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ABSTRACT Urban sound event detection can automatically preload relevant information for a robot
to ensure that it can be applied to various scene-activity tasks. To address the limitations of timbre
similarity and scene recognition by audio collection devices, a fusion model based on the self-attention
mechanism is proposed in this paper. The model consists of scattering transform and self-attention model.
The scattering transform computes modulation spectrum coefficients of multiple orders through cascades of
wavelet convolutions and modulus operators. It is learnable compared with Mel-scale Frequency Cepstral
Coefficients (MFCC), and can be used to better restore the semantic features of some sound scenes with
similar timbres. The transformer has an outstanding effect on Natural Language Processing (NLP) owing to
its self-attention mechanism. In this paper, the self-attention mechanism in its encoder was used in the model,
mainly to make the feature granularity consistent to refine the features. In addition, Focal Loss function was
adopted in the model to curb the sample distribution imbalance. The Google Command and ESC-50 were
used to supplement the scene categories of dataset UrbanSound8K. The model parameters of the learnable
filters that performed well on the dataset UrbanSound8K were preserved to fine-tune the other two datasets
with insufficient data volume and more target categories. The length of slice duration was further explored
the in the model. The experimental results show that the model can achieve better performance in a large
range of scene models.

INDEX TERMS Preload information, scattering transform, feature granularity consistency, self-attention
mechanism, focal loss.

I. INTRODUCTION
Urban sound event detection has shown good application
prospects in our daily life, such as monitoring patients in
the hospital for possible falls, collisions or other abnormal
sounds, and reminding nurses of responding in time [1],
monitoring the sound events of stolen trees and mountain
fire that may exist in the forest [2], emotional classifica-
tion [3], machine damage detection [4], etc. Urban sound
event detection can assist video surveillance, reduce the
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number of video surveillance devices, and solve the prob-
lems of video surveillance being affected by light, blind
spots in video surveillance, and expensive surveillance
devices. In machine intelligence [5], Urban sound event
detection can automatically preload relevant information
for a robot. However, there are also some problems
with sound event detection, such as poor noise immu-
nity [6], weak information-carrying capability of sound,
poor multi-source sound recognition owing to waveform
interference, weak recognition ability, similar timbres,
and scene recognition limited by sound collection device
limitation.
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Traditional handcrafted acoustic features (e.g.,Mel
Filter banks) have certain limitations. The problem with this
method is the Fourier transform, which makes it successful.
The Fourier transform is represented by a series of triangular
wave expansions on an orthogonal basis, which is a global
orthonormal basis lacking localization ability and is quite
sensitive to noise, thus the waveform through the Fourier
transform is also called a sine wave. This Orthogonality is
more convenient for calculating coefficients. However, its
premise is that the signal is a representation of a smooth
and stationary signal and the Fourier transform can achieve
an approximate optimal representation. However, the signals
encountered in daily life are often not smooth signals but sig-
nals with many singular points. However, the performance of
the Fourier transform on singular point signals is poor. It must
be approximated with a large number of triangular waves of
different frequencies, and the calculation of coefficients is
slow and complicated, resulting in slow audio processing and
Gibbs effect [7]. However, the timbres are determined by the
high-frequency distribution of the spectrum and amplitude of
each frequency. To reduce the computation of digital signals,
a high-frequency spectrogram is discarded by default during
processing, whichmeans thatMFCC is difficult to distinguish
the signals with similar timbres.

From the perspective of application scenarios, A major
difficulty of audio representations for classification is the
multiplicity of information at different time scales: pitch and
timbre at the scale of milliseconds, the rhythm of speech and
music at the scale of seconds, and the urban sound event
over minutes and hours. Mel-frequency cepstral coefficients
(MFCC) are efficient local descriptors at time scales up
to 25 ms. Capturing larger structures up to 500 ms is however
necessary in most sound scene.

From the perspective of spectrum, Spectrograms compute
locally time-shifting invariant descriptors over durations lim-
ited by windows. High-frequency spectrogram coefficients
are not stable to variability caused by time-warping defor-
mations, which occur in most signals, particularly in audio.
Stability means that small deformations in signals produce
small modifications of the representation, measured with a
Euclidean norm. It is particularly important for classification.
Mel-frequency spectrograms are obtained by averaging spec-
trogram values over Mel-frequency bands. It improves sta-
bility to time-warping, but it also removes information. Over
time intervals larger than 25ms, the information loss becomes
too important, which is why Mel-frequency spectrograms
and MFCC are limited to short time intervals. Modulation
spectrum decompositions characterize the temporal evolution
of Mel-frequency spectrograms over larger time scales [8],
with auto correlation or Fourier coefficients. However, this
modulation spectrum [9] also suffers from instability to
time-warping deformation, which degrades classification
performance.

The scattering transform [10] builds invariant, stable, and
informative signal representations for classification, which
are computed through a cascade of wavelet transforms and

modulus non-linearities to recover the lost information. As a
result, the scattering coefficients can be calculated over
larger window sizes without as great of a loss of informa-
tion, allowing larger-scale structures to be captured. These
larger-scale structures include timbral structures, such as
attacks, amplitude and frequency modulations, and interfer-
ence phenomena found in musical chords. It is stable to
deformations, whichmakes it particularly effective for image,
audio and texture discrimination. The computational struc-
ture was similar to a convolutional deep neural network.
It outputs time-averaged coefficients, providing informative
signal invariants over potentially large time scales. What’s
more, the scattering transform has striking similarities with
physiological models of the cochlea and of the auditory
pathway.

A. RELATED WORK
In response to the aforementioned problems of MFCC, a con-
siderable amount of research has been proposed to address its
shortcomings.

