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ABSTRACT Themortality rate of cancer is among the highest in the world. One death occurs every six in the
world. Both machine learning (ML) and deep learning (DL) have been used by scientists to predict cancer.
In addition, DL can analyze a huge amount of healthcare data in a short period of time to study the chances
of recurrence, progression and patient survival. An accurate and quick framework for improving cancer
prognosis prediction is presented in this study. A fast and accurate optimizer is necessary to predict both
critical and non-critical cases, so a modified binary version of the Whale Optimization Algorithm (WOA) is
proposed. Based on sigmoid transfer functions, this version identifies the subset of features that is minimally
optimal while maximizing classification accuracy. This framework is composed of an optimized parameter
Long-Short TermMemory (LSTM) Neural Network, with the input being the optimal set of feature selection
layer. The proposed framework performs better than previous frameworks having an average accuracy of
100% and an execution time of 4113 seconds.

INDEX TERMS Binary modifiedWOAS-shaped (BMWOA-S), cancer diagnosis, exploration, exploitation,
LSTM, feature selection, optimization.

I. INTRODUCTION
By 2020, Cancer will be the second most deadly illness,
killing one in six individuals, according to the International
Agency for Research on Cancer, which predicts 19.3 mil-
lion new cases and 10 million deaths [1], [2]. Breast,
lung, prostate, colon, ovarian and cervical cancers are the
most prevalent forms, and they weaken the immune system
and alter other biological processes, which is why there is
increased worry about this illness.

Disease detection entails classifying tumor kinds and iden-
tifying cancer symptoms in order to train a machine capable
of detecting new metastatic tumor forms or diagnosing the
disease early, when treatment is more difficult. Several earlier
researches have proposed frameworks for predicting cancer
prognosis, recurrence risk, progression, and patient survival
as researchers have demonstrated that prediction accuracy
is an aspect that contributes to the efficient treatment of
patients [1], [3].
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Recent advances in Deoxyribonucleic Acid (DNA) frag-
mentation technologies have created large amount of data,
making genomics one of the first fields to generate data
[4]. Sequences cannot convey ready-to-use information; how-
ever, they can be translated by a complex method that uses
the sequence to generate protein. Because the constructed
genome sequence matches previously recognized cancer
genome sequences, it assesses the protein’s expression and
determines if it is malignant [5]. The gathering of genomic
data has created various challenges in presenting a rational
definition of cancer’s genetic basis.

Moreover, the identification of the main difficulties asso-
ciated with the treatment and prevention of diseases by the
vast number of gene expression levels in a person containing
many features but relatively few samples [6]. The chances of
a successful recovery increase with early diagnosis. Its study
is therefore crucial [7].

In a Deep Learning Architecture (DLA), features are
extracted hierarchically with several degrees of nonlinear-
ity. The H2O framework is a multi-layer neural network
(NN) architecture designed for DL tasks [8]. It is possible
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to train DL models to represent original data in a useful way.
Furthermore, they produce the greatest results for complex
data [9].

It is possible to categorize meta-heuristic algorithms into
two types: single-solution algorithms or population-based
algorithms. The single-solution method utilizes only one can-
didate solution the optimization process, which evolves and
is updated over time. Whereas the population-based uses
a random search agent to begin the optimization process.
Every search agent has its own candidate for solving the
optimization issue. Sharing information about the search area
and collaborating with each individual will prevent local
optima from stagnating and ensure that a global search goal
is covered.

As a rule, metaheuristic algorithms are evaluated based on
their ability to solve decision-making difficulties and their
significant balance between exploring and exploiting [10],
[11], [12], [13], [14], [15]. Exploitation refers to the capacity
to find better alternatives to well-known answers. The explo-
ration of search spaces means finding better-scoring places
by employing metaheuristics.

The Feature Selection (FS) problem and binary
optimization difficulties can both be solved using a single
optimization technique. References [16], [17], [18], and [19]
introduced several hybrid techniques between WOA and
simulated annealing presented by researchers such as Genetic
Algorithm (GA), Gray Wolf (GW) and Particle Swarm Opti-
mizer (PSO), also a hybrid strategy combining the filter and
wrapper approaches of FS.

There is no certainty that a better selection of characteris-
tics will be discovered in the FS issue. Furthermore, no opti-
mizer is appropriate for solving any optimization problems
based on the No Free Lunch (NFL) theorem [20].

Based on the reasons mentioned above, there is still a need
for a modern, accurate, and high-speed system to deal with
cancer diseases, as in non-critical cases we need high accu-
racy in an appropriate time, while in critical cases we need
high speed for less chance of life. And on this, the research
provides a fast and accurate DL framework to overcome these
previous problems.

