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ABSTRACT Gliomas are the most common and highly growing tumors lead to high mortality rate in their
highest grade. The early diagnosis of gliomas, and treatment planning are most important steps to enhance
the life expectancy of a patient. Among the modern imaging techniques, magnetic resonance imaging (MRI)
is the most robust and widely used technique to visualize the brain tumor. The CNN-based networks mainly
depend on multi-branch and increasing the depth/width of the network to enhance the segmentation accuracy
at the cost of high computational cost. To mitigate these drawbacks we therefore, propose a hybrid weights
alignment with multi-dilated attention network for automatic brain tumor segmentation (Hybrid-DANet).
It employs multiple modules incorporated on baseline encoder-decoder architecture. Firstly, we proposed
a novel hybrid weight alignment with multi-dilated attention module (HWADA) is used between the skip
connections. It has capability to obtain the different sets of aligned weight by using different dilation schemes.
Different weight alignments play a vital role to obtain very precise targeted information while negating
the less informative part. It utilizes the low and high level information with skip connections across each
branch of encoder and decoder. Secondly, we incorporated a multi channel multi scale module (MCS) on
the baseline module. It consists of multiple channels used to extract the channel-wise information with more
reduced computational cost. To reduce the resultant saturated accuracy due to vanishing gradient problem,
we incorporated the residual module (RM). Thus, the RM, and MCS are useful to obtain the deep, intrinsic,
channel-wise feature without expansion of depth and height. Whereas the novel HWADA not only propagates
the low level information but also process it to obtain more semantic features used for decoder. We have tested
our proposed technique on well-known datasets; BraTS 2017, and 2018 with comparable performance to
counter-part.

INDEX TERMS Deep learning, CNNs, medical image analysis, brain tumor segmentation.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Brain is one of the most important and sensitive part of
approving it for publication was Qingli Li . human body. The most prevalent with high mortality rate
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FIGURE 1. An Overview of Hybrid-DANet: The proposed network is composed of baseline U-shaped encoder-decoder module with
integration of 1) Multi-channel multi-scale module (MCS), 2) Residual module (RM), 3) and hybrid weight alignment with dilated

attention module (HWADA).

tumors are called gilomas [1]. It is further graded into low
grade gilomas (LGG) and high grade gilomas (HGG), with
the latter being more aggressive and high growth rate than
the former. The brain tumor treatments include radiotherapy,
surgery, and chemotherapy. Image analysis has lot of appli-
cations starting from terrestrial to underwater imaging using
sensor networks [1], [2]. The early diagnosis of brain tumor
plays a significant role to reduce the mortality rate. The most
complementary and prominent information regarding tumor
is obtained through Magnetic Resonance Imaging (MRI)
which employs four modalities: T1-weighted, T2-weighted,
Tlc, and Flair. These modalities further provide the robust
information about the types of tumor. The more precise seg-
mentation of tumor structure plays a vital role for treatment
planning, accurate surgery, and follow up analysis. Also it
is helpful for assessing tumor growth, treatment responses,
computer-based surgery, treatment of radiation therapy, and
developing tumor growth models. As manual segmentation
of brain tumor is prone to error and time consuming, thus
scientists are trying to develop autonomous system for brain
tumor segmentation. However, the shape, structure, and loca-
tion variations are most common challenges for accurate
segmentation. Also, the neighbouring tissues arrangement is
highly effected due to existence of tumor. The ability of auto-
matic feature extraction in computer vision is improved by
recent development of convolutional neural network (CNN)
[3], [4], [S]. Due to this advancement, researchers are trying
to propose state of the art methods for the precise and robust
segmentation of brain tumor. Generally U-Net [20] and Fully
Convolutional Network (FCN) [21] are most common and
reliable methods in medical image segmentation. Among
them, earlier one has shown most promising results. The
U-shaped architecture employs encoder and decoder with
skip connections are used to obtain low to high level features
information.
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The structure of brain and their visual appearance are two
main indicators to analyze the different types of tumors. In the
recent past, a number of CNN-based algorithms have been
proposed to mitigate the challenges of brain tumor segmen-
tation. In CNN, U-Net based architecture are prevalent and
thus provide the better results in medical image segmenta-
tion. Firstly, existing U-Net based architectures enhance the
segmentation accuracy by using multi-column architecture.
For example, authors in [6] and [7] used multi-column archi-
tecture by taking advantages of different receptive fields.
The specific set of images are targeted due to fixed kernel
size in each column. Further, multi-column architecture used
in [6] and [7] failed to obtain the high segmentation accuracy
due extracting similar type of features [8]. Secondly, the
network width and depth is increased to obtain the high accu-
racy irrespective of their computational cost. In other words,
the CNN-based method are expanded depth or width-wise
irrespective of their enhanced learning parameters. Thirdly,
existing U-Net based architecture mostly import the existing
modules without focusing on their own contribution to a
specific module. For example, authors in [9], [10], and [11]
integrated the existing module in the U-Net architecture to
obtain the state of the art accuracy.

