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ABSTRACT The onset process of corona discharge is naturally nonlinear and dynamic. The conventionally
physical-based onset model and numerical computation of onset charge distribution are hampered by the
computational power and given time. Here, in order to efficiently model this highly nonlinear dynamic
process, a long short-term memory (LSTM) neural networks with attention mechanisms is proposed for
accelerated charge density prediction under different atmospheric conditions, which adaptively choose
charge-related input variables at each time step and hidden states relating to charge density all time steps.
Our results demonstrate that this well trained model could make instant predictions with high accuracy
under given target atmospheric conditions. Results show that the proposed model substantially reduces the
computing time compared to physical-based methods. This work provides insights into applying LSTM
neural networks to the charge density prediction of other discharge modes as well.

INDEX TERMS Neural networks, charge density, corona discharge, onset condition, prediction model,
LSTM.

I. INTRODUCTION
Corona discharge is a nonequilibrium electrical discharge
in the non-uniform electric field caused by the sharp elec-
trodes. Corona discharge plays a vital role in a wide range
of industrial applications, such as electrostatic precipita-
tor [1], plasma reactor [2], ionic wind [3], plasma propulsion
engine [4], or plasma spectroscopy [5]. The corona discharge
commonly appears or forms when the surface electric field
of the electrode reaches the onset electric field, which is
commonly realized by the rod-plane electrode or the coaxial
cylindrical electrode [6], [7], [8].
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In recent years, to reduce or diminish the energy consump-
tion of corona devices or suppress corona loss of high-voltage
power apparatuses, the manipulation of corona onset voltage
has attracted immense attention [9], [10], [11]. Predicting
the onset characteristics and conditions through making use
of the onset phenomenon becomes important for scientific
research and industrial applications. In recent decades, there
has been an extensive interest to investigate the onset electric
field and physical-based onset models [12], [13], [14], [15].
These onset electric field formulas are approximately
empirical expressions and derived from the experimental
measurements, such as well-known Peek’s formula [16].
However, these empirical formulas cannot capture the varia-
tion of the onset fieldwith surrounding atmospheric condition
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FIGURE 1. Illustration of the attention-based LSTM neural networks. The attention weight αk
t is computed by the spatial attention (U and W are

parameters), softmax layer and hidden state ht−1. And then the new input x̃t is fed into the encoder LSTM cell. The attention weight α̃k
t is computed by

the temporal attention (Ũ and W̃ are parameters), decoder hidden state h̃t−1 and softmax layer. The context vector c̃t−1 is a sum of attention weights
multiplied by decoder hidden state and fed to decoder LSTM cell. The ỹT is the prediction.

and electrode radius. The physical-based onset models
are deduced from the avalanche growth, self-sustained
mechanism and photoionization. Although the extensive
computational efforts and some progress had been made,
these methods were time-consuming and intense computing
resources. The prediction of charge density properties was
a highly nonlinear and complex problem. In addition, the
atmospheric conditions (i.e., humidity, temperature, and pres-
sure) have a great influence on corona onset. There are still
many obstacles on the way to accurately predict the charge
density during the onset process under different atmospheric
conditions.

Machine learning, especially deep learning, has proven
to be ubiquitous in a wide range of practical applications
ranging from spoken words recognition to modern scientific
research [17], [18]. Nowadays, researchers in the plasma or
corona discipline are more willing to accumulate data with
combinatorial experiments [19], [20] and physical model-
based computations [21], [22]. Machine learning algorithms
were deployed to find the potentially valuable pattern of
plasma and predict the corona characteristics from these data
[23], [24], [25], [26]. Some recent advancements applied
neural networks to plasma discharge, such as plasma catal-
ysis [27], [28], discharge process condition sensing [29],
plasma chemical reactions [30], etc. Long short-termmemory
(LSTM) is a kind of recurrent neural network architecture,
which is successfully applicable to nuclear plasma and par-
tial discharge of apparatus. LSTM was used for control-
ling of plasma placement in Tokamak [31], density limit
disruption prediction of Experimental Advanced Supercon-
ducting Tokamak [32], recognition of anomalous patterns
of discharge in nuclear fusion [33], and plasma confine-
ment mode classification [34]. In addition, LSTM had been
applied in partial discharge detection and pattern recog-
nition of insulated overhead conductors and gas insulated

switchgear [35], [36], [37]. Recent works have achieved sig-
nificant improvements in predictions of discharge through
neural networks. However, there are still few studies focus-
ing on the prediction of onset characteristics under differ-
ent atmospheric conditions and the application constraint of
recurrent models to onset of corona discharge remains.