The rest of this paper is organized as follows:
Section 2 describes the motivations for the study and its
contributions. A literature review and a brief overview of
the LSTM and Modified WOA (MWOA) are presented in
Section 3. The proposed BMWOA-S and its designed frame-
works are described in Section 4. Section 5 discusses the
experimental results. Section 6 concludes with a discussion
of future work and conclusions.

II. MOTIVATIONS & CONTRIBUTIONS OF THE STUDY
Following are the motivations for this study:

1) Propose a fast, accurate, and scalable framework for
DLH2O that uses big data to improve cancer prognosis
prediction.

2) Provide a binary modified WOA optimizer that is
highly accurate and fast, which will allow FS to reduce

the dataset size and also tune LSTM (number of layers
and number of neurons per layer).

This study provides the following relevant contributions:

• TheDLH2O framework can handle a lot of data in many
forms. Using patient health data to predict cancer prog-
nosis is useful since it incorporates multi-source data.
The frame has a high level of accuracy and quickness.
To verify their dependability and efficacy, the frame-
works were tested on six standard data sets, including
breast, lung, prostate, colon, ovarian and cervical cancer.
These data sets are freely available and continue to be
utilized in the majority of contemporary investigations
[21], [22], [23], [24], [25], [26], [27], [28].

• FS is a method for quickly picking the best features
for NN training, possibly enhancing cancer prognostic
prediction while also lowering the bulk of the input data
to LSTM.

• BMWOA-S is compared to other popular optimizers for
its benefits and efficiency.

• Cancers of every type can be predicted with 100% accu-
racy, which means the earlier treatment is started, the
greater the chance of a cure.

Based on the severity of the patient’s case (critical vs
non-critical patients), this study will help propose the most
appropriate framework.

III. RELATED WORK
There has been considerable research into cancer diagnosis
prediction using a variety of methodologies, with some show-
ing high accuracy. Previous approaches have revealed the
following findings:

To enhance therapy and medicine discovery for diagnosis,
several researchers employ Machine Learning (ML) classi-
fiers such as k-nearest neighbour (KNN), logistic regression
(LR), decision trees (DT), random forest (RF), and support
vector machine (SVM).

In [21] applied to cervical cancer dataset. In addition,
in [22] and [23] performed on four, six different datasets
related to breast cancer. But in [24], two types of datasets were
used to study colon cancer. Further studywith a larger data set
will aid in the improvement of these models’ performance.

In [27] S. Parisapogu et al. used a multi-layered DL algo-
rithm on diverse microarray data to diagnose the kind of
illness. To categorise illness samples, our model must use
many deep learning classification approaches on biological
data sets.

N. G. El-Seddeq et al. introduced in [28] one of these
newly introduced three frameworks that used to improve the
performance of cancer prognosis prediction. With the excep-
tion of the lung and cervical cancer datasets, the proposed
optimizer outperforms the FS algorithm for the fitness value
on all datasets.

Also, in [29] various feature selection methods, like cor-
relation analysis and Fisher-ratio, are used to extract use-
ful features and reduce dimensionality. Then, PSO (Particle
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Swarm Optimization) algorithm is used to generate a pool of
candidate base classifiers for learning the subsets re-sampled
from the different feature subsets.

In [30] the classification of microarray data using artificial
neural networks (ANNs)was suggested.More researchwith a
larger data set will aid in improving themodel’s effectiveness.

In [31] global optimization, cuckoo search (CS) has been
found to be an effective algorithm. Cuckoo search funda-
mentals and applications are reviewed along with the latest
developments.

Liu et al. deployed in [32] ReliefF and PSO algorithms for
selecting feature genes. The first step is to use ReliefF as a
feature prefilter to eliminate genes that have a low correlation
with the target class. Search is then carried out using PSO. For
the final optimal subset of genes, the classification accuracy
of SVM is used as the evaluation function.

According to [33], gene FS data should be integrated with
cancer classification for gene expression, along with other
types of genomic data. The use of other algorithms for param-
eter optimization can help with this model.

As in [34], Principal Component Analysis (PCA) was used
for dimension reduction in SVM and Levenberg-Marquardt
Back Propagation (LMBP). The deficiency that occurs as
a result of the model’s excessive time spent in the training
process; the choice of architecturemust still be done in amore
organised manner.

Othman et al. showed in [35], the cuckoo search was
combined with evolutionary operators for gene selection as
a hybrid multi-objective search. Double mutations and single
crossovers are the evolutionary operators used also. The aim
is to improve the search capabilities and values of the dimen-
sions.

Saqib et al. in [36], to ensure relevancy and remove
irrelevant features, a Multiple Filters and GA Warapper for
Feature Selection (MF-GARF) hybrid approach consists of
three phases relevance block; Information Gain, Gain Ratio
and Gini Index. Second phase involves removing redun-
dancy among features using Pearson Correlation statistics,
followed by an Optimization Block. The Optimization Block
consists of a Genetic Algorithm wrapper with Random For-
est as a fitness evaluator, which provides a high predic-
tive power feature subset based on the Genetic Algorithm
wrapper.

