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ABSTRACT Currently, deep learning-based synthetic aperture radar (SAR) image ship target detection
methods have been widely used in the field of SAR image ship detection. However, these methods suffer
from high model complexity and poor performance when detecting small dense targets. To address this
problem, this paper proposes a ship target detection algorithm based on the improved YOLO (YouOnly Look
Once) algorithm. In addition, considering the real-time requirements and computational constraints inmobile
applications, the YOLOv4 network is modified to make it more lightweight. Moreover, decoupled head and
coordinate attention are introduced to preserve YOLOv4’s superb detection performance as much as possible
after lightweighting it. First, as the detection head of the YOLOv4 degrades the performance, this study
decouples the classification and regression tasks. Second, since the channel attention mechanism ignores
the spatial position information, coordinate attention is used to obtain long-range dependencies and accurate
position information in the spatial domain. Moreover, the effects of the coordinate attention mechanism in
different hierarchical YOLOv4 structures are analyzed. Furthermore, on the basis of the YOLOv4 backbone,
another lightweight backbone is added to the model structure to improve model detection performance.
Experimental results on the SAR ship detection dataset (SSDD) and the high-resolution SAR images dataset
(HRSID) demonstrate that the proposed method can achieve high detection accuracy in complex scenes. The
proposed lightweight model has fewer parameters compared to the original YOLOv4 structure. Furthermore,
two massive SAR images are used to confirm the proposed model’s migration application performance. The
experimental results demonstrate that the proposed model has a strong migration ability and can be used in
maritime monitoring.

INDEX TERMS Ship detection, YOLO, coordinate attention, decoupled head, SAR.

I. INTRODUCTION
Compared with optical, infrared, and hyperspectral sensors,
synthetic aperture radars are active microwave imaging sen-
sors, which have an all-day and all-weather operational capa-
bility. In recent years, the number and quality of SAR images
have greatly improved due to the advancements in SAR
imaging technology. Therefore, the detection of ship targets
has become a research hotspot. The traditional ship detec-
tion methods usually perform image preprocessing, sea-land
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segmentation, and candidate region extraction. Constant false
alarm rate (CFAR) [1], multi-resolution [2], [3], polarization
information [4], and conversion [5] have been commonly
used. However, these methods have high computational com-
plexity, weak mobility, and are considerably laborious.

It is noteworthy that CNNs can effectively address the
problems of traditional methods by automatically learning
from SAR images in a robust manner.

Girshick introduced a region-based convolution neural net-
work (RCNN) [6] to the field of target identification and
recognition. Subsequently, the Fast RCNN [7] can realize
end-to-end detection by adopting various optimizations, such
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as shared convolution, ROI pooling, and multitask loss. The
Faster RCNN [8] is based on the RPN network, and it uses
the anchor mechanism to connect region generation with a
CNN to realize real-time detection. The YOLO [9] used the
idea of regression to complete classification and localization
directly by using a one-stage network. The SSD [10] uses
a fixed frame for region generation and multi-layer feature
information to improve the detection speed and accuracy to a
certain extent. By modifying the loss function, the RetinaNet
[11] has addressed the class imbalance problem in one-stage
methods.

For the Faster RCNN, Zhang et al. [12] employed binary
normed gradient and cascaded CNN to improve the accuracy.
Yang et al. [13] used RetinaNet and improved the loss func-
tion to reduce the false alarm rate. The SSD was enhanced by
Wang et al. [14] to improve the detection speed. Furthermore,
the authors enhanced the detection performance for small
targets. Zhu et al. [15] used the YOLO to design an integrated
multi-scale mechanism for the detection of small ships.

