an IoT badge to be worn on the chest of each
learner. SRPBadgemounts an accelerometer, an infrared sen-
sor, and a sound pressure sensor. The accelerometer and the
sound pressure sensor sample 12 bits at 100Hz. The infrared
sensor detects infrared radiation at 34Hz at most. In addition,
SRP Badge precisely synchronizes with other SRP Badges
owing to a wireless synchronization module. SRP Web Ser-
vices import sensor data acquired from SRP Badges, manage

FIGURE 3. Architecture of the proposed web application.

the sensor data in each session, and extract and visualize
key points for qualitative analysis of collaborative learning,
such as face-to-face interaction, learning phases, speakers,
and activity with the sensor data on a web browser. SRP Web
Services support learning analysts in qualitative analysis of
collaborative learning with the following steps:

1) Distribute SRP Badges to learners and learning envi-
ronments prior to collaborative learning activity.

2) Acquire sensor data with the SRP Badges during the
learning activity.

3) Collect the SRP Badges from the learners and learning
environments.

4) Import sensor data from the SRP Badges to each ses-
sion on the proposed web application.

5) Extract and visualize key points for learning analysis in
each session on the web application.

6) Qualitatively analyze the learning activity with the
acquired results.

A. ARCHITECTURE
Figure 3 shows the architecture of the web application. The
web application consists of the front end on Next.js ver. 12
and back end on FastAPI ver. 0.72.0, SQLite, and Python 3.6.
The users’ requests are sent from the front end to FastAPI in
the back end. FastAPI receives the requests and communi-
cates with the database or each learning analysis algorithm.
FastAPI creates, reads, updates, and deletes (CRUD) the
users’ accounts, projects for each analysis of learning activ-
ities, and sensor data acquired from SRP Badges among the
databases on SQLite. FastAPI sends the acquired sensor data
and parameters, such as the start and end times of analysis,
to each learning analysis algorithm on Python 3.6. FastAPI
receives analysis results from each algorithm and returns the
response to the front end.

B. ALGORITHMS
Figures 4 (a) through (d) show a snapshot of each learning
analysis algorithm [4] in Fig. 3. The algorithms extract key
points for collaborative learning analysis with social graph
extraction, learning phase extraction, speaker identification,
and activity estimation.
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FIGURE 4. Learning analysis algorithms [4] in the proposed web services.

Social graph extraction represents face-to-face interaction
across learners and learning environments with SRP Badges
in collaborative learning. The algorithm measures face-to-
face interaction with infrared sensors in the SRP Badge. The
infrared sensor detects other infrared sensors directed at itself
and records the IDs of the detected sensors every second.
The algorithm forms square matrices with a dimension of
the number of sensors representing face-to-face interactions
across the sensors every second. The algorithm then sums
each element of the matrices for optional time and addi-
tionally forms square matrices representing the frequency of
face-to-face interactions across the sensors for the optional
time. The algorithm finally visualizes face-to-face interac-
tions across the sensors as a directed graph with the square
matrices in Fig. 4 (a). We note that bolder arrows show more
frequent face-to-face interactions between sensors.

The learning phase extraction divides a collaborative learn-
ing activity into several different patterns based on face-to-
face interaction frequency across learners with SRP Badges.
The algorithm supposes collaborative learning composed of
three phases: video viewing to collect information about the
problem, discussion to suggest possible solutions for the
problem, and conclusion to choose the best solution based
on the study [45] with an educational material called the
Adventures of Jasper Woodbury [46]. The algorithm forms
a scholar matrix named network difference with the matrices
representing the frequency of face-to-face interactions across
the sensors for the optional time in the social graph extraction.
The algorithm then inputs the scholar matrix to AutoPlait [10]
to classify time-series data into similar patterns with hidden
Markov models. The algorithm finally visualizes the result
acquired from AutoPlait as learning phases in Fig. 4 (b).