Based on these observations, we proposed a Hybrid-
DANet: An encoder-decoder based hybrid weights alignment
with multi-dilated attention network for Automatic Brain
Tumor Segmentation. Our model comprises of four types of
network, (i) encoder-decoder baseline module, (ii) residual
module (RM) (iii) multi-channel multi-scale module (MCS),
and (iv) a novel hybrid weights alignment with multi-dilated
attention module (HWADA). Encoder-decoder is very pow-
erful for baseline model for brain tumor segmentation to
obtain the coarse to fine level features. MCS is very useful to
obtain the channel-wise features with reduced computational
complexity. Also channel wise feature extraction at multiple
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stages with different filter sizes enhances the final segmenta-
tion accuracy. HWADA is useful to extract the rich contextual
targeted information in a specific scene. The extraction of
targeted features capability is further enhanced by inclusion
of contextual information through multi- dilation rates. The
HWADA is applied across each skip connection of encoder-
decoder architecture which is further useful to propagate the
low level features to high level layers at the decoder side.

In summary, the main contribution of our research are as

follows:

o Wedesign a hybrid weights alignment with multi-dilated
attention network to obtain abrupt to continuous varying
scale features. The baseline encoder-decoder architec-
ture with inclusion of RM and MCS enhance the low
to high level feature extraction capability by eliminating
the vanishing gradient problem. Also the channels-wise
features are extracted with reduced computational cost.

o A novel hybrid weights alignment with multi-dilated
attention module (HWADA) is proposed to obtain two
types of different weight alignments, useful to obtain
contextual target information while negating the less
informative scene.

« Combination of MCS with HWADA incline the algo-
rithm to obtain the varying geometrical information
of each tumor type. MCS with multi-channel multi-
scale approach is capable to exploit the channel inter-
dependencies while reducing the number of parameters.
Whereas HWADA with varying dilation rates obtain the
targeted features with the help of contextual information.

« Extensive experiments are conducted on two challeng-
ing datasets depicted that our model achieves the state
of the art performance.

Il. RELATED WORK

With the rapid growth of CNN-based techniques in classi-
fication, recognition, and especially segmentation tasks, the
CNN-based methods [12], [13], [14] are employed for the
purpose of medical image analysis. To address challenges
such as structure-variation and small amount of training sam-
ples, a number of researchers have contributed to enhance the
segmentation accuracy.

Authors in [15] proposed CNN based brain tumor
segmentation algorithm. The CNN is trained to learn the
mapping from MRI space to tumor marker space. The pre-
dicted labels obtained from CNN are feed into support vec-
tor machine (SVM) for classification of different types of
tumors. Authors in [16] proposed an automatic brain tumor
segmentation using deep learning. The proposed network
exploits both local and global contextual features simulta-
neously. Also, two phase training procedure is utilized to
resolve the class imbalance problem. Authors in [17] pro-
posed an encoder—decoder based network to extract building
footprints using satellite images. They used the dense net-
work in the encoder side to obtain global multi-scale deep
features, whereas spatial information is recovered by using
decoder. Authors in [18] presented a deep hybrid network

