
Received 6 October 2022, accepted 3 November 2022, date of publication 14 November 2022, date of current version 22 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222387

A Taxonomy of MBSE Approaches by Languages,
Tools and Methods
PIERRE DE SAQUI-SANNES , (Member, IEEE), ROB A. VINGERHOEDS, (Member, IEEE),
CHRISTOPHE GARION , AND XAVIER THIRIOUX
ISAE-SUPAERO, Université de Toulouse, 31013 Toulouse, France

Corresponding author: Pierre de Saqui-Sannes (pdss@isae-supaero.f)

This work was supported by the Defense Innovation Agency (AID) of the French Ministry of Defense through the Research Project
CONCORDE under Grant 2019 65 0090004707501.

ABSTRACT Systems engineering has gained in maturity over the last decades and started a transition from
document-centric approaches to Model-Based Systems Engineering (MBSE). Several papers have discussed
the benefits and potential, but also the limitations, of using MBSE, based on literature surveys and analyze
feedback from academia and industry. The current paper explores a complementary avenue and aims at
giving students and industry practitioners a set of keys and decision criteria to select MBSE languages,
tools and methods. Languages, tools and methods are categorised and selection criteria are proposed for a
panorama of languages that goes beyond SysML and other techniques commonly associated with MBSE.
In addition, research avenues for the future of MBSE are identified. The discussion relies on the authors’
experience in teaching and using system engineering and MBSE in both academia and industry, as well as
on the experience shared within the framework of Concorde, a French project dedicated to drone systems
design methodologies.

INDEX TERMS MBSE, formal methods, method, modeling tools, safety-critical systems, SysML, systems
engineering.

I. INTRODUCTION
Systems engineering (SE) has initially relied on a document-
centric approach. Whether documents are commonly
accepted for conveying information, their scattering among
the stakeholders (project management, marketing depart-
ment, and manufacturing department, just to mention a few)
hampers the sharing of consistent information. Starting from
identified limits and pitfalls of document-centric systems
engineering, amongst others the scattering of information,
the potential ambiguity in the descriptions, and the absence
of a good possibility to perform verification and validation
based on such documents, solutions have been investigated
and MBSE has opened up promising avenues for systems
engineers [1]. With no intent to be exhaustive, application
domains of MBSE include railway [2], [3], nuclear plants [4],
aircraft operability [5], drones [6], and lunar exploration [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

The expected benefits of MBSE include a better man-
agement of the requirements, a reduced ambiguity, and the
possibility of performing a formal verification and valida-
tion process. Over the past few years, several papers have
analyzed feedback reports from users of MBSE approaches.
These papers mostly confirm the benefits of MBSE [1], [6],
[8], [9], [10], [11], [12], [13], and less frequently mitigate
these benefits [14], [15], [16], [17], [18]. Much rather than
to reopen discussions on the pros and cons of MBSE, the
purpose of the current paper is to place itself in a context
where the switch toMBSEwas already decided by a company
or research institute and to address the selection of languages,
tools and methods. The objective of this paper is indeed to
categorize the languages, tools and methods in order to give
students and industry practitioners the keys to select MBSE
languages, tools and methods that meet their professional and
learning requirements.

In terms of languages, the MBSE acronym has reg-
ularly been associated with SysML [19], the Systems

120936 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1404-0148
https://orcid.org/0000-0002-4467-2939
https://orcid.org/0000-0002-7194-3159


P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

Modeling Language standardized by OMG (Object Man-
agement Group) with the support of INCOSE (International
Council for Systems Engineering). SysML is a graphic and
semi-formal modeling language that applies to a broad vari-
ety of systems. As far as real-time and critical software-
intensive systemsmodeling are concerned, several limitations
of SysML have been identified in terms of expression power
and semantics, leading to extended versions of SysML [6],
[11] that bridge the gap between SysML and the world of
formal methods. The latter are mathematically grounded and
enable formal checking of models against design errors, early
in the design trajectory of systems.

The expected benefits of MBSE are not only to master
the complexity of the systems under design, but also to offer
a support throughout the life cycle of these systems. The
maturity and user-friendliness of tools is a key enabler for
MBSE development. MBSE tools include models editors,
simulator and formal verification software enabling checking
of models against design errors, code generators, and test
sequence generators.

Last but not least, the success of transitioning toMBSE and
acceptance in industry heavily depends on methods guiding
systems designers in the way of using themodeling languages
and tools.

This paper aims at addressing each of these three categories
(language, tools, methods) so to evaluate where we are today.
Then the paper continues to see where the new challenges are
and how MBSE can be used to address them. The paper is
organized as follows. Section II surveys papers that offer sur-
veys on MBSE. Section III presents and categorizes several
modeling languages commonly used in MBSE. Section IV
then surveys different tools, both commercially available
and tools in research status. Section V continues to present
methods. Section VI identifies research directions. Finally,
Section VII concludes the paper.

II. RELATED WORK
Over the past decade, a high number of papers have included
theMBSE acronym in their title or abstract. Such an abundant
literature has open avenues for other papers that survey and
categorizeMBSE approaches. The word ‘‘taxonomy’’, which
appears in the current paper’s title, was first used in [20]
whereMonteiro, Gil and Rocha categorizeMBSE approaches
in terms of system specification repositories, system exe-
cution models, and design automation models. The current
paper proposes a taxonomy that differs from [20] and insists
on the theoretical background of the surveyed languages
and tools, for instance in terms of languages’ paradigm and
semantics, and theory behind formal verification tools. Fur-
ther, the taxonomy proposed by the current paper relies on the
authors’ experience in teachingMBSE and not exclusively on
paper-reading based feedback.

In [21] Madni and Sievers analyze the motivations for
MBSE adoption and identifies system architecture, informa-
tion search and requirement management, and communica-
tion and collaboration as key issues. The authors of [21]

further confirm that a model abstracts a system and con-
veys a viewpoint. They further underline the importance
of verification and validation, and this is another common
point with the current paper. Another similarity lies in a
classification in terms of languages, tools and methods even
though the number of languages, tools and methods surveyed
in [21] remains lower than the number of languages, tools and
methods surveyed by the current paper. In terms of MBSE
tools, the current paper presents a greater number of tools
than [21] does, and addresses them in more technical terms,
for instance when the current paper categorizes verification
tools and code generators. In terms of methods, [21] focuses
discussion on pattern-based, template-driven and feedback-
enabled approaches. Finally [21] identifies future research
directions with subjects as various as augmentingMBSEwith
descriptive and analytic models of humans, models com-
plexity management, digital twin development, and MBSE
methods that cover the full system life cycle. The current
paper also addresses these issues and enlarges discussion.

In [22] Basnet, Bahootoroody, Chaal and Valdez Blanda
enumerate criteria for selecting modeling languages and
present a decision-making framework that integrates the end-
users’ opinion in the selection process. The authors of [22]
identify several comparison criteria. Examples include struc-
tural modeling in terms of elementary block composition,
behavioral modeling in terms of state or exchanged mes-
sages, traceability among several parts of the model, amount
of resources for modeling, and difficulty in creating, inter-
preting and managing models at the appropriate abstraction
level. Application of the aforementioned selection criteria is
focused on the SysML and OPMmodeling languages. Unlike
the current paper, [22] surveys modeling languages indepen-
dently of any tool and method and ignores several families of
languages, e.g., formal methods, which are addressed in the
current paper. The later further surveys tools and methods.

In [23] Azad, Sint, Zeman, Jungreitmayr, Wahl, Wenig-
wieser, and Kretschmer discuss a framework for MBSE tool
selection ad rely discuss on user needs. Unlike the current
paper, [23] focuses discussion on a limited number of dia-
grammatic modeling languages such as UML, SysML and
BPMN. Further, MBSE tools are individually compared, thus
ignoring possibilities to interface MBSE tools with external
ones, in particular to implement formal verification (e.g.,
model checking) of models. By contrast, the current paper
surveys formal verification tools and open doors for joint use
of MBSE tools with tools developed by for other paradigms,
e.g., MBSA [24] and MDAO [25].

In [26] Akundi, Ankobiah, Mondragon and Luna convey
an industry point of view of what MBSE is and discusses
MBSE adoption challenges. The approach developed in [26]
is complementary to the one in the current paper in the
sense that [26] mostly relies on interview of industry prac-
titioners where the current paper surveys tools, as well
as languages and methods, by essentially relying a lit-
erature review augmented by the authors’ experience in
teaching MBSE.

