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ABSTRACT In this paper, we propose a new iterative thresholding algorithm based optimizer (Itao) for
deep neural networks. It is a first-order gradient-based algorithm with Tikhonov regularization for stochastic
objective functions. It is fast and straightforward to implement. It acts on the parameters and their gradients,
with respect to the objective function, in only one step in the backpropagation system when training a neural
network. This reduces the learning time and makes it well suited for neural networks with large parameters
and/or large datasets. We have experimented this algorithm on several types of loss functions such as mean
squared error, mean absolute error and categorical crossentropy. Different types of models such as regression
and classification are studied. The robustness of this optimizer against the noisy labels is also verified. Many
of the empirical results of conducted experiments in this study show that our optimizer works well in practice.
It can outperform other state-of-the-art optimizers in terms of accuracy or at least give the same results in
addition to the reduction of learning time.

INDEX TERMS Iterative thresholding algorithm based optimizer (Itao), deep learning, optimizer algorithm,
neural networks.

I. INTRODUCTION
Artificial neural networks are now pillars of deep learning,
which is one of the main technologies of machine learning
and artificial intelligence. They are able to perform nonlinear
regression. Therefore, they can be adapted to solve inverse
problems. An inverse problem arises whenever a physical
system must be inferred using measurements [1], and then
one must establish whether this problem is well-posed in
order to determine its solution. Formally, a well-posed
problemmust meet Hadamard’s three criteria: (i) the problem
has a solution; (ii) the solution is unique; and (iii) the
solution changes continuously on data and parameters [2].
Often inverse problems are ill-posed, because they are often
indeterminate with an infinite number of solutions.Moreover,
small changes in the data or parameters can lead to large
variations in the accuracy of the solution, which can cause
the solution to be unstable and thus not satisfy Hadamard’s
third criterion. A family of methods commonly used to
solve the stability problem is regularization. As introduced
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in [3], regularization consists in adding prior information to
the inferred system during the optimization process, which
allows a smoothing of the function by approximating the
solution. Neural networks have also benefited from the theory
of regularization, which limits the overfitting problem.

Artificial neural networks are based on the backpropaga-
tion of the error gradient as a learning algorithm inmulti-layer
systems [4]. Classically, solving a problem via neural
networks is equivalent to using an iterative optimization
method. This method is based on the stochastic gradient
algorithm which is a differential optimization algorithm [5].
In general, it is intended to minimize a parameterized scalar
objective function with respect to its parameters using a
chain of partial derivatives propagating from the output to the
input of the neural network [6]. In passing, the parameters
(weights of the connections between layers of the neural
network) are adjusted in according to their contribution to the
objective function computed at the output [7]. If the function
is written as a sum of functions differentiable with respect
to its parameters, the standard method of stochastic gradient
descent (SGD) is done. This is due to the generally simple
calculation of the first order partial derivatives with respect
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to all parameters, and also to the evaluation of the objective
function which is done in a random way on a subsample
(minibatch) of data points.

In this paper, we propose a new approach to deep neural
network optimization based on the iterative thresholding
algorithm [8], [9]. This algorithm is an extension of the clas-
sical gradient algorithms with regularization [10]. Iterative
thresholding algorithm with its other generalizations have
proven their feasibility, mainly in many image processing
applications (see [11], [12], and [13]). In addition, this
algorithm has been used by inverse problems’ researchers for
partial differential equations [14], [15], [16]. We will use the
classical Tikhonov regularization to reformulate the objective
function to be minimized. The rest of this paper will be
organized as follows. Section II is dedicated to related works.
In section III, we present the mathematical foundations
behind this approach. Then, we announce and explain the
pseudo-code of the proposed algorithm. Experiments and
results of this work are carried out in section IV, and
concluding remarks are given in section V.

II. RELATED WORKS
SGD, for Stochastic Gradient Descent, is an optimizer
algorithm used in neural network to optimize an objective
function. It is an iterative method optimization. During
the training phase of the neural network, the gradient of
the objective function is computed on a single randomly
shuffled example of the dataset used and then an update
of the W parameters of the network is applied through the
error backpropagation algorithm. For this, it is viewed as a
stochastic approximation of the gradient descent (GD) where
the gradient is computed on the whole dataset. For each
iteration, the new value of a parameter w becomes:

w← w− η∇wJ (w), (1)

where J (w) is a loss function (objective function) and η is
a step size also called learning rate. when we compute the
gradient on a randomly selected mini-batch examples, during
a training iteration, we talk about mini-batch gradient descent
and the equation for updating a parameter w becomes:

w← w−
η

m
∇wJ (w), (2)

where m is the size of mini-batch. The training becomes
slow when the neural network is very large. To speed up the
training we use optimizers faster than the SGD.

