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ABSTRACT Indoor localization technologies are actively investigated to realize location-based applications
in various environments, and indoor localization methods based on whether the received signal strength
indicator (RSSI) is less than a threshold have been proposed previously. Such a proximity/non-proximity
binary value is used in digital contact tracing applications to reduce the coronavirus disease effects.
We proposed two indoor pedestrian localization methods based on contact information using bluetooth
low energy (BLE) beacons, namely multilateration and cooperative localization. This study attempts to
demonstrate the effectiveness of the proposed methods using only contact information. Through simulation
experiments, we found that the proposed methods can achieve comparable accuracy to existing methods
when the attenuation model is accurate. The difference in average localization error was 0.1 m between the
proposed method 1 and range-based method, and 0.2 m between the proposed method 2 and fingerprinting
method. We confirmed that the proposed methods using only contact information are robust against
environmental changes even when the attenuation model is inaccurate. We consider that these contributions
have added a new perspective on the use of contact information in the field of indoor localization, which
aims to realize power-saving and cost reduction.

INDEX TERMS Contact information, indoor positioning, nonlinear optimization, proximity.

I. INTRODUCTION
Indoor localization has attracted increasing interest from
industry to realize location-based applications in different
environments. Recently, many studies have investigated
indoor localization using BLE beacons [1]. Among these
studies, a range-based method using trilateration or multilat-
eration based on distances estimated from the RSSI of several
BLE beacons is widely used. In addition, indoor localization
based on ‘‘whether RSSI measurement is lower than the
threshold Pth’’ rather than just the RSSI value has been
studied [2], [3], [4], [5]. In this method, the proximity relation
between nodes is expressed by a binary value representing
proximity or non-proximity.

proximity =

{
0, RSS ≤ Pth,
1, RSS > Pth.

(1)
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This proximity/non-proximity binary value is also used in
digital contact tracing smartphone applications to reduce the
effects of the coronavirus disease (COVID-19) pandemic.
These smartphone applications notify the user of contact
history with registered infected individuals using wireless
communication technologies, e.g., such as Bluetooth and
BLE [6]. In addition, digital contact tracing has been
studied extensively [7], [8]. Contact information expressed as
proximity or non-proximity is suitable for smartphones; thus,
we consider that contact information between smartphones
can be used for indoor pedestrian localization.

In a previous study, we proposed two indoor pedestrian
localization methods based on contact information using
BLE beacons [9]. The first method is multilateration and the
second one is cooperative localization, which is an improved
version of the sensor response-based localization tech-
nique [10], [11] for wireless sensor networks (WSNs). The
sensor response-based localization technique uses proximity
relations between nodes recognized from sensor responses to
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estimate the sensor position. Accordingly, this study attempts
to demonstrate the effectiveness of the proposed methods,
which only use contact information.

BLE-based indoor localization methods can be classi-
fied into four types: range-based, fingerprinting, closest-
beacon, and proximity methods. The accuracy of range-based
methods, which use distances estimated directly from RSSI,
would particularly deteriorate when the attenuation model
used to calculate the distance between a pedestrian and a
BLE beacon is inaccurate due to environmental changes.
The proposed methods do not require a specific attenuation
model. In fingerprinting methods, accurately estimating a
position when the environment changes from the one where
the RSSI map was measured in advance is difficult. However,
the proposed methods have the advantage of being robust
against environmental changes. Closest-beacon methods,
which use the strongest beacon signal, require numerous
BLE beacons for accurate localization, whereas the proposed
methods require fewer BLE beacons. Further, the existing
proximity-based methods focus on the one-hop proximity
between a BLE beacon and a smartphone. Meanwhile, the
proposed methods use the number of hops obtained from the
proximity relation between smartphones for localization. The
major contributions of this study are summarized as follows.
• We confirmed that the sensor response-based localiza-
tion method [10], [11] for WSNs could be applied to
indoor localization.

• Through simulation experiments, we found that the
proposed methods could obtain comparable accuracy
to existing methods when the attenuation model is
accurate.

• We confirmed that the proposed methods were robust
against environmental changes even when the attenua-
tion model is inaccurate.

The remainder of this paper is organized as follows.
Section II overviews previous studies on BLE-based indoor
localization and other related works. Section III outlines
the target problem and the proposed localization methods,
and Section IV describes experiments conducted using real
devices. In Section V, we discuss the effectiveness of the
proposed methods through simulation experiments. Finally,
conclusions are presented in Section VI.

II. RELATED WORK
Technologies that can be implemented on smartphones for
indoor localization include radio frequency, self-contained
sensors, indoor maps, and magnetic field fingerprinting [12].
Among these technologies, smartphone-based indoor posi-
tioning systems using radio frequency have been widely
studied [13].

BLE was released in June 2010 as Bluetooth version 4.0.
The features of BLE are short-range wireless communication
and low power consumption. These features are suitable
for mobile devices, e.g., smartphones and tablets, which
are rapidly becoming ubiquitous. Thus, BLE is used for
COVID-19 digital contact tracing applications, and in recent

years, many studies have investigated indoor localization
methods using BLE beacons.