VOLUME 10, 2022 120937



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

III. LANGUAGES
In the same way as programming languages, or also spo-
ken languages for that matter [27], modeling languages are
defined by their syntax and their semantics. Languages can
roughly be categorized into three categories:
• Non-formal languages,
• Semi-formal, usually diagrammatic languages, and
• Languages based on formal methods endowed with a
formal semantics, enabling formal proofs.

Figure 1 gives some more insight in this categorisation.
Different types of languages are shown, that will be more
detailed in the next sub-sections, with the exception of
non-formal languages that are not addressed in the current
paper. Two green arrows indicate that several features of SDL
and Statecharts have been introduced into UML 2.0.

A. SEMI-FORMAL LANGUAGES
This sub-section first surveys main graphic and semi-formal
modeling languages. Then it focuses on UML and SysML,
two standardized modeling languages frequently associated
with the concept of MBSE, followed by a discussion on
Arcadia/Capella and AADL.

1) TAXONOMY
One can see a large number of semi-formal modeling lan-
guages that are used at the moment. The following enumera-
tion categorizes them:
• SDL (Specification and Description Language) [28]
and its companion standard MSC (Message Sequence
Charts) have been developed for protocols and commu-
nicating systems;

• VHDL-AMS (VHSIC Hardware Description Lan-
guage), a hardware description language, with analog
and mixed-signal extensions), used mainly for electron-
ics systems, in particular those systems implemented on
FPGA cards [29];

• Mathworks languages (Matlab, Simulink, Stateflow et
Simscape) [30] originally developed for control systems
modeling, but increasingly used for systems develop-
ment;

• Modelica, dedicated to mechatronic systems [31];
• AADL (Architecture and Analysis Description Lan-
guage) [32], dedicated to embedded architectures
description;

• UML [33] and its related languages such as SysML [19],
widely applicable modeling languages used in SW and
Systems Engineering;

• OPMObject Process Methodology [34], a systems mod-
eling paradigm that integrates system structure and
behavior.

Besides these generic modeling languages, there are also
DSML (Domain Specific Modeling Languages) that specifi-
cally address a particular application domain. The remainder
of this sub-section focuses particularly on languages owing a
broader application domain.

2) FROM UML TO SysML
UML (Unified Modeling Language [33]) is an international
standard at OMG (Object Management Group). UML was
originally designed with software modeling and development
in mind and results from efforts to federate best practices
in use among software engineers. UML supports use-case-
driven analysis and object-oriented design. Its object orien-
tation enables modeling software in UML before coding in
Java or C++ (just to mention a few).
As much as the UML standard defines a notation, there is

no specific method associated to it, no specific approach of
using it. The lack of tool specification and associatedmethods
in the standardmakes this language to have a large application
domain. The concept of ‘‘profile’’ allows for customising
UML for a specific application domain by improving the
language’s expression power and formalizing its semantics
as a prelude to developing tools.

The increasing development of real-time systems has stim-
ulated research work on real-time UML profiles [35]. Many
of such profiles have seen the light of day and OMG has
standardized one of them: MARTE (Modeling and Anal-
ysis of Real Time and Embedded systems). MARTE was
applied to avionics development [36]. Another example
is TURTLE [37], a real-time profile that bridges the gap
between UML and formal methods. TURTLE was the first
UML profile supported by the free software TTool [38],
which has now become a SysML tool.

Like UML, SysML is a notation defined independently
of any tool or associated method. The UML, and therefore
software-oriented, heritage of SysML has regularly been
questioned. At the time of writing this paper, version 2 of
SysML is in preparation [39], but not yet standardized.

The current version 1.6 of SysML enables covering the
requirement capture, analysis and design steps in the life
trajectory of systems. SysML particularly extends UML
with a requirement diagrams enabling requirement expres-
sion and categorization, as well as requirement traceability
with respect to other analysis and design diagrams. Analysis
is use-case-driven and documented by scenarios and flow
charts. Decisions taken during the requirement capture and
analysis steps will help populating the design diagrams that
model a block architecture of the system and the behav-
iors of the blocks. Joint use of MBSE stricto sensu and
Multi-Disciplinary Analysis and Optimisation techniques
(MDAO) may also help taking design decisions and therewith
populating the SysML diagrams [40].

3) ARCADIA/CAPELLA
Today’s flagship of alternatives to SysML is the Arca-
dia/Capella approach. This approach and associated tool were
developed with the support of the Thales company as an
open source solution for systems modeling. The Arcadia
method leaves room to understanding user needs. It defines
an architecture among the stakeholders. Design decisions can
be validated and justified to make integration and verification
and validation (V&V) of the system easier [4].

120938 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

FIGURE 1. Modeling languages.

The Arcadia method is organised in four successive engi-
neering analysis and design steps with increasing levels of
detail, distinguishing needs expression (perspectives 1 and 2)
from solution expression (perspectives 3 and 4):

1) Operational Analysis: what the users of system need to
accomplish,

2) System Analysis: what the system has to accomplish
for the users,

3) Logical Analysis: how the system will work to fulfill
expectations, and

4) Physical Analysis: how the system will be developed
and built.

In [4], the authors customize the Arcadia method to distin-
guish between System Analysis and Logical Analysis.

• Systems Analysis includes two tasks:

1) Stakeholders and interfaces identification states
how the system interacts with the stakeholders.

2) Identification of internal functions to make it sure
the system will implement these functions in the
way it interacts with the stakeholders.

• Logical analysis defines the requirements to be applied
to the sub-systems and components that will actually be
built. Logical analysis is made up of three tasks:

1) Transformation of external functions into internal,
less complex ones to specify how the functions of
system will be implemented.

2) Allocation of international functions and their
requirements to a reference architecture.

3) Elicitation of dynamic scenarios to check the
design against operational scenarios and appreciate
the exhaustiveness of that design. This includes
verification of how existing functions and require-
ments do specify the behavior that is expected for
the sub-systems of the system.

Whereas the basic form of the Arcadia/Capella approach
and associated tool offers an open-source solution for systems
modeling and engineering, in practice, analyzing models and
generating code often requires additional, not open-source,
tools, such as for example for the joint use of Capella and
Simulink [41].

The Arcadia/Capella approach and SysML are two com-
peting approaches [14], but bridges between the two can be
found [42].

4) AADL
AADL (Architecture and Analysis Description Lan-
guage) [32] has been introduced for modeling and analysis

VOLUME 10, 2022 120939



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

of embedded, real-time systems, such as IMA (Integrated
Modular Avionics) systems implemented in modern aircraft.
AADL describes a system as an assembly of components
that may be software, hardware or composite components
(a component may itself be described by an assembly of
components).

AADL allows one to describe complex architectures made
up of software applications modeled in terms of ‘‘processes’’,
themselves modeled in terms of tasks modeled by ‘‘threads’’.
The applications produce and consume ‘‘data’’. They are
allocated on hardware components such as ‘‘processors’’,
‘‘devices’’, ‘‘bus’’, and ‘‘memory’’.

AADL enables topological description of systems in terms
of connection and allocation between components. Each
component may be assigned a set of behavioral character-
istics termed as ‘‘properties.’’ The interest of such model-
ing approach lies in the capacity to capture the concrete
architecture of the system and to check it against against
schedulability properties, correct transmission of messages
and hardware dimensioning (e.g., memory capacity).

B. FORMAL LANGUAGES
The term ‘‘formal methods’’ denotes a family of languages,
techniques and tools that rely on a strong mathematical back-
ground and permit application of proofs [43] when safety
is an issue. Formal methods specifically apply to critical
systems [44], and more particularly to life critical ones, such
as transport systems [2], [45]. They also find application to
systems that cannot be prototyped many times at reasonable
cost, such as for example satellites.

Formal languages have a clearly defined syntax and a
formalized semantics. The expected benefits of using formal
methods include early detection of design errors in the life
cycle of systems and software. It is possible to categorize for-
mal methods depending on whether their application requires
a posteriori validation of models, or not.

Formal methods such as Event-B [3], [46] require to build
models through a succession of iterative refinements. Good
properties satisfied at refinement (n) are by construction
preserved at refinement (n+1). Event-B falls in the category
of formal methods that implement a correct by construction
paradigm.