The main contributions of this article are as follows:
(1) Propose a long short-term memory (LSTM) neural net-

works with spatial and temporal attentions to model
the charge density behaviors of DC corona discharge
during the primary avalanche growth.

(2) Propose the Hausdorff metric to measure the similarity
between the predicted distribution of charge density
and the numerical calculation distribution of charge
density.

(3) Analyze the spatial and temporal attentions and effec-
tiveness of proposed model, which is compared with
other traditional sequential models.

(4) Analyze the impacts of temperature, absolute humid-
ity, and pressure on charge distribution of corona
discharge, which aims at the reliable prediction of
atmospheric impacts.

II. LSTM BASED AUTOENCODER ARCHITECTURE AND
SPATIOTEMPORAL ATTENTION
A. MODEL ARCHITECTURE
The overall structure of the proposed method is the autoen-
coder architecture. The autoencoder architecture, includ-
ing the encoder and decoder parts, is a competitive neural
sequence transduction model and commonly proposed to
address the sequential issue [38]. In the encoder framework,
the encoder is built by stacked RNN, gated recurrent neural
networks or LSTM. The input sequence is efficiently coded
into the hidden state (dimensional vector) which encapsu-
lating the useful information of input sequence. Then, the
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decoder maps the encoding to the output sequence. The
decoder is also built by RNN or RNN variants. The length
of input sequence may differ from the output sequence.

For our study, Figure 1 presents the graphical illustration
of the proposed attention-based LSTM neural networks for
the sequence-to-sequence prediction, which belongs to the
encoder-decoder architecture. To resolve the issue of different
length between input and output sequences, the fixed-length
context vector is produced from the hidden state and mapping
function. In addition, when the length of input sequence
increases, the performance of encoder-decoder neural net-
works deteriorates rapidly since it makes predictions based on
the information of input and target sequences. To address this
issue, the attention mechanism could be used for choosing the
relevant context vector across all the time steps, which com-
putes the representations of the input and output sequences.

As shown in Figure 1, in the encoder, the spatial attention
is used to adaptively select the relevant input data related to
charge density by referring to the hidden state at the previous
time step. In the decoder, the temporal attention is used to
automatically choose hidden states of the encoder related to
the charge prediction across all time steps. Through these
attentions, the LSTM neural networks could learn the long-
term temporal dependency more effectively.

B. LSTM NEURAL NETWORKS
In the paper, the LSTM neural networks is used to con-
struct the encoder-decoder framework. In each LSTM unit,
a memory cell is used to determine what information could be
passed or stored from input series by the input gate I t , forget
gate Ft , and output gate Ot . The long-term dependencies of
the series are captured by the LSTM unit. The hidden state
and update of the LSTM unit could be expressed as follows

Ft = σ
(
Wfxxt +Wfhht−1 + bf

)
(1)

I t = σ (Wixxt +Wihht−1 + bi) (2)

Ot = σ (Woxxt +Wohht−1 + bo) (3)

C t = tanh (Wcxxt +Wchht−1 + bc) (4)

ht = Ot � tanh (Ft �M t−1 + It � (C t)) (5)

st = Ft � st−1 + I t � tanhC t (6)

where C t , ht and st donate the intermediate state, hidden
state and memory cell state of LSTM at time t , respectively;
xt ∈ Rn represents the input series at time t and n is the
number of input series; Wf , Wi, Wo and Wc represent the
parameter matrices to be learned in LSTM; bf , bi, bo and
bs represent the intercept parameters to be learned in LSTM;
σ and tanh represent the sigmoid activation function and
hyperbolic tangent function, respectively; � represents the
element wise multiplication.

C. SPATIAL AND TEMPORAL ATTENTIONS
The key challenge in charge prediction task (sequence trans-
duction) is to learn the long-term dependencies. To improve
the prediction performance for long sequence, the spatial

and temporal attentions are used to learn the long-term
dependencies.

For the given input time series xk =
(
xk1 , x

k
2 , · · · , x

k
T

)
,

the spatial attention mechanism could be constructed by the
hidden state and memory cell state (at last time step t − 1) of
encoder LSTM. The spatial attention includes the multi-layer
perceptron networks and softmax layer:

ekt = vke tanh
(
Wesst−1 +Wehht−1 + Uexk + bke

)
(7)

αkt = exp
(
ekt
)/ n∑

i=1

exp
(
eit
)

(8)

where ekt represents the output value of spatial attention,
which measures the importance of input feature at time step
t; vke , Wes, Weh, Ue and bke represent the parameters to be
learned; αkt represents the output value of softmax layer.