As mentioned in Section I, BLE-based indoor localization
methods can be classified into four types, and many methods
that combine these techniques have been studied. The
range-based method estimates the position by trilateration
or multilateration based on the distances calculated from the
RSSI value of BLE beacons. In recent years, the range-based
method has been used for indoor positioning using BLE
beacons in a smart museum [14]. However, the localization
accuracy of the range-based method using RSSI is largely
dependent on the radio propagation environment. Thus,
methods to suppress the influence of RSSI fluctuations
have also been studied [15], [16], [17]. The RSSI of the
BLE measured by three frequency channels is different,
and the attenuation model is different depending on the
channel. To improve the adaptability and robustness of the
BLE positioning system, Huang et al. proposed an indoor
positioning method using the information of three BLE
advertising channels [17]. Despite the above studies, the
problem of the range-based methods associated with an
attenuation model has not been completely solved. The
proposed methods do not have such a problem because the
methods do not require a specific attenuation model for
localization.

The fingerprinting method determines the best matching
coordinates by comparing RSSI measurements with a pre-
measured RSSI map. A previous study [18] investigated the
key parameters required to realize accurate indoor positioning
using BLE radio signals. Another study [19] proposed a
fingerprinting algorithm based on the general and weighted
k-nearest neighbor algorithms. The fingerprinting method
is expected to be used in a BLE-based indoor positioning
system developed for monitoring the daily living patterns of
the elderly or disabled [20]. In the fingerprinting method,
it is difficult to estimate a position accurately when the
environment changes from the one where the RSSI map was
measured in advance. By contrast, the proposedmethods have
the advantage of being robust to environmental changes.

The closest-beacon method identifies the strongest signal
received by the pedestrian and estimates the position of the
source of that signal as the pedestrian’s probable position.
For example, Apple’s iBeacon protocol [21] is a BLE-based
short-range wireless communication technology designed
for proximity detection and proximity-based service. The
closest-beacon method has been widely studied [22], [23],
[24], [25], including zone-level occupancy detection [26].
Instead of identifying the strongest signal source, a method
has been proposed to identify the source of the signal received
by the pedestrian most times and estimate the position of that
source as the pedestrian’s probable position [27]. Although
the closest-beacon method is simple and easily feasible,
it requires numerous BLE beacons for accurate localization,
whereas the proposed methods require fewer BLE beacons
because the number of hops obtained from the proximity
relation between smartphones is used for localization.
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FIGURE 1. Problem settings.

As well as our proposed methods, several existing studies
have proposed proximity-based localization methods based
on positional relationships with beacons represented by the
binary value of proximity/non-proximity. In these studies, the
proximity relation is determined by whether the RSSI mea-
surement is less than a given threshold. For example, Fazio
et al. proposed a proximity-based navigation system using
BLE in a smart building [2], and Zhao et al. developed an
RSS-proximity report-based particle filtering algorithm [3].
In addition, RSS threshold optimization techniques using a
Gaussian process [4] and theoretical bounds for proximity
report-based indoor positioning have been proposed [5].
These methods focus on the one-hop proximity between a
BLE beacon and a smartphone. Meanwhile, the proposed
methods use the number of hops obtained from the proximity
relation between smartphones for localization.

Similar to our proposed methods, connectivity-based
localization is being studied in the field of WSNs
[28], [29]. This method defines two sensors that receive
wireless signals as ‘‘proximity’’ and then localizes the
sensors based on the connection relation expressed by the
binary value. However, the application of this method to
indoor pedestrian localization is limited; thus, it is unclear
whether this method would be effective for indoor pedestrian
localization because it is assumed that the sensor is fixed.
The previously proposed sensor response-based localiza-
tion technique [10], [11] is based on connectivity-based
localization [28], [29] and cooperative localization [30],
[31]. Furthermore, we have proposed two indoor pedestrian
localizationmethods based on contact information using BLE
beacons [9]. Note that our proposedmethods target pedestrian
localization rather than fixed sensor devices. The distance
estimation method is similar to DV-HOP [32]; however,
our methods are characterized by solving a mathematically
backed nonlinear optimization problem.

III. PROBLEM SETTINGS AND CONTACT-BASED
LOCALIZATION METHODS
A. PROBLEM SETTINGS
In this study, we consider pedestrian position estimation
in a two-dimensional indoor area. The pedestrians in the

FIGURE 2. Overview of proposed methods.

area carry a smartphone that can transmit and receive BLE
signals. In addition, several BLE beacons (i.e., anchor nodes)
are placed at known positions. In the following, both the
pedestrian’s smartphone and the anchor nodes are referred
to as nodes for simplicity. Each node periodically sends a
wireless signal containing a list of identifiers and RSSI values
of all nodes. Then, the server recognizes all node identifiers in
the observation area and proximity relation. Here, if the RSSI
value meets or exceeds a threshold, the server recognizes the
proximity relation between the sender’s listed nodes. Fig. 1
illustrates the problem settings.

We assume that the proximity relation between nodes is a
binary value of 0 or 1. The proximity relation between nodes
i and j at time t is expressed as follows.

proximityi,j(t)

=

{
0, RSSIi ≤ Rth and RSSIj ≤ Rth,
1, RSSIi > Rth or RSSIj > Rth,

(2)

where RSSIi is the RSSI from node i, and Rth is the
given RSSI threshold. Note that RSSIi uses the aggre-
gated RSSI rather than the channel separated RSSI. When
proximityi,j(t) = 1, nodes i and j are proximity, and when
proximityi,j(t) = 0, nodes i and j are non-proximity.

Then, the server expresses the proximity relation at each
time as an undirected graph. The number of hops between the
nodes in the undirected graph is then calculated by solving
the shortest path problem. Fig. 2 shows an overview of the
proposed methods, and Fig. 3 shows a graph representing the
proximity relation of nodes and their matrix of hops. We then
estimate the unknown position of the pedestrian.