A limited number of formal methods implement the cor-
rect by construction approach and its refinement techniques.
A majority of formal methods require a posteriori validation.
The model is built up and subsequently checked against a
set of requirements and properties. The verification may lead
to modify the model and check it again until the expected
requirements and properties are satisfied.

Formal methods that require a posteriori validation may be
categorized as follows:

• Models relying on a state/transitions
paradigm. Examples include Extended Finite State
Machines, Petri nets [47], timed automata [48] and
Q-models [49].

• Process algebra, such as CCS (Calculus of Com-
municating Systems [50]) and CSP (Communicating
Sequential Processes [51]). Their native composition
operator enables decomposition of complex systems or
pieces of software into elementary bricks.

• Logics. Linear, temporal and deontic logics are
examples of logics enabling formal specification of
properties.

Among formal logics, Floyd-Hoare logics [52], [53] have
been regularly used for the specification and verification of
imperative programs. It gave birth to the concept of contract-
based design [54]. This approach was recently been extended
to formal specification of components [55], [56] and therefore
used in a MBSE context.

Over the past decade, formal verification has increasingly
been associated with model transformation, for instance,
to generate analysis models, i.e.models that enable to analyze
the system from one particular point of view or models that
can be used on execution platforms [57], [58]. Inside the Coq
proof assistant, CoqTL [59] is a Domain Specific Language
(DSL) that specifies models and model transformations, the
latter being formally proved.

The group of synchronous languages [60], [61] were intro-
duced in early 1980s to answer needs to specify industrial
command/controls systems. They rely on mathematical con-
cepts enabling formal management of programs compilation.
Time is handled in the form of a sequence of instants where
each instant represents one execution of the system’s reaction.

With the so-called ‘‘synchronous hypothesis’’, computa-
tions are carried out at dates that are abstracted by the
designer inside one logical instant, as soon as these com-
putations are completed before a next instant starts. Such
an approach has been implemented by three families of
languages:

• Equation-based synchronous languages such as
LUSTRE [62], LUCID-Synchrone [63] and
PRELUDE [64].

• Imperative synchronous languages, such as
ESTEREL [65].

• Graphic languages, such as SCADE [10] that is based
on Lustre and primarily applies to critical software
modeling.

The world of formal methods is not completely separate
from the world of semi-formal languages. For example, UML
grounds in both Statecharts and SDL. On the other hand, the
concept of ‘‘UML profile’’ allows to enhance the expression
power of UML and to formalize semantic variation points that
exist in the OMG standard [33]. Examples of real-time UML
profiles include TURTLE [37] that is supported by the free
software TTool [38].

IV. TOOLS
MBSE tools offer various, complementary capabilities:
models edition, checking of models against design errors
using simulation and formal verification, automatic or semi

120940 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

FIGURE 2. Categorisation of MBSE Tools.

automatic generation of executable code from models, and
test generation from models.

Model editors can be implemented as far as the syntax of
the modeling language is clearly expressed, for instance in
the form of a meta-model (which is the case for UML [33].
Papyrus [66] is an example of free UML editor that imple-
ments the metamodel defined in [33].

A. SIMULATION AND FORMAL VERIFICATION
Model simulators combine user-guided and random explo-
rations of models to support early debugging of the models
and subsequent in-depth exploration of the state space of
the same models. Whatever the style of modeling language,
for instance an imperative style or a state/transition one,
a simulator enables inspection of the model’s components,
activation of simulation progress (e.g., by transition firing),
and display of the simulation coverage.

Formal verification relies on mathematics rather than ‘‘by
chance’’ exploration. For instance, reachability analysis com-
putes a reachability graph representing all the valid execution
paths and states the system can take/reach starting from its
initial state. The state explosion risk has regularly been cited
as the major limitation of reachability analysis with as conse-
quencemaking the reachability graph computation infeasible.
An optimized state space exploration and hash-functions-
based implementation of the graph’s states help reducing the
risk of not completing the graph generation process [67].

Model checking generalizes application of exhaustive
exploration of models state space. Fisman and Pnuelli define
model checking as the method by which a desired behav-
ioral property of a reactive system is verified over a given
system (the model) through exhaustive enumeration (explicit
or implicit) of all the states reachable by the system and the

behaviors that traverse through them [68]. The model checker
is catered with a model of the system and a formal expression
of the properties to be verified. The model checker processes
the model and the properties, and outputs a ‘‘yes/no’’ answer
stating whether the property is verified or not. The model
checker also traces execution paths that lead to property
violations. The tool must indeed help the system designer
with the interpretation of the verification results with respect
to the system model.

Stochastic simulation has recently been getting attention
within the framework of model verification. In [69], the
authors apply stochastic simulation techniques, in particular
the Monte Carlo method, to avionic control-command sys-
tems. This approach makes it possible to select the best action
and the best node to visit in order to optimize a reward func-
tion. Since the approach relies on Monte Carlo simulation,
the price of that efficiency is a loss of exhaustivity when
compared to formal verification.

B. CODE GENERATION IN A MBSE CONTEXT
As far asMBSE is concerned, code generators accept a model
as input, and output a code that may be either the entry of a
formal verification tool or an executable code developed for a
target processor. Example of tools offering both verification
and code generation capabilities are as follows:

• Matlab/SimulinkMathworks. Beyond its capabilities for
simulating and tuning control-command laws for avion-
ics systems, it also allows code generation targeting
C/C++ for various hardware platforms, through the
Embedded Coder plugin.

• SCADE [70] whose code generator is qualified with
respect to the DO-178C standard that serves as reference
to aeronautics industry.

VOLUME 10, 2022 120941



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

• Ocarina [71], which supports the AADL language [72].
Its code generator can generate C and ADA source code,
the ADA output being specifically compatible with the
SPARK-ADA suite [73] used for formal verification of
code.

Both verification-oriented and execution-oriented code
generators need to be validated. Validation by testing is
a tedious task since code generators are programs turning
programs (or models) into other programs. Therefore, code
generation processes need to include Verification and Vali-
dation activities. Depending on the criticality level required
of the systems under development, V&V may constrain code
generation. In practice, if the generated software artifacts
(classes, procedures, files, etc.) need to be traced by these
V&V activities, a reviewer can precisely relate these arti-
facts to the design choices made at the MBSE level. This
deeply impacts the process of code generation by restraining
applicable code optimizations, as elementary and otherwise
pervasive as code inlining.

Instead of an extended code generation process with ver-
ification activities, a ‘‘correct-by-design’’ approach may be
used to intertwin the development of the code generator
and its correctness proof. The work on correct by construc-
tion code generators was pioneered by the development of
Geneauto [74] for a subset of the Simulink language (State-
flow). Several phases of the Geneauto generator were proven
correct by design [75], [76]. The current undisputed summit
along this approach is the Velus code generator from Lustre
to C [77], the resulting C code being semantically conform,
by design, to the initial Lustre model.

C. TEST SEQUENCE GENERATION
Simulation and formal verification enable checking ofmodels
against design errors early in the life cycle of systems and
contribute to reduce testing. Nevertheless, testing remains an
important activity in system development. Test sequence gen-
eration has extensively been discussed in the literature [78],
sometimes associated with model checking [79], [80].

Tests sequence generation first depends on the type of
testing.

• Conformance testing tests whether an imple-
mentation conforms its specification or not.

• Given two or several implementations that passed
conformance tests, Interoperability testing
check whether these two implementations can interact,
communicate and cooperate.

• Robustness testing tests the capacity for a sys-
tem to meet certain properties in uncertain environment.

• Performance testing enables measuring
response time of systems depending on the ways these
systems are stimulated.

Test sequence generation requires addressing the following
issues:

1) Test executability. Given a state/transition model, the
constraints associated to the transitions traversed by a

test case must be satisfied by the variables used in the
test case.

2) Fault model. The model must characterize all the faults
one expects to meet at the time of testing the system.
Examples of faults include output, transfer and tempo-
ral faults [80].

3) Test fault coverage. The capacity to detect faults on
implementations is an important criterion for com-
paring test generation techniques that share one fault
model in common.

4) Conformance relation. It makes sense to conformance
testing and requires a common, formal, modeling lan-
guage to represent the system and the implementation.

As far as networked systems are concerned, test sequence
generation may refer to IS 9646 standard to use Point of
Control and Observation. TTCN (Testing and Test Control
Notation [81]) enables test sequence expression, especially
for networked systems.
Finally, the capacity of testing a system heavily

depends on design. Design for testability remains a key
issue.