122660

for land cover semantic segmentation in high-spatial res-
olution satellite images. They combine two models, i.e.,
DenseNet and U-Net to perform pixel-wise classification
of land cover. The encoder part of U-Net is replaced with
DenseNet to extract multi-scale deep features. In addition
skip-connections are used to preserve and propagate the low
level features. Authors in [19] proposed an extension of
U-Net for brain tumor segmentation. They couple an encoder
with three decoder (independent) receives features from a sin-
gle encoder by segmenting three hierarchical tumor. Authors
in [11] proposed a 2D solution for brain tumor segmentation.
The proposed network employs two main modules residual
extended skip (RES) and wide context (WC) with customized
loss function. Thus contributing to segmentation accuracy
by extracting contextual and diverse features. An automatic
segmentation method is proposed by authors in [20]. They
used the filter size of 3 x 3 with deeper architecture. Authors
in [6] proposed a multi-scale CNN for brain tumor clas-
sification and segmentation.The input image is directed to
three different spatial scale along different processing path-
ways. Authors in [9] proposed a U-Net based model with
encoding and decoding structure, a residual module, and
a spatial dilated feature pyramid (DFP) module, namely,
DFP-ResUNet. A multiple convoluational layers with dif-
ferent dilation rates are used in parallel to obtain multi-
scale features. Authors in [21] proposed UNet based fully
convolutional networks for brain tumor segmentation. After
applying CNN, extremely randamized trees classifier is used
to segment the different classes of tumor. Authors in [22]
proposed a novel idea to segment three different types of
tumors (whole tumor, tumor core, enhancing tumor). They
decomposed the multi-class segmentation into three binary
segmentation problem. Firstly, the whole tumor is segmented,
and the bounding box of result is utilized for tumor core seg-
mentation. Similarly, the enhancing tumor is segmented on
the bounding box of tumor core. Inspired from multi-column
architecture of CNN, authors in [7] proposed hybrid two track
U-Net architecture for brain tumor segmentation. The two
tracks have different number of layers and filter size used
to extract multiple size features. Finally, these two tracks are
merged to obtain the final feature map. Authors in [10] pre-
sented an integrated architecture, combined different existing
modules with UNet to obtain the final feature map. The
UNet is used as a baseline architecture with incorporation
of residual model and attention gate. The attention gates are
used in skip connection to obtain the targeted information,
propagated to decoder. Author in [11] is proposed modified
U-Net architecture by including the residual extended skip
and wide context module to obtain the low level features with
contextual information for final feature map.

Ill. PROPOSED MODEL

The architecture of the proposed approach is shown in Fig. 2.
Firstly, brain tumor segmentation start with concatenation
of the four modalities into a single three dimensional vol-
ume, later feed to convolutional neural network (CNN).
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FIGURE 2. Hybrid-DANet: An encoder-decoder based hybrid weights alignment with multi-dilated attention network for automatic brain tumor
segmentation. A baseline U-shaped encoder-decoder architecture employs double convolutional block (DCB) with integration of three sub-modules:

1) residual module (RM),2) multi-channel multi-scale module (MCS), and 3) hybrid weight alignment with dilated attention module (HWADA). The input
MRI image first enter into DCB and is forwarded to RM, and MCS, respectively before down-sampling. This process is repeated in the encoder part,
whereas, the same process is repeated with addition of HWADA through skip connections at the decoder, respectively.

Secondly, Hybrid-DANet is built on encoder-decoder archi-
tecture (baseline). The proposed model employs deep multi-
channel multi-scale module (MCS), residual module (RM),
and hybrid weight alignment with dilated attention module
(HWADA) incorporated on baseline. Thirdly, the segmen-
tation of different types of tumors is quite difficult due to
varying geometry (shape and structure) of tumors. Therefore,
combination of RM, MCS and HWADA with baseline result
in the extraction of robust, deep, multi-scale, and targeted
information about each tumor type.

A. AN ENCODER-DECODER BASED DILATED ATTENTION
RESIDUAL MULTI-SCALE NETWORK FOR AUTOMATIC
BRAIN TUMOR SEGMENTATION

1) BASELINE MODEL

It is a U-shaped encoder-decoder architecture with multiple
double convolutional blocks (DCBs) are embedded in both
encoder and decoder. The DCB consists of two convolutional
layers with filter size of 3 x 3 x 3 with group normalization
(GN) and ReLU are placed at alternative position as shown
in Fig. 6. There are total 10 DCB, 5 on each side. The five
DCBs are placed on different levels on left leg of U-shaped
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architecture. In each level the number of channels are get-
ting doubled whereas the spatial dimensions are halved on
each level of encoder. Similarly, the five DCBs are used
at five different levels of decoder. The number of channels
are getting halved in each level whereas the up-convolution
is used to double the spatial dimension of input MRI
image. Whereas, the up-convolution consists of up-sampling
(factor:2), a convolution layer, GN, and ReLU are sequen-
tially placed. Starting with an input MRI image of dimension
4 x 160 x 192 x 128 given to first DCB. It will sequentially
moved to next lower level with reduction in spatial dimension
while doubling number of channels. Also skip connections
are applied after each levels to propagate the information
from encoder to decoder. The deeper features are extracted
at the encoder by increasing the number of channels while
reducing the spatial dimension. Whereas, the spatial features
are obtained in each level of decoder as dimensions are
getting double. In addition, low level information are prop-
agated via skip connections in each level to further enrich the
features for better segmentation accuracy. As a summary, it is
a very powerful baseline architecture with numerous features
(discussed above) useful for brain tumor segmentation.
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FIGURE 3. Hybrid-DANet: An encoder-decoder based hybrid weights
alignment with multi-dilated attention network for automatic brain tumor
segmentation. 1) a multi-channel multi-scale module (MCS) (top) and

2) a residual module (RM) (bottom).
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The expansion of HWADA i) aligned weights with dilation scheme 1

ii) aligned weights with dilation scheme 2 (bottom).

