
Received 10 October 2022, accepted 3 November 2022, date of publication 14 November 2022, date of current version 22 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222389

Design and Implementation of a Post-Quantum
Group Authenticated Key Exchange Protocol With
the LibOQS Library: A Comparative Performance
Analysis From Classic McEliece,
Kyber, NTRU, and Saber
JOSÉ IGNACIO ESCRIBANO PABLOS 1,2, MISAEL ENRIQUE MARRIAGA 1,
AND ÁNGEL L. PÉREZ DEL POZO 1
1MACIMTE, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
2BBVA Next Technologies, 28050 Madrid, Spain

Corresponding author: Ángel L. Pérez del Pozo (angel.perez@urjc.es)

This work was supported in part by the North Atlantic Treaty Organization (NATO) Science for Peace and Security Programme under
Grant G5448, and in part by the Spanish Ministerio de Economía y Empresa (MINECO) under Grant PID2019-109379RB-I00.

ABSTRACT Group authenticated key exchange protocols (GAKE) are cryptographic tools enabling a group
of several users communicating through an insecure channel to securely establish a common shared high-
entropy key. In the last years, the need to design cryptographic tools which provide security in the presence
of attackers with access to quantum resources has become unquestionable; the field dealing with these types
of protocols is usually referred to as Post-Quantum Cryptography. The U.S. National Institute for Standards
and Technology (NIST) launched in 2017 an open call to find suitable post-quantum public-key algorithms
for standardization. In this work, we design a GAKE that can be instantiated with any key encapsulation
mechanism (KEM) that satisfies the strong security notion IND-CCA, matching NIST’s requirements for
this primitive. We have implemented our GAKE with the four finalist KEMs from the NIST process:
Classic McEliece, Kyber, NTRU, and Saber, making use of the open-source library LibOQS where these
algorithms are provided. We have conducted a detailed comparative performance analysis of the resulting
GAKE protocols, taking into account all the parameter sets proposed in the submissions. We have also made
a performance analysis of all the involved building pieces, including the four finalist KEMs. Finally, we also
compare our GAKE with a previous proposal implemented with Kyber.

INDEX TERMS Cryptography, cryptographic protocols, system implementation, post-quantum cryptogra-
phy, public key cryptography.

I. INTRODUCTION
Group authenticated key exchange (GAKE) protocols are
cryptographic constructions that allow a group of n ≥ 2
users or parties, communicating through an insecure network,
to agree on common session keys. These keys are then
typically used to provide security guarantees, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

confidentiality, integrity, and/or authentication, for further
communication among the group members.

In the last years, we have seen a growing concern about the
threat that quantum computation presents to the security of
many existing cryptographic primitives based on mathemat-
ical problems related to integer factorization or computation
of discrete logarithms. This led the U.S. National Institute
of Standards and Technology (NIST) to launch an open call
in 2017 asking for proposals of post-quantum algorithms

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120951

https://orcid.org/0000-0002-0079-642X
https://orcid.org/0000-0002-7106-8593
https://orcid.org/0000-0002-8135-9642
https://orcid.org/0000-0003-0586-090X

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

that could be subsequently standardized. The term ‘‘post-
quantum’’ in this context refers to algorithms that could
be considered to offer security against attackers that have
access to quantum computational resources. In the NIST
call for proposals, two types of cryptographic primitives
were allowed: Key Encapsulations Mechanisms (KEMs) and
digital signatures. At the beginning of 2022, there were
three rounds of announcements from NIST stating which
candidates advanced in the process. After round 3, there
were 7 finalists: 4 KEMs and 3 signature schemes. NIST
also proposed a list of alternate candidates for further study
and future consideration; it was composed of 5 KEMs
and 4 signature schemes. During the revision process of
this paper, NIST announced the algorithms selected for
standarization, namely Kyber as the KEM and Dilithium,
Falcon and SPHINC+ as digital signatures. In this work,
we focus on the four finalist KEMs, as they are known to be
a basic building block from which GAKE protocols can be
constructed.

A. RELATED WORK
There have been several recent proposals of group key
exchange protocols that provide some kind of resistance
against quantum attacks (see Table 1 for a comparison
between the main GAKE protocols). The protocol presented
in [1] by Fujioka et al. is based on the problem of finding
isogeny mappings between two supersingular elliptic curves
with the same number of points. In the same line, Hougaard
and Miyaji presented in [2] several designs based on
isogenies. The authenticated protocols are named A-SIT and
A-P2P-SIT, with the latter being the peer-to-peer version of
A-SIT, which means that it reduces the protocol complexity
in terms of communication and memory. Both are authen-
ticated protocols, resistant to active attacks, and achieve
authentication through a signature scheme. Apon et al. ([3])
constructed an unauthenticated protocol proven secure under
the ring learning with errors (RLWE) assumption. This
scheme may be transformed into an authenticated one by
using the Katz andYung compiler ([12]), that adds a signature
scheme and an additional round to the original protocol. The
protocols from Choi et al. ([4], [5]) are also based in the
same problem; the authors build on [12] and propose three
different protocols: the first is unauthenticated, the second
(STAG) adds authentication, and the third is, in addition,
dynamic (meaning that users may join or leave the group at
any time). Choi et al. [6] proposed a generic GAKE also
relying on the RLWE assumption, built on a tree structure
in the dynamic setting. In more detail, this protocol has
been instantiated with NewHope [13]: a KEM submitted to
the NIST standardization process, but which has not been
selected as a finalist in Round 3. Takashima constucted in [7]
two different families of GAKEs based on static lattice and
isogeny assumptions respectively, where static means that the
size of the computational problem does not depend on the
number of participants in the group.

There also exist protocols, like the one we propose in this
work, that use compilers, which produce a quantum-resistant
GAKE from simpler post-quantum primitives. In this line, the
protocol from Persichetti et al. ([8]) was constructed from a
KEM and a signature scheme. González Vasco et al. ([9])
introduced a protocol derived from a KEM and a Message
Authentication Code (MAC). However, this construction
cannot be considered completely post-quantum; security
holds in the future-quantum scenario, where adversaries do
not have access to quantum resources during the protocol
execution but only later. Escribano Pablos et al. ([11]) used
the compiler fromAbdalla et al. ([14]) to obtain a GAKE from
the IND-CPA Public Key Encryption (PKE) scheme included
in the Kyber suite ([15]) and the FOAKE transformation, and
proved it to be secure in the Quantum Random Oracle Model
(QROM). The compiler introduced in [10] allows to obtain
a GAKE protocol using any two-party key exchange, being a
generalization of the Burmester and Desmedt [16] protocol
in the G-CK+ security model. Two versions of the compiler
have been proposed: the original version known as GKE-C
and the peer-to-peer version (P2P-GKE-C). The latter reduces
the resources consumption (memory and communication)
compared to the original compiler.

B. OUR CONTRIBUTION
In this work, we propose a generic post-quantum GAKE
protocol in the same line of [11]. We rely only on three
primitives: an IND-CCA secure KEM, a one-time symmetric
encryption scheme, and a cryptographic hash function. The
FSXY transformation by Fujioka et al. ([17] provides a
two-party authenticated key exchange 2AKE from the KEM.
Then we use Abdalla et al.’s compiler ([14]) to obtain
the GAKE from the 2AKE. The compiler also requires a
commitment scheme satisfying certain properties, but we
show that it can be obtained from the same KEM used for
the FSXY transformation. Whereas this construction may
be seen as a generalization of [11] (which also builds on
Abdalla et al.’s compiler and a generic transformation from
KEM to AKE), this is not exactly so, as here the FSXY
transformation is used instead of the FOAKE (see [18] and
[19]), which is used in [11].

Our aim is to design a generic protocol that may be
implemented with any of the four Round 3 KEM finalists
from theNIST post-quantum standardization process, namely
Classic McEliece, Kyber, NTRU, and Saber. In fact, our
design can be implemented with any IND-CCA KEM (yet
its final security against quantum adversaries is of course
not guaranteed if the KEM is not post-quantum). We would
like to point out that the FOAKE transformation offers some
advantages over FSXY, such as having a security proof in
the Quantum Random Oracle Model (QROM) and being
simpler. However, it cannot be directly applied to the public
key encryption schemes described in the Classic McEliece
and NTRU submissions, as they are deterministic and
cannot satisfy the IND-CPA requirement from [18] and [19].
Therefore, our rationale for choosing FSXY is that it is

120952 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 1. Main features of the GAKE protocols claimed to be quantum-resistant.

the simplest transformation we are aware of which allows
for a uniform treatment of the four KEM finalists when
constructing the GAKE.