The speaker identification represents the speech of each
learner with SRP Badges in collaborative learning. The algo-
rithm identifies speakers with sound pressure sensors in the
SRP Badge. There are three steps for speaker identification:
1) preprocessing, 2) speech section estimation, and 3) speaker
identification. The first step detects sound pressure in each
learner. The algorithmmakes a zero-point correction of sound
pressure by subtracting theminimum value from all the sound
pressures in each user. The algorithm labels speech or non-
speech in each user with the zero-adjusted sound pressure
and sliding windows. If the maximum sound pressure in

the window exceeds the threshold, the algorithm regards the
window as a speech section. The algorithm acquires speech
labels for all users named ‘‘the 1–0 data for each user.’’
The second step estimates the speech or nonspeech section
from the 1–0 data for each user. The algorithm complements
labels 1 in a section with consecutive labels 0 within 90ms
between labels 1 to account for midspeech pauses in the 1–0
data for each user. The algorithm replaces a short interval with
continuous labels 1 within 150ms with labels 0 to correct for
the section falsely detected by ambient noise. The algorithm
takes the logical summation of the 1–0 data for each user
as a speech section named ‘‘the speech section data.’’ The
third step determines who speaks in each speech section with
the 1–0 data for each user and the speech section data. The
algorithm focuses on each section where a user is supposed
to speak based on the speech section data. The algorithm
extracts a user with the most labels 1 in each speech section
and regards the user as a speaker in the speech section based
on the 1–0 data for each user. The algorithm finally visualizes
the 1–0 data for each user as shown in Fig. 4 (c).

The activity estimation represents the motion of each
learner with SRP Badges in collaborative learning. The algo-
rithm estimates activity of each learner with the ADXL362
three-axis accelerometer in the SRP Badge. ADXL362 quan-
tizes and records acceleration within twice the gravitational
acceleration. The algorithm calculates the L2-norm across the
acquired acceleration of every sample in each SRP Badge.
The algorithm subtracts the offset from all accelerations as
a zero-point correction with reference to the data sheet of
ADXL362. The algorithm finally converts quantized accel-
eration to relative values from 0 to 1 and visualizes the values
as learners’ activity in Fig. 4 (d).

C. FUNCTIONS
There are five beneficial functions on the web application.

1) HIGH ACCESSIBILITY
Learning analysts who are unfamiliar with information tech-
nology can access the services on a web browser without
installation of complex software and CLI operation to activate
the application. For example, analysts do not necessarily
install Python considering the versions, packages, and OS
of the installation destination. Such users benefit from web
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FIGURE 5. Account management in the proposed web services.

services that require only a web browser and internet connec-
tion to run.

2) LOW PERFORMANCE DEPENDENCE ON END DEVICES
Web applications minimally depend on the performance of
users’ computers. Since the application runs on a web server,
the users’ device does not require high performance to run the
application for learning analysis. Low performance depen-
dence supplies the users with equal environments to analyze
learning activities.

3) PHYSICAL SEPARATION FOR EASY MAINTENANCE
The web application consists of front-end and back-end
structures for easy maintenance. The physical separation
enables developers of the application to separately maintain
the front-end and back-end functions in the services. The
structure enables developers to quickly correspond to users’
feedback and update services.

4) ACCOUNT MANAGEMENT FOR MULTIPLE USERS’ ACCESS
Each user can simultaneously and separately utilize the ser-
vices on a web browser with each account. The services
require any users to register an account and log in with the
account before using the services. Multiple users can simul-
taneously and separately analyze learning activity with each
account.

5) SESSION MANAGEMENT FOR MULTIPROCESSING OF
LEARNING ANALYSIS
Each user can manage and analyze multiple cases of learn-
ing activities with each session. The web services prepare
a session to save sensor data corresponding to each case
of learning activities. The user can simultaneously analyze
multiple cases of learning activities with each session in
parallel.

D. USAGE
Each user can utilize the web application on a web browser
with three steps for learning analysis: 1) sign up and log in,

FIGURE 6. Session management in the proposed web services.

2) create a session, and 3) import and analyze sensor data
acquired by SRP Badges.

The first step enables multiple users to simultaneously
utilize web services. Figure 5 shows a snapshot of account
management in the proposed web services. Each user can cre-
ate an account with an email address, login ID, and password
on the screen of Fig. 5. Once the user registers the account,
the user can log into the web services with the login ID and
password.

The second step enables the user to manage and analyze
multiple learning activities. Figure 6 shows a snapshot of
session management in the proposed web services. The user
can create a new session to import sensor data acquired by
SRP Badges on the screen of Fig. 6. The web services keep
the created session until the user deletes the session even after
the user exits the webpage.