D. COMPARISON BETWEEN MBSE TOOLS
To conclude the survey of MBSE tools, this sub-section com-
pares MBSE tools and distinguishes between SysML tools
(Table 3) and tools developed for modeling languages other
than SysML (Table 4).

V. METHODS
The languages and tools identified by previous sections need
to be associated with a method. This section categorizes
methods and focuses discussion in particular on methods
associated with SysML.

A. CATEGORIES OF METHODS
A survey of the literature indicates that methods can be
categorized as follows.

• A method compliant with a systems engineering stan-
dard (such as for example ANSI EIA632 [82], IEEE
1220 [83] and IEC 15288 [84]).

• A method compliant with a standard from the aeronau-
tical world (such as for example ARP 4754A [85] a
standard discussed in [86]).

• Amethod associated with a specific modeling tool (such
as for example [6] that associates SysML and the free
software TTool [38] with a method that applies to a
broad variety of real-time systems).

• A method M1 integrated to another method M2
that was not developed for implementing a MBSE
approach (such as for example [87] that integrates
SysML and the free software TTool into the STPA
method (STPA was developed by MIT and stands
for Systems Theoretic Process Analysis), or For-
mose, a French project where SysML is associated
with KAOS [3]).

120942 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

FIGURE 3. MBSE tools for SysML modeling language.

FIGURE 4. MBSE tools for modeling languages other than SysML.

B. A METHOD ASSOCIATED WITH SysML AND TTool
In [88] a method associated with SysML and TTool
can be sketched as follows (see also Figure 5, which
depicts the method in the form of a SysML activity
diagram):
• Requirement capture.
• Expression of modeling assumptions stating how the
SysML model simplifies reality.

• Use case driven analysis identifies the main functions to
be offered by the system. Use cases are documented by
scenarios and flow charts.

• Design both in terms of architecture and behaviors of the
blocks the architecture is made up of.

• Simulation and formal verification for checking the
SysML model against design errors and compliance to
requirements.

Figure 6 addresses the design step of the method shown by
Figure 5 and focuses on incremental modeling of the archi-
tecture along with the behaviors associated with the blocks
the architecture is made up of. Incremental modeling is a key
enabler to managing complex systems, such as for example
UAVs (Unmanned Aeronautical Vehicles) in unknown or
partially known environments. One starts from a model that
highly simplifies the real system and step by step alleviates
restrictions (and takes new requirements into account) to
come up with a model that eventually gets sufficiently close

VOLUME 10, 2022 120943



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

FIGURE 5. SysML activity diagram depicting the method associated with SysML and TTool.

to the real system. When a (n-1) version of the model is
upgraded to next version, non-regression tests are required to
check whether the properties holding at (n-1) step still hold
at step (n).
For each version of the model, it is recommended to use

simulation and formal verification following the 3-step pro-
cess sketched below:

1) The model is debugged using a simulator.
2) Core mechanisms are exhaustively analyzed relying

on formal verification techniques. For example, con-
sidering a local area network managed by a token-
based policy, a core mechanism to be verified would
be: unicity of the token that grants permission to send
frames on the network.

3) Intensive simulation on a model that integrates the
previously verified core mechanisms and add features

that make the model closer to the real system, but do
not need or cannot be verified (e.g., because of the state
explosion problem).

The method discussed so far highlights the importance
of simulation and formal verification for checking design
errors early in the life cycle of systems. Simulation and
formal verification apply to the architecture and behaviors
elaborated during the design step. How to populate the
architectural and behavioral design diagrams is therefore
a key issue. An avenue to explore relies on joint use of
MBSE and MDAO (Multi-disciplinary Analysis and Opti-
mization) approaches [40]. In parallel to requirements and
use cases elicitation, it is possible to carry out engineer-
ing analysis techniques that will guide design decisions in
terms of architecture [89] or drone battery optimization [25].

120944 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

FIGURE 6. Incremental modeling.

As usual, managing multi-domain models rises up coherence
problems [90].

VI. RESEARCH DIRECTIONS
A. LANGUAGES
In order to enhance MBSE processes, a first natural step
is to enhance the descriptive power of the input language
so that systems designers can model their problems with
more details and higher fidelity. But language and method
designers must not paint themselves into a corner by simply
piling up features on top of features, resulting in a bloated and
to a large extent unmanageable and unfathomable language,
from users and designers’ perspectives altogether. This would
end up reproducing the fate of the so-called ‘pivot’ languages.
While we acknowledge the importance of adding features
to keep up with users needs, we also strongly advocate an
evolution of MBSE languages towards more abstract and
specification-oriented ways of modeling.

In our opinion, the kind of evolution we promote is tightly
coupled with the ability of MBSE tools to support it and
fill in the gap between a more high-level description and
the low-level details of an executable (or at least simulable)
target. We discuss this point in Section VI-B. Concretely
speaking, this evolution could address the several following
points:

• In terms of expressive power, we may add the possibility
to specify:

– Deadline, periodicity, and WCET as examples of
real-time constraints.

– Complex synchronization or concurrent structures,
and suspend/resume mechanisms.

– Various features of communication protocols
between components such as FIFO, causal,
buffered, diffusion versus point-to-point, maximum
delays, and data freshness.

• To steer away from early concerns about how data
is stored and where it is located, that may lead to
over-commitment to not so carefully informed choices,
we encourage the primary use of event-oriented descrip-
tions, as can be found in use-case or sequence diagrams.
Synthesis of class diagrams from the latter has already
been experimented [91] and much effort has to be put in
that direction.

B. ELABORATING MODELS
In terms of model developers assistance, elaboration of mod-
els is also an issue. Elaboration of models is a complex
intellectual process. Feedback from industry practitioners and
MBSE lecturers suggests that developers of SysML models
often stumble on the same problem: thinking about the system
before modeling it, e.g., in SysML. Solutions may be found
using mind maps [92]. With their graphic form and rather
flexible way of organizing ideas, mind maps turn out to be
a good candidate to help thinking about the system. Other
avenues may be explored with the support of ontologies [93].

Also, in the never-ending journey of integrating more
aspects into modeling languages, a substantial effort must
be devoted to prevent users’ attention getting clogged by

VOLUME 10, 2022 120945



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

irrelevant parts or features of a model. It involves efficient
pruning or masking techniques implemented in model editing
tools to help users focus on interesting parts.

When the evolution of MBSE languages enables them to
take more specification into account, i.e. such an evolution
enables a more declarative style of modeling, tools will need
to somehow propose automated synthesis of an executable
refined model, to explore feasibility or even deal with opti-
mization concerns as regards model complexity, memory
footprint, communication delays, contention, etc. Some of
these abilities may already exist in research prototypes and
tools still not mature enough to handle industrial use cases.
MBSE tools must exploit to the users’ advantage the degree
of freedom provided by rich but abstract models.

Finally, an interesting direction would be to try to repro-
duce the achievements of machine-learning tools that help
completing user provided code sketches, such as Microsoft’s
Codepilot. At the model level, a tool that helps users complet-
ing partial descriptions, based on a library of MBSE projects
with similar requirements and objectives, would be a great
asset in MBSE activities. It has to be explored whether such
a library could in principle exist and how anAI tool exploiting
this library may be devised.

C. DOCUMENTING MODELS
Looking at sharing models, concurrent approaches, etc.,
an important issue with models may be phrased as follows:
‘‘When sharing a model with another person, how long does
the latter need to understand the main features of the system
described by the model?’’ (or as far as teaching is concerned,
how long does a professor need to understand the models
created by his or her students or trainees?) Answering these
questions clearly raises a model documentation problem.
Investigations are needed to come up with document tem-
plates for one or several modeling language.

D. FORMAL VERIFICATION TOOLS
Formal verification of models can be seen on two points of
view: the properties to be verified and the verification engine.

Expressing the properties to be verified by a system
remains a key issue in formal verification. Efforts have to be
done to optimize formal verification, for instance by relying
on dependency graphs [94] that contribute to reduce the state
space to explore when checking a model against one or
several properties. It is also important to keep in mind that
systems may be checked not only against safety properties
but against securities properties as well.

In terms of verification engine, it is worth being noticed
that the verification tools surveyed by the current paper pow-
erfully address the control part of the system. The surveyed
verification tools offer little opportunities to verify the data
part of the system. As an example, let us consider a com-
munication system modeled in SysML. SysML verification
tools offer nice features for verifying the temporal ordering of
exchangedmessages, as well as temporal constraints satisfac-
tion. By contrast, they do not offer any facilities for verifying

the semantics or the consistency of the data conveyed by the
messages.