As far as we now, our protocol is the only existing GAKE
that simultaneously satisfy the two following properties:
can be implemented from any KEM, offers security in the
post-quantum setting and does not make use of post-quantum
signatures. To justify this fact, note that among the protocols
enumerated in Table 1, [1], [2], [3], [4], [5], [6], [7], [11] use
specific KEMs or post-quantum mathematical problems, [8]
makes use of a post-quantum signature and [9], [10] depart
from a two-party key exchange protocol, not from a KEM.
As every NIST finalist must include a KEM, this allows us to
provide full and working implementations of our GAKEwith
all the finalists.

We have instantiated and implemented our GAKE protocol
with the aforementioned four finalists from the NIST com-
petition. Our implementations make use of the open-source
library LibOQS and they cover the four KEMs and all the
different parameter sets proposed for each one. We have
conducted a performance analysis of the whole GAKE
protocol and compared the different versions.

In addition, we have independently studied the perfor-
mance of the different building blocks, including each of the
KEMs. We consider this comparative performance analysis
of the Round 3 finalists to be an interesting additional and
independent contribution.

Finally, we provide performance figures comparing our
GAKE implemented with Kyber to the GAKE presented
in [11], which is also Kyber based but uses the FOAKE
transformation ([18], [19]) to obtain the 2AKE. The GAKE
in [11] is the only one in the previous literature, as far as we
know, to have been implemented with one of the four KEM
finalists from NIST competition.

C. PAPER ROADMAP
We start by providing some preliminaries in Section II,
which will help the reader understand our GAKE design,

TABLE 2. NIST security levels.

subsequently depicted in Section IV. The security model we
are considering is described in Section III and we provide
a security proof for our protocol in Section IV. Section V
describes the different implementation possibilities and gives
a detailed explanation of our comparative experiments, which
results are further analyzed in Section VI. We finalize with a
brief summary of our conclusions in Section VII, which is
followed by two appendices. Appendix A depicts a complete
run of the GAKE protocol using Classic McEliece as a
building block, whereas Appendix B shows some numerical
results (linked to the graphics from Section VI).

II. PRELIMINARIES
A. ABDALLA ET AL.’s COMPILER: FROM 2-PARTY
AKE TO GAKE
Here, we briefly describe the compiler due to
Abdalla et al. ([14]), which derives a group authenticated
key exchange protocol GAKE from an arbitrary 2-party key
exchange protocol 2AKE. Abdalla et al.’s compiler only adds
2 additional rounds of communication to 2AKE, i.e., if 2AKE
needs in r rounds to run, GAKE requires r + 2 rounds.
Moreover, the compiler does not require any authentication
method beyond the ones required by 2AKE. It only assumes
that participants in GAKE are distributed on a ring, i.e., user
Ui is aware of the identity of its left neighbour Ui−1 and its
right neighbour Ui+1.

We denote withP the set of users that can participate in the
protocol GAKE and with G the subset {U0, U1, . . . ,Un−1} ⊂

VOLUME 10, 2022 120953

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 3. Classic McEliece parameter sets.

P of n ≥ 2 users that want to agree on a session key. A userUi
can run a polynomial number of (parallel) instances of GAKE.
2AKE assumes long-term authentication keys that have been
established in a trusted authentication phase. It allows a
pair of public/secret keys for each user Ui, a high entropy
symmetric key, or a low entropy password. shared for each
pair of users, and a common secret for all users.

The compiler depends on the following cryptographic
tools: A non-interactive non-malleable commitment scheme
C that is perfectly binding and achieves non-malleability for
multiple commitments, a collision-resistant pseudorandom
function family F, and a hash function H selected from a
family of universal hash functions.

We briefly describe the compiler (see details in [14]):
in Round 1 ∼ r , each user Ui runs 2AKE with Ui and
Ui+1, obtaining two keys

−→
K i and

←−
K i, shared with Ui+1 and

Ui−1. In Round r + 1, each user Ui computes a commitment
Ci = C(i,Xi, ri), where Xi =

−→
K i ⊕

←−
K i and ri is chosen

at random. Ui broadcast M1
i = (Ui,Ci). Finally, in Round

r + 2, each user Ui broadcasts M2
i = (Ui,Xi, ri), checks

that
⊕n−1

i=0 Xi = 0 and the correctness of the commitments
Ci. If any one of last two conditions fails, then user Ui ends
the protocol at this point. Then, Ui computes the master key
K = (K0, K1, · · · , Kn−1, G), where

Ki−j =
←−
K i ⊕ Xi−1 ⊕ · · · ⊕ Xi−j, j = 1, 2, . . . , n− 1.

Ui sets the session key ski and the session identifier sidi,
derived from F and H, respectively.

B. POST-QUANTUM KEMs
We instantiate both the 2AKE and the commitment scheme
C (needed for the compiler described in Section IV)
from a post-quantum KEM. Next we recall the formal
definition of a KEM: it is a triple of algorithms KEM =
(KeyGen,EnCap,DeCap) such that:
• The probabilistic key generation algorithm KeyGen(1`)
takes as input the security parameter ` and outputs a key
pair (dk, ek).

• The probabilistic encapsulation algorithm
EnCap(ek; r) takes as input a public encapsulation key
ek and outputs a ciphertext c and a key1 k . The value
r corresponds to the random coins used by EnCap.
We include it as an explicit input as we will need to refer
to it in the description of our GAKE.

1This key k is sometimes named as shared secret.

• The deterministic decapsulation algorithm
DeCap(dk, c) takes as input a secret decapsulation key
dk and a ciphertext c and outputs a key k or⊥ (meaning
decryption failure).

We will consider the four Round 3 KEM finalists from
NIST’s Post-Quantum standardization process. All of them
target the IND-CCA2 security notion as required by NIST
in its call for proposals, which is also usually named just
IND-CCA; we will use the latter denomination throughout
this paper. A KEM is considered to be IND-CCA secure if,
given an encapsulated ciphertext and a key which is either the
encapsulated key or a random one, an adversary (modeled
as a probabilistic polynomial-time algorithm) with access
to a decapsulation oracle is unable to distinguish between
these two options with a probability non-negligibly better
than a random guess. For a more formal definition see, for
instance, [20].

Concerning the practical security strength of the can-
didates, NIST establishes 5 security levels ([21]). These
security levels ask for resistance against attacks that use
computer resources comparable to or greater than those
required for key search against a block cipher or collision
search for a certain hash function.More precisely, the security
levels are summarized in Table 2.

Next, we briefly overview the four finalists KEMs. The full
description of all the algorithms submissions to Round 3 can
be found in the NIST webpage [22].

1) CLASSIC McEliece
Classic McEliece [23] is the only candidate based on codes.
The KEM is built from an OW-CPA deterministic PKE,
namelyNiederreiter’s dual version ofMcEliece’s PKE,which
uses binary Goppa codes ([24]). The Round 3 submission
of McEliece comes with 5 different parameter sets, each one
with two versions, depending on whether the parity check
matrix of the code is reduced to systematic or semi-systematic
form. The names of the parameter sets and their claimed
security levels are shown in Table 3.

2) CRYSTALS-KYBER
Kyber [25], like two other finalists, NTRU and Saber, bases
its security on a lattice problem, in this case, the Module
learning with errors (MLWE) problem. The proposal is based
on an IND-CPA PKE that allows decryption failures to occur
with a negligible probability. Then, a modification of the
Fujisaki-Okamoto transformation is used to obtain an IND-
CCA KEM. The submission includes 3 different parameter
sets pointing at NIST security levels 1, 3, and 5, respectively,
depicted in Table 4.

3) NTRU
The NTRU submission for Round 3 is a merger of
two different previous submissions, namely NTRUEncrypt
and NTRU-HRSS-KEM ([26]), both based in the NTRU
cryptosystem ([27]). Although the original NTRU was a
partially correct probabilistic PKE, this submission starts

120954 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 4. Kyber parameter sets.

TABLE 5. NTRU parameter sets.

TABLE 6. Saber parameter sets.

by defining a correct and deterministic PKE, which is
assumed to be OW-CPA. Then an IND-CCA KEM is
obtained from it by making small changes to the Saito-
Xagawa-Yamakawa variant of NTRU-HRSS-KEM ([28]).
The Round 3 submission proposes parameter sets which are
shown in Table 5. The authors of the NTRU submission
make two different estimations for the security level of their
parameter sets, depending on whether the computation model
is non-local or local. Details about these models and the
motivation for differentiating the security levels depending
on them can be found in the submission ([22]).

