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ABSTRACT This paper proposes fully decentralized l1 optimal dynamic state estimators (DSEs) for load
frequency control (LFC) of interconnected power generating systems and provides its comparative and
extensive study with respect to three other types of DSEs. To this end, we present the dynamic model of
a single area of the power-generating unit occurring from the interconnected power systems. By noting the
fact that each area is affected by the frequency deviations in other areas, and it is quite difficult to obtain
any property of the load changes in power systems, we characterize the disturbances in the LFC of power
systems as bounded persistent signals. As a candidate for DSEs for LFC of power systems, the unknown input
observer (UIO), Kalman filter (KF), and H∞ optimal DSE are considered, and their limitations are analyzed
in depth. In connection with this, the l1 optimal DSE, in which the maximum magnitude of estimation error
for the worst bounded persistent disturbances is minimized, is proposed as the most effective state estimator.
Finally, the practical validity and effectiveness of the proposed l1 optimal DSE are demonstrated through
some comparative simulations for a three-area power generating system.

INDEX TERMS Dynamics state estimator (DSE), load frequency control (LFC), l1 optimality.

NOMENCLATURE
N The set of positive integers.
N0 N ∪ {0}.
Rν The set of ν-dimensional real vectors.
* Symmetric terms in a symmetric matrix.
(·)i ith area index of (·), i = 1, 2, . . . ,N .
1ACEi Area control error.
1Ps,i Load reference setpoint deviation.
1Pv,i Valve position deviation.
1Pt,i Turbine power deviation.
1Ptie,i Tie-line power deviation.
1PL,i Load change.
1fi Frequency deviation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed A. Zaki Diab .

1Ri Governor droop characteristic.
1Bi Frequency bias parameter.
Kg,i,Tg,i Governor gain and time constant.
Kt,i,Tt,i Turbine gain and time constant.
Mi,Di,Ki Inertia constant, load damping coefficient,

gain of synchronous generator.
Tij Synchronous coefficient between ith area and

jth area.

I. INTRODUCTION
An imbalance between generated power and load demand
might lead to a blackout for the whole power systems.
In other words, the power generation amount must coincide
with load demand. However, it is a non-trivial task tomaintain
the balance between them since the load demand is unpre-
dictable and uncertain. In this matter, if we note that such
imbalance directly leads to variations in the system frequency,
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then we can conclude that the frequency in power systems can
describe the balance (or imbalance) between generated power
and load demand. Therefore, one can maintain the balance
between the generated power and load demand by regulating
the frequency in power systems at prescribed nominal values.
In this regard, a control scheme called the load frequency
control (LFC) or the automatic generation control (AGC) has
been established for regulating the frequency of the system at
a nominal value [1], [2], [3].

The LFC has been extensively studied for a few
decades [4], [5]. The LFC schemes can be classified into three
different frameworks as discussed in [6]: intelligent control
framework [7], evolutionary computing framework [8], and
state feedback control framework [9]. The state feedback
control framework [10], [11], [12], [13] has been intensely
studied due to its potential applicability to some robust and
optimal properties [14]. However, these schemes are often
criticized with respect to the realization of real-time state
data acquisitions. To address this problem, dynamic state
estimation (DSE) schemes have been suggested to estimate
the state variables in real-time [15], [16].

However, it is becoming more challenging to estimate the
state variables in modern power systems because they are
constructed by many interconnected power generating units.
In interconnected power generating systems, not only the
load changes in a single area but also the power deviations
from the tie-line (so-called tie-line power deviation) affect the
frequency deviations. Furthermore, operating these numbers
of systems with a single centralized controller requires a
massive computation load and communication lines. Thus,
it is more efficient to divide the system into interconnected
single generating units and operate each system using decen-
tralized controllers based on the effective DSE schemes [17],
[18], [19], [20], [21], [22], [23]. In [19], [18], and [17], the
decentralized LFC is proposed by using the Kalman filter
(KF) based DSEs. However, such KF-based approaches can
only handle disturbances with zero means and Gaussian dis-
tributions, which is not generally considered the nature of
the load changes in power systems. In [21], [20], and [22],
novel DSE approaches for the quasi-decentralized LFC are
proposed, but they require remote data transmissions such as
measurement outputs and control inputs. This solution might
be vulnerable with respect to cyber-attacks. Recently, in [23],
a fully decentralized DSE scheme was developed by con-
sidering the tie-line power deviations as unknown inputs for
the first time, which establishes the completely decentralized
LFC. However, this approach has limitations on implemen-
tation with one of the most practical measurement outputs,
the so-called area control error (ACE), due to the limitation
of an unknown input observer (UIO). Implementing DSE
schemes using only the ACE is practical and efficient since
the ACE can represent the frequency deviations together with
the tile-line power deviations, and the ACE is commonly used
for existing LFC approaches.