Cahyaningrum et al. in [37] used PCA to work on ANN
and GA. This model needs better tuning of the parameters of
the genetic algorithm, such as mutation rate, crossover rate,
elitism, and fitness normalization.

A hybrid model (CNN-LSTM) is proposed in [38] Using
CNN layers with convolutional layers; it can extract features
with a multi-time scale. By a wide margin, this hybrid model
outperforms other existing methods.

Finally, in [39] a classification approach based on deep fea-
ture fusion and selection using whale optimization techniques
was proposed. A PCA is used to select the best features, which
are serially merged to produce a vector of Nx2125 features.
Furthermore, WOA was used to select informative features

Nx1049 among Nx2125 features and provide them to SVM,
KNN, and Wide Neural Network (WNN) classifiers.

The reason for choosing DL over other standard
approaches is that we anticipate dealing with large data size
issues. Furthermore, the forecast time for cancer diagnosis
is crucial since the patient’s life depends on it, particularly
in serious circumstances. In this scenario, DL is the best
approach to utilise. Because it requires high-end infrastruc-
ture to train in a reasonable amount of time.

Next section describes the LSTM neural network used in
our proposal and the Binary Modified Whale Optimization
Algorithm (BMWOA-s) used.

IV. THE PROPOSED CANCER PREDICTION FRAMEWORK
Several Biomedical studies included deep learning frame-
works that utilize different optimizers for selecting best fea-
tures input to the FFNN and tuning it (no. of hidden layers
and no. of neurons/layer) have been published [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39]. Accordingly, this thought has
been succeeded in the application of deep learning biomed-
ical techniques, especially in case of large datasets which
includes two important cases, initial and severe states of the
diseases, that happens in all diseases. It should be noted that,
the initial state of the disease allows us some time to treat
the patient with different attempts and different medicines,
however in the severe case does not allow enough time for
the prediction. On this, it imposed on these systems high
accuracy in prediction as well as high speed in implemen-
tation. This always assured us of the need to search for a fast
and accurate optimizer. The latest research published to us
[28], on different types of cancer, we have obtained a 100%
accuracy inmost cases of the disease at reasonable processing
time, encouraged us to search for the best so that we can
reach 100% accuracy in all types of cancers at less processing
time. Accordingly, this research proposes a Fast Accurate
Deep Learning (FADL) Framework hoping it may results in
predicting all types of cancers at a time that allows saving
the patient’s life, especially in severe cases. The framework
is divided into four layers. As shown in Figure 1, these
layers include processing, feature selection, deep learning,
and prediction (classification).

A. PRE-PROCESSING LAYER
Medical data sets collected from several sources are often
insufficient and riddled with errors that lead to misclassifi-
cation. Certain machine learning algorithms are impaired by
features of varying magnitudes. The first stage of the pro-
cessing layer is the normalization method. Therefore, scaling
(normalization) some feature’s (column’s) values between
0 and 1 can be achieved using these techniques.

Reducing data imbalance: As a second step of preprocess-
ing, redundant columns, such as the ID column, are removed.
A trait imbalance is a categorization problem in which some
qualities are significantly underrepresented. As a result, the
classifier prefers the majority of qualities. By over-sampling,

122588 VOLUME 10, 2022



M. M. Fadel et al.: Fast Accurate Deep Learning Framework for Prediction of All Cancer Types

FIGURE 1. Block diagram of the fast accurate framework for all types of cancer prediction.

the occurrences of the minority class, the approach presented
in the article [40] was employed to overcome the imbalance
dataset problem.

It is essential to remove these incorrect values before sepa-
rating the dataset into training and testing subsets. The perfor-
mance of this layer is measured using six benchmark datasets.
The first set of data is for breast cancer. The second and
third are for lung and prostate cancers, respectively, while the
fourth is for colon cancer. Ovarian cancer is the fifth. Cervical
cancer is the sixthmost common cancer. Finally, the labels for
each element in the dataset are converted from textual values
to numerical values in the third step of preprocessing. There
are two classifications per dataset (Malignant and Benign),
which are then transformed to the 0 and 1 values, respectively.

B. THE FS LAYER
To address the FS issue, in this layer, BMWOA-S is proposed
as a binary variation ofWOA. A dataset containing N features

must, therefore, contain 2N features, indicating that a large
region of features should be explored for feature reduction
thoroughly.