4) SABER
Saber (first proposed in [29]) is similar to Kyber, in the
sense that the authors present in their Round 3 submission
an IND-CPA PKE, and then they use a Fujisaki-Okamoto-
like transformation to obtain an IND-CCAKEM. In addition,
the PKE also comes with a negligible decryption failure
probability, and the security is reduced to a lattice problem,
in this case, the Module Learning With Rounding (MLWR)
problem. The authors propose three different parameter sets
for the KEM which are shown in Table 6 together with their
claimed security levels.

C. FSXY: A GENERIC CONSTRUCTION FROM KEM TO
POST-QUANTUM AKE
Generic transformations that convert secure KEMs into
AKEs have been proposed in the standard model in [30]
and [31]. These transformations give AKE protocols from
IND-CCA secure KEM schemes using pseudorandom func-
tions (PRFs). The resulting AKEs are proven secure in
widely accepted security models, CK [32] and CK+ [31],

respectively. Unfortunately, KEM schemes secure in the
standard model are computationally inefficient for both
classical and post-quantum communications.

In [17], Fujioka et al., proposed an efficient generic
construction of AKE protocols from OW-CCA secure KEM
schemes (which we denote by FSXY) by relaxing the
security model to the Random Oracle Model (ROM). The
resulting AKE protocols were proved to be CK+ secure
in the ROM. Moreover, it was shown that the (ring-)LWE,
McEliece one-way, NTRU one-way (among others) post-
quantum assumptions can be used to construct secure AKE
protocols. In addition, it was shown that by adapting the
ROM in the security proof of the FSXY construction, the
AKE protocols obtained from each post-quantum assumption
become efficient on the communication cost.

The FSXY construction is as follows. Let KEM1 =

(KeyGen1,EnCap1,DeCap1) be a OW-CCA secure KEM
and KEM2 = (KeyGen2,EnCap2,DeCap2) be a OW-CPA
secure KEM. Let ` be the security parameter H1 : {0, 1}∗→
RSE and H2 : {0, 1}∗ → {0, 1}` be hash functions modeled
as random oracles, where RSE is a randomness space. The
random values r and r1 are chosen from {0, 1}f (`), where f is
a polynomial function of the security parameter. The two-pass
key exchange protocol involving users UA (the initiator) and
UB (the responder) is shown in Fig. 1.
The session state of a session owned by UA contains an

ephemeral secret key r and a KEM key KA. Similarly, the
session state of a session owned by UB contains ephemeral
secret keys (r1, r2) and KEM keys (KB,1,KB,2).
It was shown in [17] that if KEM1 is OW-CCA secure, and

if KEM2 is OW-CPA secure, then the FSXY transformation is
CK+ secure under the Random Oracle Model.

D. BUILDING THE COMMITMENT SCHEME FROM
THE KEM
The compiler described in Section II-A requires as a building
block, a non-interactive non-malleable commitment scheme
that is perfectly binding and achieves non-malleability
for multiple commitments. Such a commitment scheme is
realized by applying the transformation proposed in [33]
to a KEM scheme (in particular, any Post-Quantum KEM
described in Section II-B) to obtain an IND-CCA PKE from
the KEM. As pointed out in [14], the commitment scheme
with the required security properties follows readily from
the PKE.

Let KEM = (KeyGen, EnCap, DeCap) be a key
encapsulation mechanism and let SKE = (Enc, Dec) be a
one-time symmetric key encryption scheme (as defined in
Section 7.2 of [33]). The key lengths of both primitives must
be the same for any value of the security parameter `. Then,
a PKE scheme PKE is obtained as follows.
The key generation algorithm for PKE is the same as that

of KEM, and, hence, the secret and public keys for PKE are
the same as those of KEM. That is, PKE runs KeyGen and
obtains (sk, pk), where sk and pk are the secret and public
key, respectively.

VOLUME 10, 2022 120955

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 1. FSXY transformation.

The encryption algorithm for PKE runs as follows. Upon
receiving a messagem, PKE runs the encapsulation algorithm
of KEM and obtains (k, ξ) ← EnCap(pk; r), where k is a
symmetric key, r are random coins, and ξ is a ciphertext
encrypting k . The message m is encrypted using the key k
and the encryption algorithm of SKE, ν ← Enc(k,m). The
output of the encryption algorithm is c = (ξ, ν).
The decryption algorithm is defined as follows. Given a

ciphertext c = (ξ, ν), PKE runs the decapsulation algorithm
of KEM and obtains k = DeCap(sk, ξ), and then runs
the decryption algorithm of SKE with the key k to obtain
m = Dec(k, ν). The output of the decryption algorithm is
the plaintext m.

As shown in [33], the IND-CCA security of PKE
is inherited form the IND-CCA sucrity of KEM and
SKE. As pointed out in [14], it is known that in the
CRS model with a common reference string ρ, the
required commitment schemes depending on ρ can be
constructed from any public-key encryption scheme that
is non-malleable and secure for multiple encryptions (in
particular, from any IND-CCA secure public-key encryption
scheme).

The approach in this section is usually known as the
KEM-DEM paradigm, where DEM stands for data encap-
sulation mechasism. Here the algorithm SKE plays the latter
role, so we will usually refer to it as the DEM.

III. SECURITY MODEL
In this section we present the security model under which our
protocol is proven to be secure. The model is taken from [14]
which is in turn based on the one from Bellare et. al. [34].
We assume a fully connected communication network, that is,
each pair of users are able to communicate through a point-to-
point channel. We consider an active adversary who is in full
control of the network: it has the power to eavesdrop, delay,
insert or delete messages in communication flow at will.

A. PROTOCOL INSTANCES
Let U0,U1,U2, . . . ,Un−1 be the set of participants. Each of
them may run any polynomial number of protocol instances
in parallel. Given i ∈ {0, 1, . . . , n − 1} and si ∈ N we
denote with5si

i the si-th instance vinculated to user Ui. Each
instance 5si

i has seven variables associated with it:

120956 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

• usedsii is a boolean variable which indicates if this
instance has been used in a protocol run; it is set to true
only if the instance receives a protocol due to a call to
the Execute or to the Send oracle (described later).

• statesii stores all the protocol information that the
instance needs during the protocol execution together
with long term keys.

• termsi
i is a boolean variable which indicates if the

execution has finished.
• sksii stores the session key if it has been accepted by the
instance; before it is initialized to a distinguished null
value.

• accsii is a boolean variable indicating if the instance has
accepted the session key.

• sidsii stores a public session identifier for the session key
sksii .

• pidsii stores the set of identities of participants that are
involved in the instance execution, including Ui.

B. ADVERSARIAL CAPABILITIES
An adversaryA is a polynomial probabilistic time algorithm.
The adversarial power is modelled by providing A access to
several oracles during a security game (described later). The
oracles are the following:

• Send(Ui, si,M): Sends message M to the instance 5si
i

and outputs the response message of that instance, if any.
WheneverA queries this oracle with an unused instance
5
si
i andM consisting of a set participant identities, then

usedsii is set to true, pidsii set to {Ui} ∪M and the initial
protocol message of 5si

i is output.
• Execute({5

su1
u1 , . . . ,5

suµ
uµ }): Executes a complete pro-

tocol run within the specified instances. It outputs a
transcript of all sent messages. A query to this oracle
models a passive eavesdropping by A.

• Reveal(Ui, si): Outputs the value stored in sksii .
• Test(Ui, si): The output of this oracle depends on a bit
b chosen uniformly at random at the beginning of the
security game. The adversary may query this oracle only
if the session key is defined (that is, accsii = true and
sksii 6= null) and the instance 5si

i is fresh (freshness
is defined later in this section). Then, the session key
sksii is returned if b = 0 or a value chosen uniformly at
random from the key space is returned if b = 1. In this
model, an arbitrary number of Test queries is allowed;
but, once a value has been returned for an instance 5si

i ,
subsequent queries for all instances partnered with 5si

i
will return the same value (partnering is defined later in
this section).

• Corrupt(Ui): Returns all long-term secrets of user Ui.

C. SECURITY DEFINITIONS
First we need a definition of partnering, which indicates that
two instances are participating in the same protocol session.