Motivated by these limitations of existing studies, this
paper proposes a fully decentralized DSE scheme using only

the ACE as the measurement output. Furthermore, we char-
acterize the load changes and the tie-line power deviations
as bounded persistent disturbances by noting that it is diffi-
cult to characterize such disturbances by specific presumed
natures. The proposed approach estimates the state variables
by regulating the maximum magnitude of state estimation
errors with respect to bounded persistent unknown inputs
based on the arguments of the l∞-induced norm approach,
i.e., the l1 optimal control theory [24], [25], [26], [27]. The
development of the proposed l1 DSE approach is practically
meaningful because the fully decentralized l1 optimal DSE
can handle the real-timeDSE problem by using only theACE.

To put it another way, the main contributions of this paper
can be summarized as follows.

• This paper considers a fully decentralized DSE, as dis-
cussed in [23]. The tie-line power deviations are
modeled as unknown inputs in contrast to the quasi
decentralized LFC schemes [20], [21], [22].

• The disturbances such as the load changes and the
tie-line power deviations are considered bounded per-
sistent signals, unlike the KF-based schemes [17], [18],
[19].

• This paper suggests three candidates for fully decentral-
ized DSEs for the LFC and extensively discusses their
limitations intrinsically occurring from their nature.

• The proposed l1 DSE uses the measurement output as
the ACE, while it cannot be used for the existing fully
decentralized DSE scheme [23].

• The proposed scheme can be directly implemented with-
out any construction change from other existingmethods
using the ACE as an output [4], [5].

• Simulation results with an interconnected three-area
power system are given to demonstrate the effectiveness
of the proposed l1 optimal DSE through comparative
results with the other candidates.

The organization of this paper is as follows. In Section II,
we provide a system description of a power generating unit
with the problem definition tackled in this paper. Theoretical
analysis for possible DSE candidates is deeply discussed in
Section III. An l1 optimal DSE is proposed in Section IV.
Some simulation results are given in SectionV to demonstrate
the validity of the proposed method compared with other
candidates. The conclusions are given in Section VI.

II. LOAD FREQUENCY CONTROL MODEL FOR POWER
SYSTEMS AND RELEVANT ISSUES
This section introduces the dynamic model for load fre-
quency control (LFC) of power systems and the relevant
problem definition. Modern power systems usually consist
of a large number of areas connected by transmission lines
so called tie-lines, and thus it is quite difficult to describe the
whole dynamics of such power systems in a rigorous fash-
ion. To simplify the dynamics of the power systems without
loss of their important properties, we take a decentralized
system consisting of power generating units connected by
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FIGURE 1. The i th area of single power generating unit.

the tie-lines as an effective alternative model of the power
systems. In other words, we consider the ith area of the
single power generating unit connected with other areas by
the tie-lines as shown in Fig 1.
The dynamics of the ith area in this figure can be repre-

sented by

1Ṗv,i =
Kg,i
Tg,i

(1Ps,i −
1
Ri
1fi)

1
Tg,i

1Pv,i (1)

1Ṗt,i =
Kt,i
Tt,i

1Pv,i −
1
Tt,i

1Pt,i (2)

1ḟi =
Ki
Mi
1Pt,i +

Ki
Mi
1PL,i −

Ki
Mi
1Ptie,i −

Di
Mi
1fi

(3)

1ACEi = B1fi +1Ptie,i (4)

1Ptie,i =
Tij
s
(
n∑
i

1fj) (5)