Victor [11] compared spectrograms decomposed by Prin-
cipal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), Decomposition Analysis (FA) and
Non-negative Matrix Factorization (Convolutive NMF) on
large ASC datasets map dictionaries and spectrums of dif-
ferent sizes. It was shown that there is a correlation between
different dictionaries and the size of the spectral feature
map. Abidin [12] adopted Constant-Q Transform (CQT) for
the audio signal, and adopted Local Binary Patterns (LBP)
to extract its texture features from the transformed time-
frequency signals, which are fed to the model of random
forest for importance identification. However, when the scale
of the spectrum changes, the encoding of the LBP features
will be incorrect, and the LBP features will not be able to
correctly reflect the texture information. In complex envi-
ronments, the recognition effect is significantly reduced.
Zhao Ren [13] stated that wavelet transform is not necessary,
and fused scalograms (bump and morse) and spectrograms
which are more suitable for ASC tasks, as they represent the
signal in detail. However, Different scales are suitable for
various tasks. It is necessary to select an appropriate scale
for features extraction based on this task. In addition to the
bump and morse scalograms, there are, for example, the Bark
scale and Equivalent Rectangular Bandwidth. These scales
suit different corresponding sound events but not ASC task.
Geiger [14] proposed adopting Gabor Filter banks features
to detect target events in different noisy background scenes.
In the detection of non-stationary sound events, the imple-
mentation shows that Gabor features have better detection
and classification performance than MFCC. But it is not
suitable for multi-scale audio.

The above studies all try to moderate the drawbacks
MFCC, whoseMel scale is concentrated in the low-frequency
part and are sparse in the high-frequency part. It is unsuitable
for multi-scale audio. Moreover, MFCC cannot detect target
events in noisy background scenes. STFT inevitably leads to
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the loss of formant. The problem of similarity of timbre was
not addressed. Therefore, some researchers tend to extract
features from raw audio to retain its spectrum as much as
possible, but not through Fourier transform. CNNs are the
most popular architecture for processing raw speech samples,
because weight sharing, local filters, and pooling help dis-
cover robust and invariant representations.

Palaz D [15] tried to model the original signal directly and
used a ‘‘convolution-maximum-pooling-convolution’’ model
structure instead of MFCC to achieve the extraction of short-
time features. It was shown that these features are susceptible
to noise. Exploiting the parallel between time and frequency-
domain processing is optional to improve robustness.
Wei Dai [16] indicate that 2-layered CNNs are insufficient to
extract discriminative features from rawwaveforms for sound
recognition at the front end. This is in contrast tomodels using
the spectrogram as input, which achieves good-performance
with only just two convolutional layers. The receptive field of
the first layer 320 layers was down to 80, and the model accu-
racy increased by 6.6%. However, the small RF model has
many more dispersed bands, and thus a lower frequency res-
olution for subsequent layers. Conversely, the large RFmodel
has fine-grained filters, but does not have sufficient filters in
the high-frequency range, showing that it cannot effectively
respond to local high-frequency impulses. Hoshen [17] pre-
sented a DNN architecture for speech acoustic modeling from
multichannel waveforms, which can reduce the noise level
and improving recognition performance compared to Mel-fb
magnitude-based baseline. With the network filter length,
pooling window and hop chosen to match a Mel-fb baseline,
the model learns a bank of bandpass beamformers that qual-
itatively follow an auditory filterbank-like scale and has spa-
tial selectivity that exploits the structure of the data. However,
Traditional CNN kernel filters are not efficient at learning
common acoustic features because of the lack of constraints
on the neural parameters. Ravanelli [18] proposed SincNet,
a neural architecture for directly processing waveform audio,
inspired by the way filtering is conducted in digital signal
processing, which imposes constraints on the filter shapes
through efficient parameterization. Beyond improvements,
SincNet also significantly improves the convergence speed
over a standard CNN and is more computationally efficient
for exploitation of filter symmetry. An analysis of the SincNet
filters reveals that the learned filter bank is tuned to precisely
extract some important characteristics, such as pitch and
formants. However, the low and high cut-off frequencies are
the only parameters of the filter learned from the data. This
solution still offers considerable flexibility, but does not force
the network to focus on high-level tunable parameters with
a broad impact on the shape and bandwidth of the resulting
filter. Gauthier [19] proposed complex gabor-based SincNet
on a phoneme recognition task, which is an optimal time-
frequency resolution alternative to the SincNet architecture.
It is shown that the proposed approach can produce results
comparable to those of state-of-the-art systems while operat-
ing on a raw waveform.

Some researchers have concluded that features such as
MFCC are more suitable for feature extraction, and that the
experimental results depend on the ability of the classifier.
The works of the classifier.

The researches have been addressed with features such
as MFCC and classifiers based on GMMs, XGBoost or
SVMs [20], [21], [22]. Other approaches use some form of
DNN, including CNNs [23], RNNs [24], and CRNNs [25].
With the emergence of ResNet and attention mechanism,
related models [26], [27] have been applied in various fields.
Jianyu L [28] proposed a multi-scale convolutional capsule
network (MCCN), integrating low-level and high-level fea-
tures in a convolutional neural network (CNN) as multiscale
features are conducive to noise reduction and robust feature
extraction, and a capsule network (CapsNet) is used to recog-
nize the spatial relationships in attitude data. Kong et al. [29]
proposed the structure of Wavegram-Log-Mel- CNN to train
pretrained audio neural networks (PANNs) on large-scale
audio datasets and convolved the convolved features from the
original wave graph. Concatenate with the Log-Mel trans-
formed channel features.

Since the representation of the spectrogram is the fre-
quency band under the time frame, multi-scale feature extrac-
tion can alleviate the problem of feature inconsistency under
different tasks. However, the front-end model is more impor-
tant for restoring the features and reducing the feature loss
in the extraction to restore the volume between the formant
frequencies in the timbre.

B. CONTRIBUTIONS
In this paper, we propose a fusion model based on a self-
attention mechanism to restore the semantic features of sound
scenes with similar timbres and make the feature granularity
consistent to refine the features. Our contributions can be
summarized as follows:

We explore a scattering transform that consists of learnable
filters, which can better deal with the brown noise widespread
in urban sound events, and better restore some semantic
features of sound scenes with similar timbres, and its DNN
structure can better filter noise, providing good feature sup-
port for subsequent feature recognition. Themodel focuses on
the impact of each time frame early in the 1D convolution like
Squeeze-and-Excitation network, but drops the Squeeze-and-
Excitation structure. This is because recognition of the model
is related to the weight of each bin. Therefore, there was
no Squeeze-and-Excitation process related to the channel.
In addition to the noise influence, it is necessary to perform
Gaussian filtering on the weights to reduce the influence of
noise on the weights and the impact of spectral loss replacing
global pooling. The structure can also be used to compress
invalid ones and enhance important time frames. Using this
method, the number of network layers can be reduced to
prevent overfitting. The bandwidth and center frequency in
the filters can be learned and adjusted according to the task,
which is adaptive.
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The filtered features are fed into a self-attention network.
This was used to adjust the time-frequency resolution. The
self-attention mechanism in the model is adopted to refine the
features by keeping the feature granularity consistent, and it
can obtain its global features at the early stage, allowing the
model to achieve better recognition results.