B. ESTIMATING DISTANCE BETWEEN NODES BASED ON
PROXIMITY RELATION
We calculate the average distance per hop and the distance
between nodes from the proximity relation. Here, N is the
set of pedestrian identifying numbers, and A represents the
set of the anchor node identifying numbers. Let ai denote
the known coordinates of anchor node i. Pa gives the set
of anchor node pairs that are connected in the undirected
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FIGURE 3. Graph representing the proximity relation of nodes (left) and
the matrix of hops (right).

graph, and the number of hops between anchor nodes i and
j ((i, j) ∈ Pa) is denoted hij. The average distance per hop
davg is calculated as follows.

davg =

∑
(i,j)∈Pa

|ai − aj|∑
(i,j)∈Pa

hij
. (3)

Then, we estimate the distance between nodes. Here, P
denotes the set of node pairs connected in the undirected
graph, and the number of hops between nodes i and j
((i, j) ∈ P) is denoted hij. The matrix of hops is then
multiplied by the average distance per hop davg, and the
result is used for localization as a distance matrix {dij}. Using
the average distance per hop davg, we calculate the distance
between nodes dij as follows.

dij = davghij. (4)

C. PROPOSED METHOD 1: MULTILATERATION
We estimate the pedestrian’s position from the distance
between nodes dij. Proposed method 1 employs multilat-
eration based on the distance between a pedestrian and
three or more anchor nodes. In the following, the estimated
coordinates of pedestrian i(∈ N ) are represented by ri, which
is expressed as follows.

ri = arg min
x

f (x), f (x) def
=

∑
j∈Ai

(|x− aj| − dij)2,

Ai
def
= {j ∈ A ; (i, j) ∈P}. (5)

Ai is a set of anchor node identifying numbers connected
to pedestrian i in the undirected graph. Equation (5) is used
to find an estimated position that reproduces the distance
between the pedestrian and the anchor nodes as accurately
as possible.

The right-hand side of (5) is a nonlinear optimization
problem; thus, it is difficult to find its optimal global solution.
Therefore, we employ a numerical calculation method to
obtain a local optimum solution. The initial solution is
defined as follows.

r(0)i =
1
|Ai|

∑
j∈Ai

aj. (6)

The initial solution r(0)i is the centroid of the anchor nodes
included in Ai. Then, assuming that the k − 1th solution is

fixed, the kth solution can be obtained as follows.

r(k)i =
1
|Ai|

∑
j∈Ai

dij(r
(k−1)
i − rj)

|r(k−1)i − rj|
+ r(0)i . (7)

Solutions r(1)i , r
(2)
i , . . . can be obtained recursively from the

initial solution r(0)i using (7). Note that the kth solution r(k)i
converges to the local minimum solution on the right-hand
side of (5) at the limit of k → ∞. This method is effective
when |Ai| ≥ 2. When |Ai| = 0, the center of the observation
area is the estimated position, andwhen |Ai| = 1, the position
of the anchor node connected on the undirected graph is the
estimated position.

D. PROPOSED METHOD 2: COOPERATIVE LOCALIZATION
In proposed method 1, the position of each pedestrian is
estimated independently based on the distance between the
pedestrian and the anchor nodes. Thus, proposed method 1
does not consider the distance between the pedestrians.
In proposed method 2, which is an improved version of
the sensor response-based localization method [10], [11] for
WSNs, the distance between other pedestrians is considered,
in addition to the distance between the pedestrian and
anchor nodes. As a result, proposed method 2 improves the
localization accuracy of proposed method 1.

First, we delete elements of the distance matrix {dij} that
correspond to the elements of three or more hops in thematrix
of hops. If the distance between nodes i and j is deleted,
it is assumed that node i /∈ Nj and node j /∈ Ni. Here, Ni
is a set of the pedestrian identifying numbers connected to
pedestrian i in the undirected graph. As a result, proposed
method 2 considers the distance of neighboring nodes within
two or fewer hops. Here, we assume that each pedestrian
is numbered from 1 to N (N = |N |). In cooperative
localization, we find the position of a pedestrian by solving
the following optimization problem.

(r1, . . . , rN ) = arg min
(x1,...,xN )

g(x1, . . . , xN ), (8)

where

g(x1, . . . , xN )
def
=

1
2

∑
i∈N

∑
j∈Ni

(|xi − xj| − dij)2

+

∑
i∈N

∑
j∈Ai

(|xi − aj| − dij)2, (9)

Ni
def
= {j ∈ N ; (i, j) ∈P}.

The estimated positions (r1, . . . , rN ) are determined by
minimizing the function g(x1, . . . , xN ). We employ stress
majorization [33], which is a descent method, to recursively
find the solution. In addition, proposed method 2 uses the
estimated position obtained by proposed method 1 as the
initial solution because stress majorization requires an initial
solution. Refer to the APPENDIX for details about how we
formulate the optimization problem and its solution.
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FIGURE 4. Overview of the laboratory floor.

TABLE 1. Main environment settings of Raspberry Pi.

E. SMOOTHING
Finally, we employ the exponential smoothing technique to
absorb the time variation of the estimated position of each
node. The estimated position of node i at time t (t = 1, 2, . . . )
is defined as ri(t), and we calculate the estimated position
after smoothing rsmth

i (t) as follows.

rsmth
i (t) =

{
ri(t), t = 1,
(1− α)rsmth

i (t − 1)+ αri(t), t = 2, 3, . . . ,

(10)

where α is learning rate (here, α = 0.2).