Combining (1)–(5) further admits the representation
described by{

ẋi(t) = Aixi(t)+ B1,iwi(t)+ B2,iu(t)
yi(t) = Cixi(t)+ D1,iwi(t)

(6)

where

Ai =


−

1
Tg

0
−Kg
RTg

Kt
Tt

−1
Tt

0

0
K
M
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 , B1,i =

 0 0
0 0
K
M
−
K
M

 (7)

B2,i =
[
Kg
Tg

]
, Ci =

[
0 0 B

]
, D1,i =

[
0 1
]

(8)

with the state variable xi :=
[
1Pv,i1Pt,i1fi

]T
∈ R3, the

disturbance wi :=
[
1PL,i 1Ptie,i

]T
∈ R2, the control input

ui := 1Ps,i ∈ R, and the measurement output yi := 1ACEi.
Here, it should be strongly stressed that describing the tie-line
power deviations as disturbances is quite practically mean-
ingful with respect to implementing the completely decentral-
ized LFC [23]. On the other hand, with the fact that dynamic
state estimators (DSEs) are usually implemented by digital
computing units, we deal with the dynamics of the single

power generating unit as well as DSEs in a discrete-time
fashion. To do this, we discretize (6) by taking the sampling
period h, i.e.,{

xi[k + 1] = Ad,ixi[k]+ Bd1,iwi[k]+ Bd2,iu[k]
yi[k] = Cixi[k]+ D1,iwi[k]

(9)

where

Ad,i := exp(Aih), (10)[
Bd1,i Bd2,i

]
:=

∫ h

0
exp(Aτ )dτ

[
B1,i B2,i

]
(11)

and x[k] := x(kh), w[k] := w(kh), u[k] := u(kh), and y[k] =
y(kh) with the time step k ∈ N0.

A number of approaches to the LFC of power systems have
been introduced in [10], [11], [12], [13] for the state feedback
control framework tailored to potential applicabilities to some
effective robust and optimal properties [14]. Their effective-
ness has been demonstrated extensively through various types
of simulations, but it has also been observed that they are
quite sensitive to noises or disturbances that affect an exact
estimation of the state values. To solve this problem, it should
be required to make the DSE more robust for such external
signals. In this sense, this paper is concerned with providing
effective solutions to the problem of estimating the state xi
against the effects of the disturbance wi based on (9). This
could be conducted by designing an adequate DSE depending
on the nature of wi. However, it is challenging to derive
a specific class of signals characterizing wi, i.e., the load
changes because they are often unpredictable. Indeed, this
issue becomesmore seriouswhen different load changes from
other areas affect the considered area through tie-line power
fluctuations. In this sense, it cannot be possible to presume
several characteristics of wi but it might be better only to take
account of its time-domain boundness as a characteristic.

As a preliminary step to proceed to propose a new state esti-
mationmethod, characteristics of some conventionalmethods
as well as a possible candidate associated with state estima-
tions for load frequency control of power systems will be
discussed in the following section.

III. COMPARATIVE ANALYSIS FOR EXISTING AND
POSSIBLE CANDIDATE OF DYNAMIC
STATE ESTIMATORS
This section introduces some existing methods as well as a
possible candidate used in state estimations for the LFC of
power systems. Their intrinsic properties with respect to prac-
tical limitations are also discussed comparatively. More pre-
cisely, the conventional state estimation schemes of unknown
input observer (UIO) [28] and Kalman filter [29] are first
introduced, and some difficulties corresponding to achieving
high performances through their implementations are deeply
discussed. An H∞ optimal state estimator is also proposed
as an alternative for the conventional state estimator, but its
limitations relevant to practical effectiveness are given.
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FIGURE 2. The unknown input observer.

A. UNKNOWN INPUT OBSERVER
The unknown input observer (UIO) [28] estimates the state
variables in linear systems containing additive unknown dis-
turbances. By taking the effectiveness of the UIO relevant
to the robustness against the unknown disturbance term, its
application to the LFC has been deeply studied in recent
years [23], [30], [31], [32].