The attention mechanism modeled on the human visual
system has been a research focus in the computer vision
field. The research on spatial attention has been mostly based
on recurrent neural networks (RNNs) [16]. The RAM [17]
and subsequent studies, such as DRAW [18], GlimpseNet
[19], STN [20], DCN [21], and DCNv2 [22] use sub-
networks, were used to predict the target regions explicitly.
The GeNet [23] uses the attention mechanism to predict a
soft mask implicitly. It should be noted that the research
on the channel attention mechanism has been mainly based
on the SENet [24]. The improvement versions of the SENet
include the GospNet [25], FcaNet [26] (the squeeze mod-
ule is improved), ECANet [27] (the excitation module is
improved), SRM [28], and GCT [29]. The channel and spatial
attention mechanism includes the research of split-channel
attention and spatial attention, and some of the proposed
models are CBAM [30] the SCSE [31]. In contrast, the three-
dimensional attention maps have been estimated directly by
a residual attention mechanism. The follow-up work on split-
channel attention and spatial attention has proposed triple
attention [32] for cross-dimensional interaction, coordinated
attention [33] for long-term dependence, and DANet [34] and
RGA [35] for relationship perceived attention. There have
been fewer studies on the attention mechanism in the field
of ship target detection. Lin et al. [36] improved the detection
performance of the Fast RCNN by introducing an attention
mechanism. To enable multi-scale ship detection, the CBAM
was introduced to the detection method by Cui et al. [37].
Further, Zhao et al. [38] implemented an attentionmechanism
into the FPN to achieve multi-scale detection. Fu et al. [39]
designed a hierarchy-based attention network and a space-
based attention network to improve detector performance.

To address the shortcomings of the existing research, this
work introduces a coordination attention module to ship tar-
get detection. This solves the problem that the SENet consid-
ers only the internal channel information while ignoring the
localization information. At the same time, the problems that

the CBAM captures only local relationships from multiple
channels of each location and is unable to obtain the long-
range dependency relationship are solved. In addition, this
work combines recent achievements in the research on decou-
pled heads and solves the contradictions between classifica-
tion and regression. The decoupled head is used to enhance
the performance of a deep learning network.

The main contributions of this work can be summarized as
follows:

(1) The decoupled head is used to decouple the classifi-
cation and regression tasks in the traditional coupled
head;

(2) Compared with the conventional SE and CBAM atten-
tion mechanisms, the coordinate attention mechanism
used in this work can obtain long-range dependencies
and accurate position information in the spatial domain;

(3) A two-way trunk is used to improve the detection
model’s performance for small targets;

(4) Lightweight networks for mobile applications are
presented.

In this paper, part II introduces YOLOv4’s structure,
part III introduces the optimization methods in this paper,
including coordinate attention mechanism, decoupled head,
loss function optimization and two-way trunk, part IV mainly
introduces the experimental results of this paper, including
comparative experiments and ablation experiments, part V
mainly introduces the lightweight part, part VI summarizes
our paper.

II. YOLO-v4 ARCHITECTURE
The YOLOv4 architecture is presented in Figure 1. The
YOLOv4 uses the original YOLO structure but adopts
well-known optimization strategies developed in recent
years, including the CIO loss function, improved NMS [40],
SPPNet [41], and PANet [42].

Compared with the YOLOv3, the backbone of the
YOLOv4 is changed from the original Darknet-19 to
CSPDarknet-53, which retains the original residual connec-
tion module but avoids network performance degradation.
The CSPdarknet-53 contains five cross-stage partial (CSP)
block backbones composed of a five-layer residual network
named the resblock_body. The resblock_body incorporates
a special convolution operation to reduce the input resolu-
tion. As is shown in Figure 2, a cross-stage partial network
(CSPNet) [43] solves the problem of gradient information
repetition in network optimization. Moreover, it also reduces
the number of computations and ensures higher accuracy.

The SPP module is used in the CSPDarknet-53’s last fea-
ture layer, which uses 5× 5, 9× 9, and 13× 13 max-pooling
layers to conduct multi-scale fusion. The obtained feature
maps are used to expand the receptive field and introduce
contextual features. The YOLOv4 model uses the output fea-
ture map of the SPP structure as input of the feature pyramid.
By using the fusion method PANet, the final feature map is
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FIGURE 1. The YOLO-v4 architecture.