IV. EXPERIMENTAL EVALUATION
A. ATTENUATION MODEL
Here, we define an attenuation model from RSSI mea-
surements taken in a real-world indoor environment to
demonstrate that localization is possible using real devices.
We adopted a commonly used log-distance path loss model.
In this model, the relationship between RSSI (dBm) and
distance (m) is expressed as follows.

RSSI(d) = −10n log10

(
d
d0

)
+ RSSI(d0), (11)

where RSSI(d) is the RSSI value at distance d , and RSSI(d0)
is the RSSI value at the reference distance d0. n is the path loss
exponent, which has a theoretical value of n = 2 in free space
without obstacles. Note that obstacles, e.g., furniture and
pedestrians, we present in indoor measurement environment,
and the measured RSSI contained noise.

B. PRELIMINARY RSSI MEASUREMENT EXPERIMENTS
We conducted a preliminary RSSI measurement experiment
on a laboratory floor. Fig. 4 shows an overview of the
laboratory floor. Situation A was a corridor, and situation B
was a laboratory area, including walls. Here, we used a
Raspberry Pi 4 model B [34] to send and receive BLE
signals. The Raspberry Pi was used in this preliminary
experiment because it is inexpensive and easy to handle.

FIGURE 5. Preliminary experimental environment of situation A.

FIGURE 6. Preliminary experimental environment of situation B.

In this experiment, the Raspberry Pi employed iBeacon [21]
to send BLE signals at 100-ms intervals and received the
signals from another Raspberry Pi. Then, the measured RSSI,
received time, and sender identifier were recorded in an
external CSV file. Table 1 shows the main environment
settings of the Raspberry Pi.

We estimated the attenuation model parameters n and
RSSI(d0) from actual measurements using least squares
estimation. The preliminary experimental environments for
situations A and B are shown in Fig. 5 and Fig. 6, respectively.
In situation A, RSSI measurements were collected when
the distance between the two Raspberry Pi devices was
varied from 0.1 to 20.0 m in the corridor environment.
Then, parameter estimation was performed using 55,100
measurements from 29 unique distances. Here, the reference
distance d0 was set to 1.0 m. In situation B, we installed
15 Raspberry Pi devices on desks in the laboratory area
and collected RSSI measurements. The laboratory area was
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FIGURE 7. Parameter estimation results for situation A.

FIGURE 8. Parameter estimation results for situation B.

surrounded by walls, and some desktop computers and
furniture were present in the laboratory. Raspberry Pi devices
at the lower left and right sides in Fig. 6 communicated
through the wall with the door closed. We collected 62,000
measurements from 31 unique distances from 1.0 to 18.4 m,
and estimated the parameters of the attenuation model. Here,
the reference distance d0 was set to 1.0 m. Fig. 7 and Fig. 8
shows the parameter estimation results for situation A and B,
respectively.

According to the estimation results for situation A shown
in Fig. 7, n = 1.21, RSSI(d0) = −49.27 dBm, and the
correlation coefficient between RSSI and distance between
nodes was 0.85. In Fig. 8, which shows the estimation results
for situation B, n = 2.56, RSSI(d0) = −46.90 dBm, and the
correlation coefficient between RSSI and distance between
nodes was 0.72. These two situations are referred to as
attenuation models A and B, respectively. The path loss
exponent of the attenuation model B (n = 2.56) is much
larger than that of the attenuation model A (n = 1.21). This
result seems reasonable because there are some obstacles
(like walls) in situation B, but no obstacles in situation A.
Fig. 9 shows the attenuation models A and B.

As shown in Fig. 9, the RSSI attenuates as the distance
between nodes increases. When the distance between the

FIGURE 9. The attenuation models A and B.

Raspberry Pi devices was greater than 7 m, the RSSI value
obtained from the attenuation model Awas in a narrow range,
i.e., −60 to −65 dBm. When the distance is relatively long
(>7 m), there will be a significant error in estimating the
distance from the fluctuating RSSI measurement. At short
distances (≤6 m), the RSSI was widely distributed from−37
to−60 dBm. Thus, if the distance between nodes is relatively
short (e.g., 6 m), the proximity relation between nodes can
be estimated correctly from the RSSI measurement and RSSI
threshold. This is why we focused on indoor localization
based on contact information (i.e., the proximity relation)
between the nodes.

The attenuation models differ according to the surround-
ing, as shown by the attenuation models A and B. Note
that the BLE signal is transmitted on one of three BLE
advertising channels that use different frequencies. The
attenuation models A and B are aggregated models of
the three advertising channels, although the propagation
characteristics of the advertising channels should be different.
Three BLE advertising channel’s information were used
to develop three independent attenuation models for each
BLE advertising channel in an indoor positioning approach
proposed by Huang et al. [17]. However, a previous study [7]
stated that a smartphone is typically not given access to
information on which about the advertising channel from
which a packet has been received. The attenuation model
for each BLE advertising channel was not established in this
study since it was assumed that pedestrian’s smartphones
could not identify the BLE advertising channel. Note that our
proposal can be extended to where pedestrian’s smartphones
can identify the advertising channel by setting different RSSI
thresholds for each channel.