As a brief sketch of the process for UIOs, we first consider
the dynamic plant given by{

x[k + 1] = Ax[k]+ Bu[k]+ Ed[k]
y[k] = Cx[k]

(12)

where x[k] ∈ Rnx is the state, u[k] ∈ Rnu is the known
input, d(t)[k] ∈ Rnd is the disturbance, and y[k] ∈ Rny is the
measurement output. For this plant, we next define a virtual
dynamic system given by{

z[k + 1] = Fz[k]+ TBu[k]+ Ky[k]
x̂[k] = z[k]+ Hy[k]

(13)

where z[k] ∈ Rnx and x̂[k] ∈ Rnx are the state of the observer
and estimated state of (12), respectively, with suitably deter-
mined matrix parameters F,T ,K and H ; the structure of
UIOs is as shown in Fig. 2. Then, defining the state estimation
error as x̃[k] := x[k] − x̂[k] together with considering the
additional freedom for taking K as K = K1 + K2 leads to

x̃[k + 1] = (A− HCA− K1C)x̃[k]− (F − (A− HCA

−K1C))z[k]− (K2 − (A− HCA− K1C)H )y[k]

− (T − (I − HC))Bu[k]− (HC − I )Ed[k].

(14)

Because the main objective of UIOs is to lead to the asymp-
totic stability of the system (14) (i.e., x̃[k] → 0 as k → ∞
for an arbitrary x̃[0]), it is obtained in [30] and [31] that

x̃[k + 1] = Fx̃[k] (15)

with some properties to ensure the following conditions:
• F = A− HCA− K1C .
• K2 = FH .

• T = I − HC .
• (HC − I )E = 0.
• F is Hurwitz stable.

Such an F is shown in [30] and [31] to be determined if and
only if the following conditions hold:

(a) rank(CE) = rank(E).
(b) For A1 := A−E[(CE)TCE]−1(CE)TCA, the pair

(C,A1) is detectable.

Even though the UIO is regarded as an effective DSE
for LFC of power systems, as discussed in [30], [31], [23],
and [32], it is quite difficult to derive the same condi-
tions as mentioned above for the case with measurement
errors. Hence, it is not immediate to establish the asymp-
totic or bounded-input and bounded-output stability in the
UIO-based state estimations for LFC of power systems when
there exist measurement noises or their effects are not small
as ignored. More importantly, we would like to note that the
ACE, which is often taken as an output in LFC of power
systems [4], [5], [6], is affected by the tie-line power deviation
as can be seen in (4). Indeed, roughly speaking, condition
(a) means that the number of output (i.e., ny) should be
larger than that of the disturbance (i.e., nd ), but the former
is larger than the latter in this paper. Moreover, with respect
to condition (b), the inverse of (CE)TCE does not always
exist. In this sense, the UIO-based schemes cannot be directly
applied to the state estimation problem tackled in this paper.

B. KALMAN FILTER
The Kalman filter [29] is used for estimating the state of
stochastic systems via the least-squares method [33]. It is
generally assumed in the KF-based state estimation methods
that the unknown elements are characterized by zero-means
and Gaussian distributions.

To introduce the process of KF-based state estimations,
we first consider the discrete-time plant given by{

x[k + 1] = Ax[k]+ B1w[k]+ B2u[k]
y[k] = Cx[k]+ D1n[k]+ D2u[k]

(16)

where w[k] ∈ Rnw is the disturbance and n[k] ∈ Rny is the
measurement noise.

The state is determined by minimizing the corresponding
error covariance in the KF-based schemes, and this process
is conducted through recursive updates consisting of the
so-called prediction and correction as follows:

(i) Prediction: At the time index k , the value of x[k + 1] is
predicted by using the value of x̂[k] and the information
from the plant.

(ii) Correction: The state value at k + 1 obtained in the
prediction process is modified to be close to the exact
value of x[k+1] by using the measurement output. This
value is regarded as the estimated state.

The structure consisting of these two update schemes is as
shown in Fig. 3, and their mathematical descriptions are given
respectively by
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FIGURE 3. The Kalman filter: prediction and correction.