2) MULTI-CHANEL MULTI-SCALE MODULE (MCS)

The structural variation, reduced training data, and image
quality are the common challenges faced during brain tumor
segmentation. To mitigate these challenges we propose a
multi-channel, multi-scale module named as MCS inspired
from [23]. The proposed module comprises of one stages with
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13 are shown as well.

different filter size and channels as shown in Fig.3 (top). The
module is capable to perform two types of tasks, (i) extraction
of deep features using multiple scales and, (ii) channel-wise
extraction of features. In the first step, the input tensor is
squeezed by using 1 x 1 x 1 convolution. Whereas, the
channels are reduced by factor of two with different filter
sizes of I x 1 x I and 3 x 3 x 3. The multiple size of
filters are useful to obtain small to large scale information.
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As the size of tumors are varying thus by using different
size of filters enhance the robustness of algorithm. Secondly
channel-wise information is also useful to obtain the deep
features along with spatial features obtained by multi-scaling.
Also computational cost is minimized with reduced number
of parameters. In this way, the MCS is capable to obtain
spatial to deep features while reducing the size of parameters.
As we have used the MCS in each stage of encoder-decoder
architecture, the overall computational cost is reduced.

3) RESIDUAL MODULE (RM)

Deeper network normally useful to obtain the deep rich fea-
tures, however with increase number of layers result in satu-
rated accuracy due to vanishing gradient problem. To avoid
performance degradation due to vanishing gradient problem,
we introduce the residual module. He et al. [24] proposed
a residual learning correction scheme to avoid performance
degradation which is expressed in Eq. 1

y=F@, W) +x (1)

Here x and y are the input and output tensors of the residual
block, whereas W; is the weight of iy layer. F(x, W;) is
the residual function added to input tensor x. By taking the
partial derivative of y w.r.t x, the vanishing gradient problem
is solved as the gradient does not disappear with the increase
in number of layers.

The training accuracy increases as the number of layers
increases, however the validation accuracy is badly disturbed
due to vanishing/exploiting gradient problem. Thus the depth
of the network is not directly proportional to the accuracy
of an algorithm. Deep neural network (DNN) are difficult
to train due to vanishing gradient problem. Motivated by the
author in [24] and [25], we incorporated the residual module
(RM) in the proposed network. The total 8 RM are embedded
in both encoder and decoder. The structure of RM is very
simple starting with batch normalization (BN) plus ReLU
(non-linearity). The output of non-linear function is passed to
3D convolution layers followed by (BN + ReLU) as shown
in Fig. 3 (bottom). Finally the output is passed to the two 3D
convolution layers. The skip connection are applied to take
the activation from lower layer and feed to higher layer. Due
to strong feature learning property of RM, we incorporated
4 RM to encoder side followed by 4 RM to the decoder side.
This will help to not only extract the low, medium, and high
level features but also propagated to next layers using skip
connections.

4) HYBRID WEIGHT ALIGNMENT WITH MULTI-DILATED
ATTENTION MODULE (HWADA)

Contextual information aggregation, and better quality of
output feature maps are achieved by using dilated convolu-
tion. It can be define as exponential increment of receptive
field by intact the network parameters as depicted in Fig. 7.
CNN with dilated convolution have proven to provide better
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performance in image segmentation. Therefore, by incorpo-
rating the dilated convolution in attention module, we greatly
increase the ability of the network to selectively aggregate
multi-scale contextual information. By observing and ana-
lyzing the benefits of dilated convolution, we incorporated
dilated convolution in the baseline architecture with two vari-
ants as shown in Fig. 4 (bottom):

« Aligned weights with dilation scheme 1
o Aligned weights with dilation scheme 2