ẽdt = vdẽ tanh
(
Wẽs̃s̃t−1 +Wẽh̃h̃t−1 + Uẽhd + bdẽ

)
(9)

α̃dt = exp
(
ẽdt
)/ T∑

m=1

exp
(
ẽmt
)

(10)

where ẽdt represents the output value of temporal attention;
vdẽ , Wẽs̃, Wẽh̃, Uẽ and bdẽ represent the parameters to be
learned; α̃dt represents the output value of softmax layer.
The final prediction output is

ỹT = vy
(
Wy

[
h̃T ; cT

]
+ b

)
+ b (11)

where ct =
T∑
d=1

α̃dt hd is the context vector at time t; h̃t is

the hidden state of the decoder;
[
h̃T ; cT

]
is a concatenation

of the context vector and the hidden state of the decoder;
vy and Wy represent the weight parameters; b and b are the
bias vector and parameter.

D. EVALUATION MERICS
Three evaluation metrics (mean absolute error, root mean
squared error and mean absolute percentage error) are used
to measure the performance of onset characteristic prediction
of different models. Specifically, the mean absolute error
(MAE) is a scale-dependent metric and expressed as

MAE =
1
N

N∑
i=1

∣∣∣yit − ỹit ∣∣∣ (12)

The root mean squared error (RMSE) is a scale-dependent
metric and expressed as

RMSE =

√√√√ 1
N

N∑
i=1

(
yit − ỹ

i
t
)2

(13)

The mean absolute percentage error (MAPE) is not a scale-
dependent metric and given by

MAPE =
1
N

N∑
i=1

∣∣∣∣yit − ỹityit

∣∣∣∣× 100% (14)
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where yit and ỹ
i
t represent the label and predicted values at

time t , respectively.N represents the total number of samples.

III. EXPERIMENTAL IMPLEMENTATION DETAILS
A. TRAINING AND TESTING DATASETS
The training and testing datasets are generated and col-
lected from numerical computations and previous literature
data [11], [12], [13], [14], [15], [16]. In our experiment,
the number of avalanche charge is considered as the input
variable. The 30000 labeled samples (number of primary
avalanche and charge density) are collected during primary
avalanche progression. The first 20000 samples are consid-
ered as training data. The following 2000 samples are used
for validation data and the remaining 8000 are considered as
the testing data. The input data is normalized to 0 to 1.

B. HARDWARE AND PARAMETER SETTINGS
The training and testing experiments are mainly implemented
on a computing platform (NVIDIA RTX3090 GPUs with
24GB memory, Intel Core i9 10900K CPU @ 3.7 GHz
and 32GB RAM), open-source PyTorch framework library,
deep neural network library of NVIDIA compute unified
device architecture (CUDA) and NVIDIA CUDA toolkit.
In the comparison analysis experiments, the maximum 20
CPU threads are allocated for other non- neural network
models. In addition, the NVIDIA compute unified device
architecture (CUDA) toolkit and CUDA deep neural net-
work (CUDNN) are used to accelerate the GPU performance.
The PyTorch libraries, including numpy, matplotlib, sklearn,
skimage, shutil, random, os, json, pandas, are used for the
post hoc data processing and result visualization in our cus-
tom codes.

Firstly, in our LSTM model, there exist three main param-
eters to be optimized, including the numbers of hidden state
in encoder and decoder parts and the number of time step of
window. The grid search technique is used to determine the
parameters which could achieve the best performance in the
validation data. The number of time step of window is 10.
The numbers of hidden states for encoder and decoder are
all 64. In addition, the optimal minibatch size is 30 and the
initial learning rate is set to 0.01. The number of epochs is
determined as 60. In summary, our work employs the cross-
validation procedure, learning-rate scheduler and automated
early stopping criterion for training our proposed models to
combat overfitting.

IV. PREDICTION RESULTS
Figure 2 (a) presents the prediction results and prediction
residuals of charge density distribution with avalanche length
of the rod-plane electrode under a specific atmospheric con-
dition (the radius of the rod is 0.1 cm, temperature of 20 ◦C,
pressure of 1 atm, relative humidity of 20 %; the scale
type of the ordinate is linear). It is found that the pre-
dicted charge density distribution could fit the target curve
very well. The statistical tests, such as error histogram and
quantile–quantile plot, are used to validate the performance

FIGURE 2. Model validation for the prediction of charge density (the
radius of the rod is 0.1 cm, pressure of 1atm, temperature of 20 ◦C).

of proposed model. Figure 2 (b) and (c) present the error his-
togram and quantile–quantile plot of the prediction of charge
density for the testing data. These statistical tests indicate that
the prediction errors approximately obey Gaussian distribu-
tion. This quantile–quantile plot compares sample data on the
vertical axis to normal distribution data on the horizontal axis,
which suggests that the sample data are normal distribution.