Finally, a powerful verification tool is not useful andwill be
soon left aside by potential users if it is not granted with great
abilities to explain verification outcomes. It first requires
producing a verification diagnosis in terms of model com-
ponents, events and user data, not in terms of the verification
tool internal representation. This problem occurs quite often
sincemany verification activities begin by translating amodel
and its specification into a foreign verification language
dedicated to a specific tool. Then, the valuable information
computed must be carried back to the original model, which
can be a tedious task in the absence of any guarantee on the
translation. To alleviate this task, it is worthwhile to provide a
reference formal semantics of the modeling language, a kind
of lingua franca, which users and verification tools alikemust
adhere to. This reference semantics also serves as a basis to
obtain a trustworthy simulation engine or code generator.

A fine way to present such complex verification results is
to couple them with interactive graphical simulation abilities
and additionally to allow model pruning and masking to get
rid of irrelevant details. Also, in order to cope with limitations
of such tools, it is important to exchange information about
the model under scrutiny between verification tools, test suite
generation and execution tools.

E. METHODOLOGICAL ASSISTANTS
Adoption of MBSE has been hampered by the lack of mature
and high quality tools [13]. Examples of issues include scal-
ability and assistance in applying methods. Recent papers
have confirmed the interest of methodological assistants [95],
[96], [97] as a complement to model editors, simulators,
formal verification tools, code generators, and test sequence
generators. The authors of the current paper support the idea
of improving methodological assistants relying on Artificial
Intelligence techniques, in particular Case Based Reasoning
based on libraries of models.

Among many ways of assisting model designers, giving an
assessment on the quality of models is an issue. Let us, e.g.,
consider what happens with SysML tools. Simulation tools
enable debugging of activity and state machines diagrams,
and help systems designers improving their models. By con-
trast, the same SysML tools merely offer editing capabilities
for requirement and use case diagrams. We may need tools
that evaluate the complexity of the diagrams and come up
with recommendations in terms of model sharing and team-
working. Complexity may be evaluated using metrics, pos-
sibly in connection with guidelines. Complexity may also
been evaluated by analyzing dependencies between several
elements in a diagram or between the many diagrams a model
is made up of.

The quality of models further depends on the various
‘facets’ of the system that are addressed by the model. For
instance, all systems are subject to failures and their users
make inadvertent and intentional errors. A method associ-
ated with a language and its support tools should therefore

120946 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

encourage systems designers to not limit their models to
nominal behaviors but to systematically include degraded sit-
uations and human errors made by end users or maintenance
crews.

F. ENSURING SEAMLESS CONNECTION FROM
GENERALISED MBSE TOOLS TO SPECIALISED REAL-TIME
SYSTEMS ANALYSIS TOOLS
Whilst the introduction of model-based systems engineering,
addressing managing systems complexity and reducing the
uncertainty associated with the design process, in industry
can present interesting results, their actual use, taking full
advantages of all possibilities of verification and validation,
code generation, etc. is taking still some time [98]. There
is a need for new approaches that ‘‘support systems that
allow the information and data associated with products to be
developed and sustained through the product life-cycle’’. This
shift in development processes focus utilizes a more complex
series of interfaces and necessitates a shift from previous
dominant document-based approaches for the facilitation of
communication, management of development risks, quality,
process, and business productivity, as well as knowledge
transfer.

One of the reasons leading to this situation lies in the
difficulties to properly connect different tools between each
other. Indeed, when transforming one model into another, the
question arises on:

• How to ensure that eventual changes in the ‘‘other’’
model can be fed back to the original model

• Where to store eventual additional information that was
maybe not necessary for the original model, but critical
to the new model

• How to keep it all coherent and consistent.

In addition, if for each model a developer needs to start from
scratch on the development of a model, for a given system
development a lot of time and effort is devoted to each of
the models, potentially on different tools, with as risk a loss
of coherence between the tools and a loss of motivation for
the developers. Whereas the potential advantages are clearly
defined (amongst others by [16]), and include enhanced com-
munications, reduced development risks, improved quality,
increased productivity, and enhanced knowledge transfer,
it remains difficult to get the use of different tools accepted
with at each time starting from scratch, which makes the topic
of seamless connection of tools an important one.

When looking at guaranteeing response times, different
analysis approaches exist and have been mentioned in this
paper. The proper connection of model-based systems engi-
neering tools to such analysis tools is a focus point. Temporal
constraints for specific (embedded) systems are often already
known in the earliest stages of the design, but can become
more apparent during subsequent design phases. In order to
guarantee a seamless work over the stages, good information
passing between the different phases and different tools is
necessary. A particular focus in this respect concerns the

analysis of asynchronously functioning systems, particular
case that includes amongst others air traffic control, control
of drone systems, complex vehicle control, etc.

VII. CONCLUSION
Model Based Systems Engineering has been largely dis-
cussed in the literature in the form of theory, practical feed-
back and surveys, and focuses on languages, tools, and
methods.

Work onMBSE was pioneered in the context of UML (and
other related approaches such as OMT before) and extended
on subjects as various as meta-modeling, model transforma-
tion, and model management. The development of real-time
UML profiles has stimulated research work on bridging the
gap between graphic, semi-formal modeling languages and
formal methods. Avenues have thus been opened for reuse of
formal verification techniques and code generators initially
developed for formal methods.

MBSE can be seen on three points of view: languages,
tools and methods. Over the past three decades, much work
has been published on modeling languages and tools, looking
for the best languages and the more efficient or user-friendly
tools. With the advent of semi-formal modeling languages
standardized on consensus (e.g., SysML) and with the vari-
ety of formal methods for application domains that need
them, mature tools have been developed. In this paper, it is
claimed that method remains an issue that remains insuffi-
ciently addressed by tools, with the notable exception of the
Arcadia/Capella approach.

Many issues remain to be explored in terms of languages,
tools and methods to promote transitioning to MBSE in
industry. In terms of language, extension mechanisms of
SysML and tools such as Papyrus [66] enable definitions of
modeling languages with enhanced expression power. These
languages usually enable expression of safety properties and
rarely offer constructs to express liveness properties.

Engineers and students need to think about the system
before creating a model. Developing a system, be it a product,
a service, or an organisation, passes several life cycle phases.
The first stage in a system’s life cycle, the concept stage,
focuses on understanding the implications of a system’s mis-
sion and core functionality. In [92] it is argued that mindmaps
may be the support of this first step, a step to be carried before
creating a SysML of the system under design. Mind maps
offer a support to orient thinking about the system before
selecting one or several modeling languages.

The previous section has outlined directions for future
research onMBSE. In the context of the current, final conclu-
sions we further underline the need to make and keep MBSE
open to and interacting with other modeling paradigms. Solu-
tions to improving MBSE in terms of languages, tools and
methods are to be looked for outside the MBSE community.
For instance, by associating MBSE and MBSA [24] and by
bridging the gap between the MBSE and MDAO communi-
ties [25].

VOLUME 10, 2022 120947



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

Last but not least, the authors of the current paper point out
the importance of education for the success of MBSE adop-
tion. Efforts may be guided towards the following directions.

Of prime importance is the development of a body of
knowledge to include MBSE in SE programs. Students and
practitioners need to be trained to develop critical thinking
about the model developed by themselves and by others. The
same students and practitioners need to bee offered coaching
programs to accompany them through their professional life
at various steps accounting on their experience in implement-
ing MBSE on real-size examples.

The concern is not only on the course content but the way
of teaching it. Over the past two decades, a rich collection
of slide-based supports have been developed and partly made
publicly available. It is commonplace to say that not every-
thing can be explained relying exclusively on slides and white
papers. Video supports need to be developed, in particular
in the form of short videos often termed as ‘capsules’. For
instance, students and practitioners need to clearly define the
boundary of the system to be modeled; for instance, to decide
whether modelling an entire system or solely its software
controller.

REFERENCES
[1] M. Chami and J.-M. Bruel, ‘‘A survey on MBSE adoption challenges,’’ in

Proc. INCOSEEMEA Sector Syst. Eng. Conf., Berlin, Germany, Nov. 2018,
pp. 1–16.