Polyakc [17] proposed a momentum optimization that
takes into account the previous gradients. It computes a
velocity v in which the gradient is replicated, the initial
velocity is 0. Then it updates the parameters w as follows:

v ← βv− η∇wJ (w),

w ← w+ v. (3)

Here the gradient can be seen as an acceleration factor
and not as a velocity factor. To avoid any speed runaway,
the hyperparameter β allows to simulate a friction called

momentum. Frequently, we use a value close to 0.9. If the
gradient remains constant, we can verify that the final
speed is equal to this gradient multiplied by η/(1 − β).
If β = 0.9, this speed is −10 times the learning rate
multiplied by the gradient [18]. And so we can say in this
case that the optimization with momentum can go 10 times
faster than the gradient descent to reach the optimum value
of the weights that leads basically to a minimum loss.
Nesterove [19] proposed a Nesterove Accelerated Gradient,
which is a variant of the inertial optimization and is faster than
the original version.

There is a set of adaptive learning rate algorithms. Among
these algorithms are AdaGrad [20], RMSProp [21] and
Adam [6]. Adam for Adaptive Moment Estimation is con-
sidered better than other optimizers at least for training deep
neural networks. Adam combines the ideas of optimization
with inertia and RMSProp. It uses an exponential moving
average m of past gradients like optimization with inertia
and an exponential moving average v of the squares of past
gradients like RMSProp. The steps of the Adam algorithm
can be summarized as follows:

1. m← β1m− (1− β1)∇wJ (w),

2. v← β2v− (1− β2)∇wJ (w)⊗∇wJ (w),

3. m← m� (1− β t1),

4. v← v� (1− β t2),

5. w← w+ ηm�
√
v+ ε. (4)

where t is the iteration number. It can be seen that steps 1,
2 and 5 are similar to the optimization with momentum and
RMSProp. β1 and β2 control the exponential decay rates of
the moving averagesm and v respectively. Steps 3 and 4 allow
to dynamize these moments at the beginning of the training
because they are initialized to 0. β t1 and β

t
2 become very small

after a few tens of iterations while these two steps become
negligible. Practically, β1 is set to 0.9 and β2 to 0.99. ε is a
smoothing factor that is frequently set to 10−8, it avoids the
division by 0.

As we can notice, all these algorithms act on the gradient
of the objective function and the backward system consists
of several steps as in the case of Adam. This increases the
complexity of the algorithm and then the training time of
the neural network. In this paper, we announce Itao, a new
optimizer based on iterative thresholding algorithm. It acts on
both, the parameter and the error gradient in one step. Many
of the experiences in this work show that our optimizer works
well in practice. It gives better results in terms of accuracy
and it reduces training time. Next section will present the
mathematical foundations behind this optimizer.

III. MATHEMATICAL FOUNDATIONS AND
PROPOSED ALGORITHM
A. MATHEMATICAL FOUNDATIONS
Let uδ the observations relative to a dataset and A the evolu-
tion operator of a model entirely defined by the parametersw.
We try to determine the parameters w from the observations
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uδ , it comes down to finding the solution of the equation:

A(w) = uδ. (5)

The determination of the parameters w from the observations
uδ is called inverse problem.
Neural networks use statistical inversion techniques which
are based on inference. For this purpose, we use the
observations from a dataset describing the behavior of the
function to be inverted A in order to extract the internal
regularities. Then we look for an estimate that we note g
of the inverse function A−1, which will solve the inverse
problem for all observations. This is the task of the learning
algorithm [4], it allows to estimate the optimal parametersW
of the estimator gw of the inverse function A−1.

