IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 October 2022, accepted 3 November 2022, date of publication 14 November 2022, date of current version 22 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222389

== RESEARCH ARTICLE

Design and Implementation of a Post-Quantum
Group Authenticated Key Exchange Protocol With
the LibOQS Library: A Comparative Performance
Analysis From Classic McEliece,

Kyber, NTRU, and Saber

JOSE IGNACIO ESCRIBANO PABLOS “'2, MISAEL ENRIQUE MARRIAGA ',
AND ANGEL L. PEREZ DEL POZO""!

'MACIMTE, Universidad Rey Juan Carlos, 28933 Méstoles, Spain
2BBVA Next Technologies, 28050 Madrid, Spain

Corresponding author: Angel L. Pérez del Pozo (angel.perez@urijc.es)

This work was supported in part by the North Atlantic Treaty Organization (NATO) Science for Peace and Security Programme under
Grant G5448, and in part by the Spanish Ministerio de Economia y Empresa (MINECO) under Grant PID2019-109379RB-100.

ABSTRACT Group authenticated key exchange protocols (GAKE) are cryptographic tools enabling a group
of several users communicating through an insecure channel to securely establish a common shared high-
entropy key. In the last years, the need to design cryptographic tools which provide security in the presence
of attackers with access to quantum resources has become unquestionable; the field dealing with these types
of protocols is usually referred to as Post-Quantum Cryptography. The U.S. National Institute for Standards
and Technology (NIST) launched in 2017 an open call to find suitable post-quantum public-key algorithms
for standardization. In this work, we design a GAKE that can be instantiated with any key encapsulation
mechanism (KEM) that satisfies the strong security notion IND-CCA, matching NIST’s requirements for
this primitive. We have implemented our GAKE with the four finalist KEMs from the NIST process:
Classic McEliece, Kyber, NTRU, and Saber, making use of the open-source library LibOQS where these
algorithms are provided. We have conducted a detailed comparative performance analysis of the resulting
GAKE protocols, taking into account all the parameter sets proposed in the submissions. We have also made
a performance analysis of all the involved building pieces, including the four finalist KEMs. Finally, we also
compare our GAKE with a previous proposal implemented with Kyber.

INDEX TERMS Cryptography, cryptographic protocols, system implementation, post-quantum cryptogra-
phy, public key cryptography.

I. INTRODUCTION

Group authenticated key exchange (GAKE) protocols are
cryptographic constructions that allow a group of n > 2
users or parties, communicating through an insecure network,
to agree on common session keys. These keys are then
typically used to provide security guarantees, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

confidentiality, integrity, and/or authentication, for further
communication among the group members.

In the last years, we have seen a growing concern about the
threat that quantum computation presents to the security of
many existing cryptographic primitives based on mathemat-
ical problems related to integer factorization or computation
of discrete logarithms. This led the U.S. National Institute
of Standards and Technology (NIST) to launch an open call
in 2017 asking for proposals of post-quantum algorithms

120951

https://orcid.org/0000-0002-0079-642X
https://orcid.org/0000-0002-7106-8593
https://orcid.org/0000-0002-8135-9642
https://orcid.org/0000-0003-0586-090X

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

that could be subsequently standardized. The term ‘“‘post-
quantum” in this context refers to algorithms that could
be considered to offer security against attackers that have
access to quantum computational resources. In the NIST
call for proposals, two types of cryptographic primitives
were allowed: Key Encapsulations Mechanisms (KEMs) and
digital signatures. At the beginning of 2022, there were
three rounds of announcements from NIST stating which
candidates advanced in the process. After round 3, there
were 7 finalists: 4 KEMs and 3 signature schemes. NIST
also proposed a list of alternate candidates for further study
and future consideration; it was composed of 5 KEMs
and 4 signature schemes. During the revision process of
this paper, NIST announced the algorithms selected for
standarization, namely Kyber as the KEM and Dilithium,
Falcon and SPHINC+ as digital signatures. In this work,
we focus on the four finalist KEMs, as they are known to be
a basic building block from which GAKE protocols can be
constructed.

A. RELATED WORK

There have been several recent proposals of group key
exchange protocols that provide some kind of resistance
against quantum attacks (see Table 1 for a comparison
between the main GAKE protocols). The protocol presented
in [1] by Fujioka et al. is based on the problem of finding
isogeny mappings between two supersingular elliptic curves
with the same number of points. In the same line, Hougaard
and Miyaji presented in [2] several designs based on
isogenies. The authenticated protocols are named A-SIT and
A-P2P-SIT, with the latter being the peer-to-peer version of
A-SIT, which means that it reduces the protocol complexity
in terms of communication and memory. Both are authen-
ticated protocols, resistant to active attacks, and achieve
authentication through a signature scheme. Apon et al. ([3])
constructed an unauthenticated protocol proven secure under
the ring learning with errors (RLWE) assumption. This
scheme may be transformed into an authenticated one by
using the Katz and Yung compiler ([12]), that adds a signature
scheme and an additional round to the original protocol. The
protocols from Choi et al. ([4], [5]) are also based in the
same problem; the authors build on [12] and propose three
different protocols: the first is unauthenticated, the second
(STAG) adds authentication, and the third is, in addition,
dynamic (meaning that users may join or leave the group at
any time). Choi et al. [6] proposed a generic GAKE also
relying on the RLWE assumption, built on a tree structure
in the dynamic setting. In more detail, this protocol has
been instantiated with NewHope [13]: a KEM submitted to
the NIST standardization process, but which has not been
selected as a finalist in Round 3. Takashima constucted in [7]
two different families of GAKEs based on static lattice and
isogeny assumptions respectively, where static means that the
size of the computational problem does not depend on the
number of participants in the group.

120952

There also exist protocols, like the one we propose in this
work, that use compilers, which produce a quantum-resistant
GAKE from simpler post-quantum primitives. In this line, the
protocol from Persichetti et al. ([8]) was constructed from a
KEM and a signature scheme. Gonzédlez Vasco et al. ([9])
introduced a protocol derived from a KEM and a Message
Authentication Code (MAC). However, this construction
cannot be considered completely post-quantum; security
holds in the future-quantum scenario, where adversaries do
not have access to quantum resources during the protocol
execution but only later. Escribano Pablos et al. ([11]) used
the compiler from Abdalla et al. (14]) to obtain a GAKE from
the IND-CPA Public Key Encryption (PKE) scheme included
in the Kyber suite ([15]) and the FOakg transformation, and
proved it to be secure in the Quantum Random Oracle Model
(QROM). The compiler introduced in [10] allows to obtain
a GAKE protocol using any two-party key exchange, being a
generalization of the Burmester and Desmedt [16] protocol
in the G-CK+- security model. Two versions of the compiler
have been proposed: the original version known as GKE-C
and the peer-to-peer version (P2P-GKE-C). The latter reduces
the resources consumption (memory and communication)
compared to the original compiler.

B. OUR CONTRIBUTION

In this work, we propose a generic post-quantum GAKE
protocol in the same line of [11]. We rely only on three
primitives: an IND-CCA secure KEM, a one-time symmetric
encryption scheme, and a cryptographic hash function. The
FSXY transformation by Fujioka et al. ([17] provides a
two-party authenticated key exchange 2AKE from the KEM.
Then we use Abdalla et al’s compiler ([14]) to obtain
the GAKE from the 2AKE. The compiler also requires a
commitment scheme satisfying certain properties, but we
show that it can be obtained from the same KEM used for
the FSXY transformation. Whereas this construction may
be seen as a generalization of [11] (which also builds on
Abdalla et al.’s compiler and a generic transformation from
KEM to AKE), this is not exactly so, as here the FSXY
transformation is used instead of the FOxxg (see [18] and
[19]), which is used in [11].

Our aim is to design a generic protocol that may be
implemented with any of the four Round 3 KEM finalists
from the NIST post-quantum standardization process, namely
Classic McEliece, Kyber, NTRU, and Saber. In fact, our
design can be implemented with any IND-CCA KEM (yet
its final security against quantum adversaries is of course
not guaranteed if the KEM is not post-quantum). We would
like to point out that the FOxxg transformation offers some
advantages over FSXY, such as having a security proof in
the Quantum Random Oracle Model (QROM) and being
simpler. However, it cannot be directly applied to the public
key encryption schemes described in the Classic McEliece
and NTRU submissions, as they are deterministic and
cannot satisfy the IND-CPA requirement from [18] and [19].
Therefore, our rationale for choosing FSXY is that it is

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 1. Main features of the GAKE protocols claimed to be quantum-resistant.

. . Static or Compiled . Uses Instanciated with NIST
Name Type Assumption Authenticated Dynamic? design? Scenario signatures KEM finalist?
Fujioka et al. [1] Protocol Isogeny v Static X Post-Quantum X X
Hougaard and Miyaji [2] Protocol Isogeny v Static v Post-Quantum v X
Apon et al. [3] Protocol Lattice (RLWE) X Static X Post-Quantum X X
Choi et al. [4], [5] Protocol Lattice (RLWE) v Dynamic X Post-Quantum v X
o L . . ’ X (NewHope,
Choi et al. [6] Protocol Lattice (RLWE) X Dynamic v Post-Quantum X but it is not a finalist)
Takashima [7] Protocol La(tllcseoél:rl;;VE), v Static Vv (Katz Yung compiler) Post-Quantum v X
Persichetti et al. [8] Compiler Inherited from KEM v Static — Post-Quantum v X
Gonzalez et al. [9] Compiler Inherited from KEM v Static — Future-Quantum X X
Hougaard and Miyaji [10] ~ Compiler Inherited from 2AKE v Static — Post-Quantum X No
Escribano et al. [11] Protocol Lattice (Module-LWE) v Static + (Abdalla et al. compiler) Post-Quantum X Kyber
This work Protocol Inherited from KEM. v Static Vv (Abdalla et al. compiler) Post-Quantum X Classic McEliece, Kyber,

Lattice, code

NTRU, and Saber

the simplest transformation we are aware of which allows
for a uniform treatment of the four KEM finalists when
constructing the GAKE.

As far as we now, our protocol is the only existing GAKE
that simultaneously satisfy the two following properties:
can be implemented from any KEM, offers security in the
post-quantum setting and does not make use of post-quantum
signatures. To justify this fact, note that among the protocols
enumerated in Table 1, [1], [2], [3], [4], [5], [6], [7], [11] use
specific KEMs or post-quantum mathematical problems, [§]
makes use of a post-quantum signature and [9], [10] depart
from a two-party key exchange protocol, not from a KEM.
As every NIST finalist must include a KEM, this allows us to
provide full and working implementations of our GAKE with
all the finalists.

‘We have instantiated and implemented our GAKE protocol
with the aforementioned four finalists from the NIST com-
petition. Our implementations make use of the open-source
library LibOQS and they cover the four KEMs and all the
different parameter sets proposed for each one. We have
conducted a performance analysis of the whole GAKE
protocol and compared the different versions.

In addition, we have independently studied the perfor-
mance of the different building blocks, including each of the
KEMs. We consider this comparative performance analysis
of the Round 3 finalists to be an interesting additional and
independent contribution.

Finally, we provide performance figures comparing our
GAKE implemented with Kyber to the GAKE presented
in [11], which is also Kyber based but uses the FOaxg
transformation ([18], [19]) to obtain the 2AKE. The GAKE
in [11] is the only one in the previous literature, as far as we
know, to have been implemented with one of the four KEM
finalists from NIST competition.

C. PAPER ROADMAP
We start by providing some preliminaries in Section II,
which will help the reader understand our GAKE design,

VOLUME 10, 2022

TABLE 2. NIST security levels.

Level Description

Level 1 Key search on 128-bit block cipher (e.g. AES128)

Level 2 Collision search on a 256-bit hash function (e.g. SHA3-256)
Level 3 Key search on a 192-bit block cipher (e.g. AES192)

Level 4 Collision search on a 384-bit hash function (e.g. SHA3-384)
Level 5 Key search on a 256-bit block cipher (e.g. AES256)

subsequently depicted in Section I'V. The security model we
are considering is described in Section III and we provide
a security proof for our protocol in Section IV. Section V
describes the different implementation possibilities and gives
a detailed explanation of our comparative experiments, which
results are further analyzed in Section VI. We finalize with a
brief summary of our conclusions in Section VII, which is
followed by two appendices. Appendix A depicts a complete
run of the GAKE protocol using Classic McEliece as a
building block, whereas Appendix B shows some numerical
results (linked to the graphics from Section VI).

Il. PRELIMINARIES
A. ABDALLA ET AL's COMPILER: FROM 2-PARTY
AKE TO GAKE
Here, we briefly describe the compiler due to
Abdalla et al. ([14]), which derives a group authenticated
key exchange protocol GAKE from an arbitrary 2-party key
exchange protocol 2AKE. Abdalla et al.’s compiler only adds
2 additional rounds of communication to 2AKE, i.e., if 2AKE
needs in r rounds to run, GAKE requires r + 2 rounds.
Moreover, the compiler does not require any authentication
method beyond the ones required by 2AKE. It only assumes
that participants in GAKE are distributed on a ring, i.e., user
U, is aware of the identity of its left neighbour U;_; and its
right neighbour Ui 1.

We denote with P the set of users that can participate in the
protocol GAKE and with G the subset {Uy, Uy, ..., U,—1} C

120953

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 3. Classic McEliece parameter sets.

Systematic form Semi-systematic form Security level

348864 348864f 1
460896 460896f 3
6688128 6688128f 5
6960119 6960119f 5
8192128 8192128f 5

P of n > 2 users that want to agree on a session key. A user U;
can run a polynomial number of (parallel) instances of GAKE.
2AKE assumes long-term authentication keys that have been
established in a trusted authentication phase. It allows a
pair of public/secret keys for each user U;, a high entropy
symmetric key, or a low entropy password. shared for each
pair of users, and a common secret for all users.

The compiler depends on the following cryptographic
tools: A non-interactive non-malleable commitment scheme
C that is perfectly binding and achieves non-malleability for
multiple commitments, a collision-resistant pseudorandom
function family F, and a hash function H selected from a
family of universal hash functions.

We briefly describe the compiler (see details in [14]):
in Round 1 ~ r, each user U; runs 2AKE with U; and
Uit1, obtaining two keys K ; and K ;, shared with U;; and
U;_1.In Round r + 1, each user U; comﬂltes a commitment
C; = C(, X, ri), where X; = K @ K, and r; is chosen
at random. U; broadcast Ml.1 = (Uj, C;). Finally, in Round
r + 2, each user U; broadcasts Ml-2 = (U;, X;, ry), checks
that @:’;0] X; = 0 and the correctness of the commitments
C;. If any one of last two conditions fails, then user U; ends
the protocol at this point. Then, U; computes the master key

= (Ko, K1, , Ky—1, G), where

«—
K,'_jZK,'EBX,'_léB-”@Xi_j, j=12,...,n—1.

U; sets the session key sk; and the session identifier sid;,
derived from F and H, respectively.

B. POST-QUANTUM KEMs

We instantiate both the 2AKE and the commitment scheme
C (needed for the compiler described in Section 1V)
from a post-quantum KEM. Next we recall the formal
definition of a KEM: it is a triple of algorithms KEM =
(KeyGen, EnCap, DeCap) such that:

« The probabilistic key generation algorithm KeyGen(1¢)
takes as input the security parameter £ and outputs a key
pair (dk, ek).

e The probabilistic encapsulation algorithm
EnCap(ek; r) takes as input a public encapsulation key
ek and outputs a ciphertext ¢ and a key' k. The value
r corresponds to the random coins used by EnCap.
We include it as an explicit input as we will need to refer
to it in the description of our GAKE.

IThis key k is sometimes named as shared secret.