C. LOCALIZATION EXPERIMENT CONDITIONS
We also conducted a localization experiment using 15 fixed
Raspberry Pi devices to confirm that localization is possible
in a real-world environment. Here, the 15 Raspberry Pi
devices were positioned on desks in the laboratory (Fig. 6).
The five nodes represented by red squares in Fig. 6 are the
anchor nodes. Note that the Raspberry Pi devices employed
iBeacon to send BLE signals at 100-ms intervals and received
the signals from the other Raspberry Pi. Then, the measured
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TABLE 2. Conditions of the attenuation model used in the real-world
experiment and the simulations.

RSSI, received time, and sender identifier were recorded
in an external CSV file. Here, the proximity relation was
recognized from the given RSSI threshold Rth, RSSIi and
RSSIj using (2). The average value of the RSSImeasurements
for 1 s was used the RSSIi and RSSIj for proximity
recognition, and localization was performed at 1-s intervals.

In the proposed methods using the proximity relation, the
recognized proximity relation depends on RSSI thresholdRth.
For example, when Rth is high, the rate of proximity node
pairs decreases, and when Rth is low, the rate of proximity
node pairs increases. We evaluated the localization accuracy
of the proposed methods by varying the value of RSSI
threshold Rth from −50 to −70 dBm.
We compared the proposed methods with the range-based

method, one of the well-known methods for localization.
In the range-based method, a pedestrian’s smartphone
estimates its distance to the anchor nodes based on the
strength of the signal transmitted by the anchor nodes and
estimates the position using a multilateration technique. The
distance between the pedestrian and the anchor node d is
estimated by the following equation.

d = d0 × 10

(
RSSI(d0)−RSSI

10n

)
. (12)

where, RSSI is the RSSI of the average strength of radio
signals from the anchor node. For d0, n, and RSSI(d0), the
parameters of the attenuation model A or B were used.

We evaluated the accuracy of the localization methods at
time t in terms of the average localization error, denoted by
err(t), defined below.

err(t) =
1
|N |

∑
i∈N

|rsmth
i (t)− ractuali (t)|. (13)

Here, ractuali (t) is the actual position of node i at time t .
We compared the average localization error for 100 s in this
localization experiment.

The characteristics of the area, such as the furniture
arrangement and the population in the area, which frequently
vary over time, have a substantial impact on the accuracy
of the range-based method. The accuracy of the range-based
method would particularly suffer when the attenuation model
used to calculate the distance between the pedestrian and the
anchor node was inaccurate. As described in Section IV-D,
we evaluated the range-based method under two scenarios.

FIGURE 10. Results obtained in real-world laboratory environment.

The first scenario is where the attenuation model used
for the distance estimation was accurate. In this scenario,
the distance between the pedestrian and the anchor node
was estimated by the attenuation model B. Note that
the attenuation model B was identified in situation B
(Fig. 8), where the experiment was conducted. In the second
scenario, the attenuation model was inaccurate; the distance
between the pedestrian and the anchor node was estimated
by the attenuation model A. The simulation experiments
in Section V also used these scenarios. Table 2 shows the
conditions of the attenuation model used in the experiment
and simulations.

D. RESULTS IN REAL-WORLD LABORATORY
ENVIRONMENT
Fig. 10 shows the average localization errors of the proposed
methods and the range-based method. In particular, the figure
shows the average localization error of the proposed methods
by changing the RSSI threshold Rth from −50 to −70 dBm.
As shown in Fig. 10, when the attenuation model used in
the range-based method is accurate, the localization accuracy
of the range-based method and the proposed methods are
similar. However, when the attenuation model is inaccurate,
the localization accuracy of the range-based method is much
worse than that of the proposed methods. Note that the
proposed methods do not require a specific attenuation
model.

Fig. 10 also shows that the localization accuracy of the
proposed methods are fairly robust against the change in the
RSSI threshold Rth. However, when Rth was set from −50
to −56 dBm, the rate of the proximity node pairs was 10%
or less. With the proposed method 1, when |Ai| = 0, the
center of the observation area was the estimated position.
Thus, with these threshold values, the estimated position was
the center of the area, and the average localization error was
approximately 6 m.When Rth was set from−58 to−70 dBm,
the average localization error of the proposed methods was
reduced to 2.3 m.

We confirmed that the sensor response-based localization
method for WSNs could be applied to indoor localization
in the real-world laboratory environment. However, Fig. 10
shows the result obtained using a small number of nodes.
Accordingly, it is necessary to evaluate localization accuracy
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FIGURE 11. Indoor exhibition hall.

using a large number of nodes in a wide area to confirm the
effect of the RSSI threshold.

V. SIMULATION EXPERIMENTS AND DISCUSSIONS
A. SIMULATION CONDITIONS
Here, through large-scale simulation experiments, we demon-
strate that the proposed methods can obtain comparable
accuracy to the existing methods. In addition, we confirmed
that the proposed methods were robust against environmental
changes even when the attenuation model is inaccurate.

In this evaluation, we considered a two-dimensional indoor
exhibition hall with two doorways and five exhibits. Fig. 11
shows the indoor exhibition hall. Pedestrians with smart-
phones entered the observation area according to a Poisson
process with an average arrival interval. The pedestrians
visited the five exhibits in random order and viewed them for
an average of 10 s according to an exponential distribution.
Then, they exited through a doorway (different from the
entrance). Here, the pedestriansmoved according to the social
force model [35], [36] via self-driving force and repulsive
force from other pedestrians and walls. We set the maximum
pedestrian speed to 0.25 m/s. In addition, a BLE beacon
device was installed as an anchor node at each exhibit.
We assumed that a pedestrian’s smartphone and the anchor
node can receive the signals transmitted by neighbor nodes.