The third step enables the user to automatically extract
and visualize key points for learning analysis, such as face-
to-face interaction, learning phases, speakers, and activity in
each session as shown in Fig. 4. The user imports sensor data
as a .DAT file extension acquired by the SRP Badges. The
user selects each learning analysis algorithm and executes the
algorithm with some parameters, such as the start and end
times of learning analysis. The algorithm plays face-to-face
animation as face-to-face interaction across the learners. The
user can select the parameters of the start and end times (s)
for the animation, playback speed (s) for the animation, and
display duration (s) for the afterimage of the face-to-face
data. The algorithm classifies learning activities into sev-
eral phases with AutoPlait [10] and visualizes the learning
phases. The user can select the parameters of window size
and slide width (s) for sliding windows in the algorithm of
learning phase extraction. Subsequently, the user can analyze
the results of the appropriate classification. Speaker identifi-
cation extracts a speaker from all the learners. The user can
select the parameters of start and end times (s) for analysis
duration, window size and slide width (s) for sliding windows
in the algorithm of speaker identification, and speech thresh-
old (dB) for the algorithm. The study in [3] showed that the
algorithm accurately identifies a speaker with window size
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and slide width of 2 s and 1 s, respectively. The appropriate
speech threshold depends on the learning environment. The
study in [3] reported that the appropriate thresholds are 75 dB
and 85 dB under a no-noise environment and office envi-
ronment, respectively, similar to the learning environment.
Activity estimation visualizes each learner’s movement as an
L2-norm across three-axis acceleration. The user can select
the parameters of the start and end times (s) for the analysis
duration.

IV. QUALITATIVE EVALUATION: USER EXPERIENCE ON
THE PROPOSED WEB SERVICES
We evaluated user experience for the proposed web services
on a web server. We selected the dataset of collaborative
learning activity with SRP Badges [2]. The study in [2]
acquired sensor data with the SRP Badges for an hour from
a group with three learners and learning environments. The
synchronizer for the SRP Badges was set at the center of
the learners’ desk. Each learner mounted an SRP Badge
on the chest during the activity. A whiteboard was set up
to assist the learners in discussion. Two SRP Badges were
placed on both edges of the whiteboard. In addition, an iPad
was placed on the desk to present learning tasks to the
learners. An SRP Badge was attached to the top of the iPad.
A researcher in learning science analyzes the learning activity
with the proposed web services on a web browser.

A. SIMPLE ENVIRONMENTAL CONSTRUCTION
We evaluated the process of environmental construction with
the proposed web services compared with the existing algo-
rithms [4] for learning analysis. Existing studies required the
installation of Python, considering the versions, packages,
and OS of the installation destination. Existing studies also
required placing AutoPlait on an appointed directory to acti-
vate the analysis algorithms. The above process was difficult
for learning analysts who are unfamiliar with information
technology and impaired the usability of the learning algo-
rithms. On the other hand, environmental construction was
not needed for the analysts to use the proposed web services.
The web server has constructed the environments, including
Next.js, FastAPI, and Python, required for the proposed web
services. The analysts just had to access a webpage and
receive a response from the web server. The proposed web
services showed the improvement in usability for learning
analysts who are unfamiliar with information technology
related to environmental construction.

B. SIMPLE OPERATION WITHOUT CLI
We also evaluated the process of operation with the pro-
posed web services compared with existing algorithms [4]
for learning analysis. Existing studies have forced learning
analysts who are unfamiliar with information technology to
construct a UNIX environment on each computer and to
operate CLI to analyze learning activities. Concretely, the
studies assume CLI operation to build binaries in AutoPlait
and to execute algorithms in Python for learning analysis.

Such operation was not user-friendly for the analysts and
impaired the usability of the learning algorithms. Compared
with existing algorithms, the proposed web services were
user-friendly for analysts owing to the GUI operation. The
web services provided GUI operation on a web browser so
that the analysts could analyze the learning activities with-
out operation on an unfamiliar interface. The proposed web
services showed usability for learning analysts who are unfa-
miliar with information technology related to CLI operation.

V. QUANTITATIVE EVALUATION: LOAD TESTING FOR THE
WEB SERVICES
We quantitatively evaluated load testing for the web services:
processing time in each function, scalability, and running cost
of the proposed web services. We deployed the web services
on three EC2 instances provided by Amazon Web Service
(AWS) for different expected users: t3.large, m6i.large, and
m6i.2xlarge.