120954

o The deterministic decapsulation algorithm
DeCap(dk, c) takes as input a secret decapsulation key
dk and a ciphertext ¢ and outputs a key k or L (meaning

decryption failure).
We will consider the four Round 3 KEM finalists from

NIST’s Post-Quantum standardization process. All of them
target the IND-CCA2 security notion as required by NIST
in its call for proposals, which is also usually named just
IND-CCA; we will use the latter denomination throughout
this paper. A KEM is considered to be IND-CCA secure if,
given an encapsulated ciphertext and a key which is either the
encapsulated key or a random one, an adversary (modeled
as a probabilistic polynomial-time algorithm) with access
to a decapsulation oracle is unable to distinguish between
these two options with a probability non-negligibly better
than a random guess. For a more formal definition see, for
instance, [20].

Concerning the practical security strength of the can-
didates, NIST establishes 5 security levels ([21]). These
security levels ask for resistance against attacks that use
computer resources comparable to or greater than those
required for key search against a block cipher or collision
search for a certain hash function. More precisely, the security
levels are summarized in Table 2.

Next, we briefly overview the four finalists KEMs. The full
description of all the algorithms submissions to Round 3 can
be found in the NIST webpage [22].

1) CLASSIC McEliece

Classic McEliece [23] is the only candidate based on codes.
The KEM is built from an OW-CPA deterministic PKE,
namely Niederreiter’s dual version of McEliece’s PKE, which
uses binary Goppa codes ([24]). The Round 3 submission
of McEliece comes with 5 different parameter sets, each one
with two versions, depending on whether the parity check
matrix of the code is reduced to systematic or semi-systematic
form. The names of the parameter sets and their claimed
security levels are shown in Table 3.

2) CRYSTALS-KYBER

Kyber [25], like two other finalists, NTRU and Saber, bases
its security on a lattice problem, in this case, the Module
learning with errors (MLWE) problem. The proposal is based
on an IND-CPA PKE that allows decryption failures to occur
with a negligible probability. Then, a modification of the
Fujisaki-Okamoto transformation is used to obtain an IND-
CCA KEM. The submission includes 3 different parameter
sets pointing at NIST security levels 1, 3, and 5, respectively,
depicted in Table 4.

3) NTRU

The NTRU submission for Round 3 is a merger of
two different previous submissions, namely NTRUEncrypt
and NTRU-HRSS-KEM ([26]), both based in the NTRU
cryptosystem ([27]). Although the original NTRU was a
partially correct probabilistic PKE, this submission starts

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 4. Kyber parameter sets.

Parameter set Security level

Kyber512 1
Kyber768 3
Kyber1024 5

TABLE 5. NTRU parameter sets.

Security level
(local models)

Security level

Parameter set (non-local models)

NTRU-HPS-2048-509 -
NTRU-HRSS-701 1
NTRU-HPS-2048-677 1
NTRU-HPS-4096-821 3

W W W =

TABLE 6. Saber parameter sets.

Parameter set Security level

LightSaber-KEM 1
Saber-KEM 3
FireSaber-KEM 5

by defining a correct and deterministic PKE, which is
assumed to be OW-CPA. Then an IND-CCA KEM is
obtained from it by making small changes to the Saito-
Xagawa-Yamakawa variant of NTRU-HRSS-KEM ([28]).
The Round 3 submission proposes parameter sets which are
shown in Table 5. The authors of the NTRU submission
make two different estimations for the security level of their
parameter sets, depending on whether the computation model
is non-local or local. Details about these models and the
motivation for differentiating the security levels depending
on them can be found in the submission ([22]).

4) SABER

Saber (first proposed in [29]) is similar to Kyber, in the
sense that the authors present in their Round 3 submission
an IND-CPA PKE, and then they use a Fujisaki-Okamoto-
like transformation to obtain an IND-CCA KEM. In addition,
the PKE also comes with a negligible decryption failure
probability, and the security is reduced to a lattice problem,
in this case, the Module Learning With Rounding (MLWR)
problem. The authors propose three different parameter sets
for the KEM which are shown in Table 6 together with their
claimed security levels.

C. FSXY: A GENERIC CONSTRUCTION FROM KEM TO
POST-QUANTUM AKE

Generic transformations that convert secure KEMs into
AKEs have been proposed in the standard model in [30]
and [31]. These transformations give AKE protocols from
IND-CCA secure KEM schemes using pseudorandom func-
tions (PRFs). The resulting AKEs are proven secure in
widely accepted security models, CK [32] and CK+ [31],

VOLUME 10, 2022

respectively. Unfortunately, KEM schemes secure in the
standard model are computationally inefficient for both
classical and post-quantum communications.

In [17], Fujioka et al., proposed an efficient generic
construction of AKE protocols from OW-CCA secure KEM
schemes (which we denote by FSXY) by relaxing the
security model to the Random Oracle Model (ROM). The
resulting AKE protocols were proved to be CK+ secure
in the ROM. Moreover, it was shown that the (ring-)LWE,
McEliece one-way, NTRU one-way (among others) post-
quantum assumptions can be used to construct secure AKE
protocols. In addition, it was shown that by adapting the
ROM in the security proof of the FSXY construction, the
AKE protocols obtained from each post-quantum assumption
become efficient on the communication cost.

The FSXY construction is as follows. Let KEM; =
(KeyGeny, EnCapj, DeCap;) be a OW-CCA secure KEM
and KEM, = (KeyGen,, EnCap,, DeCap;) be a OW-CPA
secure KEM. Let ¢ be the security parameter H; : {0, 1}* —
RSE and H, : {0, 1}* — {0, 1}* be hash functions modeled
as random oracles, where RSE is a randomness space. The
random values r and r| are chosen from {0, l}f(l), where [is
apolynomial function of the security parameter. The two-pass
key exchange protocol involving users Uy (the initiator) and
Up (the responder) is shown in Fig. 1.

The session state of a session owned by Uy contains an
ephemeral secret key r and a KEM key K4. Similarly, the
session state of a session owned by Up contains ephemeral
secret keys (r1, r2) and KEM keys (Kp, 1, Kp,2).

It was shown in [17] that if KEM; is OW-CCA secure, and
if KEM; is OW-CPA secure, then the FSXY transformation is
CK™ secure under the Random Oracle Model.

D. BUILDING THE COMMITMENT SCHEME FROM

THE KEM

The compiler described in Section II-A requires as a building
block, a non-interactive non-malleable commitment scheme
that is perfectly binding and achieves non-malleability
for multiple commitments. Such a commitment scheme is
realized by applying the transformation proposed in [33]
to a KEM scheme (in particular, any Post-Quantum KEM
described in Section II-B) to obtain an IND-CCA PKE from
the KEM. As pointed out in [14], the commitment scheme
with the required security properties follows readily from
the PKE.

Let KEM = (KeyGen, EnCap, DeCap) be a key
encapsulation mechanism and let SKE = (Enc, Dec) be a
one-time symmetric key encryption scheme (as defined in
Section 7.2 of [33]). The key lengths of both primitives must
be the same for any value of the security parameter £. Then,
a PKE scheme PKE is obtained as follows.

The key generation algorithm for PKE is the same as that
of KEM, and, hence, the secret and public keys for PKE are
the same as those of KEM. That is, PKE runs KeyGen and
obtains (sk, pk), where sk and pk are the secret and public
key, respectively.

120955

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

Ua

Usp

(dka,eka) < KeyGen,()
r--- - T oo T T T T T T "
i Static secretkey : dka 1

|

|
1 Static publickey : eky 1
d

Init

r+ {0,170
(Ca, Ka) < EnCap (ekp; Hi(r,dk4))
(dk 4, ek 4) + KeyGens ()

M = (Ua,Ug, Ca, cha)

(dkB, ekB) — KeyGenl()

r---T-TT-T T T T T T T T T A

1 Static secret key : dkp

| |

i Static public key : ekp 1
d

M = (Ua,Us,CB,1,CB,2)

AlgB

1« {0,131y « RSE

(CB,1,KB,1) + EnCap;(eka; Hi(r1,dkR))
(CB,2,KB,2) EncapZ((zA;TQ)

K4 < DeCapq(dkp,Ca)

sid = (Ua,Ug,eka,ekp,Ca,eha,Cp.1,Cp.2)
SK = H2(K4,Kp,1,KB2,sid)

AlgA

Kp,1 + DeCap;(dka,Cp,1)

Kpa + DeCapfz(CﬁAyCBg)

sid= (Ua,Up,eka,ekp,Ca,eka,Cp1,Chp.2)
SK = H2(K4,Kp,1,Kp,2,sid)

FIGURE 1. rsxy transformation.

The encryption algorithm for PKE runs as follows. Upon
receiving a message m, PKE runs the encapsulation algorithm
of KEM and obtains (k, &) < EnCap(pk; r), where k is a
symmetric key, r are random coins, and § is a ciphertext
encrypting k. The message m is encrypted using the key k
and the encryption algorithm of SKE, v <— Enc(k, m). The
output of the encryption algorithm is ¢ = (&, v).

The decryption algorithm is defined as follows. Given a
ciphertext ¢ = (&, v), PKE runs the decapsulation algorithm
of KEM and obtains k = DeCap(sk, &), and then runs
the decryption algorithm of SKE with the key k to obtain
m = Dec(k, v). The output of the decryption algorithm is
the plaintext m.

As shown in [33], the IND-CCA security of PKE
is inherited form the IND-CCA sucrity of KEM and
SKE. As pointed out in [14], it is known that in the
CRS model with a common reference string p, the
required commitment schemes depending on p can be
constructed from any public-key encryption scheme that
is non-malleable and secure for multiple encryptions (in
particular, from any IND-CCA secure public-key encryption
scheme).

120956

The approach in this section is usually known as the
KEM-DEM paradigm, where DEM stands for data encap-
sulation mechasism. Here the algorithm SKE plays the latter
role, so we will usually refer to it as the DEM.

lll. SECURITY MODEL

In this section we present the security model under which our
protocol is proven to be secure. The model is taken from [14]
which is in turn based on the one from Bellare et. al. [34].
We assume a fully connected communication network, that is,
each pair of users are able to communicate through a point-to-
point channel. We consider an active adversary who is in full
control of the network: it has the power to eavesdrop, delay,
insert or delete messages in communication flow at will.

A. PROTOCOL INSTANCES

Let Uy, Uy, Us, ..., U,—1 be the set of participants. Each of
them may run any polynomial number of protocol instances
in parallel. Given i € {0,1,...,n — 1} and 5; € N we
denote with I"If" the s;-th instance vinculated to user U;. Each
instance I'If.’ has seven variables associated with it:

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

. usedf." is a boolean variable which indicates if this
instance has been used in a protocol run; it is set to true
only if the instance receives a protocol due to a call to
the Execute or to the Send oracle (described later).

. state‘;" stores all the protocol information that the
instance needs during the protocol execution together
with long term keys.

. term?i is a boolean variable which indicates if the
execution has finished.

. Sk‘;" stores the session key if it has been accepted by the
instance; before it is initialized to a distinguished null
value.

. accf." is a boolean variable indicating if the instance has
accepted the session key.

. Sidfi stores a public session identifier for the session key
sk;'.

. pidf" stores the set of identities of participants that are
involved in the instance execution, including U;.

B. ADVERSARIAL CAPABILITIES

An adversary A is a polynomial probabilistic time algorithm.
The adversarial power is modelled by providing A access to
several oracles during a security game (described later). The
oracles are the following:

« Send(Uj, s;, M): Sends message M to the instance IT}'
and outputs the response message of that instance, if any.
Whenever A queries this oracle with an unused instance
l'[‘;" and M consisting of a set participant identities, then
used;’ is set to true, pid? set to {U;} UM and the initial
protocol message of Hf" is output.

. Execute({l"[i,"l‘, ..., TI,"}): Executes a complete pro-

Uy
tocol run within the splecified instances. It outputs a
transcript of all sent messages. A query to this oracle
models a passive eavesdropping by A.

« Reveal(U;, s;): Outputs the value stored in sk

o Test(Uj, s;): The output of this oracle depends on a bit
b chosen uniformly at random at the beginning of the
security game. The adversary may query this oracle only
if the session key is defined (that is, accff' = true and
ski’ # null) and the instance TI; is fresh (freshness
is defined later in this section). Then, the session key
skf" is returned if b = 0 or a value chosen uniformly at
random from the key space is returned if b = 1. In this
model, an arbitrary number of Test queries is allowed,;
but, once a value has been returned for an instance 1'[‘;" ,
subsequent queries for all instances partnered with l'If."
will return the same value (partnering is defined later in
this section).

o Corrupt(U;): Returns all long-term secrets of user U;.

C. SECURITY DEFINITIONS
First we need a definition of partnering, which indicates that
two instances are participating in the same protocol session.

VOLUME 10, 2022

Definition 1: Instances I'If.i and H;j are partnered if
pidy = pid/, sidf = sid/, ski = sk and also
acc]’ = acc;’ = true.

Against a passive adversary which does not interfere with
protocol execution, all involved users should accept and end
with the same session key. This is captured in the definition
of correctness.

Definition 2: A group key establishment protocol is correct
if, in the presence of a passive adversary A (that is, A does not
have access to the Send and Corrupt oracles), the following
condition holds: for all i, j with sid]’ = Sid;/ and acc;’ =
acc; = true, we have sk’ = sk’ # null and pid;’ = pid;j.

The notion of integrity, introduced in [35], ensures that,
even with adversarial intervention, honest users (meaning that
Corrupt has not been queried on them) have some guarantees
of holding the same key.

Definition 3: A correct group key establishment protocol
is said to have integrity if, with overwhelming probability, all
instances of honest participants that have accepted with the
same session identifier Sidjj hold the same session key Sk;j
and parmer identifier pid;j .

Before providing the definition of a secure protocol we
need to limit when a query to the Test oracle, to avoid trivial
attacks from the adversary.

Definition 4: A Test query should only be allowed to
instances holding a key that is not for trivial reasons known to
the adversary. To achieve this, an instance I"Ifi is called fresh
if none of the following condition holds:

o For some U; € pid} a query Send(Uy, sk, M) after a

query Gorrupt(Uj).

. Tl?f adversary have queried Reveal(U;, sj) with IT}" and

[T’ being partnered.

The fast notion we need before defining a secure group key
establishment protocol is adversarial advantage.

Definition 5: Given a security parameter £ and an adver-
sary A, the advantage AdV 4(£) in attacking the protocol is a
function in £, defined as

Adv 4(¢) := |2 - Succ — 1]

where SUCC is the probability that the adversary queries Test
only on fresh instances and outputs correctly the bit b used by
the Test oracle (without later breaking the freshness of those
instances queried with Test).

Definition 6: We say that an authenticated group key
establishment protocol is secure if for every adversary A we
have that

Adv 4(£) < negl(¥)

where negl is a negligible function.

IV. OUR GAKE CONSTRUCTION

In this section we describe our GAKE protocol for n > 2
users or parties Uy, Uy, Ua, ..., U,—1. They are organized in
acycle: each user Uj has as his left neighbour U;_1 and as his
right neighbour U, 1. The indices are taken modulo n, so U,

120957

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

Hash function

Abdalla’s et al. compiler

> AKE

Commitment

IND-CCA FSXY
KEM transformation
» KEM-DEM
| paradigm
SKE

scheme

FIGURE 2. Relationships between primitives and transformations applied to GAKE protocol.

means Uy and U_1 means U,_. We assume that each user is
aware of his index and the rest of the indices identifying the
other users of the protocol.

For the construction of the GAKE we use the following
primitives:

e KEM = (KeyGen, EnCap, DeCap) is an IND-CCA
KEM.

e SKE = (Enc, Dec) is an one-time symmetric key
encryption scheme used as a DEM.

o H is a hash function (theoretically modeled as a random
oracle).