1) THE PROPOSED AGORITHM: BINARY MODIFIED WOA
S-SHAPED (BMWOA-S)
WOA [41] is a meta-heuristic algorithm effectively employs
2 attacking strategies, bubble-net and searching for Prey.
To make the updating process, many suggestions have been
tested, such as modifying the exploration equations, unfor-
tunately all of these have been failed in proposing a fast,
accurate optimizer. Therefore, in the following paragraphs,
a new version of WOA named MWOA is explained in detail.

a: ENCIRCLING PREY
Based on mathematics, this behaviour can be described as:
follows:

ED =
∣∣∣ EC · EX∗ (i)− EX (i)∣∣∣ (1)
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EX (i+ 1) = EX∗ (i)− EA · ED (2)

i = iteration, EA and EC = coefficients, and EX∗ = the position
vector of the best solution found. EA and EC :

EA = 2Ea · Er1 − Ea (3)
EC = 2 · Er1 (4)

Er1 = [0; 1]. Through iterations, we must linear decrease Ea
vector [2-0].

b: BUBBLE-NET ATTACKING METHOD (EXPLOITATION
PHASE)
The bubble-net attacking behaviors are:

1) Shrinking encircling mechanism: humpback was reduc-
ing the Ea from [2-0] in (3) over the series of processes. EA =
random value [−Ea, Ea].
2) Spiral updating mechanism: The space between both the

whale and its prey:

EX (i+ 1) = EX∗ (i)+ ED′ × ewq × cos(2πq) (5)

ED′ =
∣∣∣ EC · EX∗ (i)− EX (i)∣∣∣ (6)

ED′ = the gap between the population’s best solution and
the present individual whale, w= a fixed value, and q= [−1,
1]. As a result, the scientific formula looks like this:

EX (i+ 1) =

{
EX∗ (i)− EA · ED, p < 0.5
ED′ewq · cos(2πq))+ EX∗(i), p ≥ 0.5

(7)

p = a value [0, 1].

c: SEARCH FOR PREY (EXPLORATION PHASE)
Gaussian equation is used to increase likelihood of discover-
ing the globally minimumwhile avoiding becoming caught in
the minima. In the DLA growth process, a randomness mech-
anism is used to produce new particle that use the Gaussian
methodology. Based on the improved solution, a sequence of
diffusion operations may be calculated:

−→
B′∗l = Gaussian(µ−→

B∗
, ω)+ (α ×

−→
B∗ −×

−→
bl ) (8)

−→
B′∗l = the most improved diffusion procedure solution.

α and = the random numbers [0; 1].
−→
B∗ and

−→
bl show the

best position and the ith point in the group. µ−→
G∗

and ω =∣∣∣−→bl −−→B∗∣∣∣ As the number of iterations reduces, a best alter-
native becomes available. It enhances the Search for Prey
capability in the proposed WOA by employing the diffusion
approach to discover an ideal solution [42].

The MWOA is an updated WOA version (See Figure 2).
One of the ways to resolve this type of disadvantage,
an advanced technique will substitute the search technique
for the Exploration Group. A list of random walks about the
optimal solution can be generated using the diffusion process.
The enhancement of the WOA exploration potential to find
the optimal solution through this diffusion procedure. In the
modified version of WOA (MWOA) for enhancing explo-
ration performance via applying diffusion process instead

FIGURE 2. MWOA flowchart.

of the search space in WOA. This can need folks further
exploring a promising location in the search area in order to
avoid local stagnation by swapping:

EX (i+ 1) = EXrand − EA ·
−→
D (9)

A continuous MWOA employs Eq. 2 to transfer search
agents across the search space to adjust their locations to
every location. This is referred to as space. The FS problem
handles only binary data [43]; when there is no change, the
continuous form of MWOA cannot be employed to solve the
FS problem. As a result, we propose the BMWOA-S variant
that really is suitable for solving the FS issue. BMWOA-
S specifies that the candidate’s choices require only binary
solutions [0, 1]. If the feature has a value of 0, it is not picked;
however, if it has a value of 1, it is selected.

We initially scale the data in the interval [0, 1] to change
the MWOA solutions from continuous to binary. According
to a prior study, the translation is accomplished by the use
of an S-shaped (Sigmoid) transfer function (TF). S1, S2, S3,
and S4 make up its family of TFs (Table 1). In order to
travel in a binary space, the components of position vectors
are converted from 0 to 1. Table 1 contains the theoretical
formulas for each TF, and Figure 3 depicts the algebraic curve
of an S-shaped curve. The stages involved in BMWOA are
depicted inAlgorithm 1. Converting scaled continuous data to
binary values will be done by applying the formula provided
by Kennedy and Eberhart [44].

X (i+1)
d =

{
1, 0.5 ≤ sigmoid(x)
0, otherwise

(10)
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FIGURE 3. S-shaped transfer functions.

TABLE 1. S-shaped transfer functions.

X (i+1)
d = updated binary position i and dimensions d , and

sigmoid(x) is given by Eqs. (11)-(14).