In these simulation experiments, we assumed that the
average strength of the radio signal from a pedestrian’s
smartphone or an anchor node at a distance of d is determined
by (11). Note that radio signals in an actual environment are
affected by fading. Here, we assumed that the received power
distribution follows an exponential distribution via Rayleigh
fading. The proximity relation between all pairs of nodes,
where a node is a pedestrian or an anchor, is recognized
in terms of (2) based on the strength of the radio signal
exchanged between the two nodes. The pedestrian’s positions
were estimated at 1-s intervals based on the recognized
proximity relations. In the simulation results shown below,
the average localization error from 1000 to 1500 s from the
start of the simulation was used. Fig. 12 shows an example
localization result.

We compared the proposed methods with the fingerprint-
ing and range-based methods. The fingerprinting method

FIGURE 12. Example localization result obtained by proposed method 2.
The average localization error was 1.2 m.

determines the best matching coordinates by compareing
RSSI measurements with a premeasured RSSI map. The
observation area is divided into grids of 0.5 m, and let pi
denote the coordinates of point i. First, a pedestrian at point
i and the anchor node j are measured, and the average value
of 1000 RSSI values between them is recorded as RSSI(i)j .
Then, pi that minimizes the function m is calculated from the
average value RSSIj of 10 RSSI measurements between the
pedestrian and anchor node j using the following equation.

pi = arg min
i

m(i), m(i) def
=

∑
j∈A

|RSSI(i)j − RSSIj|. (14)

B. EFFECT OF RSSI THRESHOLD
In the fingerprinting method, it is difficult to estimate the
position accurately when the environment changes from the
one where the RSSI map was measured in advance. In other
words, the attenuation model should be accurate for both the
range-based and the fingerprinting methods.

We compared the proposed methods to the aforementioned
two existing methods. The proposed methods do not require a
specific attenuation model, and only the RSSI threshold must
be determined appropriately. We assumed that the RSSI from
pedestrian and anchor node at a distance of d is given by (11)
with the parameter of attenuation model A (d0 = 1.0 m, n =
1.21, RSSI(d0) = −49.27 dBm). Here, a simple smoothing
technique was applied to suppress RSSI fluctuation using the
average value of 10 RSSI measurements. Here, the value of
pedestrian density ρ was 0.125 /m2, and the average arrival
interval was 10 s. We evaluated the localization accuracy
of the proposed methods by varying the RSSI threshold Rth
from −50 to −66 dBm. Fig. 13 shows comparison results
of the RSSI threshold value effects. The result obtained
using the existing methods when the attenuation model is
accurate or inaccurate are also shown for comparison. The
attenuation model B was used for distance estimation and
premeasured RSSI map generation when the attenuation
model was assumed to be inaccurate. For path loss exponent
dependencies, refer Section V-E for detailed results.
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FIGURE 13. Comparison results of the RSSI threshold value effects.

FIGURE 14. Comparison results of the pedestrian density effects.

As shown in Fig. 13, the proposed methods with Rth
set to −58 dBm can obtain comparable accuracy to the
existing methods when the attenuation model is accurate. The
difference in average localization error was 0.1 m between
the proposed method 1 and range-based method, and 0.2 m
between the proposed method 2 and fingerprinting method.
On the other hand, the localization accuracy of the proposed
methods outperform to existingmethodswhen the attenuation
model is inaccurate. Note that the proposed methods do not
require a specific attenuation model; thus, the localization
accuracy of the proposed methods does not depend on
attenuation model. Furthermore, we found that localization
accuracy was the best when the rate of the proximity node
pairs was approximately 20%. In the following results, we set
the RSSI threshold Rth such that the rate of proximity node
pairs was 20%.

C. EFFECT OF PEDESTRIAN DENSITY
We considered that the localization accuracy of the proposed
methods is dependent on pedestrian density because the
proximity relation depends on the number of pedestrians.
Thus, we investigated the localization accuracy of the
proposed methods for three pedestrian densities; 0.125 /m2,
0.25 /m2, and 0.5 /m2; corresponding to the cases where the
pedestrians arrived at the exhibition hall with average arrival
intervals of 10 s, 6 s, and 4 s, respectively. Fig. 14 shows
comparison results of the pedestrian density effects.

As shown in Fig. 14, there was almost no effect on
the average localization error due to pedestrian density

FIGURE 15. Identifiers of the anchor nodes and their positions.

FIGURE 16. Comparison results of the number of anchor nodes effects
obtained when the attenuation model is accurate.

changes. The proposed method 1 uses RSSI measurements
between the pedestrian and anchor nodes; thus, we considered
that the pedestrian density had a minor effect on the
localization accuracy. When the pedestrian density was
increased from 0.125 /m2 to 0.25 /m2, the average localization
error decreased by 0.1 m in the proposed method 2, which
considered the distance between the pedestrians.

D. DEPENDENCE ON NUMBER OF ANCHOR NODES
WHEN THE ATTENUATION MODEL IS ACCURATE
We considered that the localization accuracy also depends on
the number of anchor nodes because the proposed methods
estimate the distance from the proximity relation between the
nodes. We investigated the effect of the number of the anchor
nodes on localization error. Here, the pedestrian density ρ
was 0.125 /m2. The anchor nodes were given identifiers
from 1 to 15. Fig. 15 shows the identifiers of the anchor nodes
and their positions. We changed the number of the anchor
nodes in order of the identifiers and compared the average
localization errors. Fig. 16 shows comparison results of the
number of anchor nodes effects obtainedwhen the attenuation
model is accurate.