[2] H. Maurice Ter Beenk, S. Gnesil, and A. Knapp, ‘‘Formal methods for
transport systems,’’ Int. J. Softw. Tools Tech. Transf., vol. 20, pp. 237–241,
Jun. 2018.

[3] S. Fotso, R. Laleau, H. Barradas, M. Frappier, and A. Mammar, ‘‘A formal
requirements modeling approach: Application to rail communication,’’
in Proc. 14th Int. Conf. Softw. Technol., Prague, Czech Republic, 2019,
pp. 170–177.

[4] J. Navas, P. Tannery, S. Bonnet, and J.-L. Voirin, ‘‘Bridging the gap
between model-based systems engineering methodologies and their effec-
tive practice—A case study on nuclear power plants systems engineering,’’
INCOSE, vol. 21, no. 1, pp. 17–20, 2018.

[5] S. S. Manikar, P. de Saqui-Sannes, J. Jézégou, P. Asseman, and
A. E. Bénard, ‘‘A formal framework for modeling and prediction of air-
craft operability using SysML,’’ in Proc. 34th Eur. Simul. Model. Conf.,
Toulouse, France, 2020, pp. 1–8.

[6] L. Apvrille, P. de Saqui-Sannes, and R. Vingerhoeds, ‘‘An educational case
study of using SysML and TTool for unmanned aerial vehicles design,’’
IEEE J. Miniaturization Air Space Syst., vol. 1, no. 2, pp. 117–129,
Sep. 2020.

[7] J. Rimani, S. Lizy-Destrez, J. C. Chaudemar, and N. Viola, ‘‘MBSE
approach applied to lunar surface exploration elements,’’ in Proc. Model
Based Space Syst. Soft. Eng., Sep. 2020, pp. 1–4.

[8] B. Selic and S. Gérard,Modeling and Analysis of Real-Time and Embedded
Systems With UML and MARTE. Amsterdam, The Netherlands: Elsevier,
2014.

[9] A. K. Reilley, J. S. Edwards, S. R. Peak, and N. D. Mavris, ‘‘Model-based
systems engineering: An emerging approach for modern systems,’’ IAAA
Space Forum, vol. 19, pp. 111–169, Sep. 2016.

[10] T. L. Sergent, F.-X. Dormoy, and A. L. Guennec, ‘‘Benefits of model based
system engineering for avionics systems,’’ in Proc. Embedded Real-Time
Soft. Syst., Toulouse, France, 2016, pp. 1–8.

[11] R. Baduel, M. Chami, J.-M. Bruel, and I. Ober, ‘‘SysML models veri-
fication and validation in an industrial context: Challenges and experi-
mentation,’’ in Proc. Eur. Conf. Modeling Found. Appl., Toulouse, France,
Jun. 2018, pp. 132–146.

[12] S. Wolny, A. Mazak, C. Carpella, V. Geist, and M. Wimmer, ‘‘Thirteen
years of SysML:A systematic mapping study,’’ Softw. Syst. Model., vol. 19,
no. 1, pp. 111–169, Jan. 2020.

[13] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, ‘‘Grand
challenges in model-driven engineering: An analysis of the state of the
research,’’ Softw. Syst. Model., vol. 19, no. 1, pp. 5–13, Jan. 2020.

[14] S. Bonnet, J. Voirin, D. Exertier, and V. Normand, ‘‘Not (strictly) relying
on SysML for MBSE: Language, tooling and development perspectives:
The arcadia/capella rationale,’’ in Proc. Annu. IEEE Syst. Conf., Apr. 2016,
pp. 1–6.

[15] J. Gregory, L. Berthoud, T. Tryfonas, A. Rossignol, and L. Faure,
‘‘The long and winding road: MBSE adoption for functional avionics of
spacecraft,’’ J. Syst. Softw., vol. 160, Feb. 2020, Art. no. 110453.

[16] K. Henderson and A. Salado, ‘‘Value and benefits of model-based systems
engineering (MBSE): Evidence from the literature,’’ Syst. Eng., vol. 24,
no. 1, pp. 51–66, Jan. 2021.

[17] Q. Wu, D. Gouyon, and E. Levrat, ‘‘Maturity assessment of sys-
tems engineering reusable assets to facilitate MBSE adoption,’’ IFAC-
PapersOnLine, vol. 54, no. 1, pp. 851–856, 2021.

[18] M. Di Maio, T. Weilkiens, O. Hussein, M. Aboushama, I. Javid,
S. Beyerlein, and M. Grotsch, ‘‘Evaluating MBSE methodologies using
the FEMMP framework,’’ in Proc. IEEE Int. Symp. Syst. Eng. (ISSE),
Sep. 2021.

[19] Systems Modeling Language, OMG, Dec. 2019. [Online]. Available:
https://sysml.org./.res/docs/specs/OMGSysML.v1.6.19.11.01.pdf

[20] P. J. Monteiro, J. S. P. Gil, andM. R. Rocha, ‘‘A taxonomy for model-based
systems engineering,’’ in Proc. 41st Comp. Inf. Eng. Conf., Aug. 2021,
pp. 1–8.

[21] A. M. Madni and M. Sievers, ‘‘Model-based systems engineering: Motiva-
tion, current status, and research opportunities,’’ Syst. Eng., vol. 21, no. 3,
pp. 172–190, May 2018.

[22] S. Basnet, A. Bahootoroody, M. Chaal, O. A. Valdez Banda, J. Lahtinen,
and P. Kujala, ‘‘A decision-making framework for selecting an MBSE
language—A case study to ship pilotage,’’ Expert Syst. Appl., vol. 193,
May 2022, Art. no. 116451.

[23] A. Khandoker, S. Sint, G. Gessl, K. Zeman, F. Jungreitmayr, H. Wahl,
A. Wenigwieser, and R. Kretschmer, ‘‘Towards a logical framework for
ideal MBSE tool selection based on discipline specific requirements,’’
J. Syst. Softw., vol. 189, Jul. 2022, Art. no. 111306.

[24] N. Nguyen, F. Mhenni, and J.-Y. Choley, ‘‘A study on SysML and AltaR-
ica models transformation,’’ in Proc. IEEE Int. Syst. Conf. (SysCon),
Aug. 2020, pp. 1–6.

[25] O. Aïello, O. Poitou, J.-C. Chaudemar, and P. Saqui-Sannes, ‘‘Sizing a
drone battery by coupling MBSE and MDAO,’’ in Proc. 11th Eur. Congr.
Embedded Real Time Syst., Toulouse, France, Jun. 2022, pp. 31–42.

[26] A. Akundi, W. Ankobiah, O. Mondragon, and S. Luna, ‘‘Perceptions and
the extent of model-based systems engineering (MBSE) use—An industry
survey,’’ in Proc. IEEE Int. Syst. Conf. (SysCon), Apr. 2022, pp. 1–7.

[27] A. Church, ‘‘Carnap’s introduction to semantics,’’ The Phil. Rev., vol. 52,
no. 3, pp. 298–304, May 1943.

[28] (Nov. 4, 2022). ITU-T-Z.100. Specification and Description Language.
[Online]. Available: http://handle.itu.int/11.1002/1000/14048

[29] (2008). IEEE. VHDL. (Nov. 4, 2022). [Online]. Available:
https://www.vhdl-online.de/

[30] (2020).Matworks.Mathworks-Languages. (Nov. 4, 2022). [Online]. Avail-
able: https://fr.mathworks.com/

[31] (2008). Modelica Association. (Nov. 4, 2022). [Online]. Available:
https://www.modelica.org/

[32] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, ‘‘A formal approach to
AADL model-based software engineering,’’ Int. J. Softw. Tools Technol.
Transf., vol. 22, no. 2, pp. 219–247, Apr. 2020.

[33] Unified Modeling Language Version 2.5, OMG, Dec. 2017. [Online].
Available: https://www.omg.org/spec/UML/2.5.1/PDF

[34] L. Li, N. L. Soskin, A. Jbara, M. Karpel, and D. Dori, ‘‘Model-
based systems engineering for aircraft design with dynamic landing
constraints using object-process methodology,’’ IEEE Access, vol. 7,
pp. 61494–61511, 2019.

[35] A. Gherbi and F. Khendek, ‘‘UML profiles for real-time systems and their
applications,’’ J. Object Technol., vol. 5, no. 4, p. 149, 2006.

[36] K. Zhang, J. Wu, C. Liu, S. S. Ali, and J. Ren, ‘‘Behavior modeling on
ARINC 653 to support thee temporal verification of conformed application
design,’’ IEEE Access, vol. 7, pp. 23852–23862, 2019.