The dataset used during the learning process consists of a
number of examples and can be written as follows:

D = {zi; i = 1, . . . , n}, (6)

when it is a supervised learning, zi = (x i, yi) where x i is the
input and yi is the output with yi = A(x i). For an unsupervised
learning the examples represent only the inputs of A and thus
zi = x i, here the role of learning is to provide a representation
of the output space from a statistical or topological view’s
point(for example clustering, features extraction, etc . . . ).
These examples are used to find the best estimator gw and
then the best estimator Aw of the function A.
The estimator Aw is a regression model with parameters
W . For an input x, the value predicted by the estimator is
y(w, x) = Aw(x).
The problem for the estimation of optimum parametersW

is an inverse problem, that we can reformulate as follows:
Inverse Source Problem (ISP). Determine the matrix w

such that A(w) = uδ , where uδ ∈ Rn is the real data and the
operator A is defined as follows:{

A :Mm,n(R) −→ Rn

w −→ y(w).
(7)

Here y(w) is the predicted output. We treat the ISP by
interpreting its solution as a minimizer of the following
problem:

find w? ∈ U such that E(w?) = min
w∈U

E(w), (8)

where E is the cost function whose result will decrease as
the values predicted by the model get closer to the real
values (observations), and U is the set of unknown admissible
parameters w defined in the following way:

U := {h ∈Mm,n(R) : ‖h‖Mm,n(R) ≤ r, r > 0}. (9)

Evidently, the set U is a bounded, closed, and convex subset
of Mm,n(R).

The problem (8) is ill-posed in the sense of Hadamard.
Even if there is a unique solution wtrue, it may be unstable:
a small variation ε on the observation uδε = uδ + ε

can cause large variations in the restitution of w. Thus,
the simple minimization of

∥∥y(w)− uδε∥∥ does not always

ensure a good estimation of the solution w, to solve it
we propose an approach based on a classical Tikhonov
regularization technique in order to guarantee numerical
stability of the computational procedure. The problem thus
consists in minimizing a functional of the form:

J (w) = E(w)+
1
2
λ ‖w‖2Mm,n(R) , (10)

here, λ being a small positive regularizing coefficient that
provides extra convexity to the functional J .

Next, we reformulate the minimization problem (8) to
reconstruct the parameters w according to the least squares
error with the Tikhonov regularization as follows:

min
w∈Mm,n(R)

J (w), J (w) :=
1
2

∥∥y(w)− uδ∥∥22 + 1
2
λ ‖w‖2Mm,n(R) ,

(11)

To solve nonlinear optimizations, almost all iterative
methods use the derivatives of the concerned objective
functional. The gradient of J is:

∂wJ = ∂wE + λw. (12)

Proposition 1: w? ∈ U is a minimizer of the functional
J (w) only if it satisfies the equation:

∂w?J = ∂w?E + λw? = 0. (13)

To solve the nonlinear equation (13) for w?, we can use the
iteration:

wi+1 =
K

λ+ K
wi −

1
λ+ K

∂wiE (i = 0, 1, . . .) (14)

Indeed, w? is the fixed point of (14) (w? is the limit of the
sequence (w)i).
here K > 0 is a tuning parameter, it acts as a weight

between the previous step and the iterative update. The
iteration (14) coincides with the iterative thresholding algo-
rithm, which can be derived from the minimization problem
of a surrogate functional. In their papers, Jiang et al. [10]
and Daubechies et al. [22] introduce a surrogate functional
that we exploit to discuss the choice of K guaranteeing the
convergence. The surrogate functional J s(w, h) of J (w) can
be written as:

J s(w, h) := J (w)+
1
2
K ‖w−h‖2Mm,n(R)−

1
2
‖y(w)− y(h)‖22 .

(15)

The positivity of J s is maintained by:

K ‖w‖2Mm,n(R) ≥ ‖y(w)‖
2
2 for all w ∈Mm,n(R).

(16)

This is achieved by choosing:

K ≥ ‖A‖2op , (17)

here A is a linear evolution operator, it is defined as:{
A :Mm,n(R) −→ Rn

w −→ y(w).
(18)
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Indeed, K ≥ ‖A‖2op implies that:

K ≥ (sup(
‖y(w)‖2
‖w‖Mm,n(R)

))2 thereafter K ≥ sup(
‖y(w)‖22
‖w‖2Mm,n(R)

).