Both dilation rate variants are work in parallel as shown
in Fig. 4 (top). As the attention gate (AG) are very popu-
lar to highlight the targeted area. This task is achieved by
weight alignment in the existing AG. Another advantage of
using AG is to obtain the rich targeted features transferred
to decoder for better segmentation accuracy. By analyzing
the existing advantages of AG, we realized that there is a
room of improvement in the AG by incorporating the differ-
ent sets of contextual information which results in different
sets of weight alignments lately added to obtain a feature
map with targeted contextual information which results in
better segmentation accuracy. We therefore, introduce the two
different ways of weights alignment by using multi-dilation
schemes. The first scheme has dilation rate of 1, 1 (first row),
1, 2 (second row). The combination of these dilation rates are
useful to obtain one type of contextual information (type 1
contextual information) by providing an output of aligned
weights (type 1 aligned weights) Whereas, the second scheme
has dilation rate of 1, 5 (first row), and 1, 7 (second row).
The combination of these dilation rates are useful to obtain
second type of contextual information (type 2 contextual
information) by providing an output of aligned weights
(type 2 aligned weights). These sets of aligned weights
(type 1 aligned weights, and type 2 aligned weights) are
added to obtain the feature map with rich targeted contextual
information.

The more descriptive and detailed information of HWADA
(aligned weights with dilation scheme 1)is depicted in Fig. 5.
It has two inputs g and x, whereas g is coming from
lower layer at the decoder side, whereas x is coming from
encoder. These two inputs are passed through their respec-
tive branches of HWADA with different dilatation rates
which results in different contextual information. And finally
these different contextual information provide different sets
of aligned weights. Due to rich contextual targeted infor-
mation in the aligned weights, the output features plays a
vital role in the final segmentation accuracy when added to
decoder.

In this way compared to existing AG, we have not only
obtain the targeted contextual information, but also introduce
the different ways of obtaining contextual information with
different weights alignment. This results in accruing the bet-
ter targeted information due to hybrid contextual information.
In addition, compared to AG, more rich features are propa-
gated to decoder through skip connections.
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5) INFORMATION AGGREGATION AND PROPAGATION

TO DECODER

Traditionally encoder-decoder architecture are used to trans-
late the natural languages. As the low level information
extracted by encoder is propagated to decoder to combine
the low and high level features to obtain better performance.
Instead of obtaining the whole information, a precise and
accurate information could be useful to enhance the overall
performance of algorithm. To obtain the targeted informa-
tion authors in [26] proposed an attention-based network
to extract, and preserve the targeted information in natural
language processing. Inspired by authors in [26], we there-
fore proposed a hybrid weight alignment with multi-dilated
attention module (HWADA) to obtain the more precise and
specific information. The HWADA is used in skip connection
in the proposed model. It is multi-column structure with vary-
ing filter sizes and dilation rate as well. In the first column
we used the filter size of 1 x 1 x 1 with same dilation rate
of 1 in all four rows. Whereas, the second column employs
the filter size of 3 x 3 x 3 with dilation rate 1, 2, 5, 7.
The output of first two rows are concatenated whereas the
output of third and fourth row are combined and finally these
two outputs are combined and pass to non-linear activation
function (ReL.U). Next, filter size of 1 x 1 x 1 is used with sig-
moid to obtain the final output. We have used five HWADA
in the proposed model. The HWADAs are responsible to
progressively suppress the irrelevant features responses in the
background while highlighting the rich contextual targeted
information. The five HWADAS are used in skip connections
by highlighting the salient features. Also multi-dilation rates
are applied across the second column of HWADAs, thus
useful to obtain the contextual information by increasing the
receptive field size. Information extracted from coarse scale is
used in gating to disambiguate irrelevant and noisy responses
in skip connections. As a result, HWADA is responsible to
suppress the irrelevant information while highlighting the
targeted features. In addition, it is beneficial to obtain the
increased receptive field, aggregating the contextual informa-
tion, and the enhancement of feature map resolution. Gradi-
ents originating from background regions are down weighted
during the backward pass. This allows model parameters in
shallower layers to be updated mostly based on spatial regions
that are relevant to a given task.

IV. EXPERIMENTS

In this section, we describe the whole experiment details
starting from network architecture to evaluation of proposed
method. Moreover, this section is further divided into three
sub-sections: implementation details, comparison with state
of the art, and architecture ablation. In addition, we explain
the performance comparison of the proposed Hybrid-DANet
on two well-known datasets.