To obtain the GAKE, we feed the tools described in Sec-
tions II-A, II-C and II-D with these primitives (Fig. 2). First
we instantiate a 2-party AKE with the FSXY transformation
from Section II-C, using KEM as both KEM; and KEM,.
Note that the security notion IND-CCA is well known to
imply both the OW-CPA and OW-CCA requirements for
KEM; and KEM;. The resulting 2AKE satisfies the strong
security notion CK+ ([31]), which is enough for the compiler
described in Section II-A. We would like to stress that,
as pointed out in [35], an integrity property is also needed
for 2AKE in order to attain the claimed security notion. It is
a straightforward comprobation that the 2AKE obtained from
FSXY has integrity because of the way session identifiers are
computed. The other ingredient needed for the compiler is
a commitment scheme, which is also obtained from KEM as
described in Section II-D. Note that all the KEMs enumerated
in Section II-B fulfill the IND-CCA security and can be used
in our construction. Finally, the hash function H is used to
derive session identifiers and keys, both in the 2AKE and
the final step of the protocol. It is worth pointing out that
the resulting GAKE achieves security in the model described
in Section II-A, which covers strong adversaries that are in
full control of the communication network and may delay,
eavesdrop, insert, and delete messages at will.

Next, we describe the resulting GAKE protocol which is
composed of 4 rounds of communication:

120958

Init: Each U; is assumed to hold a pair (dk;, ek;) generated
with KeyGen. Here ek; is the long-term public encapsulation
key for U; and is assumed to be certified and known by the rest
of the users, whereas dk; is the long-term secret decapsulation
key for Uj.

Round 1-2: Foreachi € {0, 1, ..., n— 1} the 2AKE is run
between U; and Uj1. The two rounds are as follows:

Round 1: Each U; follows these steps:
— Generates randomness r, <~ {0, 1}f o,

— Generates encapsulated key
(C., %) < BnCap(ekip1; H(T , dk).

— Generates an ephemeral key pair
- —
(dk;, ek<) <« KeyGen().

— Sends (U;, U,+1, i ek i) to Uit1.
Round 2: Each U; follows these steps:
— Generates randomness ¥; < {0, 1/ ® and o; <«
RSE.
— Generates encapsulated key

<~
(Ci, %) < EnCap(eki—1; H(77 , dki)).
— Generates another encapsulated key
«— <« — -
(T;, A ;) < EnCap(eki—1; pi).
—

— Sends (U;_1, U;, C;, T;) to U;_q.
After receiving Round 2 message from UH_ each U; :

— Decapsulates the keys ® i—1s K it+1, A iy1 from

received messages.

— Sets
Sid= (Ui-1, U;, eki—1, ek;, Z')i—l, ac)i—l, Ci, T;).

— Computes key (shared with U;_1)

<« —
Ki=H(K -1, % A sid)
— Sets
ﬁ
sid

- — <= <—
= (Ulﬂ Ul+17 ekla Ekl+17 Cla ekla Cl+17 T l+1)~

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

— Computes key (shared with Uj1)
K= H(KG, Wit <)»_i+1, s1d).
Round 3: Each U; follows these steps:
o Computes X; = K;® K;
o Generates randomness 7;
random IV; for DEM.
o Generates encapsulated key (C;, «;) <= EnCap(ek;; r}).
e ci = Enc(k, i||X;, IV)).
o Sets commitment to com; =
randomness r; = (IV;, ;).

« Broadcasts M, 1 — (U;, comy).
Round 4: Each U follows these steps:
« Broadcasts M = (U;, Xi, ri).

o Checks thathéBXl @®- - -®X,,—1 = 0and the correctness
of the commitments. If any one of these conditions fails,
then U; ends the protocol execution.

o Computes the n — 1 values K; for j = 0,1,2,...,
n—1withj #£ i,

< RSE for KEM and a

(¢;, C;) and stores

<«
Kij=K®Xi1®---®Xi.

o Defines session key sk and session identifier sid; as

(skil||lsidi) = H(Kyp, ..., Ky—1,Ug, ..., Uy—1).
Next, we provide some comments pointing out differences
between the compiler described in Section II-A and our
implementation and also explaining some design choices and

protocol steps in more detail:
o The input of KeyGen() in the asymptotic description of

the KEM is the security parameter. In our implementation
KeyGen() outputs keys of fixed length for each KEM
and parameter set, so it has no input. The sets {0, l}f(l)
and RSE are the randomness spaces described in
Section II-C.

o To compute the commitment com; to X;, first an
encapsulated key «; is generated with EnCap. Then
the message i||X; (where || denotes concatenation) is
encrypted with Enc using key «;. The randomness r;
used by EnCap needs to be stored by U; to open the
commitment in the next round. Therefore we needed to
modify EnCap for each KEM in our implementation to
make the randomness an explicit output of the algorithm
instead of being generated by the algorithm itself.

« The verification of the commitments in Round 4 is done
by recovering the key «; from r; with EnCap, then
generating a new commitment com; with X; and r; and
checking that com; and com, are equal.

o In the original compiler, the final key and session
identifier derivation is done with a collision-resistant
pseudorandom function family. The reason for using this
tool is that, if the 2AKE has a security proof in the
standard model, the compiled GAKE is also secure in
the standard model. As the FSXY transformation already
uses a hash function, our GAKE is only secure in the
random oracle model, so we have chosen to simplify the
compiler and use the same hash function for key and
session identifier derivation.

VOLUME 10, 2022

o The hash function we have chosen in our imple-
mentation has output length which is double of
the GAKE session key length. So the hash value
H(K(),K],..., n-t1,Uo, Uy, ..., Uy,_1) 1is com-
puted and sk; is set to be the first half of this value
and sid; is set to be the second one.

A. SECURITY OF OUR PROPOSED GAKE PROTOCOL
Next we prove a security result for our protocol under the
security model described in Section III.

Theorem 1: In the random oracle model, the protocol
presented in Section IV is a correct and secure authenticated
group key establishment protocol fulfilling integrity.

Proof: We follow the security proof of Theorem 1 in [14].

Correctness. It is easily verified that in an honest exe-
cution of the protocol, all participating users will terminate
by accepting and computing the same session identifier and
session key.

Integrity. As a consequence of the collision-resistance of
the random oracle H, all oracles that accept with the same
session identifiers also hold, with overwhelming probability,
identical session keys Ko, ..., K,—1 and associated these
keys with the same participants Uy, ..., U,_1.

Key secrecy. The proof of the secrecy is organized in
a sequence of games, starting with a real attack of an
adversary A against the key secrecy of the GAKE protocol
and ending in a game in which the advantage of the adversary
is negligible. The idea is that we can bound the difference
of the adversary’s advantage between any two consecutive
games. We denote the advantage of the adversary in Game
i, as usual, by Adv(A, G;). For the sake of clarity, we classify
the Send queries into three categories depending on the
stage of the protocol to which the query is associated. More
preceisely, Send-s denotes the Send query associated with
round ¢.

The first three games of this proof coincide with the same
as those in Theorem 1 of [14]. Here we summarize the
bounding of the adversary’s advantage and refer the interested
reader to the original paper for the details.

Game 0. In this game, a real attack is performed by
the adversary A, in which all the parameters such as the
public parameters and the long-term secrets of each user
are chosen as in the actual scheme. By definition we have
Adv(A, Gy) = Adv(A).

Game 1.Fori =0, 1, ..., n—1, we modify the simulation
of the Send and Execute oracles so that whenever an

instance H is still considered fresh at the end of Round 2,
the keys K and K that it shares with instances IT; i 11 and
Hljll , respectively, are replaced with random values from the
range of the random oracle H.

It is not difficult to see that the difference between the
advantage of this game and the previous one is bounded by
the probability that the adversary breaches the security of
any of the underlying 2AKE protocols executions. Therefore,

120959

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

we have
|AdV(A7 Gl) - AdV(Aa GO)| E 2 ° AdeAKE(Z’ 2 : Qsend)7

where ¢4 denotes the number of distinct protocol instances
in Send queries.

Game 2. Here, the simulation of the Send oracle is
modified so that a fresh instance I} does not accept in
Round 4 whenever one commitment com;, j # i, it receives
in Round 3 was generated by the simulator but not generated
by the respective instance M7 in the same session.

If the adversary A replays a commitment that should have
let to acceptance in Round 4 in Game 1, then A detects the
difference between this and the previous games. Therefore,

IAQV(A, G2) — AdV(A, G1)| < negl(f).

Game 3. In this game, the simulation of the Send oracle
changes so that a fresh instance Hff' does not accept in
Round 4 whenever one commitment com;j, j # i it receives
in Round 3 was generated by the adversary. The advantage of
the adversary differs from the previous game by a negligible
amount, that is,

|AdV(A, G3) — Adv(A, Gy)| < negl(¥).

Game 4. Here the simulations of the Execute and Send
oracles are modified at the point of computing the session
key. On one hand, in this game, all session keys are chosen
uniformly at random and the adversary has no advantage.
Hence,

Adv(A, Gy) = 0.

On the other hand, the simulator keeps a list of
strings (Ko, ..., Ky,—1, Ug, ..., U,—1) and once an instance
receives the last Send-4 query, the simulator computes
Ko, ..., K,—1 and checks if for the corresponding string
(Ko, ..., Kn—1, U, ..., Uy—1) has already been used. If this
is the case, the simulator assigns the corresponding string to
the instance. If no such strings exist, the simulator assigns a
session key sk‘f" € {0, 1}* uniformly at random. Note that
even if the messages from Round 4 are sent out, the list of
strings still contains sufficient entropy so that the output of
the random oracle H is indistinguishable from a random Skf.i
with overwhelming probability. Consequently,

|AdV(A, G4) — AdV(A, G3)| < negl(£).
Together, all the bounds obtained in the games imply that
Adv(A) <2 - AdVoaxe (L, 2 - Gsena) + negl(f).

V. IMPLEMENTING THE GAKEs

In the following, we describe the implementation of the
GAKE protocol, which is publicly available at https:
//github.com/jiep/pg-gake-fsxy. To do so,
we describe separately each of the building blocks that make
up the protocol.

120960

A. BUILDING BLOCKS

1) KEM

The KEMs are taken from the open-source library LibOQS
([37]). It provides all the finalist implementations submitted
to the NIST standardization process.” It has been developed
by the Open Quantum Safe project, which aims at prototyping
and experimenting with post-quantum cryptography, but as of
today, it is not production-ready. It is written in C99 and its
advantages include:

« Dynamic management of the KEMs, making it possible
to exchange one for the other without the need to modify
the code of the protocol.

« Building the library with only the KEM implementations
that are needed in the application.

« Easy cross-compilation.

o Provides common functions (e.g. hash and random bits
functions, among others).

LibOQS provides 10 parameter sets for Classic McEliece,

3 for Kybelr,3 4 for NTRU, and 3 for Saber. Table 7 shows the
key sizes (public and secret), the size of the shared secret and
ciphertext, as well as the claimed security level and security
model of all parameter sets in LibOQS. It can be noted that
the public key size of Classic McEliece is several orders of
magnitude larger than the other KEMs. On the other hand,
the ciphertext size is smaller than the other finalists in the
standardization process.

Two different implementations come from each parameter
set: the reference implementation (called ref, clean, or vec
by the KEMs) and the optimized implementation (named
avx2 or avx). All information on these implementations can
be found in Table 8. It can be noted that the reference
implementations do not present any architecture or operating
system limitation, whereas the optimized implementation
runs only on the x86_64 architecture for macOS and
Linux operating systems. It is noteworthy that the Classic
McEliece implementations have large stack usage and may
cause failures when run on threads or in constrained
environments ([36]).

The KEM is the basic building block on which the
subsequent ones depend.

2) 2-PARTY AKE
The 2AKE has been implemented by following the FSXY
transformation of Fig. 1. It has been split into three
algorithms:
o Init:the algorithm thatruns llé at the beginning of the
protocol and outputs message M .
. é)lgB: the algorithm that runs L Up by taking the message
M and outputs the message M and the session key SK.

21t also provides all the implementations of the finalist digital signatures,
but for the implementation of this protocol, they are not required.

31t provides 6 parameter sets, but the so-called 90s variants will not
be considered because they are intended for legacy hardware and do not
support SHA-3, and our implementations depends on it.

VOLUME 10, 2022

https://github.com/jiep/pq-gake-fsxy
https://github.com/jiep/pq-gake-fsxy

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 7. Properties of each parameter set implemented in LibOQS. Source: [36].

KEM Parameter set Security Claimed Publickey Secret key Ciphertext Shared secret Coins
model NIST level size (bytes) size (bytes) size (bytes) size (bytes) size (bytes)
Classic-McEliece-348864 IND-CCA 1 261120 6452 128 32 436
Classic-McEliece-348864f IND-CCA 1 261120 6452 128 32 436
Classic-McEliece-460896 IND-CCA 3 524160 13568 188 32 576
Classic-McEliece-460896f IND-CCA 3 524160 13568 188 32 576
Classic Classic-McEliece-6688128 IND-CCA 5 1044992 13892 240 32 836
McEliece Classic-McEliece-6688128f IND-CCA 5 1044992 13892 240 32 836
Classic-McEliece-6960119 IND-CCA 5 1047319 13908 226 32 870
Classic-McEliece-6960119f IND-CCA 5 1047319 13908 226 32 870
Classic-McEliece-8192128 IND-CCA 5 1357824 14080 240 32 1024
Classic-McEliece-8192128f IND-CCA 5 1357824 14080 240 32 1024
Kyber512 IND-CCA 1 800 1632 768 32 32
Kyber Kyber768 IND-CCA 3 1184 2400 1088 32 32
Kyber1024 IND-CCA 5 1568 3168 1568 32 32
NTRU-HPS-2048-509 IND-CCA 1 699 935 699 32 2413
NTRU NTRU-HPS-2048-677 IND-CCA 3 930 1234 930 32 3211
NTRU-HPS-4096-821 IND-CCA 5 1230 1590 1230 32 3895
NTRU-HRSS-701 IND-CCA 3 1138 1450 1138 32 1400
LightSaber-KEM IND-CCA 1 672 1568 736 32 32
Saber Saber-KEM IND-CCA 3 992 2304 1088 32 32
FireSaber-KEM IND-CCA 5 1312 3040 1472 32 32

e AlgA: the algorithm that runs Uy at t(IE: end of the
protocol by taking as input the message M and outputs
the session key SK.

Note that Init corresponds to Round 1 of our GAKE
description in Section IV whereas A1gB and A1gA constitute
Round 2.

In the implementation, KEM; = KEM; and the hash
functions H| and H, are SHA3-256 provided by LibOQS.

3) COMMITMENT SCHEME
The commitment scheme has been implemented as an
IND-CCA PKE with the KEM/DEM approach (see details in
Section II-D), with the KEM being any of those implemented
in LibOQS and the DEM being set to AES256-GCM
imported from OpenSSL 1.1.1f ([38]). The commitment is
given by the ciphertext of the KEM and the tag of the DEM.
The randomness r; is given by the coins of the KEM and
the IV of the DEM. Note that in Round 4 of the GAKE
protocol, r; is broadcast, so it was required to modify all
LibOQS implementations (see Table 8) to make the KEM
deterministic to preserve the randomness.
Three algorithms are implemented:
e Init allocates space for KEM and DEM ciphertexts.
e Commit creates a commitment as described in
Section II-D.
e Check creates a commitment and checks if it is equal
to a commitment created previously.

B. GAKE PROTOCOL
The GAKE protocol has been implemented using the afore-

mentioned building blocks. All hash functions come from the
SHA-3 hash functions implemented in LibOQS. In addition,

VOLUME 10, 2022

the implementation assumes a zero-delay communications
network.

The protocol allows for a polynomial number of instances
running in parallel. Hence, certain variables are required to
keep the state of the instance. These are inherited from the
Abdalla et al.’s compiler ([14]):

e public_key contains authentication public key.

e secret_key contains authentication secret key.

« pid contains the user identifiers U; that are involved in

the protocol instance.

« sk is the session key. Its size is 32 bytes. By default, its

value is set to 02,
o sid is the public identifier for sk. Its size is 32 bytes.
e term is a boolean variable that indicates whether
an instance has terminated. In the implementation,
0 indicates false and 1, true.

e acc is a boolean variable that indicates whether an

instance has been accepted.

o Other Variable§_that_c)ontain all the needed values for the

protocol (e.g. K ;, K, X;, ri, K, etc.).