To compare the prediction performance, the auto regressive
integrated moving average (ARIMA), ARIMA model with
external input (ARIMAX), recurrent neural networks (RNN),
LSTM and the proposed model are used for prediction of
charge density. The mean average error (MAE), root mean
squared error (RMSE) and mean absolute percentage error
(MAPE) are used as metrics of accuracy and these definitions
are given in the supplementary material. TABLE 1 presents
MAE, RMSE and MAPE of charge density prediction of
negative glow corona discharge under temperature of 20 ◦C,
pressure of 1 atm and relative humidity from 1 % to 52.5
%. We conduct the test 10 times for each model and present
their average metrics and standard deviations in TABLE 1.
It is observed that the performance of ARIMA and ARI-
MAX are lower than neural networks. Since ARIMA only
considers the target series at previous time and ARIMAX
is a linear model. The RNN could capture the nonlinear
temporal relationships, and thus it outperforms ARIMAX.
The LSTMneural networks could use a memory cell and acti-
vation function to learn long-term dependencies of the data
for charge prediction. In addition, the additional comparative
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FIGURE 3. Comparisons of predicted and numerically calculated charge density at onset condition of negative glow corona discharge under different
atmospheric conditions (the radius of the rod is 0.1 cm). Condition 1: temperature of 20 ◦C, pressure of 1 atm, relative humidity from 1 % to 52.5 %;
Condition 2: pressure of 1 atm, relative humidity of 20%, temperature from 1 ◦C to 48 ◦C; Condition 3: temperature of 20 ◦C, relative humidity of 20 %,
pressure from 0.3 atm to 5.1 atm. ML predictions represent the machine learning-based predictions.

analysis are performed onMAE, RMSE andMPAE of charge
density prediction of negative glow corona discharge under
the temperature from 1 ◦C to 48 ◦C and the pressure from
0.3 atm to 5.1 atm.We also conduct the comparisons onMAE,
RMSE and MPAE of charge density prediction of positive
glow corona discharge under the relative humidity from 7.5%
to 75%, temperature from−25 ◦C to 65 ◦C and pressure from
0.25 atm to 5.75 atm. Our proposed model all significantly
outperforms other four models. The results of our proposed
model on the prediction of negative corona report the mean
accuracies of 1.003 (MAE), 2.405 (RMSE) and 6.746 %
(MAPE) under the pressure of 1 atm, relative humidity of
20%, temperature from 1 ◦C to 48 ◦C, and the mean accura-
cies of 1.454 (MAE), 2.625 (RMSE), 7.156% (MAPE) under
the temperature of 20 ◦C, relative humidity of 20 %, pressure
from 0.3 atm to 5.1 atm. Our results of the proposed model
on the prediction of positive corona report the accuracies of
0.464 (MAE), 2.333 (RMSE), 6.501% (MAPE) under the
temperature of 20 ◦C, pressure of 1 atm, relative humidity
from 7.5 % to 75 %, the mean accuracies of 0.895(MAE),
2.709 (RMSE), 6.919% (MAPE) under the pressure of 1 atm,
relative humidity of 20%, temperature from−25 ◦C to 65 ◦C
and the mean accuracies of 1.001 (MAE), 2.881 (RMSE),

7.182 % (MAPE) under the temperature of 20 ◦C, relative
humidity of 20 %, pressure from 0.25 atm to 5.75 atm. The
average computing overheads of ARIMA, ARIMAX, RNN,
LSTM and well-trained proposed model are 25s, 33s, 22.5s
35s and 2s, respectively.

Our proposed model achieves the best performance among
the five methods since it could extract the relevant informa-
tion by spatial attention and then uses the temporal attention
to choose the relevant information across all time steps.

TABLE 1. MAE, RMSE and MAPE of the five models for prediction result
of charge density.
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FIGURE 4. Comparisons of predicted and numerically calculated charge density at onset condition of positive glow corona discharge under different
atmospheric conditions (the radius of the rod is 0.1 cm). Condition 4: temperature of 20 ◦C, pressure of 1 atm, relative humidity from 7.5 % to 75 %;
Condition 5: pressure of 1 atm, relative humidity of 20%, temperature from −25 ◦C to 65 ◦C; Condition 6: temperature of 20 ◦C, relative humidity of 20 %,
pressure from 0.25 atm to 5.75 atm. ML predictions represent the machine learning-based predictions.