Therefore K ≥
‖y(w)‖2

‖w‖2Mm,n(R)

and finally,

K ‖w‖2Mm,n(R)
≥ ‖y(w)‖22 for all w ∈Mm,n(R).

Which demonstrates the equation 16. Then we can write:

J (w) = J s(w,w) ≤ J s(w, h)

J s(w, h) can be regarded as a small perturbation of J (w) when
h is close to w. Using the notion of scalar product, we can
rewrite J s(w, h) as below:

J s(w, h) = J (w)+
1
2
K ‖w− h‖2Mm,n(R)

−
1
2
‖y(w)− y(h)‖22

=
1
2

∥∥y(w)− uδ∥∥22 + 1
2
λ ‖w‖2Mm,n(R)

+
1
2
K ‖w− h‖2Mm,n(R) −

1
2
‖y(w)− y(h)‖22

=
1
2
〈y(w)− uδ, y(w)− uδ〉2 +

1
2
λ〈w,w〉Mm,n(R)

+
1
2
K 〈w− h,w− h〉Mm,n(R)

−
1
2
〈y(w)− y(h), y(w)− y(h)〉2

=
1
2
〈y(w), y(w)〉2 − 〈y(w), uδ〉2 +

1
2
〈uδ, uδ〉2

+
1
2
λ〈w,w〉Mm,n(R) +

1
2
K 〈w,w〉Mm,n(R)

−K 〈w, h〉Mm,n(R) +
1
2
K 〈h, h〉Mm,n(R)

−
1
2
〈y(w), y(w)〉2 + 〈y(w), y(h)〉2

−
1
2
〈y(h), y(h)〉2

= 〈y(w), y(h)− uδ〉2 +
1
2
〈uδ, uδ〉2

+
1
2
(K + λ)〈w,w〉Mm,n(R)−K 〈w, h〉Mm,n(R)

+
1
2
K 〈h, h〉Mm,n(R) −

1
2
〈y(h), y(h)〉2

It is a quadratic form with regard to w when uδ and h are
fixed. We have:

∂wJ s(w, h) = 〈∂wy(w), y(h)− uδ〉 + (K + λ)w−Kh

We have also:

E(w) =
1
2

∥∥y(w)− uδ∥∥22
=

1
2
〈y(w)− uδ, y(w)− uδ〉2

=
1
2
〈y(w), y(w)〉2 − 〈y(w), uδ〉2 +

1
2
〈uδ, uδ〉2,

∂wE(w) = 〈∂wy(w), y(w)〉 − 〈∂wy(w), uδ〉

= 〈∂wy(w), y(w)− uδ〉.

∂wJ s(w, h) = 0 leads to:

argmin
w∈Mm,n(R)

J s(w, h) =
K

K + λ
h−

1
λ+ K

〈∂wy(w), y(h)− uδ〉

(19)

As a result, the iterative update (14) is equivalent to solv-
ing the minimization problem minw∈Mm,n(R)J

s(w, h) with
h = wi. Indeed, we can write:

wi+1 =
K

K + λ
wi −

2
K + λ

∂wiy〈y(wi)− u
δ
〉

=
K

K + λ
wi −

1
K + λ

∂wiE . (20)

Moreover, Khoramian [9] proves the convergence of the
iteration (14) for any bounded linear operator A when K is
chosen according to the condition (17). Next, we will state
The basic algorithm used for the numerical reconstruction.

B. PROPOSED ALGORITHM
Algorithm 1 presents the pseudo-code of our proposed
algorithm. It aims at minimizing the stochastic cost function
E(w) which is a scalar and differentiable function w.r.t
parameters w. Ei(w) represents the stochastic realization of
cost function at step i. The term stochastic comes from the fact
that we randomly evaluate a subsample (minibatch) of data
points. At each iteration step we need to solve the forward
system by calculating y(wi), then calculate the error J (wi).
In the backward system, we update the wi parameters using
our optimizer. This is described by lines 4 and 5 in the
Algorithm 1. In the line 4, gi denotes the gradient of Ei w.r.tw
computed in step i. The parameters w are updated according
to (14) as shown in the line 5. The iteration is stoppedwhenwi
converged. Generally the descent algorithm is infinite (does
not give a solution in a finite number of iterations), for that
we specify a stopping condition. There are several conditions
to do this. For example, the iteration is stopped when
the variation of the parameters w is not considerable after