1) INIT

During the Init phase, all parties generate their long-term
authentication keys, and all the public keys are assumed to
be known by the rest of the users.

2) ROUND 1-2
During Round_1;2, two types of messages are exchanged:
o Message M contains a public key, a ciphertext, and Uy
and Up. Th;c_size of Uy and Up is set to 20 bytes.
e Message M contains two ciphertexts, as well
as Uy and Ug.
Their size depends on the KEM in use (see Table 7).

120961

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 8. Characteristics of each parameter set in LibOQS. Source: [36].

During Round 3, the messages
broadcast to all other users. The message M, il contains the user
identifier U;, the KEM ciphertext, and the DEM ciphertext

120962

1

ML i = 0,...,n—1, are

KEM Parameter Implementation Supported Supported CPU No branching-on-secrets Large stack
set identifier architectures OS extensions claimed? usage?
T}
Classic-McEliece-348864 vee All mod None v v
avx x86_64 O & AVX2,POPCNT X v
1} o
Classic-McElicce-348864f vee All =0 None v v
avx x86_64 A & AVX2,POPCNT,BMII X v
T}
Classic-McEliece-460896 vee All =0 None v v
avx x86_64 T AVX2,POPCNT X v
Classic - '
McEliece Classic-McElicce-460896f vee All mod None v v
avx x86_64 Q@& AVX2,POPCNT,BMII X v
T}
Classic-McEliece-6688128 vee All =0 None v v
avx x86_64 Y AVX2,POPCNT x v
]
Classic-McElicce-6688128f vee All =0 e None v v
avx x86_64 Q@ AVX2,POPCNT,BMI1 X v
T} o
Classic-McEliece-6960119 vee All moe None v v
avx x86_64 O @ AVX2,POPCNT x v
1]
Classic-McElicce-6960119f vee All mo e None v v
avx x86_64 A& AVX2,POPCNT,BMI1 X v
T} o
Classic-McEliece-8192128 vee All =0 None v v
avx x86_64 Y AVX2,POPCNT X v
T}
Classic-McEliece-8192128f vee All =0 None v v
avx x86_64 PO AVX2,POPCNT X v
Kybers12 ref All w#idé None v X
avx2 x86_64 O & AVX2,POPCNT,BMII v x
Kyber
Kyber768 ref All H IO None v X
avx2 x86_64 0@ AVX2,POPCNT,BMI1 v X
Kyber1024 ref All H IO None v X
avx2 x86_64 O & AVX2,POPCNT,BMI1 v x
NTRU-HPS-2048-509 clean All H IO None v X
avx2 x86_64 A & AVX2,BMI2 v X
NTRU NTRU-HPS-2048-677 clean All L VO None v x
avx2 x86_64 N AVX2,BMI2 v x
NTRU-HPS-4096-821 clean All H IO None v X
avx2 x86_64 A& AVX2,BMI2 v X
NTRU-HRSS-701 clean All H IO S None v X
avx2 x86_64 N AVX2,BMI2 v x
LightSaber-KEM clean All H IO S None v b4
avx2 x86_64 A @& AVX2 X X
Saber
Saber-KEM clean All H IO None v X
avx2 x86_64 Y AVX2 X X
FireSaber-KEM clean All H IO S None v X
avx2 x86_64 L & AVX2 X x
3) ROUND 3 and tag. The randomness r; keeps the coins of the KEM and

the IV of the DEM. The size of U; is set to 20 bytes and to
encrypt i || X;, 36 bytes are needed (|X;| = 32 and [i| = 4).

The tag size is 16 bytes.

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

> ./test_gake 100 Kyber1024

ALl keys are equal!
Session key: ef169be7a5f6b717253827c4825c3397fc@94aebdf963bfbaladcc790adb931a
Session id: 83011836db7eaeb851474b24e70b78166d7bd8b9c960c2fa9190ec53865ab4e8

Time stats
Init time : 0.016s (4.35%)
Round 1-2 time : 0.047s (
Round 3 time : 0.016s (
Round 4 time 1 0.281s
Total time : 0.359s

A1l keys are equal!
Session key: b5ad675e622d95d71b8fa5f5e6955a3f58eb89bel7de357117332171b2de59d5
Session id: 554737f22ee28a4e4b2907ceff803188cc63b697679c31e03a38276758980b2F

[Time stats
Init time : 38.328s (33.56%)
Round 1-2 time : 74.750s (65
Round 3 time
Round 4 time
Total time

)
: 114.219s (100.00%)

(b) Classic-McEliece-8192128f

FIGURE 3. Run of GAKE protocol with 100 parties for two KEMs.

4) ROUND 4
In Round 4, n messages Mi2 are broadcast. The message
contains U; and the randomness r; (coins of the KEM and
IV of the DEM). The size of X; is 32 bytes and the IV is
12 bytes. The size of coins depends on the KEM being used
(see Table 7).

The session key sk and sid is generated from master key
K with SHA3-512, where first 32 bytes are set to be the sk
and last 32 bytes are set to be the sid.

Fig. 3 shows a run of GAKE protocol for Kyber1024 and
Classic-McEliece-8192128f with 100 parties. See Appendix
A for a complete run of the protocol.

C. BENCHMARKING ENVIRONMENT
A workflow has been developed on GitHub Actions that
allows reproducing the experiments in an isolated environ-
ment. The workflow is described in Fig. 4 and includes all
the required steps from building the GAKE protocol binaries
to executing them and obtaining the experimental results. The
workflow runs on an Ubuntu 20.04 runner hosted on GitHub
Actions and consists of 4 steps:

1) Build: It builds all the binaries and the libraries they

depend on. Fig. 5 shows the complete process.

A A custom library is built from the LibOQS
v0.7.0 library ([37]). In it, all the KEM
implementations have been modified to be
deterministic to keep the randomness of the com-
mitment scheme. Its building has been automated
with CMake by enabling the options —DOQS__
DIST_BUILD = ON and -DOQS_MINIMAL_
BUILD = “${ENABLED_ALGS}”, where
ENABLED_ALGS is an array that enables desired
KEMs (see details in [36]). It enables only the
algorithms specified in the LibOQS library in
Table 7. In addition, OpenSSL 1.1.1f is statically

VOLUME 10, 2022

TABLE 9. Hardware specifications for the self-hosted runner.

Feature Value

Operating System Ubuntu 20.04.1 LTS
CPU i7-6700HQ @2.60 GHz
RAM 16 GB

CPU extensions enabled AVX2, BMI2, POPCNT

linked, which is a dependency required by
LibOQS. With the options enabled, a static library
is built and gcc has been used as the C compiler.

B The GAKE protocol code is built with CMake

and gcc as in the previous step. The latter uses
the -03 and -fwrapv options. The custom
LibOQS library and OpenSSL 1.1.1f are statically
linked. The latter is used to implement AES256-
GCM in the commitment scheme. A series of
tests with ctest is launched to guarantee that the
generated binaries work properly. These include
the correct functioning of all the building blocks
that integrate the GAKE protocol: AES256-
GCM, the AKE, the commitment scheme, and
the implementation of the GAKE protocol
itself for each of the KEM implementations
in LibOQS.

2) Run tests: This step measures the performance of each
of the building blocks of the GAKE protocol. Perfor-
mance is measured in terms of the number of CPU
cycles and execution time. For this purpose, we used
the LibOQS header ds_benchmark.h available at
https://github.com/open-quantum-safe/liboqs/blob/0.7.
0/tests/ds_benchmark.h. It implements two macros to
measure performance:

e TIME_OPERATION_ITERATIONS: It executes
a piece of code for a given number of iterations.

¢ TIME OPERATION_SECONDS: It executes a
piece of code for a given number of seconds.

All experiments are run with the former macro.

This step is run on a self-hosted runner with Ubuntu
20.04 on WSL2 ([39]) under Windows 10 on with
specifications given in Table 9. This was done with this
approach because runners hosted on GitHub Actions
can only run for a maximum of 6 hours ([40]), which is
not enough time to run all the necessary experiments.
The tests defined in this step are:

o test_speed_kem: This test measures the per-
formance (in CPU cycles and execution time) of
each KEM implemented in LibOQS (see Table 7).
Key generation, encapsulation, and decapsulation
are measured separately. The result of this test is
an average of 10000 iterations.

e test_speed_ake: It measures the performance
of the FSXY transformation for each of the
KEMs implemented in LibOQS. Each algorithm
of the transformation is measured independently.

120963

lEEEACC@SS J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

On push

Code

I Artifacts |

e e e e e e e e e
O binaries I binaries

T*Acsv, «.png [binaries, x.csv, *.png

A Run tests —v$

Generate graphics E *

FIGURE 4. Workflow running experiments on GitHub actions.

Self-hosted runner
GitHub Actions

LibOQS
-DOQS_DIST_BUILD=ON
-DOQS_MINIMAL_BUILD="${ENABLED_ALGS}"

compilation

:: O GAKE protocol

compilation
Source code |——*

gake_fsxy

static linking

static linking

static linking

FIGURE 5. Build step.

The result is an average of the execution of 10000
iterations.

e test_speed_commitment: It measures the
performance of the commitment scheme for each
of the KEMs implemented in LibOQS. The DEM
is always fixed to AES256-GCM. 10 000 iterations
are run to measure the performance of key
generation, generate a commitment and check it.

e test_speed_gake: It measures the perfor-
mance of the GAKE protocol for each of the KEMs
implemented in LibOQS based on the number
of parties, n, running the protocol. It is run for
n = 2,22,...,2"1 = 2048. In addition, the
performance of each round of the protocol is
measured separately.

All of the tests above generate tables that are converted
to CSV format to be processed in the subsequent steps.

3) Generate graphics: This step generates the graphics of
Section VI. The graphics are plotted with Python and
the seaborn visualization library ([41]). All graphics
are saved in png format.

4) Release: It creates a new release on GitHub and
uploads all the data that has been generated during the
workflow, which was stored in Artifacts on GitHub
Actions ([42]): binaries, graphics, and CSV files.

120964

VI. EXPERIMENTAL RESULTS: COMPARISON AMONG
THE FOUR KEMs

In this section, we compare the experimental results achieved
from the aforementioned tests. More precisely, we present
the results of the tests described in Section V-C. For each
of the four KEMs and each security level, we compare the
performance of all the cryptographic primitives involved,
including all the underlying operations (algorithms) of
each of them. Namely, KEM, the two-party AKE, the
commitment scheme and, finally, the GAKE protocol. Note
that we only compare the optimized implementation of each
parameter set (see Table 8). Numerical results can be found
in Appendix B.

Fig. 6 shows the performance of each KEM operation
for each security level. It can be observed that, for all
security levels, the KeyGen algorithm is significantly slower
on Classic McEliece than on the other KEMs. This is
caused by the huge size of the keys in Classic McEliece
(see Table 7). The Encaps algorithm does not show
significant differences, whereas the Decap algorithm does
show this difference Classic McEliece vs. other KEMs,
but it is not as meaningful as in the case of the KeyGen
algorithm.

Fig. 7 shows the performance of the AKE achieved from
the FSXY transformation (Fig. 1). It can be seen that, for

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

Key generation Encapsulation Decapsulation

555

CPU Cycles
CPU Cycles
CPU Cycles

BELEAEE]
Saber KEM
Kypersiz

o
NTRUHPS-2048:509
ught

3

Classic McEliece- 3488641
pe

Classic Ml

(a) Level 1

Key generation Encapsulation Decapsulation

CPU Cycles
CPU Cycles
CPU Cycles

KyberTes
Kybertes

SaberEm

NTRU-HPS.2048.677

Key generation

CPU Cycles
CPU Cycles
CPU Cycles

cEllce 6688128

8§33 38

(c) Level 5

Classic

FIGURE 6. CPU cycles for KEM operations (Key Generation,
Encapsulation, and Decapsulation) on levels 1, 3, and 5.

each security level and each AKE algorithm, the performance
difference between Classic McEliece and the rest of the
schemes is significant. This is because the AKE is KEM
dependent, with the KeyGen and Decap algorithms being
slower in Classic McEliece than in the other KEMs.

Concerning the commitment scheme (Fig. 8), Classic
McEliece is faster during the Init algorithm. This is mainly
because Classic McEliece ciphertexts are smaller than the rest
(see Table 7). The Commit and Check algorithms perform
better with NTRU, at any security level.

Fig. 9 shows the performance of the GAKE protocol in
each round. The Init round initializes the structure and
variables needed to store the state of the protocol instance.
It can be observed that Kyber is noticeably more efficient
than the rest of the schemes, at any security level. In Round
1-2 (AKE) and Round 3 (commitment generation), the same
applies: Kyber parameter sets offer the best performance.
Finally, in Round 4 (commitment checking, master key
derivation, and session key generation) the performance at
security level 1 is very similar among the parameter sets.
The most efficient is NTRU-HPS-2048-677 for level 3 and
NTRU-HPS-4096-821 for level 5.

Fig. 10 shows the performance of the GAKE protocol as a
function of the number of parties participating in the protocol.
It can be noted that, at all security levels, Classic McEliece is
significantly less efficient than the rest of the KEMs and this
is found to worsen as the number of parties in the protocol

VOLUME 10, 2022

Init AlgB AlgA

i § i § &
33 I
H § £ 2 £

£

s
o
Kypers:

CPU Cycles CPU Cycles
o9 Clssic McElece 348864
- —
s —
Kyberres
s sz
RS 2048677
048.509
[rim—
. perxen
CPU Cycles CPU Cycles
608 sassic McEl
e
168
RS 2048677
R
NTRUHRSS-T01
— s
CPU Cycles
6086 Clssic et
" —
R HPS 2048677
NTRUHRSS-T01

s

CPU Cycles
“
Vece 3480641
12
509
Ughtsaberkem

NTRUHPS 2
o

] 3 B

(a) }_,evel 1

AlgB AlgA

Cassic Metec

(b) Level 3
Init AlgB AlgA
e
S S
&JIIIIIIIW 51[""'” &1IIIIIIIII|
m; 2 8 3 5 3 £ B % 5 2 z
(c) Level 5

FIGURE 7. CPU cycles for AKE operations (Init, A1gB, and A1g2) on
levels 1, 3, and 5.

Init Commit Check

CPU Cycles
| E
512
CPU Cycles
e 248860
aasast
CPU Cycles

: T @ PO
i 3 L |
(a) Level 1

Init Commit. Check

CPU Cycles
oot
ertes
CPU Cycles
89
aost
ertes
o7
5701
exem
CPU Cycles
m ;
i
s

NTRU-HPS.2048.677

(b) Level 3

Init Commit Check

CPU Cycles
so128
o
3
1
erkem
CPU Cycles
25t
24
erkem
CPU Cycles
5 g

NTRU-HPS.4096.821

(c) Levei 5

FIGURE 8. CPU cycles for commitment operations (Init, Commit and
Check) on levels 1, 3, and 5.

increases. The most efficient at security level 1 is Kyber 512,
at level 3 is NTRU-HRSS-701, and at level 5 is Kyber1024.

120965

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

Init. Round 1-2 Round 3 Round 4

CPU Cycles
pesaver. |

CPU Cycles
" B

Kypers12

(a) Level 1

Init. Round 1-2 Round 3 Round 4

CPU Cycles
6 ;
o
CPU Cycles
o

(b) Level 3

Init. Round 1-2 Round 3 Round 4

CPU Cycles
CPU Cycles

FIGURE 9. CPU cycles for GAKE rounds (Init, Round 1-2, Round 3, and,
Round 4) on levels 1, 3, and 5.

Level 1

e
LightSaber-KEM g
o| = NTRUHes 2048509
4

: L /‘./

] 500

Time (us)

1000 1500 2000
Number of parties

(a) Level 1

100 Level 3

200 = ot ’
- NTRUMPS.2048.677
- NTRUHRSS.701
15 - Soberiem
1000
Number of parties

(b) Level 3

Level 5

Time (us)

1500 2000

1000 50 2000
Number of parties

(c) Level 5

FIGURE 10. Running time for GAKE protocol depending on parties for
KEM on levels 1, 3, and 5.