With the above methods, the self-attention mechanism
model proposed in this paper for sound event detection is well
trained. However, UrbanSound8k has only 10 low-level cat-
egories, which cannot well generalize all urban sound event
types well. Therefore, the categories of Google Command,
ESC-50, etc. were supplemented after the UrbanSound8K
dataset, and the effectiveness of the model was verified. The
research also fine-tunes the learnable filter using a transfer
learning method and takes the parameters on the Mel fil-
ters as the initial parameters of the learnable filter on the
UrbanSound8K dataset. However, the ESC-50 and Google-
command datasets consists of insufficient data. We freeze the
first multi-head attention block of its pretrained model and
retrain the previous filter layers. Because the similarity of
the dataset was poor, it was important to retrain the higher
layers and filters based on the dataset. The experimental
results demonstrate that the model can accurately detect
sound events. Compared with other classical residual net-
works and the networks with the ‘‘Squeeze-and-Excitation’’
mechanism in the classifier, the model proposed in this paper
shows better performance. This improves the effectiveness of
sound event detection.

II. METHODS
A. LEARNABLE FILTERS
The front ends can be categorized according to the proce-
dures they perform. There are two key categories: scatter-
ing transform (FST) [30] based front ends and Short-Time
Fourier Transform (STFT) based front ends. Unlike STFT,
whichmultiplies the filter banks matrix with the spectrogram,
FST adopts a convolutional layer on the raw audio waveform
to approximate a standard filtering process. FST-based front-
ends methods have made considerable progress, scattering
transform can learn the relationship between harmonics to
realize the effective detection of sound events, which can
extract the reverberation and phase information to summarize
the speech signal. Compared to theMel spectrum, it loses less
information and achieves a better detection effect.

Moreover, Many STFT-based front-ends are fixed and may
not be well-suited for certain downstream tasks. Both types
of front ends employ a filter-like transform to simulate the
non-linear sensitivity of the human ear to frequency. The
distribution of filter center frequencies is called scale. Mel
scale can capture human perception of pitch relatively well.
There are also lesser-knownBark and Equivalent Rectangular
Bandwidth (ERB) scales. However, these ratios are mostly
based on past experiences and are fixed equations. To make
such operations in the front end domain adaptive, filters can
be made learnable. Filter banks can learn its center frequency
and bandwidth.

FIGURE 1. Scattering transform.

As shown in Figure 1, scattering transform representation
process is that after the signal passes through the Gaussian
window, it will be sent to the Gabor Filter banks [31]. The
Filter banks can learn the center frequency fi and band-
width a of each filter through backpropagation, and they
are all constrained and learnable parameters. The audio sig-
nal passes through NFFT filters in the time and frequency
domain respectively, to form 2∗NFFT time domain signal and
frequency-domain signal bins, and then squares the frequency
domain signal bins corresponding to the time domain, get-
ting its Hilbert Spectrum. Determine the information of time
domain bins in each channel according to the out-channel
numbers.

ComplexGabor filters are defined as the product of a Gaus-
sian kernel multiplied by a complex sine function, as shown
in Equation (1):

g(t) = kejθw(at)s(t) (1)

where w(at) and s(t) are as in Equation (2), (3)

w(at) = e−π (at)
2

(2)

s(t) = ej(2π f0t) (3)

g(t) can be decomposed into frequency-domain and time-
domain signals, and the process is shown in Equation (4):

kejθ s(t)ej(2π f0t+θ )

= k(sin(2π f0t + θ), j cos(2π f0t + θ)) (4)

where k, θ, f0 denotes the filter parameters. The complex
Gabor filters can be considered as two out-of-phase filters,
in the real and complex parts of the complex function,
respectively.

The real-part Gabor filters representation is shown in
Equation (5), which performs a sinusoid transform after the
Gaussian kernel.

gr (t) = w(t) sin(2π f0t + θ ) (5)

The imaginary Gabor filters representation is shown in
Equation (6), which performs a cosine transform after the
Gaussian kernel.

gi(t) = w(t) cos(2π f0t + θ) (6)
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The real and imaginary components of a complex Gabor
filter are phase sensitive, this is their response to a sinusoid
is another sinusoid. By obtaining the magnitude of the output
(square root of the sum of squared real and imaginary outputs)
we can obtain a response that is phase insensitive and thus
an unmodulated positive response to a target sinusoid input.
In certain cases, it is useful to compute the overall output
of the two out-of-phase filters. One common way to do
so is to add the squared output (the energy) of each filter;
equivalently, we can obtain the magnitude. This corresponds
to the magnitude (more precisely the squared magnitude) of
the complex Gabor filter output. In the frequency domain, the
magnitude of the response to a particular frequency is simply
the magnitude of the complex Fourier transform, i.e.

‖g(f )‖ =
k
a
ŵ(
f − f0
a

) (7)

This is a Gaussian function centered on f0, with a band-
width proportional to a. Therefore, the center frequency
response of the filter is f0, and in order to obtain the full width
at half maximum (FWHM, half-magnitude), the calculation is
shown in Equation (8).

ŵ(
f − f0
a

)=e−π
f−f0
a2 = 0.5 (8)

The bandwidth obtained by transform is 0.46797a,
which is about 0.5a. The calculation process is shown in
Equation (9).

f − f0 ±
√
a2 log 2π = 0.4697a ≈ 0.5a (9)

The learnable bandwidth is strictly constrained between
−a
√
2 log 2π and a

√
2 log 2π , and the center frequency is

constrained between −1/2 and 1/2.
And the fmax , fmin of each filter is initialized by Mel scale,

and the signal is constrained within Mel scale, firstly is
converted to Mel scale. As shown in Equation (10):

mel scale = 2595 log(1+
f

700
) (10)

The obtained center frequency and bandwidth equally
divided on the Mel scale were converted into frequencies,
as shown in Equation (11). to obtain the initialized center
frequency and bandwidth with theMel scale of the frequency.

f = 700∗(10
mel
2595 − 1) (11)

The filtered signals obtained from the Gabor filter layer
and square mode layer were the Hilbert envelope. The enve-
lope is then sent to several layers of one-dimensional convolu-
tion, which adds an extra branch to the shortcut connection.
The shortcut connection is adopted to solve the problem of
deep neural network degradation, and Dilated convolution is
used to reduce the number of network layers.