In Figure 3 (a)-(c), we present the predicted and numer-
ically calculated charge density distribution with primary
avalanche length of rod-plane electrode under different atmo-
spheric conditions and the onset condition of negative glow
corona. The solid lines represent the prediction results of the
proposed model, and the dotted lines represent the numerical
calculation results of physical-based onset model (the scale
type of the ordinate is log10). For visual comparison, it is
observed that the proposed model is in good match with the
numerical calculations. As increasing the humidity, tempera-
ture and pressure, the predictions of charge density augment
at the onset condition [24]. The predictive performance of
our model is further test quantitatively by calculating curve
similarity. Here the hausdorff distance (also called Hausdorff
metric) is used to measure the similarity between two sets,
which is a nonlinear operator and quantifies how the predicted
curve resembles the reference curve [39]. In Figure 3 (a)-(c),
the prediction results of the proposed model are the predicted
curves, and the numerical calculation results are the reference
curves.

In Figure 3 (d)-(f), we present the heat maps to depict
the curve similarity of predicted and numerically calculated

charge density of negative glow corona under different atmo-
spheric conditions. Here, the numbers in the heat maps repre-
sent the value of hausdorff distance. The small distancemeans
a large similarity. If every points of prediction set are close
to points of numerical calculation set, the small hausdorff
distance value between two kinds of set is obtained. For
the new atmospheric condition, the well-trained model takes
approximate two seconds to provide the predictions, while
the numerical calculation takes 25 minutes. The closeness
of machine learning (ML)-based predictions with numerical
calculations indicates that the model could instantly predict
the charge density with reasonable accuracy.

For the onset condition of positive glow corona,
Figure 4 (a)-(c) presents the comparisons of predicted and
numerically calculated charge density under different atmo-
spheric conditions (the scale type of the ordinate is log10).
Figure 4 (d)-(f) are the heat maps to depict the curve similarity
of predicted and numerically calculated charge density of
positive glow corona under different atmospheric conditions.
The interactive influence of temperature, relative humidity
and pressure on the charge density at onset condition has
been quantified. As evinced by the high consistency between
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the ML predictions and numerical results in Figure 3 and 4,
the charge density could be satisfactorily assessed under
different atmospheric conditions by the proposed LSTM
model with attention mechanisms. The stable corona may
appear in glow or streamer mode depending on the electric
field and avalanche growth. Similarly, this LSTM model is
also applicable to the prediction of charge density at onset
condition of streamer corona discharge.

Our results demonstrate that when trained and imple-
mented under the same practices, our proposed model could
substantially outperform the traditional time series predic-
tion methods, despite being more complex in our model.
In addition, the observations of substantial improvement in
prediction performance benefit from the spatial and tempo-
ral attentions mechanism when compared with LSTM and
RNN. It is attributed to the spatial attentionmechanismwhich
could adaptively choose the relevant input series and temporal
attentionmechanismwhich could capture relevant long-range
encoder hidden states. Note, there may be other ways to
potentially improve the predicted performance, such as, using
an advanced parameter tuning method or a newer autoen-
coder architecture. The LSTM model with spatial and tem-
poral attentions is strongly recommended to make prediction
based on the spatiotemporal information of avalanche charge.
Notably, the capability of attention mechanism to select rel-
evant series in the proposed model does not imply that this
model will necessarily perform better for all sequential tasks.
In the future, the further robustness work of prediction is
recommended, such as, prediction by evaluating on another
dataset.

V. CONCLUSION
In summary, a LSTM model with attention mechanisms is
introduced for the accelerated prediction of charge density
at onset condition of DC corona discharge since the con-
ventionally physical-based onset models are hampered by
the computational power and given time. We provide how
generated and curated necessary data could be used to train
the proposed model. Our results present that the proposed
model performs significantly better for the predictive tasks of
charge density than ARIMA, ARIMAX, RNN, and LSTM.
Notably, our findings also highlight the use of the trained
proposed model to successfully and rapidly make predictions
with high accuracy for specific atmospheric conditions. Our
study motivates future LSTM neural networks with attention
mechanisms as a complementary method to numerical calcu-
lation and experimental efforts in accelerated prediction for
different atmospheric conditions.
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