Definition 1: Instances 5
si
i and 5

sj
j are partnered if

pidsii = pidsjj , sidsii = sidsjj , sksii = sksjj and also
accsii = accsjj = true.
Against a passive adversary which does not interfere with

protocol execution, all involved users should accept and end
with the same session key. This is captured in the definition
of correctness.
Definition 2: A group key establishment protocol is correct

if, in the presence of a passive adversaryA (that is,A does not
have access to the Send and Corrupt oracles), the following
condition holds: for all i, j with sidsii = sidsjj and accsii =
accsjj = true, we have sksii = sksjj 6= null and pidsii = pidsjj .
The notion of integrity, introduced in [35], ensures that,

evenwith adversarial intervention, honest users (meaning that
Corrupt has not been queried on them) have some guarantees
of holding the same key.
Definition 3: A correct group key establishment protocol

is said to have integrity if, with overwhelming probability, all
instances of honest participants that have accepted with the
same session identifier sidsjj hold the same session key sksjj
and partner identifier pidsjj .
Before providing the definition of a secure protocol we

need to limit when a query to the Test oracle, to avoid trivial
attacks from the adversary.
Definition 4: A Test query should only be allowed to

instances holding a key that is not for trivial reasons known to
the adversary. To achieve this, an instance5si

i is called fresh
if none of the following condition holds:
• For some Uj ∈ pidsii a query Send(Uk , sk ,M) after a
query Corrupt(Uj).

• The adversary have queriedReveal(Uj, sj)with5
si
i and

5
sj
j being partnered.

The last notion we need before defining a secure group key
establishment protocol is adversarial advantage.
Definition 5: Given a security parameter ` and an adver-

saryA, the advantage AdvA(`) in attacking the protocol is a
function in `, defined as

AdvA(`) := |2 · Succ− 1|

whereSucc is the probability that the adversary queries Test
only on fresh instances and outputs correctly the bit b used by
the Test oracle (without later breaking the freshness of those
instances queried with Test).
Definition 6: We say that an authenticated group key

establishment protocol is secure if for every adversary A we
have that

AdvA(`) ≤ negl(`)

where negl is a negligible function.

IV. OUR GAKE CONSTRUCTION
In this section we describe our GAKE protocol for n ≥ 2
users or parties U0,U1,U2, . . . ,Un−1. They are organized in
a cycle: each userUi has as his left neighbourUi−1 and as his
right neighbour Ui+1. The indices are taken modulo n, so Un

VOLUME 10, 2022 120957

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 2. Relationships between primitives and transformations applied to GAKE protocol.

means U0 and U−1 means Un−1. We assume that each user is
aware of his index and the rest of the indices identifying the
other users of the protocol.

For the construction of the GAKE we use the following
primitives:

• KEM = (KeyGen, EnCap, DeCap) is an IND-CCA
KEM.

• SKE = (Enc, Dec) is an one-time symmetric key
encryption scheme used as a DEM.

• H is a hash function (theoretically modeled as a random
oracle).

To obtain the GAKE, we feed the tools described in Sec-
tions II-A, II-C and II-D with these primitives (Fig. 2). First
we instantiate a 2-party AKE with the FSXY transformation
from Section II-C, using KEM as both KEM1 and KEM2.
Note that the security notion IND-CCA is well known to
imply both the OW-CPA and OW-CCA requirements for
KEM1 and KEM2. The resulting 2AKE satisfies the strong
security notion CK+ ([31]), which is enough for the compiler
described in Section II-A. We would like to stress that,
as pointed out in [35], an integrity property is also needed
for 2AKE in order to attain the claimed security notion. It is
a straightforward comprobation that the 2AKE obtained from
FSXY has integrity because of the way session identifiers are
computed. The other ingredient needed for the compiler is
a commitment scheme, which is also obtained from KEM as
described in Section II-D. Note that all the KEMs enumerated
in Section II-B fulfill the IND-CCA security and can be used
in our construction. Finally, the hash function H is used to
derive session identifiers and keys, both in the 2AKE and
the final step of the protocol. It is worth pointing out that
the resulting GAKE achieves security in the model described
in Section II-A, which covers strong adversaries that are in
full control of the communication network and may delay,
eavesdrop, insert, and delete messages at will.

Next, we describe the resulting GAKE protocol which is
composed of 4 rounds of communication:

Init: Each Ui is assumed to hold a pair (dki, eki) generated
with KeyGen. Here eki is the long-term public encapsulation
key forUi and is assumed to be certified and known by the rest
of the users, whereas dki is the long-term secret decapsulation
key for Ui.

Round 1-2: For each i ∈ {0, 1, . . . , n−1} the 2AKE is run
between Ui and Ui+1. The two rounds are as follows:

Round 1: Each Ui follows these steps:
– Generates randomness −→ri ← {0, 1}f (`).
– Generates encapsulated key

(
−→
Ci ,
−→κi)← EnCap(eki+1;H (−→ri , dki)).

– Generates an ephemeral key pair

(
−→
dk i,
−→
ek i)← KeyGen().

– Sends (Ui,Ui+1,
−→
C i,
−→
ek i) to Ui+1.

Round 2: Each Ui follows these steps:
– Generates randomness←−ri ← {0, 1}f (`) and

←−ρi ←

RSE .
– Generates encapsulated key

(
←−
Ci ,
←−κi)← EnCap(eki−1;H (←−ri , dki)).

– Generates another encapsulated key

(
←−
Ti ,
←−
λ i)← EnCap(

−→
ek i−1;

←−ρ i).

– Sends (Ui−1,Ui,
←−
Ci ,
←−
Ti) to Ui−1.

After receiving Round 2 message from Ui+1, each Ui :
– Decapsulates the keys −→κ i−1,

←−κ i+1,
←−
λ i+1 from

received messages.
– Sets
←−−
sid = (Ui−1,Ui, eki−1, eki,

−→
C i−1,

−→
ek i−1,

←−
Ci ,
←−
Ti).

– Computes key (shared with Ui−1)
←−
K i = H (−→κ i−1,

←−κ i,
←−
λ i,
←−−
sid)

– Sets
−−→
sid

= (Ui,Ui+1, eki, eki+1,
−→
C i,
−→
ek i,
←−
C i+1,

←−
T i+1).

120958 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

– Computes key (shared with Ui+1)
−→
K i = H (−→κi ,

←−κ i+1,
←−
λ i+1,

−−→
sid).

Round 3: Each Ui follows these steps:
• Computes Xi =

−→
K i ⊕

←−
K i.

• Generates randomness r ′i ← RSE for KEM and a
random IVi for DEM.

• Generates encapsulated key (Ci, κi)← EnCap(ek i; r ′i).
• ci = Enc(κi, i||Xi,IVi).
• Sets commitment to comi = (ci,Ci) and stores
randomness ri = (IVi, r ′i).

• BroadcastsM1
i = (Ui, comi).

Round 4: Each Ui follows these steps:
• BroadcastsM2

i = (Ui,Xi, ri).
• Checks thatX0⊕X1⊕· · ·⊕Xn−1 = 0 and the correctness
of the commitments. If any one of these conditions fails,
then Ui ends the protocol execution.

• Computes the n − 1 values Kj for j = 0, 1, 2, . . . ,
n− 1 with j 6= i,

Ki−j =
←−
K i ⊕ Xi−1 ⊕ · · · ⊕ Xi−j.

• Defines session key ski and session identifier sidi as

(ski||sidi) = H (K0, . . . ,Kn−1,U0, . . . ,Un−1).

Next, we provide some comments pointing out differences
between the compiler described in Section II-A and our
implementation and also explaining some design choices and
protocol steps in more detail:
• The input of KeyGen() in the asymptotic description of
the KEM is the security parameter. In our implementation
KeyGen() outputs keys of fixed length for each KEM
and parameter set, so it has no input. The sets {0, 1}f (`)

and RSE are the randomness spaces described in
Section II-C.

• To compute the commitment comi to Xi, first an
encapsulated key κi is generated with EnCap. Then
the message i||Xi (where || denotes concatenation) is
encrypted with Enc using key κi. The randomness ri
used by EnCap needs to be stored by Ui to open the
commitment in the next round. Therefore we needed to
modify EnCap for each KEM in our implementation to
make the randomness an explicit output of the algorithm
instead of being generated by the algorithm itself.

• The verification of the commitments in Round 4 is done
by recovering the key κi from ri with EnCap, then
generating a new commitment com′i with Xi and ri and
checking that comi and com′i are equal.