Algorithm 1 Stochastic Optimizer Based on Iterative Thresh-
olding Algorithm
Require: λ: A Tikhonov regularization parameter.
Require: K > 0: A tuning constant chosen according

to (17).
Require: E(w): Objective function with parameter w.
Require: w0: Give an initial guess of w.
1: i← 0: Initialize the steps number.
2: while wi not converged do
3: i← i+ 1
4: gi← ∇wEi(wi−1) F Get gradients w.r.t objective

function at step i.
5: wi← (K/(K + λ)).wi−1 − gi/(K + λ) F Update

parameters.
6: end while
7: return wi F Resulting parameters.
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updating. For this, we can estimate that there is a convergence
towards the solution of the minimization problem when
‖wi − wi−1‖2 / ‖wi−1‖2 ≤ ε, where ε is a tolerance chosen at
the beginning of the algorithm. In practice, neural networks
are trained for a number of iterations after which we stop
iterating.

In the coming parts, we will do experiments for different
types of neural networks and cost functions. During these
experiments, we will be able to compare the results achieved
by the proposed optimizer Itao with those obtained by SGD,
Adam, RMSProp and AdaGrad.

IV. EXPERIMENTS AND RESULTS
In this section, we experiment with our proposed optimizer
in different examples of deep learning algorithms using
different classical datasets. In this perspective, we use
models including nonlinear regression and logistic regression
using both the multi-layer perceptron, deep convolutional
and deep residual neural networks. Loss functions such as
mean squared error (MSE), mean absolute error (MAE)
and categorical crossentropy are used. Although we did not
analyze the convergence of our algorithm for the last two
cost functions, we empirically found that our optimizer works
well for both. Many of these experiments will be subject to
performance comparisons between our optimizer and other
state-of-the-art optimizers for the same models and datasets.

A. EXPERIMENT: NONLINEAR REGRESSION
In this experiment we use the Auto-MPG [23] dataset
as support. This dataset contains physical data related to
cars produced between 1970 and 1982 such as power,
displacement and weight as well as fuel consumption in miles
per gallon. The objective is to predict the fuel consumption
of a car from its physical parameters. After a phase of
data preprocessing which includes the deletion of rows with
forgotten data and the conversion of categorical columns
into numerical data, we obtain a dataset with 392 rows and
10 columns. The column named ‘‘mpg’’ representing the
number of miles per gallon is the label to predict after training
the future model. Since the 9 features use different scales
and ranges, we proceed to a normalization. Indeed, one of
the reasons for the importance of normalization is that the
features are multiplied by the model weights. Thus, the scale
of the outputs, the value of the objective function and the
scale of the gradients are affected by the scale of the inputs.
Also the normalization makes the training much more stable.
To normalize features, we use a standard scaler. For a sample
x the standard score z is calculated as:

z = (x − u)/s, (21)

where u and s are the mean and standard deviation
respectively of a set samples. this operation is achieved for
both training and test features.

Predicting car consumption in miles per gallon falls to a
regression problem. To do this, we opt for a deep neural
network as used in [24] with:

• The input layer with 9 neurons (9 features);
• Two hidden dense layers, with 64 neurons each, using
the ReLu as activation function;

• A linear single-output layer (for mpg label).
As loss function we use two common functions for regression
problems: Mean Squared Error (MSE) and Mean Absolute
Error (MAE), both with Tikhonov regularization. We exper-
iment with the proposed optimizer Itao as well as Adam,
RMSprop, Adagrad and SGD as state-of-the-art optimizers.
To evaluate the performance of the proposed model, we use
a k-fold cross-validation approach since the number of
records in the dataset is not large. Also, there is a trade-off
between bias and variance when choosing the k-fold cross-
validation [25]. We split this dataset into training set and
test set in 80:20 ratio. Then, using 5-fold cross-validation,
the training set was randomly divided into five equal sized
subsets. Four of them are used as training data, while the
fifth is used as validation data to evaluate the model. This
operation is repeated five times by shifting the training and
the validation subsets. Each time the performance of the
model is reported. At the end, we calculate the average of
error validation between the predicted values and the true
values. We use a mini-batch of size 64 and we train the model
for 200 epochs.