Prediction :

x̂−[k] = Ax̂+[k − 1]+ B2u[k] (17)

P−[k] = AP+[k − 1]AT + Q (18)

Correction :

K [k] = P−[k]CT (CP−[k]CT
+ R)−1 (19)

x̂+[k] = x̂−[k]+ K [k](y[k]

−Cx̂−[k]− D2u[k]) (20)

P+[k] = (I − K [k]C)P−[k] (21)

Here, x̂−[k] and x̂+[k] are the priori and posteriori estimated
states obtained from the prediction and correction procedures,
respectively. Finally, x̂+[k] is regarded as an estimated value
for x[k] after both the prediction and correction procedures
are completed. Thematrix parametersK [k],P−[k] andP+[k]
are called the Kalman gain, priori and posteriori estimation
error covariance matrices, respectively. They are determined
by using the covariance matrices Q ∈ Rnw×nw and R ∈
Rny×ny associated with the disturbance and measurement
error, respectively.

The basic idea of the KF is as follows. If both n and w are
characterized by the zero-means and Gaussian distributions,
the estimation error is also described in terms of the zeros
means and Gaussian distributions. With this in mind, the
estimated state value in the KF-based schemes is obtained
by minimizing the covariance of the estimation error, i.e.,
P+ = E[(x − x̂)T (x − x̂)], where E[·] denotes the mean
value of (·). Thus, the estimation error could be interpreted
as located densely around zero [29].

Even though one might argue that the KF could be
one of the most effective candidates for a DSE for LFC
of power systems and the relevant results are discussed
in [17], [18], and [19], its effectiveness cannot be readily
achieved since the stochastic properties of the disturbance
and measurement error such as the zero means and dis-
tributions cannot be obtained in real LFC of a power
system.

C. H∞ OPTIMAL DYNAMIC STATE ESTIMATOR
The arguments of the H∞ optimality [14] have been widely
used for various control applications [34], [35] by noting
the fact that they aim at minimizing the l2-induced norm
from the disturbance to the regulated output. In other words,
the H∞ norm of a system is the maximum energy of the
regulated output for the worst disturbance with unit energy.
However, there is no study on applying the scheme of the
H∞ optimality to the state estimations for LFC of power
systems. In this sense, we propose an H∞ optimal DSE as an
effective candidate with respect to the LFC of power systems
and discuss its intrinsic limitations in a qualitative sense (as
well as a quantitative sense through simulation results).

As a preliminary step to introduce anH∞ optimal DSE, let
us first consider the discrete-time plant given by{

x[k + 1] = Ax[k]+ B1w[k]+ B2u[k]
y[k] = C2x[k]+ D21w[k]

. (22)

We next consider the virtual dynamic system given by{
x̂[k + 1] = Ax̂[k]+ B2u[k]− ε[k]
ŷ[k] = C2x̂[k]

(23)

where ε[k] ∈ Rnx denotes a compensation input for making
x̂(k) to be close to x(k) even for the existence of w. With
respect to determining ε[k], we regard it as an output of a
linear mapping whose input is the measurement estimation
error defined as ỹ[k] := y[k] − ŷ[k]. By combining (22)
and (23), we obtain

x̃[k + 1] = Ax̃[k]+ B1w[k]+ ε[k]
z[k] = C1x̃[k]
ỹ[k] = C2x̃[k]+ D21w[k]

(24)

where z[k] is the regulated output to be minimized andC1 is a
weighting matrix to be selected by the estimation objectives.
Based on (24), we propose the dynamic structure for deter-
mining ε[k] described by

9 :

{
ψ[k + 1] = Aψψ[k]+ Bψ ỹ[k]
ε[k] = Cψψ[k]+ Dψ ỹ[k]

(25)

where the matrix-valued parameters Aψ ,Bψ ,Cψ , and Dψ
are determined to minimize the H∞ norm of the closed-loop
system obtained by connecting (24) and (25). To put it another
way, the closed-loop system is described by

6cl :

{
ξ [k + 1] = Aξ ξ [k]+ Bξw[k]
z[k] = Cξ ξ [k]

(26)

where

Aξ =
[
A+ DψC2 Cψ
BψC2 Aψ

]
,

Bξ =
[
B1 + DψD21
BψD21

]
,

Cξ =
[
C1 0

]
. (27)
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FIGURE 4. Structure of H∞ optimal dynamic state estimator.