• In the original compiler, the final key and session
identifier derivation is done with a collision-resistant
pseudorandom function family. The reason for using this
tool is that, if the 2AKE has a security proof in the
standard model, the compiled GAKE is also secure in
the standard model. As the FSXY transformation already
uses a hash function, our GAKE is only secure in the
random oracle model, so we have chosen to simplify the
compiler and use the same hash function for key and
session identifier derivation.

• The hash function we have chosen in our imple-
mentation has output length which is double of
the GAKE session key length. So the hash value
H (
←−
K 0,
←−
K 1, . . . ,

←−
K n−1,U0,U1, . . . ,Un−1) is com-

puted and ski is set to be the first half of this value
and sidi is set to be the second one.

A. SECURITY OF OUR PROPOSED GAKE PROTOCOL
Next we prove a security result for our protocol under the
security model described in Section III.
Theorem 1: In the random oracle model, the protocol

presented in Section IV is a correct and secure authenticated
group key establishment protocol fulfilling integrity.
Proof:We follow the security proof of Theorem 1 in [14].
Correctness. It is easily verified that in an honest exe-

cution of the protocol, all participating users will terminate
by accepting and computing the same session identifier and
session key.

Integrity. As a consequence of the collision-resistance of
the random oracle H , all oracles that accept with the same
session identifiers also hold, with overwhelming probability,
identical session keys K0, . . . ,Kn−1 and associated these
keys with the same participants U0, . . . ,Un−1.
Key secrecy. The proof of the secrecy is organized in

a sequence of games, starting with a real attack of an
adversary A against the key secrecy of the GAKE protocol
and ending in a game in which the advantage of the adversary
is negligible. The idea is that we can bound the difference
of the adversary’s advantage between any two consecutive
games. We denote the advantage of the adversary in Game
i, as usual, by Adv(A,Gi). For the sake of clarity, we classify
the Send queries into three categories depending on the
stage of the protocol to which the query is associated. More
preceisely, Send-t denotes the Send query associated with
round t .
The first three games of this proof coincide with the same

as those in Theorem 1 of [14]. Here we summarize the
bounding of the adversary’s advantage and refer the interested
reader to the original paper for the details.
Game 0. In this game, a real attack is performed by

the adversary A, in which all the parameters such as the
public parameters and the long-term secrets of each user
are chosen as in the actual scheme. By definition we have
Adv(A,G0) = Adv(A).
Game 1. For i = 0, 1, . . . , n−1, we modify the simulation

of the Send and Execute oracles so that whenever an
instance 5si

i is still considered fresh at the end of Round 2,
the keys

←−
K i and

−→
K i that it shares with instances 5si−1

i−1 and
5
si+1
i+1 , respectively, are replaced with random values from the

range of the random oracle H .
It is not difficult to see that the difference between the

advantage of this game and the previous one is bounded by
the probability that the adversary breaches the security of
any of the underlying 2AKE protocols executions. Therefore,

VOLUME 10, 2022 120959

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

we have

|Adv(A,G1)− Adv(A,G0)| ≤ 2 · Adv2AKE(`, 2 · qsend),

where qsend denotes the number of distinct protocol instances
in Send queries.

Game 2. Here, the simulation of the Send oracle is
modified so that a fresh instance 5si

i does not accept in
Round 4 whenever one commitment comj, j 6= i, it receives
in Round 3 was generated by the simulator but not generated
by the respective instance5

sj
j in the same session.

If the adversary A replays a commitment that should have
let to acceptance in Round 4 in Game 1, then A detects the
difference between this and the previous games. Therefore,

|Adv(A,G2)− Adv(A,G1)| ≤ negl(`).

Game 3. In this game, the simulation of the Send oracle
changes so that a fresh instance 5si

i does not accept in
Round 4 whenever one commitment comj, j 6= i it receives
in Round 3 was generated by the adversary. The advantage of
the adversary differs from the previous game by a negligible
amount, that is,

|Adv(A,G3)− Adv(A,G2)| ≤ negl(`).

Game 4. Here the simulations of the Execute and Send
oracles are modified at the point of computing the session
key. On one hand, in this game, all session keys are chosen
uniformly at random and the adversary has no advantage.
Hence,

Adv(A,G4) = 0.

On the other hand, the simulator keeps a list of
strings (K0, . . . ,Kn−1,U0, . . . ,Un−1) and once an instance
receives the last Send-4 query, the simulator computes
K0, . . . ,Kn−1 and checks if for the corresponding string
(K0, . . . ,Kn−1,U0, . . . ,Un−1) has already been used. If this
is the case, the simulator assigns the corresponding string to
the instance. If no such strings exist, the simulator assigns a
session key sksii ∈ {0, 1}

` uniformly at random. Note that
even if the messages from Round 4 are sent out, the list of
strings still contains sufficient entropy so that the output of
the random oracle H is indistinguishable from a random sksii
with overwhelming probability. Consequently,

|Adv(A,G4)− Adv(A,G3)| ≤ negl(`).

Together, all the bounds obtained in the games imply that

Adv(A) ≤ 2 · Adv2AKE(`, 2 · qsend)+ negl(`).

�

V. IMPLEMENTING THE GAKEs
In the following, we describe the implementation of the
GAKE protocol, which is publicly available at https:
//github.com/jiep/pq-gake-fsxy. To do so,
we describe separately each of the building blocks that make
up the protocol.

A. BUILDING BLOCKS
1) KEM
The KEMs are taken from the open-source library LibOQS
([37]). It provides all the finalist implementations submitted
to the NIST standardization process.2 It has been developed
by the OpenQuantumSafe project, which aims at prototyping
and experimenting with post-quantum cryptography, but as of
today, it is not production-ready. It is written in C99 and its
advantages include:
• Dynamic management of the KEMs, making it possible
to exchange one for the other without the need to modify
the code of the protocol.

• Building the librarywith only theKEM implementations
that are needed in the application.

• Easy cross-compilation.
• Provides common functions (e.g. hash and random bits
functions, among others).

LibOQS provides 10 parameter sets for Classic McEliece,
3 for Kyber,3 4 for NTRU, and 3 for Saber. Table 7 shows the
key sizes (public and secret), the size of the shared secret and
ciphertext, as well as the claimed security level and security
model of all parameter sets in LibOQS. It can be noted that
the public key size of Classic McEliece is several orders of
magnitude larger than the other KEMs. On the other hand,
the ciphertext size is smaller than the other finalists in the
standardization process.

Two different implementations come from each parameter
set: the reference implementation (called ref, clean, or vec
by the KEMs) and the optimized implementation (named
avx2 or avx). All information on these implementations can
be found in Table 8. It can be noted that the reference
implementations do not present any architecture or operating
system limitation, whereas the optimized implementation
runs only on the x86_64 architecture for macOS and
Linux operating systems. It is noteworthy that the Classic
McEliece implementations have large stack usage and may
cause failures when run on threads or in constrained
environments ([36]).

The KEM is the basic building block on which the
subsequent ones depend.

2) 2-PARTY AKE
The 2AKE has been implemented by following the FSXY
transformation of Fig. 1. It has been split into three
algorithms:
• Init: the algorithm that runsUA at the beginning of the
protocol and outputs message

−→
M .

• AlgB: the algorithm that runsUB by taking the message
−→
M and outputs the message

←−
M and the session key SK.

2It also provides all the implementations of the finalist digital signatures,
but for the implementation of this protocol, they are not required.

3It provides 6 parameter sets, but the so-called 90s variants will not
be considered because they are intended for legacy hardware and do not
support SHA-3, and our implementations depends on it.

120960 VOLUME 10, 2022

https://github.com/jiep/pq-gake-fsxy
https://github.com/jiep/pq-gake-fsxy

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 7. Properties of each parameter set implemented in LibOQS. Source: [36].

• AlgA: the algorithm that runs UA at the end of the
protocol by taking as input the message

←−
M and outputs

the session key SK.

Note that Init corresponds to Round 1 of our GAKE
description in Section IVwhereas AlgB and AlgA constitute
Round 2.

In the implementation, KEM1 = KEM2 and the hash
functions H1 and H2 are SHA3-256 provided by LibOQS.

3) COMMITMENT SCHEME
The commitment scheme has been implemented as an
IND-CCA PKE with the KEM/DEM approach (see details in
Section II-D), with the KEM being any of those implemented
in LibOQS and the DEM being set to AES256-GCM
imported from OpenSSL 1.1.1f ([38]). The commitment is
given by the ciphertext of the KEM and the tag of the DEM.
The randomness ri is given by the coins of the KEM and
the IV of the DEM. Note that in Round 4 of the GAKE
protocol, ri is broadcast, so it was required to modify all
LibOQS implementations (see Table 8) to make the KEM
deterministic to preserve the randomness.