FIGURE 2. The schematic diagram of CSPNet.

provided to the YOLO detection head for final classification
and localization.

The CIOU loss function, which considers not only the
overlapping area of the predicted box and the ground truth
in the GIOU loss function but also the distance between
the center point of the predicted box and the ground truth
in the DIOU loss function, is used in the YOLO-v4 model.
In this loss function, both the predicted box’s length-
width ratio and the ground truth’s length-width ratio are
considered.

LCIOU = 1− IOU+
ρ2
(
b, bgt

)
c2

+ αv (1)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2, (2)

α =
v

(1− IOU)+ v
, (3)

where c is the diagonal length of the smallest box that can
simultaneously cover both the ground-truth and predicted
boxes; ρ2(b,bgt) denotes the Euclidean distance between the
ground truth and the predicted frame’s center point; wgt

hgt is the
ground truth’s aspect ratio; wh is the prediction frame’s aspect
ratio.

It should be noted that the YOLO detection head in the
YOLOv4 model couples the classification and regression
tasks, thus degrading network performance. At the same time,
there is no explicit application attention mechanism in the
YOLOv4 model, which affects the detection effect for dense
and small target objects.

III. DECOUPLED HEAD AND COORDINATED ATTENTION
DETECTION METHOD
To address the limitations of the YOLO network, an improved
high-resolution ship detection method is proposed. The
flowchart of the proposed method is presented in Figure 3,
where it can be seen that the proposed architecture includes
three main sections: a backbone, a neck, and a head. The
head adopts the decoupled detection head, which is discussed
in detail in Section III-A. In addition, coordinate attention is
added to the residual blocks of stages 3–5 of the cross-stage
partials to enhance the detection effect of a small target, which
is explained in detail in Section III-B. In the neck, the input
image has a size of 416 × 416. After passing through the
backbone, processes 1–3 generate 13 × 13, 26 × 26, and
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FIGURE 3. The architecture of the proposed model.

53 × 53 feature maps, respectively. Process 2 upsamples
input 13× 13 feature maps to 26× 26 feature maps and fuses
them with the backbone’s 26 × 26 feature maps. Process 3
upsamples the output feature maps of process 2 to the size of
52 × 52 and fuses them with the backbone’s 52 × 52 fea-
ture maps, and then passes the resulting data to the detec-
tion head. The bottom-up integration process of the PAN is
implemented based on processes 4 and 5. Process 4 down-
samples the output feature maps of process 3 to the size of
26 × 26, fuses the obtained maps with the output feature
map of process 2 and then passes the resulting data to the
detection head. Process 5 downsamples the output feature
maps of process 4 to 13 × 13 feature maps and then fuses
them with the output feature maps of process 1 and passes
them to the detection head.

A. DECOUPLED HEAD
The conflict between classification and regression tasks in
object detection has been a widely analyzed problem [44].
The YOLOX [45] shows that the coupled head degrades
network performance to a certain extent. It is worth noting
that the decoupled head can enhance a network’s convergence
speed. Therefore, the decoupled head is crucial in end-to-end
models [46], [47]. In addition, it should be noted that the
coupled detection head has been used in YOLOv3–YOLOv5
models, and it consists of a 1 × 1 convolution layer. For
instance, when the coupled detection head of the YOLOv4
model is used for performing detections on the COCO
dataset, three boxes are preset. Each box needs to predict
the confidence of a target, four regression bounding box
parameters, and 80 category probabilities. This leads to a
reduction in network performance and the inability to deter-
mine the location of a target accurately. Therefore, this study
decouples the detector head and derives a branch responsible
for finding the target object and regression bounding box,
as well as a branch to handle the target category. Finally,
the two branches are integrated into the prediction to avoid

performance degradation in the traditional detector head. The
architecture of the proposed decoupled detection head with
anchors is presented in Figure 4. The decoupled head reduces
the characteristic channels using a 1 × 1 convolution layer
and adds two parallel branches. For the classification and
regression tasks, each of the branches has two 3 × 3 con-
volution layers.