C. THE DL LAYER
1) LONG-SHORT TERM MEMORY (LSTM)
The LSTM neural network is a type of recurrent neural
network (RNN). The RNN architecture is trained by using
sequential information which travels from the input vector
through the network to the output neurons. Errors are calcu-
lated and propagated backward to update the parameters of
the network. This type of network incorporates loops of infor-
mation in its hidden layer. Using loops, information can flow
multi-directionally, so at a given time step, the hidden state
represents past data held at a given time step. Consequently,
all outputs depend on previously made predictions already
known. There are, however, limitations to RNNs’ ability to
bridge more than a specific number of steps. Gradient vanish-
ing is the main reason for the prediction to capture short-term
dependencies over time as the information from earlier steps
decays. The gradient of the loss function approaches zero
as the number of layers in the RNN containing activation
functions increases. The LSTM neural networks (LSTM-
NNs) enable learning long-term dependencies. By introduc-
ing a memory unit and gate mechanism, LSTM can capture
sequences with long dependencies. Therefore, LSTM-NNs
are capable of selectively remembering or forgetting infor-
mation and of learning thousands of timesteps by using three
gates and cell states.

Medical journals have published practical applications of
LSTM. A variety of variants of RNN have been used for
classification and prediction purposes in studies. According
to one study, longitudinal medical records with irregular time

Algorithm 1: Pseudo Code of BMWOA-S

1: Input:
2: No. of whales (= 50)
3: MaxIter no. of iterations (= 500)
4: Output:
5: Location of the optimal whale
6: Find X∗

7: Initialize: a and n
8: while (t <MaxIter)
9: for each whale in population
10: Update variables a, A, C, I and p
11: if (p < 0.5) then
12: if (|A| < 1) then
13: # Encircling Prey
14: Update position by Eq. (1):

15: ED =
∣∣∣−→C · EX∗ (i)− EX (i)∣∣∣

16: else (|A| ≥ 1)

17: # Exploration Phase
18: Select a random search agent (Xrand )
19: Apply Diffusion Process from Eq. 8

20:
−→
B′∗l = Gaussian (µ−→

B∗
, ω) +

(α ×
−→
B∗ −×Ebl );

21: end if
22: else (p ≥ 0.5)

23: # Exploitation Phase
24: Update location by the Eq.(5)
25: EX (i+ 1) = EX∗ (i)+ ED′ × ewq × cos(2πq)
26: end if
27: Update X(t + 1) from the Eqs.(11-14)
28: end for
29: Get new agent
30: Calculate the cost
31: Update X∗ if there is a better
32: i = i + 1
33: end while
34: return X∗

intervals were used in LSTM to predict Parkinson’s disease
progression [45].

Based on Figure 4, we can see that an LSTM block extends
the memory of an RNN by using structures like cell states and
three gates that allow it to selectively remember and forget
information. An LSTM block has four additional layers in
addition to the hidden state in a RNN. Cell state (Ct), input
gate (it), output gate (Ot), and forget gate (ft) are the names of
these layers. In order to generate knowledge from the training
data, each layer interacts with the other in a unique way.

A sigmoid activation function (shown in Tab. 2) is imple-
mented in the forget gate. For the input and output gates,
however, a combination of sigmoid and hyperbolic tangent
(TanH) are used to provide the necessary information to the
cell state. In an LSTM neural network as shown in Eq. 15,
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FIGURE 4. Block diagram of LSTM at any timestamp.

the information generated by each block flows through the
cell state from block to block.

ft=σ
(
W (f ) (pt , ht−1)+ b(f )

)
=

1

1+ e−(W (f )(pt ,ht−1)+b(f ))

(15)

where, σ is the sigmoid activation function, W(f) and b(f) are
the weight matrix and bias vector, which will be learned from
the input training data.

The function takes the old output (ht−1) at time t-1 and the
current input (pt) at time t for calculating the components
that control the cell state and hidden state of the layer. The
results are [0, 1], where 1 represents ‘‘completely hold this’’
and 0 represents ‘‘completely throw this away’’.

LSTM networks, like RNNs, produce outputs ŷt that are
used to train the network via gradient descent at each time
step. Iteratively, the parameters of the network are updated
during the backward pass. A minor modification to the algo-
rithm is the only fundamental difference between the RNN
and LSTM back-propagation algorithms. At each time step,
the calculated error term is Et = −yt log ŷt . Similarly to
RNN, the error is calculated as the sum of the errors from
all time steps E =

∑
t −yt log ŷt .

For disease subtype analysis, music generation, text gen-
eration, handwriting recognition, language translation, time
series analysis, and image captioning, LSTM is a very pow-
erful ANN architecture. As information flows through the
state of a cell, LSTM is effective to make predictions since
it gives equal attention to all input sequences. The LSTM’s
prediction accuracy is not affected by the small change in the
input sequence due to the mechanism adopted.