[37] L. Apvrille, J.-P. Courtiat, C. Lohr, and P. de Saqui-Sannes, ‘‘TURTLE:
A real-time UML profile supported by a formal validation toolkit,’’ IEEE
Trans. Softw. Eng., vol. 30, no. 7, pp. 473–487, Jul. 2004.

[38] (2022). TTool. (Nov. 4, 2022). [Online]. Available: https://ttool.telecom-
paris.fr/

120948 VOLUME 10, 2022



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

[39] (2020). OMG. SysML v2. [Online]. Available: https://mbse4u.c
om/2020/10/17/new-incremental-sysml-v2-release-2020-09/

[40] J.-C. Chaudemar and P. de Saqui-Sannes, ‘‘MBSE and MDAO for early
validation of design decisions: A bibliography survey,’’ in Proc. IEEE Int.
Syst. Conf. (SysCon), Apr. 2021, pp. 1–8.

[41] C. Duhil, J.-P. Babau, E. Lepicier, J.-L. Voirin, and J. Navas, ‘‘Chaining
model transformations for systemmodel verification: Application to verify
capella model with simulink,’’ in Proc. 8th Int. Conf. Model-Driven Eng.
Softw. Develop., 2020, pp. 279–286.

[42] N. Badache and P. Roques, ‘‘Capella to SysML bridge: A tooled-up
methodology for MBSE interoperability,’’ in Proc. 9th Eur. Congr. Embed-
ded Real Time SoftandSyst., Toulouse, France, 2018, pp. 1–11.

[43] M. Edmund Clarke and M. Jeannette Wing, ‘‘Formal methods: State of
the art and future directions,’’ Dept. Comput. Sci., Carnegie-Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-96–178, 1996.

[44] S. P. Nanda and E. S. Grant, ‘‘A survey of formal specification application
to safety critical systems,’’ in Proc. IEEE 2nd Int. Conf. Inf. Comput.
Technol. (ICICT), Mar. 2019, pp. 296–302.

[45] A. Ferrari, F. Mazzanti, D. Basile, and M. H. ter Beek, ‘‘Systematic evalu-
ation and usability analysis of formal methods tools for railway signaling
system design,’’ IEEE Trans. Softw. Eng., vol. 48, no. 11, pp. 4675–4691,
Nov. 2021.

[46] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[47] (2020). TINA. Time Petri Net Analyzer. (Nov. 4, 2022). [Online]. Avail-
able: http://projects.laas.fr/tina//

[48] (2022). UPPAAL. (Nov. 4, 2022). [Online]. Available: http://www.up
paal.org/

[49] L. Motus and M. G. Rodd, Timing Analysis of Real-Time Software.
New York, NY, USA: Pergamon, 1994.

[50] R. Milner, Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, 1989.

[51] A. R. C. Hoare,Communicating Sequential Processes. Upper Saddle River,
NJ, USA: Prentice-Hall, 1985.

[52] C. A. R. Hoare, ‘‘An axiomatic basis for computer programming,’’ Com-
mun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[53] R. W. Floyd, ‘‘Assigning meanings to programs,’’ Math. Aspects Comput.
Sci., vol. 19, nos. 19–32, p. 1, 1967.

[54] B. Meyer, ‘‘Applying ‘design by contract,’’ Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992.

[55] A. Benveniste, B. Caillaud, H. Elmqvist, K. Ghorbal, M. Otter, and
M. Pouzet, ‘‘Multi-mode DAE models-challenges, theory and implemen-
tation,’’ in Computing and Software Science (Lecture Notes in Computer
Science), vol. 10000, B. S. Gerhard and J. Woeginger, Eds. Heidelberg,
Germany: Springer, 2019, pp. 283–310.

[56] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. G. Larsen, ‘‘Contracts for systems design: Theory,’’ Inria Rennes
Bretagne Atlantique, Rennes, France, Res. Rep. RR-8759, Jul. 2015.

[57] D. Calegari and N. Szasz, ‘‘Verification of model transformations: A sur-
vey of the state-of-the-art,’’ Electron. Notes Theor. Comput. Sci., vol. 292,
pp. 5–25, Mar. 2013.

[58] M. Amrani, B. Combemale, L. Lúcio, G. M. K. Selim, J. Dingel,
Y. L. Traon, H. Vangheluwe, and J. R. Cordy, ‘‘Formal verification
techniques for model transformations: A tridimensional classification,’’
J. Object Technol., vol. 14, no. 3, p. 1, 2015.

[59] M. Tisi and Z. Cheng, ‘‘CoqTL: An internal DSL for model transforma-
tion in COQ,’’ in Proc. 11th Int. Conf. Theory Pract. Model Transform.,
vol. 10888. Toulouse, France: Springer, Jun. 2018, pp. 142–156.

[60] A. Benveniste, P. Caspi, A. Stephen Edwards, N. Halbwachs, P. Guernic,
and R. D. Simone, ‘‘The synchronous languages 12 years later,’’ Proc.
IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003.

[61] C. André, ‘‘Comparing programming styles in synchronous languages
(in French),’’ Tech. Rep. RR-2005–13, I3S, Sophia-Antipolis, France,
Jun. 2005.

[62] N. Halbwachs, P. Raymond, and C. Ratel, ‘‘Generating efficient code from
data-flow programs,’’ in Proc. 3rd Int. Symp. Program. Lang. Implement.
Logic Program., Passau, Germany, 1991, pp. 207–218.

[63] M. Pouzet, ‘‘Lucid synchrone, version 3. Tutorial and reference manual,’’
Orsay, France, Tech. Rep. hal-03090137, 2006.

[64] J. Forget, ‘‘A synchronous language for critical embedded systems with
multiple real-time constraints,’’ Ph.D. thesis, Université de Toulouse-
ISAE-SUPAERO, Toulouse, France, Nov. 2009.

[65] F. Boussinot and R. de Simone, ‘‘The ESTEREL language,’’ Proc. IEEE,
vol. 79, no. 9, pp. 1293–1304, Sep. 1991.

[66] M. Theobald, L. Palladino, and P. Virelizier, ‘‘About DSML design
based on standard and open-source-REX from SAFRAN tech work using
Papyrus-SysML,’’ in Proc. Mil. Oper. Res. Soc. 86th Symp., Monterey, CA,
USA, 2018, pp. 1–6.

[67] J. G. Holzmann, ‘‘The model checker spin,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 1–17, May 1997.

[68] D. Fisman and A. Pnueli, ‘‘Beyond regular model checking,’’ in Proc. 21st
conf. Found. Soft. Techno. Theor. Comp. Sci., vol. 2245, 2001, pp. 156–170.

[69] R. Delmas, T. Loquen, J. Boada-Bauxell, and M. Carton, ‘‘An evaluation
of Monte-Carlo tree search for property falsification on hybrid flight
control laws,’’ in Proc. 12th Int. Workshop onNumerical Softw. Verifica-
tion, vol. 11652, M. Zamani and D. Zufferey, Eds. Heidelberg, Germany:
Springer, Jul. 2019, pp. 45–59.

[70] T. L. Sergent, ‘‘SCADE: A comprehensive framework for critical system
and software engineering,’’ in Integrating System and Software Model-
ing (Lecture Notes in Computer Science), vol. 7083. Berlin, Germany:
Springer, 2011.

[71] J. Hugues and C. Garion, ‘‘Leveraging Ada 2012 and SPARK 2014 for
assessing generated code from AADL models,’’ in Proc. ACM SIGAda
Annu. Conf. High Integrity Lang. Technol., M. Feldman and S. T. Taft, Eds.
Portland, OR, USA: ACM, 2014, pp. 39–46.

[72] H. P. Feiler, B. Lewis, and S. Vestal, ‘‘The SAE avionics architec-
ture description language (AADL) standard: A basis for model-based
architecture-driven embedded systems engineering,’’ in Proc. ERTS, 2006,
pp. 1–9.

[73] B. M. Brosgol, C. Dross, and Y. Moy, ‘‘Tutorial: A practical introduction
to formal development and verification of high-assurance software with
SPARK,’’ in Proc. IEEE Cybersecurity Develop. (SecDev), Tysons Corner,
VA, USA, Sep. 2019, pp. 1–2.