A. IMPLEMENTATION DETAILS

1) DATASETS

To evaluate the proposed method, we used the publically
available datasets BraTS 2017 and BraTS 2018 [27], [28].
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These datasets are released by the Multimodal Brain Tumor
Segmentation Challenge (BraTS) that run in conjunction with
the International Conference On Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2017 and
2018. The datasets are divided into training and valida-
tion sets with each sample has four modalities, i.e., fluid-
attenuated inversion recovery (FLAIR), T1 weighting (T1),
T1 weighted contrast enhancement (T1c), and T2 weighting
(T2). The MRI images are skull-stripped and re-sampled
to an isotropic 1 x 1 x 1 mm?® with image dimension of
240 x 240 x 240. The ground truth of each MRI image with
same dimension are manually labelled by the experts pro-
vided the manual segmentation results. There are three types
of labels in the ground truth MRI image named as enhanced
tumor (labelled as 4), the peritumoral edema (labelled as
2), and non-enhancing tumor (labelled as 1). By considering
these labels, whole tumor combined areas of labels 1, 2, 4,
whereas tumor core combined areas of labels 1,4. And lastly,
the enhancing tumor are labelled as 4.

2) NETWORK CONFIGURATION

The network configuration of Hybrid-DANet is shown in
Table 1. The proposed network is comprised of four main
modules: baseline, RM, MCS, and HWADA. For the sake of
understanding we only demonstrate the encoder part of whole
architecture. The whole encoder part (left leg of Hybrid-
DANet) is divided into five levels. Whereas, each level con-
sists of three sub-modules; DCB, RM, and MCS. And the
decoder part consists of four levels (each consists of DCB,
RM, HWADA, and MCS). The HWADA is connected via
skip connections in each level of the decoder. The spatial
dimensions are decreasing by half in each level of encoder,
whereas the channels are getting doubled in the subsequent
levels. Whereas, the spatial dimensions are up-sampled in
each level of decoder with reduction of number of channels.
In this way the encoder plays a vital role to obtain deep,
intrinsic features, whereas the spatial features are obtained at
the decoder side. Also the HWADA on the skip connections
are applied to further enhance the quality of features for the
final prediction.

3) TRAINING DETAILS

The BraTS exhibits a severe class imbalance problem. The
distribution of sub-classes illustrated in Table 4. The dis-
tribution of classes are severely imbalance, approximately
98.46% of voxels belong to the healthy tissue thus labeled
as background. However, edema and enhancing tumor only
cover 1.02% and 0.29% voxels of the whole data, respec-
tively. Lastly, the lowest volume is covered by non-enhancing
tumor with rate of only 0.23%. The prepossessing of data
elevates the class imbalance problem up to some extent, but it
still effects the brain tumor segmentation accuracy. The input
3D MRI image is cropped in small patches of size (160, 192,
128) to train the network. Brain tumor employs three types of
classes whole tumor (WT), tumor core (TC), and enhancing
tumor (ET), and goal is to precisely segment out each of the
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TABLE 1. The network architecture of Hybrid-DANet: An encoder-decoder based hybrid weights alignment with multi-dilated attention network for

Automatic Brain Tumor Segmentation. We have used five colours (red, blue,

, cyan, black) to differentiate between five different levels of encoder.

Modules  Channels Kernels Padding Dilation Output Size Hybrid-DANet
DCB1 16 3x3 1 1 16x128x128x128  Conv-16
RM1 16 3x3 1 1 16x128x128x128  Conv-16
Conv-16
MCS1 16,8,8,8,4 1x1,3x3 1 1 16x128x128x128
Down-Sample
DCB2 2 3x3 1 1 32x64x64x64 Conv-32
Conv-32
RM2 32 3x3 1 1 16x128x128x128  Conv-32
Conv-32
MCS2 32,16,16,16,8 1x1, 3x3 1 1 32x64x64x64
Down-Sample
Conv-64
64 3x3 1 1 64x32x32x32 Conv6d
64 3x3 1 1 16x128x128x128  Conv-64
64,32,32,32,16 1x1,3x3 1 1 64x32x32x32 Conv-64
Down-Sample
DCB4 128 1x1,3x3 1 1 128xlI6x16x16  Comv128
Conv-128
RM4 128 3x3 1 1 16x128x128x128  Conv-128
e, Conv-128
MCS4 128,64,64,64,32 1x1, 3x3 1 1 128x16x16x16
Down-Sample
Conv-256
DCB5 256 3x3 1 1 256x8x8x8 Conv-256
RMS5 256 3x3 1 1 16x128x128x128  Conv-256
MCS5 256,128,128,128,64  1x1, 3x3 1 1 256x8x8x8 Conv-256
TABLE 2. The Quantitative Results of Hybrid-DANet on BRATS-2017 Validation Dataset (57 MRI scans).
Method Dice Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET
UNet [29] 0.751 0.564 0.147 0.775 0.650 0.1147 0995 0.996 0.999 26.80 22.59 14.65
Atten-UNet [30] 0.509 0.396 0.339 0.591 0.503 0.464 0982 0984 0986 16.61 21.25 20.74
SegNet [31] 0.833 0.703 0496 - - - - - - - - -
PSPNet [32] 0.809 0.701 0.554 - - - - - - - - -
NovelNet [33] 0.876  0.763  0.642 - - - - - - - - -
Hybrid-DANet-vl  0.873 0.735 0.658 0.877 0.757 0.660 0997 0998 0999 19.63 19.85 16.13
Hybrid-DANet 0.892 0.761 0.680 0.883 0.757 0.704 0998 0.999 0.999 2670 19.94 17.41
TABLE 3. The Quantitative Results of Hybrid-DANet on BRATS-2018 Dataset (Validation Dataset).
Method Dice Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET
Baseline 0.8221  0.6764  0.5018  0.8289 0.6835 0.4938 09984 09982 09992  42.359 22302 27.990
Baseline-Double-HWADA 0.8718  0.6834  0.5701  0.8797 0.7186  0.5985 0.9958 0.9964 09982 17.117 16.885  17.390
Baseline Multi-Scale Atten  0.8840  0.7620  0.6157  0.88828  0.7775  0.6231  0.9978  0.9977 0.9993  25.774 19.357  17.525
Hybrid-DANet-v1 0.8818 0.7118 0.6233  0.8725 0.7187  0.6252  0.9998 0.9983  0.9992 26.592 16.638  15.657
Hybrid-DANet 0.8771 0.7596  0.6498  0.8901 0.7362  0.6573 0.9983 0.9994 0.9995 22.1930 19.307 14.590