A. COMPARISON WITH THE STATE OF THE ART:

FSXY VS. FOpxe

In this section, we provide experimental comparisons
between the performance of the the FSXY transformation
described in Section II-C with the FOagg transforma-
tion ([18], [19]) used in [11] on Kyber.

120966

TABLE 10. Theoretical comparison between FSXY and FOx¢
transformations.

FSXY
ROM

FOakE
QROM

IND-CCA public-key
encryption scheme

Property

Security model

Initial

S IND-CCA KEM
cryptographic primitive

Transformation result Secure Secure

u 2-party AKE 2-party AKE
Additional hypothesis No Yes. Disjoint
on the initial primitive? Simulatability [18], [19]
Sent messages 2 2, but shorter

&
H
g

CPU Cycles
CPU Cycles

== Rberres beriozs noesia

(a) Performance on AKE operations

it Round 12 Round 3 Round 4

&
g

CPU Cycles
CPU Cycles
CPU Cycles

[o=Ta—— Woesiz beeres Rpeioat oz meerss ezt

(b) PerformarTcm(‘e on GAKE roun

Kybers12 Kyber768 Kyber1024

btz wsess rbeniozs

7

&

Number of parties Number of parties

(c) Performance on scalability

Number of parties

FIGURE 11. Transformation Fsxy vs FOaxs on Kyber.

In this section, we compare experimentally the perfor-
mance of the FSXY transformation described in Section II-C
with the FOaxg transformation ([18], [19]) used in [11] on
Kyber. The latter is a novel transformation analogous to
FSXY, i.e., it derives a secure two-party AKE from another
cryptographic primitive (in this case, from an IND-CPA
public-key novel encryption scheme). FOaxg is proved to
be secure in the QROM, but it cannot be applied to just
any KEM, only to those that satisfy several properties (see
details in [19] and [11]). It is shown in [11] that it can be
applied to Kyber. Table 10 shows a theoretical comparison
between FSXY and FOpgg transformations. The FOaxg
transformation consists of 2 messages in the same way as
the F <EXY transformation, but the former sends messages M
and M that do not contain Uy and Up, which, consequently,
produces messages of a smaller size. As in Section VI,

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

we compare the performance of all the involved operations
of each security level of Kyber.

Fig. 11 shows the comparison between both transforma-
tions with Kyber. It can be seen that the FOaxg transformation
performs better than FSXY. The results show that, if Kyber is
applied as KEM on this GAKE protocol, FOaxs should be
considered instead of FSXY providing, in addition, a higher
level of security by being secure in the QROM.

VII. CONCLUSION

This paper shows the performance of a post-quantum key
authenticated key exchange (GAKE) protocol constructed by
applying the generic FSXY transformation to the all NIST
finalist post-quantum KEMs. The protocol has been imple-
mented with LibOQS, an open-source library that provides
all the finalist KEMs of the NIST standardization process.

Init
Party 0

Public key: cf36ce9975e£95084b00...3faf8707c3cc6£28625¢
Secret key: 7786f9b92c3debeb39e7...1851e69f54bab7439627
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:

X0: 00000000000000000000...00000000000000000000

X1: 00000000000000000000...00000000000000000000

X2: 00000000000000000000...00000000000000000000
Coins:

r0: 00000000000000000000...00000000000000000000

rl: 00000000000000000000...00000000000000000000

r2: 00000000000000000000...00000000000000000000

Commitments:

We show experimentally that Classic McEliece is not suitable
in this GAKE because it is significantly slower than the
other KEMs. The most appropriate KEM for security level 1
is Kyber 512, for level 3 is Kyber768 and NTRU-HRSS-
701, and, for level 5 is Kyber1024. In addition, the FOaxr
transformation is compared against F SXY on Kyber, showing
that the latter is significantly faster than FSXY and provides
a higher level of security by being QROM secure. This
last result is especially noteworthy considering that Kyber
is the first post-quantum KEM that will be standardized
by NIST.

APPENDIX A

COMPLETE RUN OF THE GAKE PROTOCOL

Here, we show a complete run of GAKE protocol with
Classic-McEliece-8192128f for 3 parties (for brevity).

cO: 000000000000000...000000000000000[000000000000000...000000000000000[00000...00000
cl: 000000000000000...000000000000000[000000000000000...000000000000000[00000...00000
c2: 000000000000000...000000000000000]000000000000000...000000000000000/00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party O
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0O
Party 1
Public key: 0aal29ba6c64a803f87b...ba%4a03b57074e575fe
Secret key: 4b8ae20deld4632ac67b5...21ed2309845cca52ebab
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...000000000000000]000000000000000...000000000000000/00000...00000
cl: 000000000000000...000000000000000[000000000000000...000000000000000[00000...00000
c2: 000000000000000...000000000000000[000000000000000...000000000000000[00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:

pid0: Party O

VOLUME 10, 2022

120967

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 2
Public key: 82ba5d4099df21b80932...254de329a95c3e4d5d87
Secret key: £f6el16d5a410b188b3cbc...37e0946464c8deb70c2b
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...000000000000000|000000000000000...000000000000000]00000...00000
cl: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000
c2: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000

Master Key:

k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party 0
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Round 1-2
Party 0
Public key: ¢f£36ce9975ef95084b00...3faf8707c3cc6£28625¢
Secret key: 7786f9b92c3debeb39%e7...1851e69f54bab7439627
Left key: 981a6417dfb9407971a3...14a49fda2395588e98c6b
Right key: ab8fa684d1035adbc37d...2f6727415e845fad1193
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000
cl: 000000000000000...000000000000000|000000000000000...000000000000000/00000...00000
c2: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party 0
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 1
Public key: 0aal29ba6c64a803f87b...ba%4a03b57074e575fe
Secret key: 4b8ae20deld4632ac67b5...21ed2309845ccab52ebab
Left key: ab8fa684d1035adbc37d...2£6727415e845fad1193
Right key: 2f065bdf6d8ed460e5358...87a007e4476d118ec59f
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000

120968

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

Commitments:

c0: 000000000000000...000000000000000(/000000000000000...000000000000000/00000...00000
cl: 000000000000000...000000000000000/000000000000000...000000000000000/00000...00000
c2: 000000000000000...000000000000000/000000000000000...000000000000000/00000...00000

Master Key:

k0:
kl:
k2:
Pids:
pid0:
pidl:

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

.00000000000000000000
.00000000000000000000
.00000000000000000000

Party 0
Party 1

pid2: Party
Accepted: 0
Terminated: O

Party 2

Public key:
Secret key:
Left key:
Right key:
Session id:
Session key:

2

82ba5d4099df21b80932. .
f6e16d5a410b188b3cbc. .
2f065bdf6d8e460e5358. .
981a6417dfb9407971a3. .
00000000000000000000. .
00000000000000000000. .

.254de329a95c3e4d5d87
.37e0946464c8deb70c2b
.87a007e4476d118ec59f
.14a249fda2395588e98c6
.00000000000000000000
.00000000000000000000

r2:

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

Commitments:
000000000000000...000000000000000/000000000000000...000000000000000|00000...00000
000000000000000...000000000000000/000000000000000...000000000000000|00000...00000
000000000000000...000000000000000/000000000000000...000000000000000/00000...00000

cO:
cl:
c2:
Master
kO:
k1:
k2:
Pids:
pid0:
pidl:
pid2:

Key:

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

.00000000000000000000
.00000000000000000000
.00000000000000000000

.00000000000000000000
.00000000000000000000
.00000000000000000000

.00000000000000000000
.00000000000000000000
.00000000000000000000

Party 0
Party 1
Party 2

Accepted: 0
Terminated: 0

Round 3
Party 0
Public key:
Secret key:
Left key:
Right key:
Session id:
Session key:

c£36ce9975e£95084b00. .
7786£9092c3debeb3%e7. .
981a6417dfb9407971a3. .
ab8fa684d1035adbc37d. .
00000000000000000000. .
00000000000000000000. .

.3faf8707c3cc6f28625¢
.1851e69f54bab7439627
.14a49fda2395588e98chb
.2£6727415e845fad1193
.00000000000000000000
.00000000000000000000

3395c2930ebalaa2b2de. .
8489fd5bbc8d1cd59025. .
b71c3fc8b237067722fb. .

00000000000000000000. .
00000000000000000000. .
00020020000100000000. .

Commitments:
6282£3f4515£528...6aaff6ed3d2b608|a90d68cf624981d...85a8294ef6fe78b|ecaec...e5d33

cO:
cl:
c2:

S5bdadd3abf52a00...c327383c304del0c|7301dae2691ffcl
6514462b037331b...1731£faf3b7d0924|c0065a125e50022

Master Key:

kO:
k1:
k2:
Pids:

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

pid0: Party O

pidl: Party 1

pid2: Party 2
Accepted: 0

.3bc3b8907d1107238955
.a8c720a519e94e23d40c
.9304983e64£849005d59

.341574bc3621b96d930e
.fac8728bb91laclb996e4
.2760c1b81£04c98683a0

.00000000000000000000
.00000000000000000000
.00000000000000000000

...43cb71961ad639b|4d85f...9%9a%b
...12509041ed5cdf8|ad4769...87abb

Terminated: O
Party 1
Public key:
Secret key:
Left key:
Right key:
Session id:
Session key:
X:

VOLUME 10, 2022

0aal29ba6c64a803£87b. .
4b8ae20deld632ac67b5. .
ab8fa684d1035adbc37d. .
2f065bdf6d8e460e5358. .
00000000000000000000. .
00000000000000000000. .

.ba9%a4a03b57074e575fe
.21ed2309845cca52ebab
.2£6727415e845fad1193
.87a007e4476d118ec59f
.00000000000000000000
.00000000000000000000

120969

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

X0: 3395c2930ebalaa2b2de...3bc3b89b7d1107238955

X1: 8489fd5bbc8dlcd59025...a8c720a519e94e23d40c

X2: b71c3fc8b237067722fb...9304983e64£849005d59
Coins:

r0: 00000000000000000000...341574bc3621b96d930e

rl: 00000000000000000000...fac8728bb91laclb996e4

r2: 00020020000100000000...2760c1b81£04c98683a0

Commitments:
cO: 6282f3f4515f528...6aaff6ed3d2b608a90d68cf624981d...85a829%94ef6fe78b|ecaec...e5d33
cl: 5bdadd3abf52a00...c327383c304de0c|7301dae2691ffcl...43cb71961ad639b|4d85f...%a%b
c2: 6514462b037331b...1731faf3b7d0924|c0065a125e50022...12509041ed5cdf8|ad769...87abb
Master Key:
kO: 00000000000000000000...00000000000000000000
k1l: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000

Init
Party 0
Public key: <c¢£36ce9975e£95084b00...3faf8707c3cc6£28625¢
Secret key: 7786f9092c3deb6eb39%e7...1851e69f54bab7439627
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...000000000000000/000000000000000...000000000000000(00000...00000
cl: 000000000000000...000000000000000(/000000000000000...000000000000000/00000...00000
c2: 000000000000000...000000000000000/000000000000000...000000000000000]00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party O
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 1
Public key: 0aal29ba6c64a803f87b...ba%4a03b57074e575fe
Secret key: 4b8ae20deld4632ac67b5...21ed2309845ccab52ebab
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
cO: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000
cl: 000000000000000...000000000000000/000000000000000...000000000000000/00000...00000
c2: 000000000000000...000000000000000|000000000000000...000000000000000|00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party O
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 2
Public key: 82ba5d4099df21b80932...254de329a95c3e4d5d87
Secret key: £f6el16d5a410b188b3cbc...37e¢0946464c8deb70c2b
Left key: 00000000000000000000...00000000000000000000
Right key: 00000000000000000000...00000000000000000000
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
120970 VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

X0: 00000000000000000000...00000000000000000000

X1: 00000000000000000000...00000000000000000000

X2: 00000000000000000000...00000000000000000000
Coins:

r0: 00000000000000000000...00000000000000000000

rl: 00000000000000000000...00000000000000000000

r2: 00000000000000000000...00000000000000000000
Commitments:

c0: 000000000000000...000000000000000(000000000000000...000000000000000(00000...00000

cl: 000000000000000...000000000000000/000000000000000...000000000000000(00000...00000

c2: 000000000000000...000000000000000[000000000000000...000000000000000(00000...00000
Master Key:

k0: 00000000000000000000...00000000000000000000

k1: 00000000000000000000...00000000000000000000

k2: 00000000000000000000...00000000000000000000
Pids:

pid0: Party O

pidl: Party 1

pid2: Party 2
Accepted: 0
Terminated: 0

Round 1-2
Party O

Public key: <¢f36ce9975ef95084b00...3faf8707c3cc6f28625¢
Secret key: 7786£f9092c3de6eb39e7...1851e69f54bab7439627
Left key: 981a6417dfb9407971a3...14a49£da2395588e98c6
Right key: ab8fa684d1035adbc37d...2£6727415e845fad1193
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:

X0: 00000000000000000000...00000000000000000000

X1: 00000000000000000000...00000000000000000000

X2: 00000000000000000000...00000000000000000000
Coins:

r0: 00000000000000000000...00000000000000000000

rl: 00000000000000000000...00000000000000000000

r2: 00000000000000000000...00000000000000000000
Commitments:

c0: 000000000000000...000000000000000/000000000000000...000000000000000/00000...00000
cl: 000000000000000...000000000000000/000000000000000...000000000000000/00000...00000
c2: 000000000000000...000000000000000]000000000000000...000000000000000(00000...00000

Master Key:

k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000

Pids:

pid0: Party O
pidl: Party 1
pid2: Party 2

Accepted: 0
Terminated: 0
Party 1
Public key: 0aal29ba6c64a803f87b...ba%4a03b57074e575fe
Secret key: 4b8ae20deld632ac67b5...21ed2309845cca52ebab
Left key: ab8fa684d1035adbc37d...2£6727415e845fad1193
Right key: 2f065bdf6d8e460e5358...87a007e4476d118ec59f
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...000000000000000[000000000000000...000000000000000(00000...00000
cl: 000000000000000...000000000000000[000000000000000...000000000000000(00000...00000
c2: 000000000000000...000000000000000[000000000000000...000000000000000(00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1l: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:

pid0: Party O
pidl: Party 1
pid2: Party 2

Accepted:
Terminated:

VOLUME 10, 2022

0
0

120971

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

Party 2
Public key: 82ba5d4099df21b80932...254de329a95c3e4d5d87
Secret key: £f6el6d5a410b188b3cbc...37e0946464c8deb70c2b
Left key: 2f065bdf6d8e460e5358...87a007e4476d118ec59f
Right key: 981a6417dfb9407971a3...14a49fda2395588e98c6
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 00000000000000000000...00000000000000000000
X1: 00000000000000000000...00000000000000000000
X2: 00000000000000000000...00000000000000000000
Coins:
r0: 00000000000000000000...00000000000000000000
rl: 00000000000000000000...00000000000000000000
r2: 00000000000000000000...00000000000000000000
Commitments:
c0: 000000000000000...0000000000000001000000000000000...000000000000000(00000...00000
cl: 000000000000000...000000000000000/000000000000000...000000000000000[00000...00000
c2: 000000000000000...000000000000000/000000000000000...000000000000000(00000...00000
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party O
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Round 3
Party O
Public key: cf36ce9975e£95084b00...3faf8707c3cc6£28625¢c
Secret key: 7786£9b92c3debeb39e7...1851e69f54bab7439627
Left key: 981a6417dfb9407971a3...14a49fda2395588e98c6
Right key: ab8fa684d1035adbc37d...2f6727415e845fad1193
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
i
X0: 3395c2930ebalaa2b2de...3bc3b8907d1107238955
X1: 8489fd5bbc8dlcd59025...a8c720a519e94e23d40c
X2: b71c3fc8b237067722fb...9304983e64£849005d59
Coins:
r0: 00000000000000000000...341574bc3621b96d930e
rl: 00000000000000000000...fac8728bb9%1laclb996e4
r2: 00020020000100000000...2760c1b81£f04c98683a0
Commitments:
cO: 6282f3f4515f528...6aaff6ed3d2b608(a90d68cf624981d...85a829%4ef6fe78b|ecaec...e5d33
cl: 5bdadd3abf52a00...c327383c304de0c|7301dae2691ffcl...43cb71961ad639b|4d85f...9%a%b
c2: 6514462b037331b...1731faf3b7d0924(c0065a125e50022...12509041ed5cdf8|a4769...87abb
Master Key:
k0: 00000000000000000000...00000000000000000000
k1: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000
Pids:
pid0: Party 0
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0
Party 1
Public key: 0aal29ba6c64a803f87b...ba%a4a03b57074e575fe
Secret key: 4b8ae20deld632ac67b5...21ed2309845cca52ebab
Left key: ab8fa684d1035adbc37d...2f6727415e845fad1193
Right key: 2f065bdf6dB8e460e5358...87a007e4476d118ec59f
Session id: 00000000000000000000...00000000000000000000
Session key: 00000000000000000000...00000000000000000000
X:
X0: 3395c2930ebalaa2b2de...3bc3b89b7d1107238955
X1: 8489fd5bbc8dlcd59025...a8c720a519e94e23d40c
X2: b71c3£fc8b237067722fb...9304983e64£849005d59
Coins:
r0: 00000000000000000000...341574bc3621b96d930e
rl: 00000000000000000000...fac8728bb9%1laclb996e4
r2: 00020020000100000000...2760c1b81£f04c98683a0
Commitments:
c0: 6282f3f4515£528...6aaff6ed3d2b608|a90d68cf624981d...85a8294ef6fe78b|ecaec...e5d33
cl: 5bdadd3abf52a00...c327383c304delc|7301dae2691ffcl...43cb71961ad639%0|4d85f...9%a9%b
c2: 6514462b037331b...1731faf3b7d0924|c0065a125e50022...12509041ed5cdf8]ad4769...87abb
Master Key:
k0: 00000000000000000000...00000000000000000000
k1l: 00000000000000000000...00000000000000000000
k2: 00000000000000000000...00000000000000000000

120972

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

Pids:

pid0: Party O

pidl: Party 1

pid2: Party 2
Accepted: 0
Terminated: 0

Party 2

Public key:
Secret key:
Left key:

Right

Session id:
Session key:

X:
X0:
X1:
X2:
Coins:
r0:
rl:
r2:

3395c2930ebalaa2b2de. .
8489fd5bbc8d1cd59025. .
b71c3fc8b237067722fb. .

00000000000000000000. .
00000000000000000000. .
00020020000100000000. .

Commitments:

cO:
cl:
c2:

6282f3f4515£528...6aaff6ed3d2b608|a90d68cf624981d
Sbdadd3abf52a00...c327383c304delc|7301dae2691ffcl
6514462b037331b...1731faf3b7d0924|c0065a125e50022

Master Key:

k0:
k1l:
k2:

00000000000000000000. .
00000000000000000000. .
00000000000000000000. .

82ba5d4099df21b80932..
f6el6d5a410b188b3cbc. .
2f065bdf6d8ed460e5358. .
key: 981a6417dfb9407971a3. .
00000000000000000000. .
00000000000000000000. .

.3bc3b8907d1107238955
.a8c720a519e94e23d40c
.9304983e64£849005d59

.341574bc3621b96d930e
.fac8728bb9laclb996e4
.2760c1b81f04c98683a0

.00000000000000000000
.00000000000000000000
.00000000000000000000

.254de329a95c3e4d5d87
.37e0946464c8deb70c2b
.87a007e4476d118ec59f
.14249£fda2395588e98c6
.00000000000000000000
.00000000000000000000

...85a829%4ef6fe78b|ecaec...e5d33
...43cb71961ad639b|4d85f...9%9a9%b
...12509041ed5cdf8|a4769...87abb

Pids:
pid0: Party O
pidl: Party 1
pid2: Party 2
Accepted: 0
Terminated: 0O

Round 4

Party O
Xi are zero!

Commitments are correct!

Party 1
Xi are zero!

Commitments are correct!

Party 2
Xi are zero!

Commitments are correct!

Party O
Public key:
Secret key:
Left key:
Right key:
Session id:
Session key:

cf36ce9975e£95084b00. .
7786£9092c3debeb3%e7. .
981a6417dfb9407971a3. .
ab8fa684d1035adbc37d. .
90d2bdcdc23c512e6b2b. .
06ab9%a8bl7b26ffae871. .

.3faf8707c3cc6£28625¢
.1851e69£54bab7439627
.14a49£da2395588e98c6
.2£6727415e845fad1193
.7a5f£010d30a0643cd81
.718f9def411d9675a0ac

X0: 3395c2930ebalaa2b2de...3bc3b89b7d1107238955

8489fd5bbc8d1cd59025. .
b71c3fc8b237067722fb. .

00000000000000000000. .
00000000000000000000. .
00020020000100000000. .

Commitments:
6282£3f4515£528...6aaff6ed3d2b608|a90d68cf624981d...85a82%94ef6fe78b|ecaec...e5d33
S5bdadd3abf52a00...c327383c304de0c|7301dae2691ffcl...43cb71961ad639b|4d85f...9a9%b
6514462b037331b...1731faf3b7d0924|c0065a125e50022...12509041ed5cdf8(a4769...87abb
Master Key:

cO:
cl:
c2:

k0:
kl:
k2:
Pids:

981a6417dfb9407971a3. .
ab8fa684d1035adbc37d. .
2f065bdf6d8e460e5358. .

pid0: Party O

pidl: Party 1

pid2: Party 2
Accepted: 1

.a8c720a519e94e23d40c
.9304983e64£849005d59

.341574bc3621b96d930e
.fac8728bb9laclb996e4
.2760c1b81£04c98683a0

.14a49£da2395588e98c6
.2£6727415e845fad1193
.87a007e4476d118ec59f

Terminated: 1
Party 1

Public key:
Secret key:
Left key:
Right key:
Session id:
Session key:

VOLUME 10, 2022

0aal29%ba6c64a803£f87b. .
4b8ae20del4632ac67b5. .
ab8fa684d1035adbc37d. .
2f065bdf6d8e460e5358. .
90d2bdcdc23c512e6b2b. .
06ab%a8bl7b26ffae871..

.ba9%a4a03b57074e575fe
.21ed2309845ccab52ebab
.2f6727415e845fad1193
.87a007e4476d118ec59f
.7a5f£010d30a0643cd81l
.718£9def411d9675a0ac

120973

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

X:
X0: 3395c2930ebalaa2b2de...3bc3b89b7d1107238955
X1: 8489fd5bbc8dlcd59025...a8c720a519e94e23d40c
X2: b71c3fc8b237067722fb...9304983e64£849005d59
Coins:
r0: 00000000000000000000...341574bc3621b96d930e
rl: 00000000000000000000...fac8728bb9%1laclb996e4
r2: 00020020000100000000...2760c1b81£04c98683a0
Commitments:

cO0: 6282f3f4515£528...6aaff6ed3d2b608/a%90d68cf624981d...85a8294ef6fe78b|ecaec...e5d33
cl: 5bdadd3abf52a00...c327383c304de0c|7301dae2691ffcl...43cb71961ad639b|4d85f...9%9a9%b
c2: 6514462b037331b...1731faf3b7d0924|c0065a125e50022...12509041ed5cdf8(a4769...87abb

Master Key:

kO: 981a6417dfb9407971a3...14a49fda2395588e98c6
kl: ab8fa684dl035adbc37d...2f6727415e845fad1193
k2: 2f065bdf6d8e460e5358...87a007e4476d118ec59f

Pids:

pid0: Party O

pidl: Party 1

pid2: Party 2
Accepted:
Terminated:

Party 2

Public key: 82ba5d4099df21b80932..
Secret key: f6el6d5a410b188b3cbc. .
Left key: 2f065bdf6d8e460e5358. .
Right key: 981a6417dfb9407971a3..
Session id: 90d2bdcdc23c512e6b2b. .
Session key: 06ab%9a8bl7b26ffae871..

.254de329a95c3e4d5d87
.37e0946464c8deb70c2b
.87a007e4476d118ec59f
.14a49fda2395588e98c6
.7a5f£010d30a0643cd81
.718£9def411d9675a0ac

X:
X0:
X1:
X2:

r0:
rl:
r2:

3395c2930ebalaa2b2de. ..3bc3b89p7d1107238955
8489fd5bbc8dlcd59025...a8c720a519e94e23d40c

b71c3fc8b237067722fb...9304983e64£849005d59
Coins:

Commitments:

cO:
cl:
c2:

Master Key:

k0:
kl:
k2:
Pids:
pid0: Party 0
pidl: Party 1
pid2: Party 2
Accepted: 1

Terminated: 1

All keys are equal!

Session
Session

key:

00000000000000000000...341574bc3621b96d930e
00000000000000000000...fac8728bb91laclb996e4
00020020000100000000...2760c1lb81£f04c98683a0

6282f3f4515£528...6aaff6ed3d2b608|a%90d68cf624981d...85a8294ef6fe78blecaec...e5d33
5bdadd3abf52a00...c327383¢c304delc|7301dae2691ffcl...43chb71961ad639b|4d85f...9%a%b
6514462b037331b...1731faf3b7d0924|c0065a125e50022...12509041ed5cdf8|a4769...87abb

981a6417dfb9407971a3...14a49fda2395588e98c6

ab8fa684d1035adbc37d...2£6727415e845fad1193
2f065bdf6d8ed460e5358...87a007e4476d118ec59f

06ab9a8bl7b26ffae8717aaab224e2e6e35c31d430££718£9def411d9675a0ac

id: 90d2bdcdc23c512e6b2bb46b2fe0d0lcd584ff4felde7a5££010d430a0643cd8l

APPENDIX B
NUMERICAL RESULTS OF TESTS

Tables 11-18 show numerical results for each graphic shown in Section VL.

TABLE 12. CPU cycles for each operation on AKE.

TABLE 11. CPU cycles for each operation on KEM. Parameter set algA algB nit
Classic-McEliece-348864 8580592 8587361 323936677

Parameter set decaps encaps keygen Classic-McEliece-348864f 8569345 8612752 243414602
Classic-McEliece-348864 123636 39442 350209858 (Hasﬂc—hchhece—460896 17700937 17730416 931398068
Classic-McEliece-348864f 123316 39679 242897011 Classic-McEliece-460896f 19521974 20018038 767502668
Classic-McEliece-460896 375779 75205 1016536658 Classic-McEliece-6688128 41544245 40623605 1476796001
Classic-McEliece-460896f 321315 74532 771996873 Classic-McEliece-6688128f 21201324 37412750 1063334536
Classic-McEliece-6688128 382416 124901 1422213675 Classic-McEliece-6960119 35253033 35449125 1308415722
Classic-McEliece-6688128f 384330 180361 922461603 Classic-McEliece-6960119f 35693068 35588478 958693555
Classic-McEliece-6960119 349284 122261 1312605058 Classic-McEliece-8192128 47284442 47463384 1346369051
Classic-McEliece- 69601197 347672 123144 891402713 Classic-McEliece-8192128f ~ 46678824 47030720 985285184
ClaSSfc»McEl}ece—8]92128 380697 136072 1343111287 FireSaber-KEM 252384 382050 220898
Classic-McEliece-8192128f 392884 136633 973279227 rresaer
FireSaber-KEM 04797 08948 91810 Kyber1024 157702 275832 152475
Kyber512 22730 33506 28819 Kyber768 116833 208207 112594
Kyber768 35993 53185 43089 LightSaber-KEM 106402 171794 102198
LightSaber-KEM 39431 43959 42212 NTRU-HPS-2048-509 85414 132512 176955
NTRU-HPS-2048-509 29134 31251 134086 NTRU-HPS-2048-677 125943 184092 276924
NTRU-HPS-2048-677 42862 42405 217540 NTRU-HPS-4096-821 156025 214513 364665
NTRU-HPS-4096-821 53396 48300 299511 NTRU-HRSS-701 137014 166123 265199
NTRU-HRSS-701 45244 30143 209976 Saber-KEM 173708 269199 156085
Saber-KEM 63544 68726 63409

120974 VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 13. CPU cycles for each operation on the commitment scheme.

Parameter set check commit init
Classic-McEliece-348864 29197 26110 504
Classic-McEliece-348864f 27409 26154 507
Classic-McEliece-460896 46800 46610 579
Classic-McEliece-460896f 44406 44034 631
Classic-McEliece-6688128 83966 83803 721
Classic-McEliece-6688128f 87638 79644 730
Classic-McEliece-6960119 87490 87024 529
Classic-McEliece-6960119f 87350 87096 685
Classic-McEliece-8192128 99463 106419 522
Classic-McEliece-8192128f 116952 108657 752
FireSaber-KEM 95846 97015 3376
Kyber1024 64164 63844 3499
Kyber512 29839 29204 1531
Kyber768 50658 50824 2653
LightSaber-KEM 39516 39006 1710
NTRU-HPS-2048-509 18166 17824 1740
NTRU-HPS-2048-677 26137 25647 2118
NTRU-HPS-4096-821 29673 29643 2850
NTRU-HRSS-701 21728 21212 2669
Saber-KEM 64943 64084 2503
TABLE 14. Time (in us) for each round on GAKE protocol.
Parameter set n init round12 round3 round4
Classic-McEliece-348864 2 615431324 1696747143 214368 118846
Classic-McEliece-348864 4 1583603828 2869072109 490660 780444
Classic-McEliece-348864 8 2367430159 850125364 719104 1952108
Classic-McEliece-348864 16 858591986 1920440006 1279658 8055160
Classic-McEliece-348864 32 1554079507 1356567785 2638432 45541024
Classic-McEliece-348864 64 2818234753 679532571 5516502 202048740
Classic-McEliece-348864 128 4010991978 2435017956 12636566 834462290
Classic-McEliece-348864 256 3911923429 3232859700 36204592 3417393020
Classic-McEliece-348864 512 1004661476 803441999 286293883 1669596478
Classic-McEliece-348864 1024 564876830 2321618938 494598324 711534243
Classic-McEliece-348864 2048 2225455345 1254861332 243603057 572706871
Classic-McEliece-348864f 2 488943030 1072681583 231696 117684
Classic-McEliece-348864f 4 975847422 2069043740 364754 481170
Classic-McEliece-348864f 8 1946928856 4143706238 695710 1910756
Classic-McEliece-348864f 16 3871425313 3975704069 1291402 7823392
Classic-McEliece-348864f 32 3459567823 3645043765 2628756 43810472
Classic-McEliece-348864f 64 2634568672 3270145154 5745522 201125972
Classic-McEliece-348864f 128 922596822 1816343482 13297466 835817934
Classic-McEliece-348864f 256 2119659048 4180954250 32626524 3438590182
Classic-McEliece-348864f 512 338168335 1679142040 113538214 1387490533
Classic-McEliece-348864f 1024 1217596450 889263199 421270974 963786826
Classic-McEliece-348864f 2048 4166382218 721092034 1925740795 3960384406
Classic-McEliece-460896 2 1912024768 3921837646 362890 200634
Classic-McEliece-460896 4 3415015131 2835097176 653708 872460
Classic-McEliece-460896 8 3929724184 2779169586 1205896 5070148
Classic-McEliece-460896 16 890839526 4016145298 2228270 19678514
Classic-McEliece-460896 32 1089375463 2924435689 5206710 108774642
Classic-McEliece-460896 64 2411407737 4113391356 9951120 373476180
Classic-McEliece-460896 128 397558273 2035324370 21195804 1515298786