When using each optimizer, we opt for the grid search
algorithm [26] to find the optimal hyperparameters (regu-
larization parameter: λ, K for Itao, learning rate lr for the
other optimizers) giving the best performances of the created
model using the cross-validation method. Finally, we take
the combination of hyperparameters that gives the lowest
validation average error. These selected values are then used
to train the entire training dataset, after which we proceed
to test the model using the unseen data from the test set.
We perform these experiments for the two loss functions
mentioned above. Fig. 1 shows the loss curves during the
training phase for all optimizers. We notice that for the MSE,
the training loss curves converge quickly for all optimizers.
The results of this experiment are reported in Table 1 and
Table 2 for the two cost functions. For the MSE, the results
obtained during the test phase are close to each other for the
five optimizers with a slight advantage for Itao. The same
remark as for MAE loss function with a slight advantage for
Adagrad and Itao. The average errors obtained with MAE are
considerably lower than those obtainedwithMSE because the
MAE function is less sensitive to outliers.

Next, we plot the average error during the test phase as
a function of the number of epochs. This will allow us to
see the behavior with respect to the model learning for the
five optimizers when the number of epochs increases. During
the training phase, we take as a batch size the total number
of the training dataset records. The Fig. 2 shows the results
found. Here, we can clearly see that with Itao the average
error is monotonic and continues to decrease with each epoch
for both MSE and MAE. It becomes significantly lower than
those obtained by the other optimizers when the number of
epochs increases. The decrease of the average error using Itao
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FIGURE 1. Regression training loss using Auto-MPG dataset. (a) MSE loss function. (b) MAE loss function.

TABLE 1. Average error in test phase for MSE loss function using 5-fold cross-validation.

TABLE 2. Average error in test phase for MAE loss function using 5-fold cross-validation.

FIGURE 2. Average test error, using Auto-MPG dataset, as function of epochs’ number for all optimizers. (a) with MSE loss function. (b) with
MAE loss function.

implies that it converges in a direct way to the minimal error
leading to identify with precision the parameters w∗ of (13).

B. EXPERIMENT: LOGISTIC REGRESSION
In this experiment, we use the loss crossentropy function
with Tikhonov regularization. The dataset supporting this
experiment is MNIST [27] (handwritten Digit Images) which

gathers 60,000 images for training and 10,000 images for
testing. These grayscale images of 28 pixels on each side
belong to 10 classes (0 to 9). We use a model including:
• The input layer with 784 neurons (28 * 28);
• Two hidden dense layers with 256 et 64 neurones
respectively, using the ReLu as activation function;

• An output layer with 10 neurons (10 classes), this layer
uses softmax as activation function.
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FIGURE 3. Logistic regression training and validation curves on MNIST images. (a) Training accuracy. (b) Validation accuracy.
(c) Training loss. (d) Validation loss.

TABLE 3. Performance in test phase and training time for crossentropy loss function using MNIST dataset.

In the training phase we take 54,000 images as training
set and 6,000 images as validation set. The model is trained
for 20 epochs with a batch size of 64. We use the grid
serach algorithm to find the hyperparameters giving the
best performance of the model created for each of the used
optimizers. Fig. 3 shows the accuracy and loss curves during
the training and validation phases for the five optimizers:
our proposed Itao, Adam, AdaGrad, RMSProp and SGD.
We repeat this experiment for 10 times. Table 3 shows the
average of the results found for training time, test accuracy
and test loss.

Similarly, in this logistic regression experiment with the
crossentropy cost function, our optimizer Itao outperforms
the other optimizers in terms of accuracy and error when
classifying the test images of the MNIST dataset. This also
appears in the training and validation curves for both the
accuracy and loss. For 20 epochs we arrive in the test
phase, on the MNIST dataset with Itao, at an accuracy of
98.41% and an error of 0.076. In terms of accuracy, Itao,

Adagrad, Adam and RMSProp are far ahead of SGD which
only achieves 96.62%. For the model training time, SGD
achieves the lowest time followed by our optimizer Itao. This
is because both corresponding algorithms are straightforward
and contain fewer steps in the backpropagation phase.