with ξ [k] := [x̃T [k] ψT [k]]T . The H∞ norm of the
closed-loop system 6cl is defined as

‖6cl‖H∞ := sup
w6=0

‖z‖2
‖w‖2

(28)

where ‖ · ‖2 denotes the l2 norm of (·). It is shown in [36] that
there exists a state estimator 9 of (26) such that ‖6cl‖H∞ <

γ if and only if the following linear matrix inequality (LMI)
conditions are feasible:

P J AX+L A+RC2 B1+RD21 0
∗H Q YA+FC2 Y+FD21 0
∗ ∗ X+XT−P I+ST−J 0 XTCT

1
∗ ∗ ∗ Y+Y T−H 0 CT

2
∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ γ I

 ≺ 0 (29)

Here, X ,L,Y ,F,Q,R, S, J and the symmetric matrices P
and H are the decision variables, and the matrix-valued
parameters Aψ , Bψ , Cψ and Dψ are given by

Aψ = V−1(Q− YAX )U−1 − V−1YLU−1

−V−1FC2XU−1 + V−1YRC2XU−1 (30)

Bψ = V−1(F − YR) (31)

Cψ = (L − RC2X )U−1 (32)

Dψ = R (33)

Because the H∞ optimal DSE intrinsically takes signals
in the l2 space, the disturbance is naturally assumed to have
bounded energy. In other words, the disturbance w[k] is
regarded as converging to 0 as k becomes larger, but this is in
contrast to the practical LFC of power systems, in which dis-
turbances should be treated as persistent and bounded signals
because the load demands in power systems vary consistently.
Thus, direct employment of the H∞ optimal DSE might not
lead to high accuracy in the state estimation for LFC of power
systems, and the details will also be discussed in Section V.

Motivated by the limitations of the aforementioned three
types of DSEs, we propose another DSE for the LFC of power
systems to treat the effects of possible disturbances in a more
sophisticated fashion.More precisely, bounded and persistent
signals could be regarded as disturbances in the LFC of power
systems and their effects will be tackled by developing the
l1 optimal DSE in the following section.

IV. L1 OPTIMAL DYNAMIC STATE ESTIMATOR
This section introduces the l1 optimal DSE to take into
account the effects of disturbances occurring from real LFC
of power systems in a more sophisticated fashion. To put it
another way, we take the l∞-induced norm from the distur-
bance to the estimation error as a performance measure with
respect to the state estimation for LFC of power systems,
and discuss a method for designing the l1 optimal DSE that
minimizes the performance measure. Because bounded and
persistent signals are regarded as elements in the l∞ space,
the problem of dealing with the effects of practical distur-
bances on the LFC of power systems could be tackled by
taking the l1 optimal DSE. Furthermore, if we note that it is
often more important to suppress magnitudes of the regulated
output rather than its energy in power systems, then taking the
l1 optimal DSE might be interpreted as providing the most
effective schemes in the state estimation problem for LFC of
power systems, rather than the aforementioned UIO, Kalman
and H∞-based state estimation methods.

The structure of the l1 optimal DSE is equivalent to theH∞
optimal DSE as shown in Fig. 4. In other words, for the plant
given by (24), we aim at designing an optimal controller 9
described by (25), but the control objective is to minimize the
l∞-induced norm from w to z in (26), i.e.,

‖6cl‖l1 := inf
9

sup
w6=0

‖z‖∞
‖w‖∞

(34)

where ‖ · ‖∞ is the l∞ norm of (·). Denote an optimal 9
leading to the infimum (34) by9opt . Then, the l1 optimal DSE
is described by

x̂[k + 1] = Ax̂[k]+ B2u[k]− ε[k]
ŷ[k] = C2x̂[k]
ε[k] = 9opt (ỹ[k])

(35)