As shown in Fig. 16, as the number of anchor nodes
increases, the average localization error decreases for all
methods. However, when the number of the anchor nodes is
seven or greater, the error reduction range is only 0.2 to 0.3 m.
Thus, we found that seven anchor nodes are sufficient to
estimate the node positions under the conditions of this study.
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FIGURE 17. Comparison results of the path loss exponent value effects
obtained when the attenuation model is inaccurate.

Note that using additional anchor nodes may effectively
improve the localization accuracy when the attenuation
model is inaccurate.

E. DEPENDENCE ON THE PATH LOSS EXPONENT OF THE
ATTENUATION MODEL WHEN THE ATTENUATION MODEL
IS INACCURATE
In Sections V-B to V-D, we assumed a case where the
actual radio propagation environment is fixed and the advance
assumed attenuation model is accurate and inaccurate when
using the existing methods. However, when pedestrians use
position estimation applications, environmental conditions,
e.g., the furniture arrangement and the population in the
area, often change over time. Here, we considered a case
where the actual radio propagation environment is changed
and the advance assumed attenuation model is fixed. In this
evaluation, we considered a situation where the path loss
exponent n is changed from 1.4 to 2.6 from the preset
attenuation model A.

In the proposed methods, we used an RSSI threshold of
−58 dBm, which is the rate of proximity node pairs of 20%
assumed in Section V-B with the attenuation model A. In the
fingerprinting method, we used the RSSI generated using
the attenuation model A when the RSSI map was measured
in advance. The proposed methods were compared with the
existing methods. Fig. 17 shows comparison results of the
path loss exponent values when the attenuation model is
inaccurate.

As shown in Fig. 17, the average localization error
increases with the increasing path loss exponent n for
all methods. In particular, the average localization error
of the range-based method increased significantly when
n ≥ 1.4. When n was changed from 1.2 to 1.8, the average
localization error of the fingerprinting method increased by
3.5 times, while those of proposed method 1 and proposed
method 2 increased by 1.4 times and 2.0 times, respectively.
We confirmed that the proposed methods using only contact
information are robust against environmental changes.

In the proposed methods, the server recognizes the
proximity relation between nodes from the RSSI and RSSI
threshold Rth; thus, the server can dynamically determine Rth

such that 20% of node pairs are considered to be in proximity.
If such dynamical adjustment of the RSSI threshold is
applied, the localization accuracy of the proposed methods
will be improved.

VI. CONCLUSION
Recently, indoor localization based on ‘‘proximity/non-
proximity’’ binary values has been studied. The binary value
is also employed as contact information in COVID-19 digital
contact tracing applications.

In this paper, we have attempted to demonstrate the
effectiveness of using only binary contact information. The
results of a localization experiment conducted using real
devices and those of simulation experiments have shown
that the sensor response-based localization method can be
applied to indoor localization tasks. Through the simulation
experiments, we found that the proposed methods can obtain
comparable accuracy to the existing methods when the
attenuation model is accurate. In addition, we have confirmed
that the proposed methods, which only consider contact
information, are robust against environmental changes even
when the attenuation model is inaccurate.

We consider that these contributions have added a new
perspective on the use of contact information in the field
of indoor localization, which aims to realize power-saving
and cost reduction. The simulation results show that setting
an optimal RSSI threshold value is required to improve
localization accuracy. Thus, in the future, we plan to devise
an algorithm to dynamically determine an effective RSSI
threshold to realize an optimal rate of proximity nodes.

APPENDIX
A. FORMULATION FOR OPTIMIZATION PROBLEMS
Here, we present the formulation of the optimization
problem and the solution of the cooperative localization
in Section III-D. We define the observation area as a
two-dimensional field with N (N = |N |) pedestrians. Let
ai denote the known coordinates of anchor node i, and the
distance between nodes i and j is expressed as dij.

The function g(x1, . . . , xN ) is defined as follows.

g(x1, . . . , xN )
def
=

1
2

∑
i∈N

∑
j∈Ni

(|xi − xj| − dij)2

+

∑
i∈N

∑
j∈Ai

(|xi − aj| − dij)2

(15)

Here, g(x1, . . . , xN ) is minimized by xmin1 , . . . , xminN . In other
words, if

∀x1, . . . , xN , g(xmin1 , . . . , xminN ) ≤ g(x1, . . . , xN )

holds, we consider xmin1 , . . . , xminN to be the estimated position
of the pedestrians calculated from distance dij. The estimation
of xmin1 , . . . , xminN is discussed in the following.
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B. SOLVING THE OPTIMIZATION PROBLEM
Function g(x1, . . . , xN ) is a nonconvex nonlinear function,
and the global minimum value cannot be obtained analyt-
ically; thus, one of the local minimum values obtained by
the descent method is employed as the estimated position
x1, . . . , xN . Here, we introduce an efficient solution to find
the local minimum value recursively. First, note that any vi
and vj have the following relationship:

(|xi − xj| − dij)2

= |xi − xj|2 + d2ij − 2|xi − xj|dij

≤ |xi − xj|2 + d2ij − 2(xi − xj)(vi − vj)>
dij

|vi − vj|
. (16)

The function s(x1, . . . , xN ; v1, . . . , vN ) is defined as
follows:

s(x1, . . . , xN ; v1, . . . , vN )
def
=

∑
i∈N

∑
j∈Ni

{
|xi − xj|2 + d2ij −

2dij(xi − xj)(vi − vj)>

|vi − vj|

}

+

∑
i∈N

∑
j∈Ai

{
|xi − aj|2 + d2ij −

2dij(xi − aj)(vi − aj)>

|vi − aj|

}
.