Three algorithms are implemented:

• Init allocates space for KEM and DEM ciphertexts.
• Commit creates a commitment as described in
Section II-D.

• Check creates a commitment and checks if it is equal
to a commitment created previously.

B. GAKE PROTOCOL
The GAKE protocol has been implemented using the afore-
mentioned building blocks. All hash functions come from the
SHA-3 hash functions implemented in LibOQS. In addition,

the implementation assumes a zero-delay communications
network.

The protocol allows for a polynomial number of instances
running in parallel. Hence, certain variables are required to
keep the state of the instance. These are inherited from the
Abdalla et al.’s compiler ([14]):
• public_key contains authentication public key.
• secret_key contains authentication secret key.
• pid contains the user identifiers Ui that are involved in
the protocol instance.

• sk is the session key. Its size is 32 bytes. By default, its
value is set to 0256.

• sid is the public identifier for sk. Its size is 32 bytes.
• term is a boolean variable that indicates whether
an instance has terminated. In the implementation,
0 indicates false and 1, true.

• acc is a boolean variable that indicates whether an
instance has been accepted.

• Other variables that contain all the needed values for the
protocol (e.g.

←−
K i,
−→
K i,Xi, ri,K , etc.).

1) INIT
During the Init phase, all parties generate their long-term
authentication keys, and all the public keys are assumed to
be known by the rest of the users.

2) ROUND 1-2
During Round 1-2, two types of messages are exchanged:
• Message

−→
M contains a public key, a ciphertext, and UA

and UB. The size of UA and UB is set to 20 bytes.
• Message

←−
M contains two ciphertexts, as well

as UA and UB.
Their size depends on the KEM in use (see Table 7).

VOLUME 10, 2022 120961

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 8. Characteristics of each parameter set in LibOQS. Source: [36].

3) ROUND 3
During Round 3, the messages M1

i , i = 0, . . . , n − 1, are
broadcast to all other users. ThemessageM1

i contains the user
identifier Ui, the KEM ciphertext, and the DEM ciphertext

and tag. The randomness ri keeps the coins of the KEM and
the IV of the DEM. The size of Ui is set to 20 bytes and to
encrypt i || Xi, 36 bytes are needed (|Xi| = 32 and |i| = 4).
The tag size is 16 bytes.

120962 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 3. Run of GAKE protocol with 100 parties for two KEMs.

4) ROUND 4
In Round 4, n messages M2

i are broadcast. The message
contains Ui and the randomness ri (coins of the KEM and
IV of the DEM). The size of Xi is 32 bytes and the IV is
12 bytes. The size of coins depends on the KEM being used
(see Table 7).

The session key sk and sid is generated from master key
K with SHA3-512, where first 32 bytes are set to be the sk
and last 32 bytes are set to be the sid.

Fig. 3 shows a run of GAKE protocol for Kyber1024 and
Classic-McEliece-8192128f with 100 parties. See Appendix
A for a complete run of the protocol.

C. BENCHMARKING ENVIRONMENT
A workflow has been developed on GitHub Actions that
allows reproducing the experiments in an isolated environ-
ment. The workflow is described in Fig. 4 and includes all
the required steps from building the GAKE protocol binaries
to executing them and obtaining the experimental results. The
workflow runs on an Ubuntu 20.04 runner hosted on GitHub
Actions and consists of 4 steps:

1) Build: It builds all the binaries and the libraries they
depend on. Fig. 5 shows the complete process.
A A custom library is built from the LibOQS

v0.7.0 library ([37]). In it, all the KEM
implementations have been modified to be
deterministic to keep the randomness of the com-
mitment scheme. Its building has been automated
with CMake by enabling the options -DOQS_
DIST_BUILD = ON and -DOQS_MINIMAL_
BUILD = “${ENABLED_ALGS}”, where
ENABLED_ALGS is an array that enables desired
KEMs (see details in [36]). It enables only the
algorithms specified in the LibOQS library in
Table 7. In addition, OpenSSL 1.1.1f is statically

TABLE 9. Hardware specifications for the self-hosted runner.

linked, which is a dependency required by
LibOQS.With the options enabled, a static library
is built and gcc has been used as the C compiler.

B The GAKE protocol code is built with CMake
and gcc as in the previous step. The latter uses
the -O3 and -fwrapv options. The custom
LibOQS library andOpenSSL 1.1.1f are statically
linked. The latter is used to implement AES256-
GCM in the commitment scheme. A series of
tests with ctest is launched to guarantee that the
generated binaries work properly. These include
the correct functioning of all the building blocks
that integrate the GAKE protocol: AES256-
GCM, the AKE, the commitment scheme, and
the implementation of the GAKE protocol
itself for each of the KEM implementations
in LibOQS.

2) Run tests: This step measures the performance of each
of the building blocks of the GAKE protocol. Perfor-
mance is measured in terms of the number of CPU
cycles and execution time. For this purpose, we used
the LibOQS header ds_benchmark.h available at
https://github.com/open-quantum-safe/liboqs/blob/0.7.
0/tests/ds_benchmark.h. It implements two macros to
measure performance:
• TIME_OPERATION_ITERATIONS: It executes
a piece of code for a given number of iterations.

• TIME_OPERATION_SECONDS: It executes a
piece of code for a given number of seconds.

All experiments are run with the former macro.
This step is run on a self-hosted runner with Ubuntu
20.04 on WSL2 ([39]) under Windows 10 on with
specifications given in Table 9. This was done with this
approach because runners hosted on GitHub Actions
can only run for a maximum of 6 hours ([40]), which is
not enough time to run all the necessary experiments.
The tests defined in this step are:
• test_speed_kem: This test measures the per-
formance (in CPU cycles and execution time) of
each KEM implemented in LibOQS (see Table 7).
Key generation, encapsulation, and decapsulation
are measured separately. The result of this test is
an average of 10 000 iterations.

• test_speed_ake: It measures the performance
of the FSXY transformation for each of the
KEMs implemented in LibOQS. Each algorithm
of the transformation is measured independently.

VOLUME 10, 2022 120963

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 4. Workflow running experiments on GitHub actions.

FIGURE 5. Build step.

The result is an average of the execution of 10 000
iterations.

• test_speed_commitment: It measures the
performance of the commitment scheme for each
of the KEMs implemented in LibOQS. The DEM
is always fixed to AES256-GCM. 10 000 iterations
are run to measure the performance of key
generation, generate a commitment and check it.

• test_speed_gake: It measures the perfor-
mance of the GAKE protocol for each of the KEMs
implemented in LibOQS based on the number
of parties, n, running the protocol. It is run for
n = 2, 22, . . . , 211 = 2048. In addition, the
performance of each round of the protocol is
measured separately.

All of the tests above generate tables that are converted
to CSV format to be processed in the subsequent steps.

3) Generate graphics: This step generates the graphics of
Section VI. The graphics are plotted with Python and
the seaborn visualization library ([41]). All graphics
are saved in png format.

4) Release: It creates a new release on GitHub and
uploads all the data that has been generated during the
workflow, which was stored in Artifacts on GitHub
Actions ([42]): binaries, graphics, and CSV files.

VI. EXPERIMENTAL RESULTS: COMPARISON AMONG
THE FOUR KEMs
In this section, we compare the experimental results achieved
from the aforementioned tests. More precisely, we present
the results of the tests described in Section V-C. For each
of the four KEMs and each security level, we compare the
performance of all the cryptographic primitives involved,
including all the underlying operations (algorithms) of
each of them. Namely, KEM, the two-party AKE, the
commitment scheme and, finally, the GAKE protocol. Note
that we only compare the optimized implementation of each
parameter set (see Table 8). Numerical results can be found
in Appendix B.

Fig. 6 shows the performance of each KEM operation
for each security level. It can be observed that, for all
security levels, the KeyGen algorithm is significantly slower
on Classic McEliece than on the other KEMs. This is
caused by the huge size of the keys in Classic McEliece
(see Table 7). The Encaps algorithm does not show
significant differences, whereas the Decap algorithm does
show this difference Classic McEliece vs. other KEMs,
but it is not as meaningful as in the case of the KeyGen
algorithm.

Fig. 7 shows the performance of the AKE achieved from
the FSXY transformation (Fig. 1). It can be seen that, for

120964 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 6. CPU cycles for KEM operations (Key Generation,
Encapsulation, and Decapsulation) on levels 1, 3, and 5.

each security level and each AKE algorithm, the performance
difference between Classic McEliece and the rest of the
schemes is significant. This is because the AKE is KEM
dependent, with the KeyGen and Decap algorithms being
slower in Classic McEliece than in the other KEMs.