Regarding a synthesis procedure for 9opt , we note that
the linear programming (LP) is employed [37], unlike the
H∞-based synthesis procedure with the LMI-based argu-
ments. However, the LP problem tackled in the l1 synthesis
procedure is quite difficult due to its intrinsic properties with
respect to the infinite-dimensional cost function. Moreover,
the process for deriving 9opt is constructed in the frequency
domain, not the time domain, in which the overall arguments
of this paper are established. In this sense, we would like to
briefly sketch the procedure for designing9opt in this section
(and see [39], [40] for the details). To address this non-trivial
task relevant to the infinite-dimensional properties, the dual-
ity theorem [38] is used in [39] and [40] to transform the
primal problem with the infinite-dimensional cost function
into the dual problem with an infinite number of constraints.
Because most of these constraints could be characterized
by decaying linear functions, it is shown in [39] and [40]
that only a finite number of these constraints is required
to be solved. In connection with this, various approximate
methods such as truncation idea and delay augmentation are
proposed, by which a suboptimal9opt can be obtained within
an arbitrary degree of accuracy.
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To summarize, the problem of an l1 optimal DSE synthesis
with respect to (34) can be characterized through an LP prob-
lem, and such an optimal one can be obtained by taking the
truncation idea for infinitely many linear constraints within
any degree of accuracy. Its practical effectiveness will also
be discussed through some simulation results in the following
section.

V. SIMULATION RESULTS
This section demonstrates the practical effectiveness of the
proposed l1 optimal DSE by comparing it to other DSEs
discussed in Section III; note that it is impossible to design
an UIO-based state estimator with respect to (9) since the
feasibility condition (b) in Section III-A does not hold for Ci
and Bd1,i.

A. SIMULATION DESCRIPTION
We first introduce the simulation environments. A three-
area power system is adopted; each area is depicted by the
power generating unit as shown in Fig. 1. The three areas are
interconnected by the tie-lines, and the important model is
collected from [1], [2], [22], [23], [32] as follows: Kg,i =
Kt,i = 1, Tg,i = 0.83, Tt,i = 0.3, Mi = 0.1667, Di =
0.0083, Ri = 2.4, Bi = 0.425, Tij = Tji = 0.1634, and
Ki = 0.1 for i, j = 1, 2, 3. The load changes 1PL,i are
assumed to occur with sudden increases/decreases in each
area at arbitrary times and thus they are considered signals
with a magnitude of up to 0.02 [p.u].

Since the overall arguments in this paper are initially
equipped with a decentralized DSE, we further assume that
each area is also operated with pre-designed, fully decen-
tralized LFC schemes. In this assumption, the valve position
change, mechanical power error, and area frequency error
are estimated for each area through the three types of DSEs
(i.e., the l1 optimal, KF and H∞-based estimators). The
overall systems are also assumed to be operated with the
sampling period h = 1 [kHz] in a discrete-time fashion while
the power generating systems operate in a continuous-time
fashion. Hence, the simulations are conducted in a hybrid
continuous/discrete-time fashion. The simulation experiment
is performed in the following environments. CPU: Intel Core
i7-9700F, RAM: 16.0 GB, and APP: MATLAB 2021b.

B. ANALYSIS OF RESULTS
The simulation results for the valve position deviation, tur-
bine power deviation, and frequency deviation are shown
in Figures 5–7, respectively. Furthermore, they are evalu-
ated by taking the root-mean-square (RMS) and maximum
magnitude values corresponding to the estimation errors, and
the results are given in Table 1 and Table 2, respectively.
The average computation times of the DSE algorithms for the
three areas is given in Table 3. The computation time is
measured for 30 [s], i.e., 30,000 repeated estimations.

It can be observed in Figures 5–7 that the H∞ optimal
DSE presents insufficient estimation accuracies compared
to the other two methods. This tendency can be obviously

FIGURE 5. Simulation results for Pv,i ( black: real state, red: H∞ optimal,
green: Kalman filter, blue: l1 optimal).

TABLE 1. Simulation results for the RMS of estimation errors.

observed in Table 1 and Table 2; the RMS and maximum
magnitude values of the estimation errors in the H∞ optimal
DSE are more than an order of magnitude larger than those
in the other two methods. Moreover, it can be shown in
Figures 5 and 6 that the H∞ optimal DSE cannot lead to
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FIGURE 6. Simulation results for Pt,i ( black: real state, red: H∞ optimal,
green: Kalman filter, blue: l1 optimal).