VOLUME 10, 2022

120975

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

120976

Classic-McEliece-460896
Classic-McEliece-460896
Classic-McEliece-460896
Classic-McEliece-460896
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-460896f
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6688128f
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f

256
512
1024
2048
2
4
8
16
32
64
128
256
512
1024
2048

16
32
64
128
256
512
1024
2048

16
32
64
128
256
512
1024
2048

16
32
64
128
256
512
1024
2048

16
32

350900242
1271028135
1829785747
3228921860
1547303998
3045536026
1722224487
3693821256
2536477927

733278978
1149188565

8690904
2577008547
604455272
51955714
2147576393

1187614546
1271301383

706894985
1345365286
3245168410
2317101293
3076357661
2195259349
3902271515
2642995183
1855883406
3802301423
3067757308
1844663642
3708479649
3095632115
2318910280

267831120
1515916538
4275715442
2923240586
3878721980
1301208788
1583252769
3781153233

898367522
2897851685
2839803197
1243498987
1974900672

840240164
3263929682
1789981406
3584673431
2834859104
1399313596
2833850485

1387871710
760814829
3057205010
1842771958
3113605352
1994195283
4013871016
3616693000
3132673674
1859270326
78929931
1817019737
1277629665
1800269016
1586399685
1504878215
4068671765
3461015128
3995833851
5667296
4082630463
861015797
3086587620
3796024383
4047381242
2176499123
3976394227
3633786391
3076952675
1621097552
3607084113
2168410355
1134656969
3301718230
1775490688
924033568
2036320656
1166416070
3018618980
452329174
2005386984
1938094225
4174105865
3940751082
2759526005
3682831139
679149472
896743064
4205780466
3412992197
2481640916
565289913
1318776663

50707136
469685962
1382115746
1265113651

409660

667692
1159376
2265380
4368486

10121072

23241494

91761302
215835570
903064246
3233809061

607250
1189922
2099404
4291436
8024506

21315714

39996614

87302182
536055014
1931900810
3828351208

964062
1480460
3341494
4962866
9886966

20372564

62393668

103557542

462103596
2020837002
3922234185

707186
1231030
2156412
4125114
8114524
17414890

37877512

89709394

250950450
2014780886
3668046527

1006470
1248420
2182772
3976366
8063882

1955931021
3840285319
3090745563
334961863
263886
906250
3700464
19845816
91513026
392460442
1534149408
2813229325
167774192
1295440903
812064948
572726
2109364
12655766
52413664
195020212
826100784
3446267048
981579220
4252127366
2932582446
2041457525
586606
2130012
10556982
53455010
195656254
839260100
3375756788
941106315
218027609
382460719
1781912060
602162
2178806
11376568
49844720
211447542
886747602
3590353592
1740905541
3295691940
1984058716
69164236
792264
2171360
10969736
49770447
205670834

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

VOLUME 10, 2022

Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-6960119f
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
Classic-McEliece-8192128f
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM
FireSaber-KEM

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber1024

Kyber512

Kyber512

Kyber512

64
128
256
512
1024
2048

16
32
64
128
256
512
1024
2048

16
32
64
128
256
512
1024
2048
2
4
8
16
32
64
128
256
512
1024
2048
2
4
8
16
32
64
128
256
512

1024
2048

2
4
8

1362125798
2397190546
1453625822
2011115315
1279615086
3586782249
2407516062
299992514
2520870316
1310705387
4013931789
4168234131
2370595160
2836951403
4153694773
872791381
2740405176
1960177319
3897548154
3452854395
2712009294
911365729
1769182216
3898137358
7004371
2125104308
2446340708
1903966379
607290
906282
1801138
3172842
9065708
27287870
91864287
374850778
1391051250
1103641286
3747595787
569818
803884
1362792
2754268
7859682
26334516
90258852
347379710
1362064436
1306379099
143981347
498940
614774
971834

2903739941
1360379254
3998143556
3132704221
2064024301
1363223711
676821680
3039004018
1906109423
389710465
2569363216
3269320179
1275335399
3496047195
2350238385
301668979
2075278343
4227324545
4138219988
4011473804
3833236012
3332509687
2889921733
340831032
2309921654
2187093872
3901711698
3081527458
3635296
6813114
14093580
26996560
55573358
107311612
211259918
426186182
843778477
1746979692
3436070706
2996082
5137618
9885126
19360662
38739572
75688836
150989577
305096352
626489624
1201640936
2418133628
1391742
2540226
5323738

17683608
38340100
164028934
266726840
1519150022
3201080392
789672
1387144
2709618
6214172
10544668
22108434
67476566
109816411
630851821
2209465118
602905828
778804
1500512
2666522
5171652
10807196
21668248
47115648
195303340
305690494
2215045618
4213765930
300378
513164
938114
1689838
3802668
7109704
15097680
35416668
135638950
418674858
2407635106
249696
389362
685716
1316186
2498038
5218650

11764600
30854094
118268879
376635071
1432070771
169900
238504
412224

882069464
3638043328
1790286120
3213428878
1641311597
1267186687

810800
3181098
15103242
65554164

285851160
1183678412

535514184
2307021797
1080331090
3690786624
1989871463

813238
3090820
16333880
66465890

286696508
1196315560

562475699
2282245235
1453771652
3134891507
1174245729

406650
1602372
6164480
24004176
97032169

402757331

1590805268
2080794815

237821113

335489222

625141867

294682
1100924
4362414
17536258
67571944
272631328
1125447114
203874448
1450552719
463196417
1939460493
133814
566142
2415210

120977

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

120978

Kyber512 16 1857542 9684790 696384 7663526
Kyber512 32 4882138 19195176 1431924 30344334
Kyber512 64 16119412 36680564 2909726 119957652
Kyber512 128 56363002 73662228 6650430 496642586
Kyber512 256 229336298 145675628 17999734 2023890528
Kyber512 512 839032092 308417712 95626794 4235688616
Kyber512 1024 3444274237 584942672 335113664 3913116061
Kyber512 2048 371370860 1170479216 1366586773 3043811242
Kyber768 2 577860 2009488 213120 221310
Kyber768 4 761194 4112084 343838 888528
Kyber768 8 1230752 7318296 550098 3269724
Kyber768 16 2316806 14880632 1029826 13019576
Kyber768 32 6308418 30338760 2108150 51099400
Kyber768 64 20853568 55897704 4134938 206457470
Kyber768 128 75010626 111080214 9475384 826734402
Kyber768 256 270613704 221745152 23699460 3368700777
Kyber768 512 1046487012 450134766 120120528 917810128
Kyber768 1024 48885311 939352610 377529028 3571642200
Kyber768 2048 3548206715 1762055204 1486841884 3002272971
LightSaber-KEM 2 496816 1781068 196050 182492
LightSaber-KEM 4 629846 3281964 279376 744242
LightSaber-KEM 8 961000 6696214 469720 2696314
LightSaber-KEM 16 1887810 12033478 868674 10124736
LightSaber-KEM 32 5124908 25007716 1680080 40899424
LightSaber-KEM 64 16425678 48416024 3547386 173586720
LightSaber-KEM 128 57217068 95629356 8103898 660287394
LightSaber-KEM 256 225489147 192415348 21422412 2756138548
LightSaber-KEM 512 847092706 384295620 96937592 2666753792
LightSaber-KEM 1024 3389600373 775776018 357598276 1891348520
LightSaber-KEM 2048 211324268 1567149822 1935074906 290131465
NTRU-HPS-2048-509 2 981000 1927824 161492 87460
NTRU-HPS-2048-509 4 1245528 3621918 249296 356352
NTRU-HPS-2048-509 8 2446550 6730612 390350 1319154
NTRU-HPS-2048-509 16 4932194 13746878 866948 5301712
NTRU-HPS-2048-509 32 14072786 26128068 1773802 19388586
NTRU-HPS-2048-509 64 44271612 50557216 4976176 82086306
NTRU-HPS-2048-509 128 175005570 100433146 15889180 340383374
NTRU-HPS-2048-509 256 600702206 200893168 62463136 1411262307
NTRU-HPS-2048-509 512 2349192856 441521626 232213272 1642240299
NTRU-HPS-2048-509 1024 1539923810 810408032 1009372154 2266282339
NTRU-HPS-2048-509 2048 2590192843 2499817723 2527029327 3038336814
NTRU-HPS-2048-677 2 1091314 2590358 189240 116900
NTRU-HPS-2048-677 4 1562378 4683732 266526 423308
NTRU-HPS-2048-677 8 3215126 10076076 501780 1859720
NTRU-HPS-2048-677 16 6950574 19411312 889628 6855172
NTRU-HPS-2048-677 32 18987826 39073842 2614270 28775180
NTRU-HPS-2048-677 64 57640154 74748198 6431848 113306742
NTRU-HPS-2048-677 128 208377538 153247972 20055576 460272632
NTRU-HPS-2048-677 256 792694984 293713004 74290688 1924326984
NTRU-HPS-2048-677 512 2983603064 597372806 278990911 3663306373
NTRU-HPS-2048-677 1024 1068468532 1495942210 1349438615 80006310
NTRU-HPS-2048-677 2048 3842053839 3264156935 2672066036 2916255138
NTRU-HPS-4096-821 2 1323266 3233190 201276 133678
NTRU-HPS-4096-821 4 2123426 6373514 315042 528574

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

NTRU-HPS-4096-821 8 4018954 12749338 554826 2096114
NTRU-HPS-4096-821 16 9052232 25078414 1030998 7716988
NTRU-HPS-4096-821 32 25857472 48720782 2669928 32840436
NTRU-HPS-4096-821 64 72301258 94480278 7472344 140875368
NTRU-HPS-4096-821 128 263819610 202561480 23749844 538182060
NTRU-HPS-4096-821 256 967352732 378188754 83627900 2162779586
NTRU-HPS-4096-821 512 3642935388 757871908 324541826 475775619
NTRU-HPS-4096-821 1024 677566590 1711646836 2216580128 346599932
NTRU-HPS-4096-821 2048 1755297287 3310631067 918904980 3870832452
NTRU-HRSS-701 2 1077018 2649980 166562 102080
NTRU-HRSS-701 4 1683106 5216524 247490 386650
NTRU-HRSS-701 8 2856334 9484538 380584 1434320
NTRU-HRSS-701 16 6102174 19417860 744648 5743542
NTRU-HRSS-701 32 15651354 35801212 1574614 22210760
NTRU-HRSS-701 64 47804276 76035590 6164726 96244240
NTRU-HRSS-701 128 156846328 142048888 12259802 367976966
NTRU-HRSS-701 256 560833948 288124220 43129852 1547872212
NTRU-HRSS-701 512 2064379622 567554460 170944360 2281643283
NTRU-HRSS-701 1024 3837124671 1172915483 729609922 427935254
NTRU-HRSS-701 2048 3026909878 2372437022 4283715321 2657828050
Saber-KEM 2 529288 2558230 236934 278922
Saber-KEM 4 743612 5744626 553852 1095384
Saber-KEM 8 1185656 9498466 681086 4337356
Saber-KEM 16 2612476 19234644 1208034 16725588
Saber-KEM 32 6833778 38001572 2430210 65950462
Saber-KEM 64 21002188 73948488 5066304 266796686
Saber-KEM 128 74175234 148130938 11140534 1082532972
Saber-KEM 256 276481195 298043329 26642094 126715876
Saber-KEM 512 1094140918 598863176 110149524 747100678
Saber-KEM 1024 86908219 1198825162 414791748 2456792722
Saber-KEM 2048 3936814435 2423035845 2115132040 3961992952
TABLE 15. Total running time (in us) of the GAKE protocol for each number of parties.
Parameter set 2 4 16 32 64 128 256 512 1024 2048
Classic-McEliece-348864 892178.0 1718346.0 2899386.0 60467940 127406020 24627680.0 50867013.0 101852509.0 203607445.0 453942818.0 934554551.0
Classic-McEliece-348864f ~ 602617.0 1175057.0 2350791.0 4687975.0 9386942.0 18927977.0 37838520.0 76678467.0 153802356.0 319493211.0 739869144.0
Classic-McEliece-460896 2250942.0 40689150 ~ 9218778.0 16814680.0 36389741.0 70602650.0 144034305.0 286450796.0 572458302.0 1155233342.0 2430094338.0
Classic-McEliece-460896f 1798455.0 3601964.0 7185912.0 14428027.0 287363380 57493893.0 128664468.0 281859895.0 ~ 538506530.0 1088774819.0 ~ 2303780543.0
Classic-McEliece-6688128 3066597.0 ~ 7000197.0 15087523.0 26691367.0 ~ 53623909.0 114173728.0 2196395160 450182893.0 880717300.0 1806114124.0 3841620983.0
Classic-McEliece-6688128f 2250711.0 4527271.0 9004057.0 17929750.0 ~ 36041880.0 71956978.0 145161752.0 2934140260 586456938.0 1230778047.0 2794519734.0
Classic-McEliece-6960119 3603948.0 6638953.0 12389634.0 ~ 25451437.0 52546353.0 100840833.0 201199991.0 ~ 411532229.0 ~ 8337133280 1705535723.0 3626928937.0
Classic-McEliece-6960119f ~ 2313879.0 ~ 4358054.0 8684243.0 17348795.0 34824773.0 69930347.0 140399916.0 284549076.0 568367733.0 1187271797.0 2581941901.0
Classic-McEliece-8192128 2847578.0 6260992.0 13313891.0 23881865.0 52364525.0 109383302.0 208765563.0 ~417628338.0 848244766.0 1752532512.0 3805697248.0
Classic-McEliece-8192128f ~ 2387773.0 4759007.0 9515137.0 19122922.0 38206314.0 76832876.0 154315559.0 313367697.0 628692431.0 1321836453.0 2905427469.0
FireSaber-KEM 1911.0 3795.0 8874.0 21554.0 63842.0 210060.0 736511.0 2782496.0 109483540 444730150 189526710.0
Kyber1024 1587.0 2870.0 6289.0 15808.0 45013.0 146558.0 531817.0 1999301.0 8000492.0 327748140 143135114.0
Kyber512 848.0 1530.0 3522.0 7680.0 21550.0 67776.0 244339.0 932452.0 3770739.0 16449553.0 78518882.0
Kyber768 1168.0 2358.0 4773.0 12057.0 34667.0 110861.0 394408.0 14987540 5948873.0 251030200 111486313.0
LightSaber-KEM 1026.0 1905.0 4178.0 9614.0 28054.0 93356.0 316838.0 1232824.0 48553400 20701788.0 97651244.0
NTRU-HPS-2048-509 1221.0 2113.0 4201.0 9588.0 23675.0 70179.0 243720.0 877830.0 3456851.0 154266120 212895036.0
NTRU-HPS-2048-677 1541.0 2678.0 6041.0 13161.0 34514.0 97276.0 324831.0 1190217.0 45595160 214249720 417494166.0
NTRU-HPS-4096-821 1889.0 3606.0 7496.0 16543.0 42475.0 121582.0 396729.0 1385788.0 53206360 25108799.0 732887528.0
NTRU-HRSS-701 1544.0 2908.0 5464.0 12351.0 29028.0 87288.0 262016.0 941347.0 3618637.0 15635560.0 74355597.0
Saber-KEM 1392.0 3140.0 6059.0 15348.0 43680.0 141521.0 507711.0 19378340 7611941.0 31430099.0 137359064.0
120979

VOLUME 10, 2022

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 16. CPU cycles for each operation on AKE scheme between Fsxy and FOxxr transformations.