FIGURE 4. The structure of the proposed decoupled head with anchors.

B. COORDINATE ATTENTION
The SENet structure can be briefly described as follow.
First, the global average pooling operation defined in (4) is
employed to compress global spatial information in statistical
data of the channel dimension, which is based on a squeeze
module; namely, the input of a size of C × H × W is
converted to the size of C×1×1. The numerical distribution
of C characteristic graphs is stored in the output. Second,
the channel correlation is obtained by the excitation module.
Because the size of the feature map obtained by the squeeze
module isC×1×1, the result obtained by it is fed to the fully-
connected layer. Therefore, the result obtained after passing
it through the fully-connected layer is C / r × 1 × 1, where
r represents the scaling factor. Then, after passing through a

VOLUME 10, 2022 128565



Q. Li et al.: Decoupled Head and Coordinate Attention Detection Method for Ship Targets in SAR Images

nonlinear layer and another fully connected layer, the output
dimension becomesC×1×1. Finally, according to the output
weights of the excitation module, the reweighting process
allocates the weight of the characteristic channel, which is
performed to finish the recalibration of the original feature in
the channel dimension.

The CBAM structure is as follows. The CBAM com-
bines channel and spatial information. Its operation begins
by compressing the feature maps in the spatial dimension by
using both average and maximum pooling to obtain a one-
dimensional vector. Next, a multi-layer perceptron is used to
process this vector. Then, both average andmaximumpooling
are applied to the feature map in the channel dimension.
Afterward, the two results are concatenated according to the
channel dimensions. Further, the dimension is reduced to a
single channel after the convolution process. The final spatial
attention feature map is obtained by multiplying this feature
map with the input feature map. It should be noted that the
SENet considers only channel information but ignores the
position information. Conversely, the CBAM considers loca-
tion information by introducing the weighting coefficients.
The weighting process captures only the local relationships
and is unable to obtain long-range dependencies. However,
coordinated attention can effectively address the aforemen-
tioned problems.

Moreover, the coordinate attentionmodule decomposes (4)
into horizontal and vertical parts, as shown in (5) and (6),
respectively. Particularly, given an input x, each channel is
encoded along the horizontal and vertical directions based
on two spatial ranges, (h, 1) and (1, w), of the pool core.
To build a pair of direction sensing feature maps, the features
are aggregated in the two spatial directions. This enables
the attention block to capture the long-term dependence and
attain accurate location information. In addition, this sig-
nificantly helps the network to locate an object of interest
precisely.

zc = Fsq (uc) =
1

H×W

∑H

i=1

∑W

j=1
uc (i, j), (4)

zhc (h) =
1
W

∑
0≤i≤W

xc (h, i), (5)

zwc (w) =
1
H

∑
0≤j≤H

xc(j,w). (6)

As shown in Figure 5, it concatenates the results obtained
by (5) and (6). These results are finally sent to a 1 × 1 con-
volution layer, which is given by:

f = δ
(
F1
([

zh, zw
]))

, (7)

where δ denotes the sigmoid function, F1 is the convolution
function, [·] represents the concatenation operation, and f is
a C/r × (H + W ), and it is divided into two parts, f hand
f w. The output results are expressed by using the following
mathematical expressions:

gh = δ
(
Fh
(
fh
))
, (8)

FIGURE 5. The architecture of the coordinate attention.

FIGURE 6. The OSA architecture.