TABLE 2. Simulation results for the maximum magnitude of estimation
errors.

accurate estimation values, although 1Pv,i and 1Pt,i are not
directly affected by the disturbances. Indeed, the estimated
values for 1fi with the H∞ optimal DSE in Figure 7 do
not reach the real values. The reason why the H∞ optimal
DSE derives the aforementioned low accuracies might be

FIGURE 7. Simulation results for fi ( black: real state, red: H∞ optimal,
green: Kalman filter, blue: l1 optimal).

TABLE 3. The average computation times in simulations for the three
areas.

interpreted as that it aims at minimizing the estimation errors
corresponding to the energy-bounded disturbance, but the
load changes in power systems cannot be generally character-
ized by such energy-bounded signals. Thus, even though one
might argue that the H∞ optimal DSE becomes an effective
candidate for a state estimator for LFC of power systems,
its practical improvement is still left for an important future
topic.

On the other hand, we can observe in Figures 5–7 and
Tables 1 and 2 that the KF and l1 optimal DSE lead
to much higher estimation accuracies than the H∞ DSE.
The estimation accuracies of both methods associated with
1Pv,i and 1Pt,i are similar to each other, as observed in
Figures 5 and 6. However, we can observe from Figure 7
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that the KF does not accurately estimate the frequencies as
much as the l1 optimal DSE. This tendency is also obvious in
Tables 1 and 2, in which the RMS and maximum magnitude
values of the1fi estimation errors for the l1 optimal DSE are
reduced up to 67% and 48% from 40% and 21%, respectively
compared to the KF.

Such low estimation accuracies of the KF could be inter-
preted as occurring from the fact that the disturbance wi =[
1PL,i1Ptie,i

]T cannot be characterized by the zero means
and Gaussian distributions. However, the proposed l1 optimal
DSE presents high performances of estimation accuracies
because this approach is based on the arguments of l1 optimal
control, by which the maximum magnitude of estimation
errors corresponding to bounded persistent disturbances is
minimized. Furthermore, it is also worth noting that the
l1 optimal DSE is performed without any pregiven infor-
mation such as disturbance and noise covariance matrices,
whose explicit values cannot be obtained. In contrast, the
KF intrinsically requires them. Moreover, the KF requires
more computational cost than the l1 optimal DSE since the
KF consists of two update steps which include an inversion
and a multiplication of matrices. Indeed, the computation
time of the l1 optimal DSE is about 13% of that of the
KF, as seen in Table 3. These observations indicate that
the proposed l1 optimal DSE can perform as an effec-
tive tool for the decentralized DSE for the LFC of power
systems.

VI. CONCLUSION
This paper proposed a decentralized l1 optimal dynamic state
estimator (DSE) for the load frequency control (LFC) of
power systems and provided its comparative study to other
DSEs with the unknown input observer (UIO) [28], Kalman
filter (KF) [29] and H∞ optimal approach [14]. To do this,
we first considered decentralized systems consisting of power
generating units connected by the tie-lines, and described
their dynamic model with respect to the single power gener-
ating unit. Noting the fact that it is generally quite difficult to
obtain characteristics of the disturbances in the decentralized
LFC of power systems, we presumed only the time domain
boundness of the disturbances. With respect to state estima-
tions for LFC of power systems even with the existence of the
disturbances, we introduced the four candidates for decen-
tralized DSEs: Unknown input observer (UIO) [28], Kalman
filter (KF) [29],H∞ optimal DSE, and l1 optimal DSE. More
precisely, some limitations of the former three decentralized
DSEs (i.e., UIO, KF and H∞ optimal DSE) occurring from
their intrinsic nature were deeply discussed, and the l1 opti-
mal DSE was proposed as the most effective state estimator
for LFC of power systems. This conjecture is based on the
fact that the maximum magnitude of the estimation errors
for bounded persistent disturbances is minimized by using
the l1 optimal DSEs. Finally, we demonstrated the practical
validity and effectiveness of the l1 optimal DSE through com-
parative simulation results with a three-area power generating
system.
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