class. To mitigate this class imbalance problem, we employ
a combined loss function that integrates focal traversky loss
(FTL) and generalized dice loss (GDL) as shown in Eq. 2.

Loss = Lrrr, + LopL 2)

where Lrrr and Lgpy respectively represent the focal traver-
sky loss and generalized dice loss, which are correspondingly
defined as Equations 4 and 5, respectively. Tversky index (TI)
is a generalization of Dice coefficient. It adds weight to false
positive (FP) and false negative (FN) by using S coefficient
as shown in Eq. 3.

pp

TI(p, p) = — ~ =
PP = B0 =+ (= B —p)

3
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TABLE 4. The distribution of sub-classes in BraTS dataset.

Class Rate %
Background 98.46
Edema 1.02
Enhancing Tumor 0.29
Necrotic and non-enhancing tumor  0.23

Iftg = %, it is similar to regular Dice coefficient. The focal
tversky loss Lrrz, mainly focuses on hard examples by down
weighting the easy ones. The L7y learn the hard examples
by using y coefficient.

Le =) (1 =TIy @
> wigipi

Legpr =1-2
ZiL wi(gi + pi)

&)
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Original Ground Truth Prediction

FIGURE 8. Visualization of BraTS-2017 dataset; MRI Image, ground truth, and prediction.
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where ¢ represents the class, L denotes the total number of
labels, and w; denotes the weight assigned to the ith label.
Further, p; and g; represent the pixel value of segmented
binary image and the binary ground truth image, respectively.
We used PyTorch plateform [34] with NVIDIA GeForce GTX
3070 with 8GB memory.

4) DATA AUGMENTATION

During the training process, we cropped the input MRI
image 240 x 240 x 155 into multiple patches of size
192 x 160 x 128. By cropping the MRI image the training
data is increased. Whereas, the data augmentation is not
performed for validation dataset.

B. COMPARISON WITH EXISTING ALGORITHMS

1) EVALUATION METRICS

We evaluated the Hybrid-DANet on two well known datasets
(BraTS 2017, 2018). We utilized the most commonly used
evaluation metrics such as dice similarity coefficient (DSC),
sensitivity, specificity, and Hausdorff distance (HD) for the
model evaluation. The DSC, sensitivity, specificity, and HD
can be calculated by using Equations: 6, 7,8, 9, respectively.

2TP

DSC = ——M——— (6)
FN + FP + 2TP
Sensitivi TP )
ensiiy = -
HVIY = Tp T FN
Specifici al (8
ecClficl = -
PECICy = T T Fp
HD = max(supqecainfpepd(a, b), suppepinfacad(a, b)

€))

TP, FP, FN stands for true positive, false positive, and
false negative. Whereas HD is used to computes Hausdorff
distance between the binary objects in two images, sup is
supremum, inf is the infimum and d is the absolute distance
value.