C. EXPERIMENT: CONVOLUTIONAL NEURAL NETWORKS
Today, Convolutional Neural Networks (CNNs) have rec-
ognized a great success in computer vision tasks. A con-
volutional neural network consists of multiple layers of
convolution, pooling and nonlinear units. A convolution layer
is the main component of CNN architecture, it is based on
mathematical operation of convolution. It uses a stack of
filters also called kernels, whose parameters can be learned
to detect the common features of all the images in the
dataset. The principle of CNNs is that lower convolution
layers learn low-level features of the input image and which
are then grouped together to form more complex features at
the high layers. Unlike fully connected layers, the neurons
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FIGURE 4. Convolutional Neural Network training and validation curves on MNIST images. (a) Training accuracy. (b) Validation accuracy.
(c) Training loss. (d) Validation loss.

of a convolution layer are not connected to every neuron
of the previous layer, but each of them is connected only
to the neurons located in a small rectangle, in the previous
layer, of dimensions defined by the filter. Then, all the
neurons of a layer share the same parameters’ weights. This
weight sharing can lead to very different gradients in the
different layers [6]. It is therefore often useful in practice
to use a small learning rate for the convolution layers when
applying the SGD. In this experiment we will show the
efficiency of our proposed optimizer based on the iterative
thresholding approach. It updates the parameters’ weights
according to (14) by acting via coefficients on the old values
of the parameters’ weights themselves and the value of the
propagated error’s gradient.

1) MNIST CLASSIFICATION USING A TAILORED CNN
As in the previous experiment, we use the MNIST dataset.
The architecture of the convolutional neural network is as
follows:
• Two cascaded convolution layers, each with 16 filters
of 3× 3;

• A max pooling layer of stride of 2;
• A convolution layer of 32 filters of 3× 3;
• A dense layer of 1024 neurons;
• A dense layer of 128 neurons;

• A dense output layer of 10 neurons with softmax as
activation function.

For all layers preceding the output layer, we use LeakyRelu
as an activation function. we trained the model for 20 epochs
with a batch size of 100. The loss function used is
the crossentropy with Tikhonov regularization. As for the
previous experiments, we opt for the grid search algorithm to
find the hyperparameters’ values giving the best performance
of the model created for the five optimizers: our proposed
Itao, Adam,AdaGrad, RMSProp and SGD. In this experiment
we use a GPUTesla T4 provided by Google Colab [28]. Since
some routines of the cuDNN library of NVIDIA GPUs do not
guarantee the reproducibility of the results across runs [29],
we do the training and the test 10 times then we take the
average of results. Fig. 4 shows the accuracy and loss curves
during the training and validation phases for all optimizers.
Table 4 shows the average results found during the test phase.

Once again, the results of this experiment using a
convolutional network clearly show that Itao performs well
in terms of accuracy and error in the test phase for the
classification of images corresponding to the MNIST dataset.
In 20 epochs, we reach with Itao an accuracy of 99.37%
for an error of 0.041. Here, we notice that the performances
with SGD surpass, with the conditions of this convolutional
network, those obtained with Adam and RMSProp. This
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TABLE 4. Performances of the convolutional neural network using the MNIST dataset.

FIGURE 5. Convolutional Neural Network training on MNIST dataset with and without noisy labels. (a) Accuracy curves. (b) Loss
curves.

explains that there are some cases where SGD can be better
than Adam and RMSprop. Itao’s training loss and validation
curves still retain the monotonicity of previous experiments,
which implies the convergence of the Itao algorithm in the
case of the convolutional networks. For the training time,
SGD and Itao achieve the lowest time with 89.01s and 89.30s
respectively. We can say that when the model becomes more
and more complex SGD and Itao give almost the same
training time. Because during training we have both forward
and backward systems; the time of the forward system is the
same. The difference resides in the time of the backward
system, Itao takes a little bit longer because it acts on
the parameters and their gradients with respect to the cost
function during the backpropagation phase. On the contrary,
SGD acts only on the gradients. For the other optimizers,
we have the same ranking as the previous experiments.
RMSprop gives the longest training time.

Next, we will see the robustness of the previous convo-
lutional model using Itao, with the same hyperparameters,
against the noisy labels. To do so, we train this model using
the 60,000 examples of the MNIST training dataset, then
proceed to the evaluation with the 10,000 examples of the
MNIST test dataset and this in two trials. In the first one,
we use the MNIST training dataset without modification.
In the second trial, we take 6,000 examples from the training
set, i.e. 10% of the examples in this set, and then we
randomly change their classes. With this, we can simulate an
observation error of 10%. Fig. 5 shows the loss and accuracy
training curves for the two trials. The Table 5 shows the
results of the test phase.