Concerning the commitment scheme (Fig. 8), Classic
McEliece is faster during the Init algorithm. This is mainly
because ClassicMcEliece ciphertexts are smaller than the rest
(see Table 7). The Commit and Check algorithms perform
better with NTRU, at any security level.

Fig. 9 shows the performance of the GAKE protocol in
each round. The Init round initializes the structure and
variables needed to store the state of the protocol instance.
It can be observed that Kyber is noticeably more efficient
than the rest of the schemes, at any security level. In Round
1-2 (AKE) and Round 3 (commitment generation), the same
applies: Kyber parameter sets offer the best performance.
Finally, in Round 4 (commitment checking, master key
derivation, and session key generation) the performance at
security level 1 is very similar among the parameter sets.
The most efficient is NTRU-HPS-2048-677 for level 3 and
NTRU-HPS-4096-821 for level 5.

Fig. 10 shows the performance of the GAKE protocol as a
function of the number of parties participating in the protocol.
It can be noted that, at all security levels, Classic McEliece is
significantly less efficient than the rest of the KEMs and this
is found to worsen as the number of parties in the protocol

FIGURE 7. CPU cycles for AKE operations (Init, AlgB, and AlgA) on
levels 1, 3, and 5.

FIGURE 8. CPU cycles for commitment operations (Init, Commit and
Check) on levels 1, 3, and 5.

increases. The most efficient at security level 1 is Kyber 512,
at level 3 is NTRU-HRSS-701, and at level 5 is Kyber1024.

VOLUME 10, 2022 120965

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

FIGURE 9. CPU cycles for GAKE rounds (Init, Round 1-2, Round 3, and,
Round 4) on levels 1, 3, and 5.

FIGURE 10. Running time for GAKE protocol depending on parties for
KEM on levels 1, 3, and 5.

A. COMPARISON WITH THE STATE OF THE ART:
FSXY VS. FOAKE
In this section, we provide experimental comparisons
between the performance of the the FSXY transformation
described in Section II-C with the FOAKE transforma-
tion ([18], [19]) used in [11] on Kyber.

TABLE 10. Theoretical comparison between FSXY and FOAKE
transformations.

FIGURE 11. Transformation FSXY vs FOAKE on Kyber.

In this section, we compare experimentally the perfor-
mance of the FSXY transformation described in Section II-C
with the FOAKE transformation ([18], [19]) used in [11] on
Kyber. The latter is a novel transformation analogous to
FSXY, i.e., it derives a secure two-party AKE from another
cryptographic primitive (in this case, from an IND-CPA
public-key novel encryption scheme). FOAKE is proved to
be secure in the QROM, but it cannot be applied to just
any KEM, only to those that satisfy several properties (see
details in [19] and [11]). It is shown in [11] that it can be
applied to Kyber. Table 10 shows a theoretical comparison
between FSXY and FOAKE transformations. The FOAKE
transformation consists of 2 messages in the same way as
the FSXY transformation, but the former sends messages

−→
M

and
←−
M that do not contain UA and UB, which, consequently,

produces messages of a smaller size. As in Section VI,

120966 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

we compare the performance of all the involved operations
of each security level of Kyber.

Fig. 11 shows the comparison between both transforma-
tions with Kyber. It can be seen that the FOAKE transformation
performs better than FSXY. The results show that, if Kyber is
applied as KEM on this GAKE protocol, FOAKE should be
considered instead of FSXY providing, in addition, a higher
level of security by being secure in the QROM.

VII. CONCLUSION
This paper shows the performance of a post-quantum key
authenticated key exchange (GAKE) protocol constructed by
applying the generic FSXY transformation to the all NIST
finalist post-quantum KEMs. The protocol has been imple-
mented with LibOQS, an open-source library that provides
all the finalist KEMs of the NIST standardization process.

We show experimentally that Classic McEliece is not suitable
in this GAKE because it is significantly slower than the
other KEMs. The most appropriate KEM for security level 1
is Kyber 512, for level 3 is Kyber768 and NTRU-HRSS-
701, and, for level 5 is Kyber1024. In addition, the FOAKE
transformation is compared against FSXY on Kyber, showing
that the latter is significantly faster than FSXY and provides
a higher level of security by being QROM secure. This
last result is especially noteworthy considering that Kyber
is the first post-quantum KEM that will be standardized
by NIST.

APPENDIX A
COMPLETE RUN OF THE GAKE PROTOCOL
Here, we show a complete run of GAKE protocol with
Classic-McEliece-8192128f for 3 parties (for brevity).

VOLUME 10, 2022 120967

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

120968 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

VOLUME 10, 2022 120969

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

120970 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

VOLUME 10, 2022 120971

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

120972 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

VOLUME 10, 2022 120973

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

APPENDIX B
NUMERICAL RESULTS OF TESTS
Tables 11–18 show numerical results for each graphic shown in Section VI.

TABLE 11. CPU cycles for each operation on KEM.

TABLE 12. CPU cycles for each operation on AKE.

120974 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 13. CPU cycles for each operation on the commitment scheme.

TABLE 14. Time (in us) for each round on GAKE protocol.

VOLUME 10, 2022 120975

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

120976 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

VOLUME 10, 2022 120977

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

120978 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 14. (Continued.) Time (in us) for each round on GAKE protocol.

TABLE 15. Total running time (in us) of the GAKE protocol for each number of parties.

VOLUME 10, 2022 120979

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 16. CPU cycles for each operation on AKE scheme between FSXY and FOAKE transformations.

TABLE 17. CPU cycles for each operation on GAKE protocol between FSXY and FOAKE transformations.

120980 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 17. (Continued.) CPU cycles for each operation on GAKE protocol between FSXY and FOAKE transformations.

TABLE 18. Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

VOLUME 10, 2022 120981

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

TABLE 18. (Continued.) Mean running time that runs every party (in us) of the GAKE protocol as a function of the number of parties.

ACKNOWLEDGMENT
The authors would like to thank María I. González Vasco
for her help during the proccess of ellaboration of the
manuscript, through fruitful discussions and useful comments
and suggestions.

REFERENCES
[1] A. Fujioka, K. Takashima, and K. Yoneyama, ‘‘One-round authenticated

group key exchange from isogenies,’’ in Proc. ProvSec, in Lecture Notes
in Computer Science, vol. 11821. Cham, Switzerland: Springer, 2019,
pp. 330–338.

[2] H. B. Hougaard and A.Miyaji, ‘‘Authenticated logarithmic-order supersin-
gular isogeny group key exchange,’’ Int. J. Inf. Secur., vol. 21, pp. 207–221,
May 2021.

[3] D. Apon, D. Dachman-Soled, H. Gong, and J. Katz, ‘‘Constant-round
group key exchange from the ring-LWE assumption,’’ inPQCrypto, in Lec-
ture Notes in Computer Science, vol. 11505. Cham, Switzerland: Springer,
2019, pp. 189–205.

[4] R. Choi, D. Hong, and K. Kim, ‘‘Constant-round dynamic group
key exchange from RLWE assumption,’’ Cryptol. ePrint Arch., Paper
2020/035, vol. 2020, p. 35, 2020.

[5] R. Choi, D. Hong, S. Han, S. Baek, W. Kang, and K. Kim, ‘‘Design
and implementation of constant-round dynamic group key exchange from
RLWE,’’ IEEE Access, vol. 8, pp. 94610–94630, 2020.

[6] R. Choi, D. Hong, and K. Kim, ‘‘Implementation of tree-based dynamic
group key exchange with newhope,’’ in Proc. Symp. Cryptogr. Inf.
Secur. (SCIS). Kochi, Japan: IEICE Technical Committee on Information
Security, 2020, pp. 1–8.

[7] K. Takashima, ‘‘Post-quantum constant-round group key exchange from
static assumptions,’’ in Proc. Int. Symp. Math., Quantum Theory, Cryptogr.
Singapore: Springer, 2021, p. 251.

[8] E. Persichetti, R. Steinwandt, and A. S. Corona, ‘‘From key encapsulation
to authenticated group key establishment—A compiler for post-quantum
primitives,’’ Entropy, vol. 21, no. 12, p. 1183, Nov. 2019.