Note that g(x1, . . . , xN ) = s(x1, . . . , xN ; x1, . . . , xN ).
In addition,

g(x1, . . . , xN ) ≤ s(x1, . . . , xN ; v1, . . . , vN )

holds from (16). Assume that g(x1, . . . , xN ; v1, . . . , vN ) is
minimized at xmin1 , . . . , xminN for the given v1, . . . , vN . In other
words,

s(xmin1 , . . . , xmN ; v1, . . . , vN ) ≤ s(x1, . . . , xN ; v1, . . . , vN )

holds for any x1, . . . , xN . Then, we obtain the following:

g(xmin1 , . . . , xminN ) ≤ s(xmin1 , . . . , xminN ; v1, . . . , vN )
≤ s(v1, . . . , vN ; v1, . . . , vN )
= g(v1, . . . , vN ). (17)

From the above, the local minimum value of the func-
tion g(x1, . . . , xN ) can be obtained recursively as follows.
First, we set the initial solution x(1)1 , . . . , x

(1)
N . We then find

x1, . . . , xN , which minimizes s(x1, . . . , xN ; x
(1)
1 , . . . , x

(1)
N ),

and let it be the second solution x(2)1 , . . . , x
(2)
N . Using

this procedure, we obtain x(k)1 , . . . , x
(k)
N (k = 1, 2, . . . ) recur-

sively. When gk
def
= g(x(k)1 , . . . , x

(k)
N ) is defined, g1, g2, . . .

becomes a decreasing sequence by (17), and g(x(k)1 , . . . , x
(k)
N )

converges to the local minimum value of g(x1, . . . , xN ) at the
limit of k →∞. Note that the convergence destination is not
necessarily the global minimum value of function g.

C. MINIMUM VALUE OF FUNCTION S
In the above procedure, we must find xmin1 , . . . , xminN that
minimizes s(x1, . . . , xN ; v1, . . . , vN ) for a given v1, . . . , vN ,
and this method is explained as follows. Here, function
s(x1, . . . , xN ; v1, . . . , vN ) is decomposed as follows:

s(x1, . . . , xn; v1, . . . , vN )
= s1(x1, . . . , xN ; v1, . . . , vN )+ s2(x1, . . . , xN ; v1, . . . , vN ),

s1(x1, . . . ,xN ; v1, . . . , vN )
def
=

∑
i∈N

∑
j∈Ni

{
|xi− xj|2 + d2ij−

2dij(xi − xj)(vi − vj)>

|vi − vj|

}
,

s2(x1, . . . , xN ; v1, . . . , vN )
def
=

∑
i∈N

∑
j∈Ai

{
|xi− aj|2 + d2ij−

2dij(xi − aj)(vi − aj)>

|vi − aj|

}
.

Here, s(x1, . . . , xN ; v1, . . . , vN ) is minimized by
xmin1 , . . . , xminN ; thus, we obtain

∂s(x1, . . . , xN ; v1, . . . , vN )
∂xi

∣∣∣xi=xmini
= 0 (18)

for all i ∈ N . In addition,

∂s1(x1, . . . , xN ; v1, . . . , vN )
∂xi

=

∑
j∈Ni

{
(xi − xj)−

dij(vi − vj)
|vi − vj|

}
, (19)

for all i ∈ N , and

∂s2(x1, . . . , xn; v1, . . . , vN )
∂xi

=

∑
j∈Ai

{
(xi − aj)−

dij(vi − aj)
|vi − aj|

}
. (20)

We substitute (19) and (20) into (18).

β i = (|Ni +Ai|)xmini −
∑
j∈Ni

xminj , i ∈ N ,

β i
def
=

∑
j∈Ni

dij(vi − vj)
|vi − vj|

+

∑
j∈Ai

dij(vi − aj)
|vi − aj|

+

∑
j∈Ai

aj. (21)

Note that (21) are simultaneous linear equations for
xmin1 , . . . , xminN ; thus, xmin1 , . . . , xminN can be calculated by
solving the simultaneous equations. For example, we define
a vector X r

def
= (xx,1, . . . , xx,N )> with the x components of

xmin1 , . . . , xminN and vector Xβ
def
= (βx,1, . . . , βx,N )> with the

x components of β1, . . . ,βN ,

Xβ = BX r ,

where

B def
=


|N1 +A1| −A12 . . . −A1N
−A21 |N2 +A2| . . . −A2N
...

...
. . .

...

−AN1 −AN2 . . . |NN +AN |

 ,
Aij

def
=

{
0, j /∈ Ni
1, j ∈ Ni.

Here, B has an inverse matrix; thus, X r = B−1Xβ holds.
Similarly, (xy,1, . . . , xy,N )> = B−1(βy,1, . . . , βy,N )>. In the
above procedure, v1, . . . , vN corresponds to the k-th solution,
and xmin1 , . . . , xminN corresponds to the (k+1)-th solution. Note
that these change with each recursive calculation; however,
B is invariant, and the inverse matrix of B only needs to be
calculated once.
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