An equation describing data flow as an aggregate between
m neurons in the previous layer and one neuron i is as follows:

Zi = a(
∑m

j=1
wijxij − ci0) (16)

where wij is the weight of contact between neuron i in the
present layer from the neuron j of the past layer. xij = relating
data and ci0 = ingrained threshold for neuron i is considered
as a standard weight.

In order for FFNN weights to represent the relationship
between input vectors and desired output vectors correctly,

TABLE 2. Activation functions.

TABLE 3. Structure parameters.

TABLE 4. Training parameters.

they should be identified accurately. To train the neural net-
work and minimize the pattern’s execution work, use the
following equation:

E =
1
2Z

∑Z

z=1

∑G

g=1
(yzg − d

z
g)

2 (17)

where E is the total mean sum squared error between the
measured outputs, is actual state, and dz is desired state. z and
g denote the values for the zth training set and gth component
of the output vector.

This layer represents LSTMwith the best settings using the
proposed optimizer. The LSTM is trained to use a selected
subset of features with structure parameters such as the num-
ber of layers, the number of neurons in the hidden layer,
biases, and activation function are 3, 10, random, and TanH,
respectively (shown in Table 3). As for the initial weights,
H2O Frame IDs initialize the weights such that the default
initial_weight_distribution and initial_weight_scale param-
eters are uniform adaptive and one, respectively (shown in
Table 4). Moreover, the training parameters learning rule
and sum-squared error are Levenberg–Marquardt and 0.01,
respectively. The LSTM is then trained to use the features and
tested using the validation data. Subsequently, the error rate
that is utilized to measure the fitness value is resolved. All
the iterations and solutions in the population were achieved
with previous tasks. Furthermore, the proposed BMWOA-S,
binary WOA (BWOA), binary (GWO), binary PSO (BPSO),
and binary GA (BGA) algorithms are examined in this layer.
Each optimizer generates the best solution, and it is verified
using the test data after the optimization process is performed.
During the last testing process, various metrics were enlisted
for comparison. The BMWOA-S uses training and validation
data portions during the optimization process and for testing
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Algorithm 2: Pseudo Code of Proposed DL H2O
Framework
1: Input:
2: Original_Dataset
3: Output:

# Tuning parameters of best LSTM configuration
4: No._of_Hidden_Layers (H)
5: No._of_Neurons_per_Layer (N)
6: Initialization:

# Load the H2O Deep Learning Module
7: Load H2O_DeepLearning_Estimator
8: No._of_Iterations (I) : = 500
9: No._of_Agents (G) : = 50
10: No._of_Hidden_Layers (H) : = [1; 2]
11: No._of_Neurons_per_Layer (N) : = [5; 15]

# Load the dataset
12: csv_url : = "./breast_canser.csv"
13: Original_Dataset : = h2o.import_file(csv_url)
14: y : = ’label’

# Dataset preprocessing
15: Normalization
16: Data_Clean
17: Labels_Modifications

# Feature selection using the proposed optimizer
18: Selected_Features : = Algorithm1: Pseudo code of BMWOA-S

# Splitting Dataset
19: Train, Valid, Test : = data.split_frame([0.8, 0.15])

# Tuning the LSTM Classification NN
20: for each Iteration in (I)
21: H : = random[1; 2]
22: N : = random[5; 15]
23: Model : = H2ODeepLearningEstimator(activation

: = "Tanh", hidden : = [H], Neurons : = [N], epochs : = 10)
24: for each Agent in (G)
25: Model.train(x : = x, y : = y, training_frame : =train)
26: Predication : = Algorithm 1: Pseudo code of BMWOA-S
27: Compute the cost function
28: Generate new agent
29:

end for
30:

end for
# Compute the evaluation by following commands

31: perf : = model.model_performance(test)
32: score0 : = perf.logloss( )
33: score1 : = perf.mse( )

34: perf.confusion_matrix( )

data after optimization. Therefore, we ensure that every opti-
mizer examines the same data set portions in every iteration.
In this manner, a fair comparison is obtained.

D. THE PREDICTION LAYER
The optimizer suggested in earlier layers is employed to
resolve a problem requiring two different functions: explo-
ration and exploitation.

The algorithm presenting the fast accurate framework for
all types of cancer prediction is shown above. Moreover,
Figure 5 illustrates the 4 layers explained above of the frame-
work visually.

V. EXPERIMENTAL RESULTS AND DISCUSSION
The four experiments we conducted were as follows. During
the first experiment, we evaluated the performance of the
proposed optimizer, while during the rest, we examined the
performance of the three frameworks. All experiments were
conducted on Intel R© CoreTM i7-2.90 GHz processor with

TABLE 5. The datasets used in this study are listed below.