[9] M. I. G. Vasco, L. A. P. D. Pozo, and R. Steinwandt, ‘‘Group key
establishment in a quantum-future scenario,’’ Informatica, vol. 31, no. 4,
pp. 751–768, 2020.

[10] H. B. Hougaard and A. Miyaji, ‘‘Group key exchange compilers from
generic key exchanges,’’ in Proc. Int. Conf. Netw. Syst. Secur. Cham,
Switzerland: Springer, 2021, pp. 162–184.

[11] J. I. E. Pablos, M. I. G. Vasco, M. E. Marriaga, and Á. L. P. D. Pozo,
‘‘Compiled constructions towards post-quantum group key exchange:
A design from kyber,’’ Mathematics, vol. 8, no. 10, p. 1853,
Oct. 2020.

[12] J. Katz and M. Yung, ‘‘Scalable protocols for authenticated group key
exchange,’’ in Advances in Cryptology—CRYPTO 2003, vol. 2729,
D. Boneh, Ed. Santa Barbara, CA, USA: Springer, Aug. 2003,
pp. 110–125.

[13] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, ‘‘Post-quantum key
exchange—A new hope,’’ in Proc. 25th USENIX Secur. Symp. (USENIX
Security), 2016, pp. 327–343.

[14] M. Abdalla, J. Bohli, M. I. G. Vasco, and R. Steinwandt, ‘‘(Password)
authenticated key establishment: From 2-party to group,’’ in Proc. TCC, in
Lecture Notes in Computer Science, vol. 4392. Berlin, Germany: Springer,
2007, pp. 499–514.

[15] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stéhle, ‘‘CRYSTALS—Kyber: A CCA-
secure module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS&P), Apr. 2018, pp. 353–367.

[16] M. Burmester and Y. Desmedt, ‘‘A secure and efficient conference
key distribution system,’’ in Proc. EUROCRYPT, in Lecture Notes
in Computer Science, vol. 950. Berlin, Germany: Springer, 1994,
pp. 275–286.

[17] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, ‘‘Practical and
post-quantum authenticated key exchange from one-way secure key
encapsulationmechanism,’’ inProc. 8th ACM SIGSAC Symp. Inf., Comput.
Commun. Secur., 2013, pp. 83–94.

[18] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh, ‘‘Generic authenticated
key exchange in the quantum random Oracle model,’’ Cryptol. ePrint
Arch., Paper 2018/928, vol. 2018, p. 928, 2018.

[19] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh, ‘‘Generic authenticated
key exchange in the quantum random Oracle model,’’ in Public-Key
Cryptography—PKC 2020, A. Kiayias, M. Kohlweiss, P. Wallden, and
V. Zikas, Eds. Cham, Switzerland: Springer, 2020, pp. 389–422.

[20] T. Saito, K. Xagawa, and T. Yamakawa, ‘‘Tightly-secure key-encapsulation
mechanism in the quantum random Oracle model,’’ Cryptol. ePrint Arch.,
Paper 2017/1005, 2017.

[21] Post-Quantum Cryptography. Security (Evaluation Criteria), NIST,
Gaithersburg, MD, USA. [Online]. Available: https://csrc.nist.gov/
projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/evaluation-criteria/security-(evaluation-criteria)

[22] Post-Quantum Cryptography. Round 3 Submissions, NIST, Gaithersburg,
MD, USA. [Online]. Available: https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

[23] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, I. V. Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai,
M. Tomlinson, and W. Wang, ‘‘Classic McEliece: Conservative code-
based cryptography,’’ NIST, Tech. Rep., 2020. [Online]. Available: https://
classic.mceliece.org/nist/mceliece-20201010.pdf

[24] H. Niederreiter, ‘‘Knapsack-type cryptosystems and algebraic coding
theory,’’ Problems Control Inf. Theory, vol. 15, no. 2, pp. 157–166, 1986.

[25] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, ‘‘CRYSTALS-
kyber algorithm specifications and supporting documentation,’’ NIST,
Tech. Rep., 2021. [Online]. Available: https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf

[26] Post-Quantum Cryptography. Round 1 Submissions, NIST, Gaithersburg,
MD, USA.

[27] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based public
key cryptosystem,’’ in Algorithmic Number Theory (Lecture Notes in
Computer Science), vol. 1423, J. Buhler, Ed. Portland, OR, USA: Springer,
Jun. 1998, pp. 267–288.

120982 VOLUME 10, 2022

J. I. Escribano Pablos et al.: Design and Implementation of a Post-Quantum GAKE With the LibOQS Library

[28] T. Saito, K. Xagawa, and T. Yamakawa, ‘‘Tightly-secure key-encapsulation
mechanism in the quantum random Oracle model,’’ in Proc. Annu. Int.
Conf. Theory Appl. Cryptograph. Techn. Cham, Switzerland: Springer,
2018, pp. 520–551.

[29] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, ‘‘Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,’’ Cryptol. ePrint Arch., Paper 2018/230, p. 230, 2018.

[30] C. Boyd, Y. Cliff, J. G. Nieto, and K. G. Paterson, ‘‘Efficient one-round
key exchange in the standard model,’’ in Proc. ACISP, in Lecture Notes in
Computer Science, vol. 5107. Berlin, Germany: Springer, 2008, pp. 69–83.

[31] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, ‘‘Strongly secure
authenticated key exchange from factoring, codes, and lattices,’’ Des.,
Codes Cryptogr., vol. 76, no. 3, pp. 469–504, Sep. 2015.

[32] R. Canetti and H. Krawczyk, ‘‘Analysis of key-exchange protocols and
their use for building secure channels,’’ in Proc. EUROCRYPT, in Lecture
Notes in Computer Science, vol. 2045. Berlin, Germany: Springer, 2001,
pp. 453–474.

[33] R. Cramer and V. Shoup, ‘‘Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack,’’
SIAM J. Comput., vol. 33, no. 1, pp. 167–226, 2003.

[34] M. Bellare, D. Pointcheval, and P. Rogaway, ‘‘Authenticated key
exchange secure against dictionary attacks,’’ in Advances in Cryptology—
EUROCRYPT 2000, vol. 1807, B. Preneel, Ed. Bruges, Belgium: Springer,
May 2000, pp. 139–155.

[35] J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt, ‘‘Secure group key
establishment revisited,’’ Int. J. Inf. Secur., vol. 6, no. 4, pp. 243–254,
Jun. 2007.

[36] Algorithms in LibOQS, Open Quantum Safe, 2022.
[37] D. Stebila and M. Mosca, ‘‘Post-quantum key exchange for the internet

and the open quantum safe project,’’ in Proc. SAC, in Lecture Notes
in Computer Science, vol. 10532. Cham, Switzerland: Springer, 2016,
pp. 14–37.

[38] Cryptography and SSL/TLS Toolkit, OpenSSL, 2022.
[39] What is the Windows Subsystem for Linux?, Microsoft, 2022.
[40] Usage Limits, Billing, and Administration, GitHub Actions, 2022.
[41] M. L. Waskom, ‘‘Seaborn: Statistical data visualization,’’ J. Open Source

Softw., vol. 6, no. 60, p. 3021, 2021.
[42] Storing Workflow Data as Artifacts, GitHub Actions, 2022.

JOSÉ IGNACIO ESCRIBANO PABLOS received
the double degrees in mathematics and software
engineering, the master’s degree from Universidad
Rey Juan Carlos, Spain, in 2015 and 2017,
respectively, and the Ph.D. degree in mathematical
sciences. He also works as a Machine Learning
and Security Researcher at BBVA Next Technolo-
gies. His main research interests include post-
quantum cryptography, machine learning security,
and adversarial machine learning.

MISAEL ENRIQUE MARRIAGA received the
Ph.D. degree in mathematical engineering from
Universidad Carlos III de Madrid, Spain. He is
currently an Assistant Professor (Profesor Con-
tratado Doctor Interino) at the Universidad Rey
Juan Carlos, Spain. His main field of research
is approximation theory in higher dimensions
and multivariate orthogonal polynomials. Most
recently, he has started doing research in crypto-
graphic designs for multi-party key exchange in
non-standard scenarios.

ÁNGEL L. PÉREZ DEL POZO received the
Ph.D. degree in mathematics from Universidad
Complutense de Madrid (Spain). He is cur-
rently an Assistant Professor (Profesor Contratado
Doctor Interino) at the Universidad Rey Juan
Carlos, Spain. His main research interests include
cryptographic designs for key exchange in non-
standard scenarios, secret sharing schemes, and
applications of multi-party computation.

VOLUME 10, 2022 120983