The results obtained show that for 10% of the training
examples with noisy labels, the model achieves 94% in the
test phase as accuracy against 99.38% in the case of training

with original dataset. We have a decrease of only 5.41%
in accuracy, moreover the training curves with noisy labels
converge towards those with original dataset over the epochs.
This may imply that the model used with the Itao optimizer
remains robust to the noisy labels.

2) CIFAR-10 AND CIFAR-100 CLASSIFICATION USING DEEP
RESIDUAL NEURAL NETWORKS
In this experiment, we use the CIFAR-10 and CIFAR-
100 [30] as a datasets, they each contain 60,000 32×32 color
images that belong to 10 and 100 classes respectively. Each
dataset is divided into training and test datasets with 50,000
and 10,000 images respectively. As a CNN, we use an
implementation of Deep Residual Neural Networks version 2
that are a family of common deep CNN architectures [31],
[32]. We focus only on the base models with limited
data augmentation, we only use translation and horizontal
flipping as mentioned in the original paper [33]. Also
we train these models with only our optimizer Itao and
compare achieved results with those obtained in [33]. For this
experiment, we useGoogle Colab [28] withGPU.OnCIFAR-
10, we experiment with ResNet-56v2, ResNet-110v2 and
ResNet-164v2 models. We train these models on 176 epochs.
The Tikhonov regularization parameter λ is fixed at 10−5.
The coefficient K is scheduled to be increased. For the first
80 epochs, we start with 2.5, then at each next 16 epochs,
we multiply the coefficient K by 2. The Fig. 6 shows
training and validation curves for ResNet-110v2 model. The
Table 6 groups the test results obtained for the different
models and those of the original paper and the work [31],
[32]. On CIFAR-100, we experiment with a model based on
ResNet-164v2. we train the model on 180 epochs. Similarly,
we perform a scheduling for the coefficient K when training
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FIGURE 6. ResNet-110v2 on CIFAR-10 using the proposed optimizer Itao. (a) Accuracy curves. (b) Loss curves.

TABLE 5. Convolutional Neural Network test phase on MNIST dataset with and without noisy labels.

TABLE 6. Classification accuracy(%) on CIFAR-10/100 test set using Deep Residual Networks and Itao optimizer.

the model. For the first 60 epochs, we set k at 2.5 and
we multiply it by 2 each 20 next epochs. The test results
are presented at the Table 6. We notice improvements in
accuracy for all models studied when using Itao optimizer.
The scheduling for the coefficient K by increasing its value
is justified by the fact that if its initial value verifies (17),
values higher than this one also verify this equation. Indeed,
when setting the value of λ; a very large value of K results in
a long learning time and does not guarantee the best accuracy.
On the other hand, we schedule the value of this coefficient to
start with a low value (but checks (17)) then increase it over
epochs. This makes the learning faster at the beginning and
gives better performances at the end. This can be explained
by the fact that when approaching the optimal parametersW
of the studied neural network, a smoothness in the learning
process must be favored. This is clearly shown in Fig. 6.

V. CONCLUSION
In this paper, we have introduced Itao; a new and efficient
optimizer for deep neural networks. It is based on iterative
thresholding algorithm which is an extension of the gradient
algorithm with regularization. Multi stochastic objective
functions are tested for different types of deep learning
models. The proposed algorithm is simple, straightforward
and easy to implement. We have made a comparison
with other state-of-the-art optimizers such as SGD, Adam,
AdaGrad and RMSProp. Some experiments realized in this
study confirms that Itao can outperform these optimizers or

at least give the same performances in terms of accuracy.
In addition, the training times, for the models experimented,
realized with Itao are close to those achieved by SGD
which is the most basic of the optimizers. This is because
they both do less steps in the backward system. We report
some improvements when classifying CIFAR-10 and CIFAR-
100 by ResNet version 2 models compared to the original
paper. Also, we verified that Itao remains robust to noisy
labels which simulates observation errors. Nevertheless,
we hope to bring some enhancements to this algorithm in
the future works, especially for the convergence speed when
minimizing objective functions.
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