32-GB RAM and an NVIDIA Quadro M2000M GPU. The
four experiments were conducted based on datasets.

Predictions and visual representations of the findings are
performed using the following packages: pandas, NumPy,
random, time, math, h2o, matplotlib.pyplot, sklearn.metrics,
and h2o.estimators.deeplearning.

A. DATASETS DESCRIPTION
Six benchmark datasets were used to evaluate the frame-
work’s performance each with two classes, Benign and
Malignant.

• Breast Cancer (No. 1): it is submitted by the UCI ML
Repository [46], [22] having 699 records each with
10 features, these features are deduced from medical
digital images of breast.

• Lung Cancer (No. 2): it is gathered from Harvard Med-
ical School having 181 records each with 12533 fea-
tures [26].

• Prostate Cancer (No. 3): it is collected by the public Kent
Ridge Bio-medical Data Repository, having 136 records
each with 12600 features [27].

• Colon Cancer (No. 4): it is gathered by Alon et al. [47].
Having 62 records each with 2000 features [24].

• Ovarian Cancer (No. 5): it is gathered from ovarian
cancer patients, having 253 records each with 15154 fea-
tures [26].

• Cervical Cancer (No. 6): it is presented by the UCI ML
Repository [48] gathered from specialist’s questionnaire
in Jakarta. It has 72 records each with 19 features [25].

As shown above and summarized in Table 5, the selected
datasets include diverse records, features and classes that
could be solved by the proposed framework. The records in
every dataset were randomly portioned into three categories,
training, testing and validation with ratios of 80%, 5% and
15%, respectively.

B. EVALUATION METRICS
The confusion matrix shown in Figure 6 is considered as
one of the most important tools for evaluating the perfor-
mance of any DL frameworks. Additionally, some deduced
advanced metrics such recall, accuracy and precision (shown
in Eqs. 18-24) are used to help more accurately assessment
the proposed framework.
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FIGURE 5. Details of the proposed framework.

FIGURE 6. Confusion matrix.

True Positive (TP): is the number of correct positive
predictions. False Negative (FN): is the number of incor-
rect negative predictions. False Positive (FP): is the num-
ber of incorrect positive predictions. True Negative (TN): is
the number of correct negative predictions. The following
equations (18-24) show some advanced evaluation metrics
deduced from the confusion matrix.

Recall =
TP

(TP+ FN )
(18)

Specificity =
TN

(TN + FP)
(19)

Precision =
TP

(TP+ FP)
(20)

Accuracy =
TP+ TN

(TP+ FN + FP+ TN )
(21)

F1Score = 2×
Precision× Recall
Precision+ Recall

(22)

Mean Square Error (MSE)

=

∑N
i=1 (Predicted i − Actual i)

2

N
(23)

logloss = −

∑N
i=1

∑M
j=1 Actual ij ∗ log

(
probabilityij

)
N

(24)

C. PERFORMANCE ANALYSIS OF THE PROPOSED
BMWOA-S
1) EXPERIMENT NUMBER 1
Based on the second layer of the DL H2O framework,
we conduct the first experiment. To validate its performance,
the proposed BMWOA-S was evaluated against the BWOA,
BGWO, BPSO, and BGA algorithms. The mean error, mean
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TABLE 6. The configuration values.

TABLE 7. Compared algorithms’ average errors obtained.

TABLE 8. Compared algorithms’ average selection size obtained.

TABLE 9. Compared algorithms’ average fitness value obtained.

fitness value, mean size of choice, and mean standard devi-
ation of the algorithms were compared. Table 6 shows the
configuration values.

Tables 7–10 describe the outcomes of this investigation
and provide the aggregate findings for all enhancers across
the six data sets. BMWOA-S had the lowest values for mean
error, mean selection, and standard deviation. In other words,
BMWOA-S beat other algorithms, such as the FS method,
for fitness value in all datasets except the cervical dataset,
which had relatively few characteristics, demonstrating that
BMWOA-S can select the best subset of features with the
least error.

2) EXPERIMENT NUMBER 2
For the purpose of evaluating the proposed optimizer’s per-
formance, its accuracy is compared to results obtained from

TABLE 10. Compared algorithms’ average standard deviation for fitness
value obtained.

FIGURE 7. Breast cancer neural network iterations for different set of
features.

GA, PSO, GWO and WOA optimizers. From the following
figures showing the accuracy for 50 iterations for different
optimizers, it is evident that the proposed framework is supe-
rior.

D. FRAMEWORK’s PERFORMANCE ANALYSIS
In Experiments 3-4, the framework was compared in terms
of confusion matrix values, precision, accuracy, recall, speci-
ficity, F1-score, computational time, logarithmic loss (log-
loss) and mean squared error (MSE) values.