A. PROCESSING TIME IN EACH FUNCTION
We evaluated the processing time for each function of the
proposed web services deployed on the EC2 instances.
We selected the dataset of collaborative learning activity with
SRP Badges [2], as shown in Sec. IV. This paper extracted
different lengths of sensor data: 15min, 30min, 45min, and
60min acquired from three users’ chests in the learning activ-
ity for an hour. We recorded each processing time in three
functions without the sensor data—sign up, log in, and create
a session—and five functions with the sensor data—import a
sensor datum, extract face-to-face interaction, extract learn-
ing phases, identify speakers, and estimate activity. We calcu-
lated each processing time by averaging ten processing times.

Tables 2 and 3 show the results of the processing time
for each function without sensor data and with sensor data,
respectively. Table 2 shows the processing time to sign
up, log in, and create a session on t3.large, m6i.large, and
m6i.2xlarge, respectively. Table 3 shows processing time
to import a sensor datum, extract face-to-face interaction,
extract learning phases, identify speakers, and estimate activ-
ity with sensor data for 15min, 30min, 45min, and 60min on
t3.large, m6i.large, and m6i.2xlarge, respectively. We found
three characteristics in the results of processing time in
Tables 2 and 3.

• Each function was processed by m6i.large and
m6i.2xlarge faster than t3.large.

• There seemed to be few gaps in processing time between
m6i.large and m6i.2xlarge.

• Speaker identification was the heaviest process in the
functions.

The first point showed that t3.large could hinder learning
analysts from quickly analyzing collaborative learning with
the proposed web services. Each instance differed in network
bandwidth; t3.large allowed 5Gbps at most and m6i.large
and m6i.2xlarge allowed 12.5Gbps at most. To accelerate
each function, m6i.large or m6i.2xlarge were recommended.
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TABLE 2. Processing time (s) for each function without sensor data.

The second point showed that m6i.large has sufficient CPU
performance and memory for processing each function on the
web services. Each instance differed in the performance of
CPU and memory; m6i.large mounted four CPUs and 16 GiB
of memory and m6i.2xlarge mounted eight CPUs and 32 GiB
of memory. To accelerate each function, the performance of
m6i.large was sufficient. The third point showed that there
was room to improve the architecture of speaker identifica-
tion. For example, the web services provided speaker infor-
mation from sensor data for 60min on m6i.large in 61.8 s in
Tab. 3 (b). While the web services provided speaker infor-
mation to learning analysts, the function required more than
1min to show the results of speaker identification. We leave
how to accelerate speaker identification in web services as a
future work.

B. SCALABILITY
We evaluated the scalability of the proposed web services
deployed on the EC2 instances. We compared the scalability
of the proposed web services with that of the earlier web
application of the proposed services [11]. We requested mul-
tiple access from one server to another server, which deployed
each scheme with Apache’s JMeter [47]. We requested
speaker identification with 1min sensor data acquired from
three users’ chests with SRP Badges during collaborative
learning activity .1 The number of accesses varied from 0 to
300 in increments of 50 on the proposed web services and
from 0 to 60 in increments of 5 on the earlier web application.

In addition, we evaluated the scalability of the proposed
web services with 60min sensor data. We deployed the
proposed web services on the EC2 instances and requested
multiple access to the instances as in the above settings.
We requested speaker identification with 60min sensor data
acquired in the above learning environment. The number of
accesses varied from 0 to 1200 in increments of 100.

Figure 7 shows the scalability for multiple requests with
1min sensor data on the earlier web application labeled SRP
Web and the proposed web services labeled SRP Web Ser-
vices. The horizontal axis shows the number of simultaneous
requests to each scheme, and the vertical axis indicates the
success rate of the response to requests. The legend shows
the combination of each scheme and instance type: the earlier
web application on t3.large (SRP Web on t3.l), the earlier
web application on m6i.large (SRP Web on m6i.l), the ear-
lier web application on m6i.2xlarge (SRP Web on m6i.2xl),
and SRP Web Services on any instance (SRP Web Services).

1Speaker identification was the heaviest function in the proposed web
services.

TABLE 3. Processing time (s) for each function with sensor data.