2) EXPERIMENT RESULTS ON THE BraTS 2017 DATASET
This experiment is conducted on BraTS 2017 dataset. It has
total number of 285 MRI images. We have used 228 (80%) of
data for training, whereas rest of 57 (20%) images are used for
validation purpose. We compared the proposed method with
baseline UNet and also with recent state of the art methods
including Atten-Unet, SegNet, PSP-Net, and NovelNet as
shown in Table 2. The proposed method outperform the rest
of the state of the art algorithms by achieving the mean
dice score of 0.892, 0.764, 0.680 for the WT, TC, and ET,
respectively.

3) EXPERIMENT RESULTS ON THE BraTS 2018 DATASET

This experiment is conducted on BraTS 2018 dataset. To eval-
uate the proposed Hybrid-DANet, we have used 171 (75%)
images for training, whereas, 57 (25%) images are used for
validation purpose. We compared the proposed model with
well known methods. We evaluate the proposed method by
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using four evaluation metrics (Dice, Sensitivity, Specificity,
Hausdorff) on different types of tumor classes (WT, TC, ET).
Table 3 depicts the performance of proposed method. A com-
parable performance is achieved on validation dataset. This
is due to extraction of shallow to deeper features. The more
intrinsic and deeper features are obtained through encoder
whereas, the spatial features are combined with the target
oriented features at the decoder side further enhance the
accuracy on ET as shown in Table 3.

C. ARCHITECTURE ABLATION

This subsection is devoted to understand the capability of
each module in the proposed model. Also the placement of
module in different places are analysed as well. The ablation
study consist of five types of network.

« Baseline: It is an encoder-decoder based network.

o Baseline Double HWADA: It is an architecture with
placement of HWADA on skip connections as well as
on the encoder and decoder side after the first double
convolution layers.

« Baseline Multi-Scale Attention: It is an architecture with
MCS incorporated on the encoder-decoder side, whereas
the attention modules are used with skip connections
between encoder and decoder.

« Baseline Multi-Scale HWADA: It is an architecture with
baseline encoder-decode network. Whereas, the MCS is
incorporated in both encoder and decoder side. Further,
the HWADA is used with skip connections as well.

o Hybrid-DANet: It is an architecture with inclusion of
MCS, RM on the encoder and decoder side. And
HWADA is used in each skip connections to further
improve the segmentation accuracy of class imbalance
problem.

We performed the ablation study on BraTS 2018 dataset. Four
evaluation metrics (Dice, Sensitivity, Specificity, Hausdorff)
are observed during the ablation study. Firstly, we start the
evaluation with a well known encoder-decoder architecture
named as UNet (baseline). It achieves the dice score of
(0.8221, 0.6764, 0.5018) on WT, TC and ET, respectively.
Secondly, we placed the attention module on skip connection
and on the encoder-decoder side as well (Baseline-Double-
HWADA). A reasonable performance increment is observed
on WT and TC as shown in Table 3. Thirdly, we used the MCS
module on both encoder and decoder side with placement
of attention module on the skip connection (Baseline-Multi-
Scale-Atten). The performance is increased compared to
Baseline-Double-HWADA. Fourthly, we used the HWADA
on skip connections with MCS incorporated on both encoder
and decoder side (Hybrid-DANet-v1). Lastly, RM, MCS are
incorporated on encoder-decoder with HWADA is applied
on skip connections (Hybrid-DANet). A reasonable perfor-
mance increment is observed compared to rest of architec-
tures on four evaluation metrics, Dice, Sensitivity, Specificity,
and Hausdorff as shown in Table 3. As we know the segmen-
tation of ET is more difficult compared to WT, TC due to
its small size (class imbalance problem). More specifically,
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the value of ET w.r.t the dice, sensitivity, Hausdorff, and
specificity outperform the counterpart.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel hybrid weights alignment
network with multi-dilated attention to automate the brain
tumor segmentation that is trained in an end-to-end manner.
Due to strong feature extraction property of deep neural
network, we used multi- scale residual attention networks
to extract the deep and scale varying features. Furthermore,
a HWADA is incorporated in baseline to obtained the targeted
contextual information lately used for better feature extrac-
tion to enhance the segmentation accuracy. The performance
of Hybrid-DANet is comparable to the state-the-art methods
due to varying receptive field and strong ability of handling
class imbalance issues. In this way, our proposed approach
is capable of learning the low to complex, deeper and scale-
aware, contextual, and targeted features with enhanced qual-
ity of feature map. In future, we intend to used the transformer
in encoder-decoder architecture to further improve the overall
accuracy.
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