The overall front-ends structure is shown in Figure 2,
whose first layer adopts a scattering transform based on
a constrained learnable Gabor filter. The following down
sampling layers imitated the shortcut connection of ResNet

by adopting a Gaussian filter in its branch. The reason for
adopting Gaussian filter is that, after obtaining the Hilbert
envelope, the signal output has the same time resolution as the
input, which need to be down-sampled to a lower sampling
rate to obtain valid information. However, direct convolution
or 2D convolution will result in the need for a deeper network
to obtain a sufficiently large receptive field, but a deeper
network will lead to a decrease in the recognition. This prob-
lem can be solved with methods like max pooling or average
pooling, but there are better ways to do so. Zhang [32] showed
that in standard 2D convolutional architectures, including
ResNet [33] and DenseNet [34], replacing max pooling
and average pooling layers with (fixed) low-pass filters can
improve the performance of image classification. In feature
extraction, we employ a single shared low-pass filter for all
frames, but we implement low-pass filtering by depth wise
convolution such that each kernel is associated with a low-
pass filter. Each kernel in the learnable front-ends have a dif-
ferent bandwidth and center frequency, and a specific lowpass
filter can be learned for each kernel. Furthermore, compared
with the pooling methods, low-pass filtering can weaken the
details, noise, edges and sudden changes in the audio, which
is shown in Equation (12), is obvious in data compression
and noise reduction. The bandwidth and center frequency in
per low-pass filter function can be learned, initialized with
a bandwidth of 0.4, resulting in a frequency response close
to the Hann window used by the Mel Filter banks. In order to
enable the feature extraction system to fully extract the global
features of the audio instead of localized features, a 12-layer
1D convolution is used to express the high-level semantics of
the obtained envelopes.

φn(t) =
1
√
2πa

e−
(t−f0)

2

2a , t = −
a
2
, . . . ,

a
2

(12)

While its weight is multiplied by each filter, and the center
frequency and bandwidth parameters of each filter are sent to
the back-propagation network for learning. The Squeeze-and-
Excitation structure was dropped, but with a full connection
layer. The task is not in the shape of (b, c, h,w), shaped
in (b, f , t). In addition, the Squeeze-and-Excitation structure,
which focuses on the channel, was applied to its channel.
However, our task focused on filters.

B. SELF-ATTENTION MECHANISM
After obtaining the input that preserves its sequence informa-
tion from the 1D convolution of learnable filters. The purpose
of the multilayer scattering structure is to reduce spectrally
unnecessary signals it conveyed by it. In contrast to the vit
Transformer [35] in computer vision, the input is divided into
different patches for normalization, and then a linear layer is
applied to each patch to reduce the dimension and embed the
position information, and then sent to the Transformer model,
avoiding the explosion of pixel-level self-attention block’s
operation. The learnable filter can reduce the signal loss while
expanding the receptive field after the scattering transform,
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FIGURE 2. Learnable filters network with Scattering transform.

and avoid the explosion of the operation in the spectrumwhile
saving the time series.

Convolutional network models such as ResNet are good
at identifying texture features, but ignore their expressions
for detailed features. Previous models relied heavily on con-
volution to model correlations between different regions.
The convolution operator has only a local receptive field,
and the long-range correlation can only be post-processed
by several subsequent convolution layers. The expression
for the correlation cannot be represented by small convolu-
tions. Correlation optimization algorithms may have diffi-
culty coordinating multiple layers to capture these correlated
parameter values, and when these parameters are applied to
the validation set, the accuracy and generalization ability of
themodel will decrease. Increasing the size of the convolution
kernels can increase the representational ability of the net-
work, but in the meanwhile, it also losses the computational
and statistical efficiency gained by using local convolutional
structures. This demonstrates a better balance between the

ability to model long-range dependencies and the compu-
tational and statistical efficiency. The self-attention module
computes the response of a location as the weighted sum of all
the location features, where the weights (or attention vectors)
are computationally inexpensive. The self-attention module
computes the response at a certain location as a weighted sum
of all the location features, whose weights (or attention vec-
tors) are computationally inexpensive. Convolution processes
information in local neighborhoods, and using convolutional
layers alone is computationally inefficient for modeling the
long-range dependencies of features. Attention mechanisms
have become an integral part of models that capture global
correlations.

The standard Transformer [36] accepts a sequence of 1D
token embeddings as the input. In this paper, in order to deal
with the two-dimensional spectrogram, the token embedding
operation is not performed, and in the positional embed-
ding stage, the d_model is replaced with nfft , where is the
resolution of the spectrogram. The classification head is
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implemented by a hidden layer during pre-training and a
single linear layer during fine-tuning, which contains two
nonlinear GELU layers. The layer norm (LN)was used before
each block, and a residual connection was used in each block.
This model is shown in Figure 3.

The spectrogram of 1D convolution forms the input
sequence. When feeding a higher-resolution spectrogram,
this yields a larger effective sequence length while keeping
the time series size constant.

FIGURE 3. Self-attention mechanism model.

The representation of multi-Head attention is shown in
Figure 4. The correlation score between each frame in the
time series needs to be obtained, and the correlation score
can be calculated by using the dot product method, which is
to calculate the dot product with each vector in Q and each
vector in K, Vector Q and vector K are both filtered and
compressed sequence signal in the model. The matrix corre-
sponding to the correlation score is: score = QKT . The score
is a matrix in the shape of (T ,T ). Subsequently, the score
of the correlation between each frame in the input sequence
is normalized, and the purpose of normalization is mainly to
stabilize the gradient during training. score = score

/√
dk ,

dk is the dimension of vector K . Using the soft max function,
the score vector in each frame is converted into a probability
a distribution in [0, 1], highlighting the relationship in its time
frames. Multiply the probability distribution in the frames by
the corresponding Value, Z = softmax(score)V ,V is shaped
in (T , nfft), (T ,T )×(T , nfft) gets the final matrix Z shaped in
(T , nfft). The overall calculation is shown in Equation (13):

Z = softmax(
QKT
√
dk

)V (13)

On the basis of this self-attention mechanism, multi-Head
Attention only uses one set of the input embedding matrix

WQ,WK ,WV to transform to obtain Query, Keys, Values,
and then each group is calculated to obtain a matrix Z
Finally, the obtained multiple Z matrices are concatenated.
The Multi-Head Matrix of 8 group are used in the model.
After getting the matrix Z through multi-Head Attention,
it is not directly passed to the fully connected neural
network FNN.