1) EXPERIMENT NUMBER 3 TESTS THE BEHAVIOR OF THE
DL H2O FRAMEWORK
The DL H2O framework for cancer case classification in
this experiment comprises four layers: pre-processing, FS,
DL with FFNN optimization, and prediction.
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TABLE 11. Performance obtained from the DL H2O framework cancer prediction.

TABLE 12. p-values and accuracy of the proposed framework using Wilcoxon’s rank-sum.

TABLE 13. Comparison between the studies in the related work section and proposed framework.

The performance of cancer-specific data sets is shown
in Table 11. The DL H2O framework obtained mean
accuracy of 100 %, accuracy of 100 %, recall of 100 %,

F1 score of 100 %, specificity of 100 %, 0.085 MSE, and
0.309 log loss for all cancer data sets, as indicated in the table
(see Figure 13).
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FIGURE 8. Lung cancer neural network iterations for different set of
features.

FIGURE 9. Prostate cancer neural network iterations for different set of
features.

2) EXPERIMENT NUMBER 4 WILCOXON’S RANK-SUM
Wilcoxon’s rating test was used to calculate p-values for
the proposed DL framework. Based on this outcome, the

FIGURE 10. Colon cancer neural network iterations for different set of
features.

FIGURE 11. Ovarian cancer neural network iterations for different set of
features.

proposal’s outputs will determine whether or not it has made
a significant difference. DL frameworks differ significantly
from other frameworks with p-values below 0.05; however,
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FIGURE 12. Cervical cancer neural network iterations for different set of
features.

those with p-values above 0.05 are not significantly differ-
ent. T-test results are presented in Table 12 along with their
p-values and average accuracy. When the p-value is less than
0.05, This validates the suggested framework’s superiority
and is statistically significant.

E. DISCUSSION
The BMWOA-S optimizer is used to determine the best
collection of characteristics to utilize as FFNN inputs, as well
as the ideal number of layers and neurons. Table 13 shows
the outcomes of the suggested framework (100% for the
six used cancer datasets). The table’s bold letters reflect
the best outcomes. For Breast, Prostate, Colon and Cer-
vical cancer data sets, the proposed system outperforms

TABLE 14. Summary of deaths during the last 4 years.

others. In terms of lung and ovarian cancer data sets, the
suggested framework by Xiongshi, Deng et al. [26], Wu and
Wang et al. [33], Adiwijaya et al. [34], Saqib et al. [36],
and Cahyaningrum et al. [37] surpasses the other framework.
In [28], the proposed framework equals the result achieved
in [28] but the proposed framework is faster than their
framework.

F. DATA ANALYSIS
First, cancer is one of the diseases that causes the highest
mortality rate. In the world, every six deaths are one death.
In 2021, 2020, 2019, and 2018, ovarian, lung, prostate and
cervical cancers were the most common causes of death
worldwide, respectively. Early detection of cases increases
the chances of the patient receiving treatment, as we dis-
cussed earlier. In the case of cancer patients, accuracy and
prediction time are the most important factors (See Table 14).

Second, a framework for predicting cancer with high accu-
racy and a short prediction time has been proposed. Accord-
ing to the results, we advise that for non-critical patients, the
frame is suitable with high accuracy, and for critical patients,
the prediction time is shorter.

The modified optimizer performs the main step in the FS
algorithm by selecting the most optimal features as well as
by adjusting the layers and neurons per layer. The accuracy
of DL increases as the inner layers are added and as the time
is increased. So, we suggest a three-layer frame. The best
choice is the one that takes the least amount of time and is
high precision.

VI. CONCLUSION AND FUTURE DIRECTIONS
Our goal is to achieve a balance between exploration
and exploitation in this paper by proposing a DL cancer

FIGURE 13. (a) and (b) various evaluation metrics for DL H2O framework.
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prediction framework. The first applies: searching around for
individuals and mutations. Moving towards and searching
around the leader are the second applies. BMWOA’s have
been designed to be the most accurate and fastest prediction
for all types of cancer diseases. The result of all trials on
all cancer types was 100% accuracy. This has been done in
less than 4113 seconds as this time is very important for
critical cases. As the proposed framework consisted of the
control scheme, we were able to assure the stability of it,
despite DL H2O’s superior accuracy in the six standard data
sets.

The proposed approach will be evaluated in the future
against other metaheuristic algorithms to address another
binary classification problem. Data sets utilizing DL are
being analyzed for the impact of increasing their difficulty
level. Tables 6-9 show that the suggested method has a mean
error of 0.002, a size of determination of 0.265, a fitness value
of 0.0115, and a standard deviation of 0.0125, outperforming
other algorithms in all datasets except the Cervical cancer
dataset. As a result, we want to use the Broad Learning
System (BLS) to enhance the outcome.
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