The earlier web application indicated that the success rate
on t3.large was 1.0 for the number of requests from 0 to
20 in increments of 5 and 0.960, 0.767, 0.029, 0.025, 0.000,
0.000, 0.000, and 0.033 for 25, 30, 35, 40, 45, 50, 55, and
60 accesses, respectively. The success rate on m6i.large was
1.0 for the number of accesses from 0 to 30 in increments
of 5 and 0.000 for the number of accesses from 35 to 60 in
increments of 5, respectively. The success rate onm6i.2xlarge
was 1.0 for the number of accesses from 0 to 35 in increments
of 5 and 0.925, 0.844, 0.640, 0.036, and 0.017 for 40, 45, 50,
55, and 60 requests, respectively. The proposed web services
indicated that the success rate on any instance was 1.0 for the
numbers of requests between 0 and 300 in increments of 50.
The figure shows that the proposed web services improved
the scalability of the earlier web application.

Figure 8 shows the scalability for multiple requests on the
proposed web services. The horizontal axis shows the number
of simultaneous requests to the proposed web services, and
the vertical axis indicates the success rate of the response
to requests. The success rate on t3.large was 1.0 for the
number of accesses from 0 to 400 in increments of 100 and
0.964, 0.802, 0.683, 0.599, 0.536, 0.481, 0.439, and 0.337 for
500, 600, 700, 800, 900, 1000, 1100, and 1200 accesses,
respectively. The success rate on m6i.large was 1.0 for the
number of accesses from 0 to 400 in increments of 100 and
0.996, 0.797, 0.681, 0.599, 0.527, 0.477, 0.435, and 0.397 for
500, 600, 700, 800, 900, 1000, 1100, and 1200 accesses,
respectively. The success rate on m6i.2xlarge was 1.0 for the
number of accesses from 0 to 900 in increments of 100 and
0.952, 0.853, and 0.821 for 1000, 1100, and 1200 accesses,
respectively. The figure shows that the proposed web services
completely allow simultaneous requests of speaker identifica-
tion, the heaviest function in the proposed web services, for
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FIGURE 7. Scalability of the comparison and proposed scheme for
multiple requests with 1 min sensor data.

400 accesses on t3.large and m6i.large and for 900 accesses
on m6i.2xlarge.

C. RUNNING COST
We estimated the cost of running the proposed web ser-
vices based on the service fee on AWS [48]. We assumed
that the web services were deployed on the EC2 instances
in the region of Ohio, USA, spending 0.0832 USD per
hour on t3.large, 0.096 USD per hour on m6i.large, and
0.384 USD per hour on m6i.2xlarge. We estimated run-
ning costs as running time multiplied by the hourly unit
price. We assumed the number of users to be 400, 400,
and 900 on t3.large, m6i.large, and m6i.2xlarge, respectively,
which the proposed web services simultaneously process
without rejecting requests in Sec. V-B. We also assumed that
each user analyzes five sessions of collaborative learning
activity for one month. We set the number of learners to
three and set the learning duration to 60min in each session.
We summed the running time, including the time to sign up,
log in, create sessions, import sensor data, extract face-to-
face interaction, extract learning phases, identify speakers,
and estimate activity, for each user based on each average
processing time in Sec. V-A. According to the above discus-
sion, the total running cost is approximately 5.658 USD on
t3.large for 400 users, 4.320 USD on m6i.large for 400 users,
and 18.816 USD on m6i.2xlarge for 900 users for one month.

VI. CONCLUSION
This paper proposed novel web services named SRP Web
Services for collaboration analysis with IoT badges named
SRP Badges. SRPWeb Services improved usability for users
who are unfamiliar with information technology in collabora-
tive learning analysis with SRPBadges in existing studies [1],
[2], [3], [4]. The studies forced the users to install complex
software and to operate the developed systems on an unfa-
miliar interface. For example, the studies required Python
installation considering the versions, packages, and OS of
the installation destination. In addition, the studies assumed
CLI operation on UNIX from installation to execution of the
developed systems. Such a technical assumption has limited

FIGURE 8. Scalability of the proposed scheme for multiple requests with
60 min sensor data.

the users to start learning analysis with the systems. Our SRP
Web Services do not require installation of complex software
and operation of the developed systems on CLI. Any users
just access the webpage and analyze learning activities on a
web browser. Experimental evaluations showed that the pro-
posed web services support learning analysts in quantitative
analysis of learning activities with high usability. In addition,
SRP Web Services are scalable with hundreds of users. SRP
Web Services promote an IoT system to support collaborative
learning analysis for learning analysts who are unfamiliar
with information technology. For our future work, we plan to
accelerate learning algorithms of our proposed web services
to further improve the usability for learning analysts.
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