FIGURE 4. Multi-head attention.

Because the 12-layer one-dimensional convolution in the
early stage can fully obtain audio features, a linear layer is
not required to extract the features; therefore, the linear is
removed. Scaled dot-product attention is adopted to adjust
the time-frequency resolution to achieve the consistency of
feature granularity.

Besides, it’s a problem of unbalanced sample categories,
and the cross-entropy loss function cannot solve this prob-
lem very well. Therefore, a more comprehensive Focal Loss
method [37] was adopted. which is similar to the case of
channel attention, and a function was used to measure the
total loss of difficult and easier-to-classify samples. Depend-
ing on the difficulty of the classification, the weight of the
easier-to-classify samples is reduced, allowing the model to
focus more on difficult-to-classify situations during training.
Its operation is given in Equation (14).

FL(pt ) = −αt (1− pt )γ log(pt ) (14)

Compared with the cross-entropy function, Focal Loss has
a modulating factor (1− pt )γ . For accurately classified sam-
ples pt → 1, the modulating factor approaches zero. For the
inaccurately classified samples, the modulating factor is up
to 1. That is, compared with the cross-entropy loss function,
Focal Loss function does not change the loss for samples with
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inaccurate classification, and the loss decreases for samples
with accurate classification. Overall, this is equivalent to
increasing the weight of the inaccurate samples in the loss
function. This also reflects the difficulty of classification. The
larger the value, the higher the confidence of the classification
and the easier it is for the representative sample to be divided.
Therefore, Focal Loss is equivalent to increasing the weight
of difficult samples in the loss function, making the loss
function tend to be difficult samples, which helps improve
the accuracy of difficult samples.

C. NETWORK-BASED DEEP TRANSFER LEARNING
The dataset ESC-50 has sufficient data categories, per which
there is little data. This is the primary reason that transfer
learning is applied to the other two datasets. The general
network is a model that obtains the hierarchical feature rep-
resentation of data through pre-training, and then uses high-
level semantic classification. The bottom layer of the model
contains low-level semantic features (for example, edge infor-
mation, color information, etc.), which are actually invariant
in different classification tasks, and the real difference is
the high-level features. Transferring features from distant
tasks may be better than using random features. Usually, the
first several layers are not particularly related to the specific
image dataset, and the last layers of the network are closely
related to the selected dataset and its task objectives. The first
several layer features are called general features in the article
(general) features, and the last several layers are called spe-
cific features.

Network-based deep transfer learning [38] refers to reusing
part of the pre-trained network in the original domain, includ-
ing its network structure and connection parameters, and
transforming it into a part of the deep neural network for
the target domain. First, the network was a source-domain
trained using a large-scale training dataset. Second, part of
the network preprocessed in the source domain is transferred
to a new network designed for the target domain. Finally,
the fine-tuning policy can be updated for the transmitted
subnetworks. Training deep learning models from scratch
based on small samples is difficult because a large number
of weight parameters must be adjusted, which are generally
randomly initialized.

Transfer learning [39] has potential to overcome the above-
mentioned problems by reasonably applying the existing
knowledge gained from related but different domains. Var-
ious transfer learning strategies have been applied to solve
several pattern recognition problems. Parameter transfer, the
most widely applied transfer learning strategy, is not only
easier to implement, but also more suitable for classification
tasks with auxiliary training data.

There are only 2000 pieces of data in the dataset ESC-50,
but there are 50 classes, each with only 40 pieces of data.
When split in a ratio of 8:2, the data for each category is
unbalanced and the amount of data is small. The model
trained on the dataset of UrbanSound8K is partially trans-
ferred to the network designed in the target domain, and the

first layer of unimportant extraction of edge, texture infor-
mation and power information in the self-attention mecha-
nism is frozen for the transmitted sub-network. However, the
extraction process of the filter is related to a specific scene;
therefore, it is necessary to load the pre-trained model of
the transferred filter model, and adjust its center frequency,
weight, bandwidth, and other parameters according to the
training data. The layers close to theMLP of the self-attention
network extract a high-level semantic feature representation.
It is also necessary to preload training according to the task,
of realizing a fine-tuning strategy for a network with insuffi-
cient data. The MLP layers of the network are closely related
to the selected dataset and its task objectives, which cannot
be frozen and must be trained with the data.

III. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL DATASET
The urban sound events listed in Table 1 contain four main
categories: human, natural, mechanical, and music. Urban-
Sound8K [40], provided by DCASE, contains 10 low-level
categories of urban sounds: air conditioners, car horns, chil-
dren playing, dog bark, drilling, engine idling, gunshots, hand
hammers, sirens, and street music. Except for children play-
ing and gunfire, all other categories were selected because
of their high frequency in urban noise complaints. However,
they cannot represent all environmental classes. Therefore,
ESC-50 [41] provided by Kaggle and Google Command [42]
provided byGoogle were added to the categories of the exper-
iments. Google Command mainly supplements the speech
in the categories, ESC-50 mainly supplements categories
such as Movement, Plants, and Non-motorized Transport in
the Table 1.

In order to prevent feature differences caused by inconsis-
tent feature granularity, all audios were uniformly resampled
and sampled to 44.1 KHz, then converted to mono, and then
clipped subsequently, and time offset was applied to move the
audio to the left or right. The random amount is shifted to the
right to augment the original audio signal, and finally obtain
raw-audio. and sent to the network to generate the spectral
envelope. The training and validation of the model were split
in a ratio of 8:2.