Parameter set type algA algB init
Kyber1024 fo-ake 61272 164921 103966
Kyber1024 fsxy 157702 275832 152475
Kyber512 fo-ake 24129 64225 40741
Kyber512 fsxy 74852 132814 75748
Kyber768 fo-ake 42554 114265 74408
Kyber768 fsxy 116833 208207 112594
TABLE 17. CPU cycles for each operation on GAKE protocol between Fsxy and FOxxr transformations.
f;rameter type n init round12 round3 round4
Kyber1024 fo-ake 2 352728 1455104 190636 240810
Kyber1024 fo-ake 4 435276 2878382 322330 932940
Kyber1024 fo-ake 8 957022 5556222 562612 3529734
Kyber1024 fo-ake 16 2115684 11209454 1106828 14130168
Kyber1024 fo-ake 32 6124772 21877848 2261222 55572826
Kyber1024 fo-ake 64 20678658 44261601 6373372 225249026
Kyber1024 fo-ake 128 77548204 88040096 15884218 899885456
Kyber1024 fo-ake 256 285147300 165981610 35437206 3596092132
Kyber1024 fo-ake 512 1094344170 342508685 128393108 1829211446
Kyber1024 fo-ake 1024 4281287051 672156610 504682447 1344193494
Kyber1024 fo-ake 2048 4063233753 1387462198 3724341955 3413607674
Kyber1024 fsxy 2 569818 2996082 249696 294682
Kyber1024 fsxy 4 803884 5137618 389362 1100924
Kyber1024 fsxy 8 1362792 9885126 685716 4362414
Kyber1024 fsxy 16 2754268 19360662 1316186 17536258
Kyber1024 fsxy 32 7859682 38739572 2498038 67571944
Kyber1024 fsxy 64 26334516 75688836 5218650 272631328
Kyber1024 fsxy 128 90258852 150989577 11764600 1125447114
Kyber1024 fsxy 256 347379710 305096352 30854094 203874448
Kyber1024 fsxy 512 1362064436 626489624 118268879 1450552719
Kyber1024 fsxy 1024 1306379099 1201640936 376635071 463196417
Kyber1024 fsxy 2048 143981347 2418133628 1432070771 1939460493
Kyber512 fo-ake 2 172880 597112 140126 91336
Kyber512 fo-ake 4 244948 1108004 265502 349942
Kyber512 fo-ake 8 457206 2493920 293888 1389898
Kyber512 fo-ake 16 1126550 4318414 557998 7792834
Kyber512 fo-ake 32 3547112 8893216 1156686 23064290
Kyber512 fo-ake 64 11532644 17044954 2675020 87354510
Kyber512 fo-ake 128 42822396 33423604 7119092 358312410
Kyber512 fo-ake 256 162999452 64532826 21795546 1447317430
Kyber512 fo-ake 512 642910434 134759080 89890960 1794799431
Kyber512 fo-ake 1024 2682604673 260979316 342297686 1200990103
Kyber512 fo-ake 2048 1555164747 527148304 1803526899 3942602428
Kyber512 fsxy 2 498940 1391742 169900 133814
Kyber512 fsxy 4 614774 2540226 238504 566142
Kyber512 fsxy 8 971834 5323738 412224 2415210
Kyber512 fsxy 16 1857542 9684790 696384 7663526
Kyber512 fsxy 32 4882138 19195176 1431924 30344334
Kyber512 fsxy 64 16119412 36680564 2909726 119957652
Kyber512 fsxy 128 56363002 73662228 6650430 496642586
Kyber512 fsxy 256 229336298 145675628 17999734 2023890528
Kyber512 fsxy 512 839032092 308417712 95626794 4235688616

120980

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

TABLE 17. (Continued.) CPU cycles for each operation on GAKE protocol between Fsxy and FOaxs transformations.

Kyber512
Kyber512
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768
Kyber768

fsxy
fsxy
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fo-ake
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy
fsxy

1024 3444274237

2048 371370860
2 221676
4 383676
8 713374
16 1621226
32 4705146

64 16310156
128 61515240

256 212296306
512 817850056
1024 3416062848
2048 238625748
2 577860
4 761194
8 1230752
16 2316806
32 6308418

64 20853568
128 75010626
256 270613704
512 1046487012
1024 48885311
2048 3548206715

584942672
1170479216
1026826
2045574
3927438
7707430
15662530
30367278
61432664
124209947
241237862
482639002
971786427
2009488
4112084
7318296
14880632
30338760
55897704
111080214
221745152
450134766
939352610

1762055204

335113664
1366586773
153400
255432
440296
840394
1703376
3675496
13157064
32001686
106206730
391683304
2650353367
213120
343838
550098
1029826
2108150
4134938
9475384
23699460
120120528
377529028

1486841884

3913116061
3043811242
176728
646612
2476342
14637240
39878546
154483560
632164543
2521360814
1825592580
2311016608
1962999495
221310
888528
3269724
13019576
51099400
206457470
826734402
3368700777
917810128
3571642200
3002272971

TABLE 18. Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

VOLUME 10, 2022

Parameter set n fo-ake fsxy
Kyber1024 2 433.0 793.5
Kyber1024 4 441.25 717.5
Kyber1024 8 511.625 786.125
Kyber1024 16 688.875 988.0
Kyber1024 32 1034.96875 1406.65625
Kyber1024 64 1787.796875 2289.96875
Kyber1024 128 3259.359375 4154.8203125
Kyber1024 256 6152.765625 7809.76953125
Kyber1024 512 12266.849609375 15625.9609375
Kyber1024 1024 25217.29296875 32006.654296875
Kyber1024 2048 54962.12158203125 69890.1923828125
Kyber512 2 194.0 424.0
Kyber512 4 190.25 382.5
Kyber512 8 223.625 440.25
Kyber512 16 332.8125 480.0
Kyber512 32 442.03125 673.4375
Kyber512 64 715.015625 1059.0
Kyber512 128 1331.2890625 1908.8984375
Kyber512 256 2556.94140625 3642.390625
Kyber512 512 5242.50390625 7364.724609375
Kyber512 1024 11399.52734375 16064.0166015625
Kyber512 2048 26556.4296875 38339.2978515625
Kyber768 2 305.5 584.0
Kyber768 4 321.75 589.5

120981

IEEE Access

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 18. (Continued.) Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

Kyber768 8 364.625 596.625
Kyber768 16 598.25 753.5625
Kyber768 32 746.96875 1083.34375
Kyber768 64 1234.828125 1732.203125
Kyber768 128 2315.6640625 3081.3125
Kyber768 256 4355.17578125 5854.5078125
Kyber768 512 8726.408203125 11618.892578125
Kyber768 1024 18668.8974609375 24514.66796875
Kyber768 2048 40742.357421875 54436.67626953125
ACKNOWLEDGMENT [14] M. Abdalla, J. Bohli, M. I. G. Vasco, and R. Steinwandt, ““(Password)

The authors would like to thank Maria I. Gonzalez Vasco
for her help during the proccess of ellaboration of the
manuscript, through fruitful discussions and useful comments
and suggestions.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8

[9]

[10]

[11]

[12]

[13]

A. Fujioka, K. Takashima, and K. Yoneyama, ‘“One-round authenticated
group key exchange from isogenies,” in Proc. ProvSec, in Lecture Notes
in Computer Science, vol. 11821. Cham, Switzerland: Springer, 2019,
pp. 330-338.

H. B. Hougaard and A. Miyaji, “‘Authenticated logarithmic-order supersin-
gular isogeny group key exchange,” Int. J. Inf. Secur:, vol. 21, pp. 207-221,
May 2021.

D. Apon, D. Dachman-Soled, H. Gong, and J. Katz, “Constant-round
group key exchange from the ring-LWE assumption,” in PQCrypto, in Lec-
ture Notes in Computer Science, vol. 11505. Cham, Switzerland: Springer,
2019, pp. 189-205.

R. Choi, D. Hong, and K. Kim, “Constant-round dynamic group
key exchange from RLWE assumption,” Cryptol. ePrint Arch., Paper
2020/035, vol. 2020, p. 35, 2020.

R. Choi, D. Hong, S. Han, S. Baek, W. Kang, and K. Kim, “Design
and implementation of constant-round dynamic group key exchange from
RLWE,” IEEE Access, vol. 8, pp. 94610-94630, 2020.

R. Choi, D. Hong, and K. Kim, “Implementation of tree-based dynamic
group key exchange with newhope,” in Proc. Symp. Cryptogr. Inf.
Secur. (SCIS). Kochi, Japan: IEICE Technical Committee on Information
Security, 2020, pp. 1-8.

K. Takashima, ‘““Post-quantum constant-round group key exchange from
static assumptions,” in Proc. Int. Symp. Math., Quantum Theory, Cryptogr.
Singapore: Springer, 2021, p. 251.

E. Persichetti, R. Steinwandt, and A. S. Corona, “From key encapsulation
to authenticated group key establishment—A compiler for post-quantum
primitives,” Entropy, vol. 21, no. 12, p. 1183, Nov. 2019.

M. I. G. Vasco, L. A. P. D. Pozo, and R. Steinwandt, “Group key
establishment in a quantum-future scenario,” Informatica, vol. 31, no. 4,
pp. 751-768, 2020.

H. B. Hougaard and A. Miyaji, “Group key exchange compilers from
generic key exchanges,” in Proc. Int. Conf. Netw. Syst. Secur. Cham,
Switzerland: Springer, 2021, pp. 162-184.

J. I. E. Pablos, M. 1. G. Vasco, M. E. Marriaga, and A.L.P.D. Pozo,
“Compiled constructions towards post-quantum group key exchange:
A design from kyber,” Mathematics, vol. 8, no. 10, p. 1853,
Oct. 2020.

J. Katz and M. Yung, “Scalable protocols for authenticated group key
exchange,” in Advances in Cryptology—CRYPTO 2003, vol. 2729,
D. Boneh, Ed. Santa Barbara, CA, USA: Springer, Aug. 2003,
pp. 110-125.

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe, *“‘Post-quantum key
exchange—A new hope,” in Proc. 25th USENIX Secur. Symp. (USENIX
Security), 2016, pp. 327-343.

120982

[15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

authenticated key establishment: From 2-party to group,” in Proc. TCC, in
Lecture Notes in Computer Science, vol. 4392. Berlin, Germany: Springer,
2007, pp. 499-514.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stéhle, “CRYSTALS—Kyber: A CCA-
secure module-lattice-based KEM,” in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS&P), Apr. 2018, pp. 353-367.

M. Burmester and Y. Desmedt, “A secure and efficient conference
key distribution system,” in Proc. EUROCRYPT, in Lecture Notes
in Computer Science, vol. 950. Berlin, Germany: Springer, 1994,
pp. 275-286.

A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, ‘““Practical and
post-quantum authenticated key exchange from one-way secure key
encapsulation mechanism,” in Proc. 8th ACM SIGSAC Symp. Inf., Comput.
Commun. Secur., 2013, pp. 83-94.

K. Hovelmanns, E. Kiltz, S. Schédge, and D. Unruh, “Generic authenticated
key exchange in the quantum random Oracle model,” Cryptol. ePrint
Arch., Paper 2018/928, vol. 2018, p. 928, 2018.

K. Hovelmanns, E. Kiltz, S. Schige, and D. Unruh, “Generic authenticated
key exchange in the quantum random Oracle model,” in Public-Key
Cryptography—PKC 2020, A. Kiayias, M. Kohlweiss, P. Wallden, and
V. Zikas, Eds. Cham, Switzerland: Springer, 2020, pp. 389-422.

T. Saito, K. Xagawa, and T. Yamakawa, ““Tightly-secure key-encapsulation
mechanism in the quantum random Oracle model,” Cryptol. ePrint Arch.,
Paper 2017/1005, 2017.

Post-Quantum Cryptography. Security (Evaluation Criteria), NIST,
Gaithersburg, MD, USA. [Online]. Available: https:/csrc.nist.gov/
projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/evaluation-criteria/security-(evaluation-criteria)
Post-Quantum Cryptography. Round 3 Submissions, NIST, Gaithersburg,
MD, USA. [Online]. Available: https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, I. V. Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai,
M. Tomlinson, and W. Wang, “Classic McEliece: Conservative code-
based cryptography,” NIST, Tech. Rep., 2020. [Online]. Available: https://
classic.mceliece.org/nist/mceliece-20201010.pdf

H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding
theory,” Problems Control Inf. Theory, vol. 15, no. 2, pp. 157-166, 1986.
R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
kyber algorithm specifications and supporting documentation,” NIST,
Tech. Rep., 2021. [Online]. Available: https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf

Post-Quantum Cryptography. Round 1 Submissions, NIST, Gaithersburg,
MD, USA.

J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in Algorithmic Number Theory (Lecture Notes in
Computer Science), vol. 1423, J. Buhler, Ed. Portland, OR, USA: Springer,
Jun. 1998, pp. 267-288.

VOLUME 10, 2022

J. 1. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]
[40]
[41]

[42]

T. Saito, K. Xagawa, and T. Yamakawa, ““Tightly-secure key-encapsulation
mechanism in the quantum random Oracle model,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptograph. Techn. Cham, Switzerland: Springer,
2018, pp. 520-551.

J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, ““Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” Cryptol. ePrint Arch., Paper 2018/230, p. 230, 2018.

C. Boyd, Y. CIliff, J. G. Nieto, and K. G. Paterson, “Efficient one-round
key exchange in the standard model,” in Proc. ACISP, in Lecture Notes in
Computer Science, vol. 5107. Berlin, Germany: Springer, 2008, pp. 69-83.
A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly secure
authenticated key exchange from factoring, codes, and lattices,” Des.,
Codes Cryptogr., vol. 76, no. 3, pp. 469-504, Sep. 2015.

R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in Proc. EUROCRYPT, in Lecture
Notes in Computer Science, vol. 2045. Berlin, Germany: Springer, 2001,
pp. 453-474.

R. Cramer and V. Shoup, “Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack,”
SIAM J. Comput., vol. 33, no. 1, pp. 167-226, 2003.

M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in Advances in Cryptology—
EUROCRYPT 2000, vol. 1807, B. Preneel, Ed. Bruges, Belgium: Springer,
May 2000, pp. 139-155.

J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt, “Secure group key
establishment revisited,” Int. J. Inf. Secur., vol. 6, no. 4, pp. 243-254,
Jun. 2007.

Algorithms in LibOQS, Open Quantum Safe, 2022.

D. Stebila and M. Mosca, “‘Post-quantum key exchange for the internet
and the open quantum safe project,” in Proc. SAC, in Lecture Notes
in Computer Science, vol. 10532. Cham, Switzerland: Springer, 2016,
pp. 14-37.

Cryptography and SSL/TLS Toolkit, OpenSSL, 2022.

What is the Windows Subsystem for Linux?, Microsoft, 2022.

Usage Limits, Billing, and Administration, GitHub Actions, 2022.

M. L. Waskom, ‘“‘Seaborn: Statistical data visualization,” J. Open Source
Softw., vol. 6, no. 60, p. 3021, 2021.

Storing Workflow Data as Artifacts, GitHub Actions, 2022.

VOLUME 10, 2022

JOSE IGNACIO ESCRIBANO PABLOS received
the double degrees in mathematics and software
engineering, the master’s degree from Universidad
Rey Juan Carlos, Spain, in 2015 and 2017,
respectively, and the Ph.D. degree in mathematical
sciences. He also works as a Machine Learning
and Security Researcher at BBVA Next Technolo-
gies. His main research interests include post-
quantum cryptography, machine learning security,
and adversarial machine learning.

MISAEL ENRIQUE MARRIAGA received the
Ph.D. degree in mathematical engineering from
Universidad Carlos III de Madrid, Spain. He is
currently an Assistant Professor (Profesor Con-
tratado Doctor Interino) at the Universidad Rey
Juan Carlos, Spain. His main field of research
is approximation theory in higher dimensions
and multivariate orthogonal polynomials. Most
recently, he has started doing research in crypto-
graphic designs for multi-party key exchange in
non-standard scenarios.

ANGEL L. PEREZ DEL POZO received the
Ph.D. degree in mathematics from Universidad
Complutense de Madrid (Spain). He is cur-
rently an Assistant Professor (Profesor Contratado
Doctor Interino) at the Universidad Rey Juan
Carlos, Spain. His main research interests include
cryptographic designs for key exchange in non-
standard scenarios, secret sharing schemes, and
applications of multi-party computation.

120983