[74] A. Toom, T. Naks, M. Pantel, M. Gandriau, and I. Wati, ‘‘Gene-auto:
An automatic code generator for a safe subset of simulink/stateflow and
Scicos,’’ in Proc. ERTS, Toulouse, France, 2008, pp. 1–10.

[75] N. Izerrouken, X. Thirioux, M. Pantel, and M. Strecker, ‘‘Certifying an
automated code generator using formal tools: Preliminary experiments in
the geneauto project,’’ in Proc. Eur. Congr. Embedded Real-Time Soft.,
Toulouse, France, 2008, pp. 1–10.

[76] N. Izerrouken, O. S. Y. Kai, M. Pantel, and X. Thirioux, ‘‘Use of formal
methods for building qualified code generator for safer automotive sys-
tems,’’ in Proc. 1st Workshop Crit. Automot. Appl. Robustness Saf. (CARS),
Valencia, Spain, 2010, pp. 53–56.

[77] T. Bourke, L. Brun, and M. Pouzet, ‘‘Mechanized semantics and verified
compilation for a dataflow synchronous language with reset,’’ Proc. ACM
Program. Lang., vol. 4, pp. 1–29, Jan. 2020.

[78] R. Dssouli, A. Khoumsi, M. Elqortobi, and J. Bentahar, ‘‘Testing the
control-flow, data-flow, and time aspects of communication systems: A
survey,’’ Adv. Comp., vol. 107, pp. 95–155, Jan. 2017.

[79] E. Villani, R. P. Pontes, G. K. Coracini, and A. M. Ambrósio, ‘‘Integrating
model checking and model based testing for industrial software develop-
ment,’’ Comput. Ind., vol. 104, pp. 88–102, Jan. 2020.

[80] W. Elkholy, M. El-Menshawy, J. Bentahar, M. Elqortobi, A. Laarej, and
R. Dssouli, ‘‘Model checking intelligent avionics systems for test cases
generation using multi-agent systems,’’ Expert Syst. Appl., vol. 156,
Oct. 2020, Art. no. 113458.

[81] (Nov. 4, 2022). TTCN-3. The Testing and Test Control Notation. [Online].
Available: http://www.ttcn-3.org/index.php/about/introduction

[82] EEIA632—Process for Engineering a System, ANSI, GEIA, Arlington,
VA, USA, 2003.

[83] IEEE Standard for Application and Management of the Systems Engineer-
ing Process, Standard 1220–2005, IEEE, 2005.

[84] Ingénierie des Systèmes et du Logiciel—Processus du Cycle de vie du
Système, Standard ISO/IEC/IEEE 15288:2015, ISO, 2015.

[85] ARP4754A: Guidelines for Development of Civil Aircraft and Systems,
SAE, Warrendale, PA, USA, 2010.

[86] S. Zhu, J. Tang, J.-M. Gauthier, and R. Faudou, ‘‘A formal approach using
SysML for capturing functional requirements in avionics domain,’’ Chin.
J. Aeronaut., vol. 32, no. 12, pp. 2717–2726, Dec. 2019.

[87] F. G. R. de Souza, J. de Melo Bezerra, C. M. Hirata, P. de Saqui-Sannes,
and L. Apvrille, ‘‘Combining STPAwith SysMLmodeling,’’ inProc. IEEE
Int. Syst. Conf. (SysCon), Aug. 2020, pp. 1–8.

[88] P. de Saqui-Sannes, L. Apvrille, and A. Rob Vingerhoeds, ‘‘Checking
SysMLmodels against safety and security properties,’’ J. Aerosp. Inf. Syst.,
vol. 18, pp. 1–13, Dec. 2021.

VOLUME 10, 2022 120949



P. D. S.-Sannes et al.: Taxonomy of MBSE Approaches by Languages, Tools and Methods

[89] P. Leserf, P. de Saqui-Sannes, and J. Hugues, ‘‘Trade-off analysis for
SysML models using decision points and CSPs,’’ Softw. Syst. Model.,
vol. 18, no. 6, pp. 3265–3281, 2019.

[90] S. Missaoui, F. Mhenni, J.-Y. Choley, and N. Nguyen, ‘‘Verification and
validation of the consistency between multi-domain system models,’’ in
Proc. Annu. IEEE Int. Syst. Conf. (SysCon), Apr. 2018, pp. 1–7.

[91] L. Apvrille, P. de Saqui-Sannes, and F. Khendek, ‘‘Real-time UML synthe-
sis from sequence diagrams,’’ (in French) in Proc. Colloque Francophone
sur l’Ingénierie des Protocoles (CFIP), Apr. 2005.

[92] P. de Saqui-Sannes, R. A. Vingerhoeds, N. Damouche, E. Razafimahazo,
O. Aiello, and M. Cietto, ‘‘Mind maps upstream SysML v2 diagrams,’’ in
Proc. IEEE Int. Syst. Conf. (SysCon), Apr. 2022, pp. 1–8.

[93] J. Gray and B. Rumpe, ‘‘On the relationship between models and ontolo-
gies,’’ Softw. Syst. Model., vol. 21, no. 4, pp. 1271–1272, Aug. 2022.

[94] L. Apvrille, P. De Saqui-Sannes, O. Hotescu, and A. Calvino, ‘‘SysML
models verification relying on dependency graphs,’’ inProc. 10th Int. Conf.
Model-Driven Eng. Softw. Develop., 2022, pp. 1–8.

[95] E. Aquino, P. de Saqui-Sannes, and R. Vingerhoeds, ‘‘A methodological
assistant for use case diagrams,’’ in Proc. 8th Int. Conf. Model-Driven Eng.
Softw. Develop., 2020, pp. 1–11.

[96] G. Mussbacher, B. Combemale, J. Kienzle, S. Abrahão, and A. Ali,
‘‘Opportunities in intelligent modeling assistance,’’ Soft. Syst. Model.,
vol. 19, pp. 1–7, Sep. 2020.

[97] M. Savary-Leblanc, X. Le-Pallec, and S. Gerard, ‘‘A modeling assistant
for cognifying MBSE tools,’’ in Proc. ACM/IEEE Int. Conf. Model Driven
Eng. Lang. Syst. Companion (MODELS-C), Oct. 2021, pp. 630–634.

[98] G. Detlef, S. S. Cordero, R. A. Vingerhoeds, B. Sullivan, M. Rossi,
Y. Brovar, Y. Menshenin, C. Fortin, and B. Eynard, ‘‘MBSE-PLM integra-
tion: Initiatives and future outlook,’’ in Proc. 19th IFIP Int. Conf. Product
Lifecycle, Jul. 2022, pp. 1–10.

PIERRE DE SAQUI-SANNES (Member, IEEE)
received the Ph.D. and Habitation (Super-
vise Researches) (H.D.R.) degrees in computer
science. He is currently a Full Professor
in model-based systems engineering at
ISAE-SUPAERO, Université de Toulouse, France.
He heads the Critical SystemsDesign andAnalysis
Research Group, Department of Complex Sys-
tems Engineering. His research interests include
model-based systems engineering, SysML, formal

verification of models, and aerospace systems modeling.

ROB A. VINGERHOEDS (Member, IEEE) is cur-
rently a Full Professor in systems engineering
and the Head of the Department of Complex
Systems Engineering, ISAE-SUPAERO, Univer-
sité de Toulouse, France. His research inter-
ests include systems engineering and architecture,
model-based systems engineering, concept design,
the integration of project management and systems
engineering, and artificial intelligence techniques.
He became over time a key topic in his career as a

Systems Engineer. He is also the Deputy Editor of the International Journal
of Systems Engineering.

CHRISTOPHE GARION received the Eng.
degree in computer science and the M.Sc.
and Ph.D. degrees in artificial intelligence
from ISAE-SUPAERO. He is currently an
Assistant Professor in computer science at
ISAE-SUPAERO, Université de Toulouse, France.
His research interests include formal verification,
compilation, and knowledge representation.

XAVIER THIRIOUX received the degrees in
applied mathematics and in computer science
from the Engineering School ENSEEIHT, the
M.S. and Ph.D. degrees in computer science
from Toulouse-INP, Université de Toulouse,
and the Habilitation degree from Toulouse-INP.
From 2001 to 2019, he was an Assistant Profes-
sor at ENSEEIHT. He is currently a full profes-
sor position at ISAE-SUPAERO, Université de
Toulouse. His research interests include formal

methods, verification, compilation, and proof assistants.

120950 VOLUME 10, 2022