B. THE PERFORMANCE OF LEARNABLE FILTERS
The most common audio feature is the Mel-scale Frequency
Cepstral Coefficients (MFCC). TheMFCC features extracted
from raw audio were compared with the method of extract-
ing envelope features using the scattering transform pro-
posed in this paper. A comparison of the features is shown
in figure 5. The audio features only take the data of
one batch, and the boxplots are compared among the first
16 channels. It is obvious that the learned channel features can
converge to the range in−0.6745σ ∼ 0.6745σ . Several obvi-
ous problems can be observed in the figure 5. The features
represented by MFCC are more likely to contain noise, and
feature extraction is more chaotic. The features learned by
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TABLE 1. The detailed categories in the urban sound events.

constrained convolution can learn more expressive features
and significantly suppress noise. Because it learns the center
frequency and bandwidth, the median behaves differently in
position, and the center frequency behaves differently. The
bandwidth is limited between Minimum(Q1 − 1.5 ∗ IQR)

and Maximum(Q3 + 1.5 ∗ IQR). The center frequency is
within IQR, where represents the distance between the third
quartile and the first quartile (Interquartile Range). It can
be clearly seen that the center frequency and bandwidth
changed. However, owing to the constraints, the center
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FIGURE 5. In a batch: Upper is the feature boxplots obtained by MFCC, and lower is the feature boxplots after 10 epoch scattering transform.

frequency and bandwidth of its learning will not deviate
significantly.

C. EXPERIMENTS SETTING
The experiment was conducted in an Ubuntu16.04 operating
system, and the framework of audition, pytorch and Lingvo
was applied in the experiments. IZotope Radius is selected
in the audition to stretch the audio and pitch simultaneously.
To reduce the influence of artifacts on features, this study
adopts a high time-frequency resolution and sets nfft to 1024.
Each model uses 16 audio data as a batch, initializes the
learning rate to 0.001, window of kernel size to 1024, and hop
size to 320 samples and uses theAdamoptimizer to iteratively
update the parameters. Adam can dynamically adjust the
learning rate so that the learning rate is closer to the current
state of parameter update, so that the model can converge
better, as shown in Table 2.

For the other systems based on log Mel spectrograms,
STFTwas applied to thewaveformswith aHammingwindow
of size 1024 and a hop size of 320 samples. This configuration
resulted in 100 fps. We used 64 Mel filter banks to calculate
the log Mel spectrogram. The lower cut-off frequencies of
the Mel banks were set to 50 Hz to remove low frequency
noise. We use torchlibrosa, a PyTorch implementation of
functions of librosa to build log Mel spectrogram extraction
into models.

TABLE 2. Optimizer and stratagegy.

D. MAXIMUM SLICE DURATION ON THE MODEL
After comparing the features extracted by the learnable filter
with theMFCC. The discussion results are shown in Figure 6,
and it can be observed that the maximum slice duration is bet-
ter between 4-6 seconds relatively. Therefore, we selected 5s
as the maximum slice duration for each audio. In the first
experiment, we investigated how the choice of threshold
affects the performance of the model. To do this, we gener-
ated ten copies audio in UrbanSound8K, and the maximum
slice duration for each copy was changed from 10s to 1s.
To ensure that the observed variation in accuracy was not an
artifact of a particular classification algorithm, we compared
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FIGURE 6. The performance of learnable filters combined with classical models for maximum slice duration.

six combined front-ends + classifier algorithms: MFCC +
ResNet, learnable filter + ResNet, MFCC + SKNet, learn-
able filter + SKNet, support vector machine (radial basis
function kernel), and the learnable filter-self-attention model
adopted in this study. The traditional method was found
to perform poorly in practice. The MFCC under the same
model and parameters compared with scattering trans-
form, the performance of which will still be significantly
degraded. Because there is no backpropagation process in
SVM, it is meaningless to use a learnable filter; there-
fore, there is no comparison between MFCC and scattering
transform.

The results show that we observe consistent behavior for
all classifiers except MFCC + ResNet: the performance
remains stable from 10s to 6s, after which it starts to gradually
decrease. Consider the best performing classifier (Ours), with
no statistically significant difference between performance
using 6s slices and 4s slices (whereas below 4s, the difference
becomes significant), and choose 4s slices.

Figure 7 shows that different sound categories are affected
differently by maximum slice duration: categories such as car
horn and drill have fast events that are clearly identifiable
on short time scales and are therefore largely unaffected by
duration; whereas street music, siren and children Play etc.
decreased almost monotonically, but this shows the impor-
tance of analyzing these courses on longer time scales, and
suggests that multiscale analysis may be a relevant avenue for
research. To understand the relative difference in performance
between the classes, we examined the confusion matrix of
our classifier on UrbanSound8K as shown. We found that
the classifier tended to confuse three broad categories of air

conditioners and idling engines, jackhammers and drills,
children playing and street music. This is because the timbre
of each pair is very similar (for the last pair, harmonics are
a possible cause). To a certain extent, the influence of har-
monics still exists and cannot be completely solved. However,
the model in this study confirms that the harmonics can be
identified.

E. EVALUATION INDICATORS
Several commonly used evaluation metrics are used in this
study: precision, recall, F1 score, and confusion matrix.

Precision is the ratio of the number of correct predictions
to all test samples. Its calculation formula can be expressed
as (15):

precision =
TP

TP+ FP
=

∑c
i=0 pij∑c

i=0

c∑
j=0

pij

(15)

pii indicates that the prediction is class i, which is actu-
ally class i, and pij indicates that the prediction is class i,
and the actual class is class j. Precision is represented by
PRE, which represents the proportion of the correct audio
category prediction to the total audio frequency, which can
reflect the accuracy of the model classification to a certain
extent.

Recall refers to the ratio of the number of correct predic-
tions to all real results. The calculation formula is expressed
as (16):

Recall =
TP

TP+ FN
(16)

120814 VOLUME 10, 2022



S. Song et al.: Research on Scattering Transform of Urban Sound Events Detection Based on Self-Attention Mechanism

FIGURE 7. The performance of different categories on the maximum slice duration under our model.

TP: Predict True samples as True;
FN: falsely predict True samples as False;
FP: Predict False samples as True.
Macro-F1 Score: Also known as Balanced Score, it is

defined as the harmonic mean of precision and recall. After
calculating each class PRE and REC, calculate F1, and finally
average F1. Its calculation formula can be expressed as (17):

F1 = 2 ·
precision · recall
precison+ recall

(17)

Confusion matrix: An analysis table that summarizes the
prediction results of the classification model and the records
in the dataset in matrix form according to the two criteria
of the real category and the category predicted by the clas-
sification model. where the rows of the matrix represent the
true values and the columns of matrix represent the predicted
values. That allows us to intuitively understand which kind of
samples the model does not perform well.

The model in this study performed 100 iterations on the
training data, and finally reached convergence. The precision
reached 98.8% on the UrbanSound8k dataset and reached
96.7% and 87.32% for Google-Commands and ESC-50,
respectively. Noise with different signal-to-noise ratios was
added to the three data sets: 20 dB, 10 dB, and 0 dB. The
performance is presented in Table 2.

From Table 3, it can be concluded that the MFCC front-
ends are more sensitive to noise than the learnable front-
ends scattering transform in this study, and the PRE of the
acoustic event is reduced by 2%∼5% under various signal-
to-noise ratios. The scattering transform is not very sensitive

to noise performance, and the PRE of sound events is reduced
by 0%∼1% under different SNR noises. As the self-attention
mechanism can obtain global information at an early stage,
its model can identify features at an early stage. Compared
with the ‘‘Squeeze-and-Excitation’’ SKNet [43] model which
obtains global information at later stage, this effect can be
improved. for better recognition. The learnable filter is simi-
lar to the noise reduction structure ofDNN,which can achieve
a good noise reduction effect, and the combination of the two
achieves a relatively good recognition effect.

Under the same SNRs, the values of the Precision and
F1 score achieved by the scattering transformwere constently
higher than that obtained by MFCC. In addition, the lower
the SNRs are, the larger the improvements obtained by Ours
model are. For example, when the SNR is 0 dB, the scattering
transform achieves a slight decrease of approximately 1%
compared with 2∼5% under 0 dB in the same classifier.
If scattering transform is adopted, better noise immunity can
be achieved under different noise conditions.

As far as three individual classifiers are concerned, the
effect of our model is better than that of the other two
classifiers, whereas SKNet is the worst in terms of both
Accuracy Recall and F1 score under different SNRs. Similar
results were obtained for the other two datasets. However, it is
intriguing that SKNet, as an attention mechanism for mod-
eling between channels, has a significantly lower PRE than
ResNet in terms of the recognition effect. We conclude that
the early features extracted by MFCC are rather confusing,
resulting in the inability to effectively identify key features
during the learning process.
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TABLE 3. Per-class performance of the sound event classification on urbansound 8K, google-CMD and ESC-50 datasets presented by mean value in
percentage. pre: precision; rec: recall; F1: F-1 score.

After a follow-up investigation, it was found that ResNet
can achieve the best recognition effect at the 18th layer,
whereas the channel attention of SKNet and a deeper neural
network will lead to overfitting. This study finds that using
two layers of the self-attention mechanism can achieve the
best recognition effect and prevent overfitting. This can also
explain why the SKNet performance has a 2%-4% accuracy
gap compared to ResNet. For the ESC-50 dataset with a
small amount of data and an uneven distribution of species,
better results can be obtained. Compared with cross Entropy
Loss [44], Focal Loss can achieve an improvement of 2%. The
main basis was derived from an analysis of the data categories
of the dataset.

Its confusion matrix on the UrbanSound8K dataset. The
classification situation of the model in each category is shown
more clearly. As can be seen from the figure, the model has a
very high accuracy rate for the vast majority of the categories.
100% accuracy on driving and car h. However, there are
5 misjudgments in child and street, although in the case of
a large cardinality of 204, the accuracy rate reaches 97.5%,
and the degree of confusion is the highest in the entire audio
classification. Followed by child and dog misjudgments each
of 3, the data is second in the error, listen carefully to the
audio, and find that the audio is mixed with the sound of the
dog. Consequently, the learned features cannot be correctly
distinguished. This is mainly because of the similarity of the

FIGURE 8. Confusion matrix on UrbanSound8K dataset.

scenes in which the difficulty of distinguishing increases.
However, this did not affect its overall performance.

Table 4 compares the results obtained in various recent
studies with our model on the datasets of UrbanSound8K,
ESC-50 and Google-Command. The results show that the
proposed model marginally outperformed the state-of-the-art
performance.
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TABLE 4. Per-class performance of the sound event classification on urbansound 8K, google-CMD and ESC-50 datasets presented by mean value in
percentage. pre: precision; rec: recall; F1: F1 score.

Wecompare ourmodel with some existingmethods. On the
dataset UrbanSound8K, 9 methods are mainly listed. From
the traditional machine learning approach of Salamon J [45]
to the Decision-Level Fusion of Two-Stream CNN of
Yu S [51]. It can be concluded that most researchers are
trying to improve the effect of the model on the basis of
Log-Mel and MFCC, which, to a certain extent, shows that
these traditional methods are difficult to effectively perform
competent on the task alone, and the characteristics need to
be supplemented. The inputs to the network consist of time-
frequency patches (TF patches) extracted from the log-scale
Mel spectrogram representation of the audio signal, as well
as chrominance, spectral contrast, and Tonnetz features,
among others. Comparing the models of Salamon J [47]and
Abdoli S [49], we can see that under the same classifier and
10-fold cross-validation strategy, the features learned by the
strategy of fine-tunning and front-end in 1D conv are better

than the front-end in Log-Mel and no fine-tunning strategy.
The front-end of Mushtaq Z [52] is based on Log-Mel, which
concatenate the enhanced data in parallel, whose classifier is
a deep convolutional network (without max pooling). A pre-
cision of 95.3% was obtained. In contrast, the network of
Zhang [48] also adopts Log-Mel, but only achieves 81.9%,
whose classifier drop the max pooling. It can be observed that
max pooling had a negative effect on the model. The model
of Mushtaq Z [52] still performs well on the ESC-50 dataset.
Experiments may attribute the model success to data augmen-
tation. However, several othermodels used data augmentation
to a certain extent, although not in parallel. It was shown
that max pooling negatively affects the training effect of the
model during the training process. Li [50] adopted the model
of taking Log-Mel features recognition as the main stream,
extracting features from the raw waveform as weights and
adopting the strategy of Loss-Level Fusion to obtain better
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TABLE 5. Statistics of accuracy achieved by the three models.

results. This can better show that features extracted from the
raw waveform have a positive effect on the model. How-
ever, because the learnable filters are unconstrained used, the
learning parameters are affected by noise. The learning of the
bandwidth and center frequency in the filters is weird.

On the dataset Google-command, Models [53], [54], [55]
have shown that speech has obvious requirements for the
identification of timing signals. The model proposed by
Yifan [54] outperformed the self-attention of the Transformer
and Conformer owing to the addition of peak detection. This
technique alleviates the problem of similar timbres, in which
a multi-Gaussian surrogate gradient is used by its Grid
search.

This phenomenon was also observed for the dataset
ESC-50. For example, Zhang Z [58] and Tokozume Y [56]
used the same front-end, and the ACRNN model with time-
series recognition achieved better recognition than the Env
Net of CNN. It can be shown that the time-series signal has
a significant impact on feature recognition. The Transformer
of the self-attention mechanism can better solve the problem
of gradient disappearance and gradient explosion in the long
sequence training process, and is more suitable for audio
overfitting tasks.

We conclude that max pooling affects the model more than
the long-term dependency problem, in the case of insufficient
data. The feature supplement of Log-Mel is an unavoidable
problem for long-term sequences. The envelope feature can-
not effectively cover all ranges and must be supplemented
with peaks, pitch, and tonal space features. The main reason
for this is that compression and Fourier transform truncate
some unsolvable harmonics. This is also the problem our
model tries to solve.

In order to further demonstrate whether our model out-
performs the models which combined MFCC or scattering
transform and other networks in a statistically significant
way, we added the experimental results from paired accuracy

statistics and applied a paired sample t-test. Table 5 shows
the performance achieved by the five models with
UrbanSound8K.

The standard error mean is obtained by taking the dif-
ference between the data generalized from the model and
predicted data. If the model and solution space are the same,
that is,µ1−µ2 = 0 (as a known populationmeanµ0). That is,
the difference in paired data should fluctuate around 0 and not
be too far away from 0, so this kind of data can be regarded as
the sample mean of the difference. The represented unknown
population mean µdev (Deviation)compared to the known
population mean µ0 = 0.

The standard error mean obtained by our model is much
smaller than that of the other models (0.01625), which proves
that the effect of our model can reflect the solution space of
the data. The number of Deviation and Mean in our model
were smaller than those in the other composite models. It can
be seen that adopting our model to search the solution space
of the data is 0.03 higher than using the scatter + ResNet
model, with a 95% CI of −0.04-0.02, and the difference was
statistically significant (t = −0.670, p > 0.05). p > 0.05
proves that there is no significant difference between the
predicted and actual data. While p<0.05 in the MFCC +
SKNet Proves that there is a significant difference between
the data predicted by the MFCC + SKNet model and the
actual data. This can be explained by the fact that SKNet
can easily lead to an overfitting state compared with ResNet.
Scatter + SKNet can obtain prediction data that are not
significantly different from the actual data, confirming that
the features obtained by MFCC in the early stage are mis-
leading, resulting in overfitting in the model learning pro-
cess. The scattering transform can effectively extract these
features.

We further show a visual feature map using a scattering
transform and MFCC. Figure 9 shows the feature thermal
map obtained by the scattering transform from learning the
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FIGURE 9. The visualization of MFCC and scattering transform.

FIGURE 10. The mAP of the models during 100 epochs on the UrbanSound8K.

signal of gun shot on the dataset of UrbanSound8K, in which
(a) is the MFCC spectrogram, (b) is the heatmap of the signal
in the scattering transform. The light color is the background
of the picture, and the darker color is the feature extracted
by the model. The darker the color, the more important this
feature is considered by the model. It is obvious that the front-
end of scattering transform in this paper has obtained a more
detailed feature map.

In addition, the research also compares the mAP of the
models with self-attention mechanism and some mainstream
models. The mAP of the epoch, as shown in Figure 10,
is drawn, and the experimental results are listed in Table 3.
It is obvious that our model can achieve better results at

an early stage. The front-end of the scattering transform is
generally better than the front end of MFCC.

Figure 11 shows the loss diagram of different models in
the training process, where the abscissa is the number of
iterations, and the ordinate is the loss value. It can be seen
from the figure that the speed of the loss decline, whose rate
indicates the speed of the model converges. The convergence
speed of the scattering transform model is generally higher
than that of the MFCC model.

Table 6 lists the accuracy of the fine-tuned our model.
Our fine-tuned system achieved an accuracy of 0.915, outper-
forming previous state-of-the-art system. The Freeze front-
end and Freeze_L2 systems achieve accuracies of 0.87
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FIGURE 11. Variation of training losses.

TABLE 6. Accuracy of ESC-50 and google command.

and 0.82, respectively. By contrast, training the system from
scratch achieves an accuracy of 0.864. This phenomenon also
exists in the Google Command. On the Google command, the
fine-tuning effect is the best if the first layer of self-attention
is frozen. In addition, if the second layer of self-attention is
frozen, the effect is lower than that of freezing the first layer.
If the front-end is frozen, it is not as effective as scratch.
We can see that if we freeze the front end, the effect is even
worse than that identified for the features extracted from the
raw audio.

IV. CONCLUSION
In this study, a learnable self-attention model for sound event
detection is proposed to alleviate the problem of inconsistent
feature granularity caused by similar timbres and inconsis-
tencies in collecting audio equipment. First, the fast Fourier
transform was abandoned at the front-ends of feature extrac-
tion, and a learnable scattering transform was used. One-
dimensional convolution is added to enhance its receptive
fieldwhereas imitating the residual block structure of ResNet,
and Gaussian filtering is used on its shortcut branch. The
filter performs feature filtering, and its structure can achieve
the corresponding noise reduction effect. Second, the self-
attentionmechanism in Transformer, which has a better effect
in NLP, is used in the model, and the effect is quite good.

The scattering transform in the model can alleviate the
problem of timbre similarity to a certain extent, can identify
artifacts and has strong robustness to a certain extent. After
the scattering transform, 6-layer one-dimensional convolu-
tion is used to obtain a larger receptive field, which can reduce
the negative impact of invalid time frames while obtaining
key information.

At the same time, the model analyzes the self-attention
mechanism in the Transformer with the help of the Trans-
former’s success in processing long-term sequences. It was
found that it can obtain better global information in the early
stage, and can achieve consistency of feature granularity,
to achieve a better recognition effect.

To solve the problem of insufficient categories for sound
scene recognition. Complements the category in Urban-
Sound8K with the introduction of ESC-50 and Google-
Command. This enables the model to fit more classes of
sounds and features with different granularizes. This is the
ability, robustness and validity of the model to be validated.
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