FIGURE 7. The CEIOU and ICEIOU curves.

gw = δ
(
Fw
(
fw
))
. (9)

Finally, the output of the coordinate attention module is
given by:

yc (i, j) = xc (i, j)× ghc (i)× gwc (j). (10)
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FIGURE 8. The P-R curve of the HRSID ablation experiment. (a) Baseline;
(b) baseline with decoupled head; (c) baseline with coordinate attention;
(d) baseline with decoupled head and coordinate attention; (e) baseline
with decoupled head, coordinate attention, and double trunk.

TABLE 1. The map of the ablation experiment obtained on the SSDD
dataset.

In addition, (c) can be easily integrated into mobile net-
works, such as MobileNetv2 [48] and EfficientNet [49]. This
is also conducive to the lightweight work of subsequent
models.

C. DOUBLE TRUNK
To enhance the extraction ability of the network model for
small targets further, a two-way backbone is introduced into
the VoVNet [50] on the basis of the CSPDarknet53. The
VoVnet can effectively extract various feature information
by using the one-time aggregation (OSA) module, which

FIGURE 9. The P-R curve of the HRSID ablation experiment. (a) Baseline;
(b) baseline with decoupled head; (c) baseline with coordinate attention;
(d) baseline with decoupled head and coordinate attention; (e) baseline
with decoupled head, coordinate attention, and double trunk.

TABLE 2. The map of the ablation experiment obtained on the HRSID
dataset.

connects the subsequent layers, as shown in Figure 6. Because
the OSA module can capture multi-scale receptive fields,
the diversified feature maps enhance the multi-scale target
detection ability of the target detection model, especially for
small target detection.

In this paper, the feature information extracted from
the input feature map by the backbone of the VoVNet
is fused with the feature map extracted by another
Yolo backbone, the CSP8. More feature information is
extracted through feature fusion, which is conducive to
enhancing the model’s detection ability for small ship
targets.
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TABLE 3. Comparison results on the SSDD dataset.

TABLE 4. Comparison results on the HRSID dataset.

D. LOSS FUNCTION
In the loss function part, the CEIOU loss function [51] reflects
the distance between the predicted frame and the ground
truth.When the CEIOU value is large, the closer the predicted
frame is to the ground truth, the smaller the loss function
value is. However, in the training process of a network model,
the gradient of the CEIOU loss function in the training
process will not change, thus affecting the training effect.
In order to solve this problem, the ICEIOU loss function,
which is presented in Figure 7, is introduced to improve the
model training effect.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the simulation setup, datasets, evaluation
measures, and implementation of the proposed method are
presented. In addition, ablation and comparative experiments
are introduced.

A. DATASETS
The SAR ship detection dataset (SSDD) [12] containing
1,160 images and 2,456 ship targets was used in the exper-
imental verification. This dataset was collected by using
Sentinel-1, TerraSAR-X, and RadarSat-2 sensors, including
target ships with HH, HV, VV, and VH polarization modes.
The resolution for the dataset was 1 m–15 m. Please note that
the images of target ships were acquired on seas, as well as
in nearshore areas. The high-resolution SAR images dataset
(HRSID) [52] contained 5,064 SAR images and 16,951 ship
targets. It was collected using TanDEM-X, TerraSAR-X, and
Sentinel-1B sensors installed on target ships with HH, HV,
and VV polarization modes and different backgrounds. The
dataset included data with resolutions of 0.5 m, 1 m, and 3 m.

B. SIMULATION SETUP
For implementation, PyTorch 1.8.0, CUDA 11.1, CUDNN
8805, Intel(R) Xeon(R) Gold 6130, and Tesla P100 were

used.Model training included 200 epochs; a learning rate was
0.0003, and an AdaBelief optimizer was adopted. It should be
noted that optimizer selection has a significant effect on the
convergence of a trained deep learning model [53], [54]. The
AdaBelief optimizer was selected because it has both the fast
convergence characteristics of the Adam optimizer and the
good generalization capability of the SGD [55]. Further, the
learning rate used a cosine annealing strategy. The detection
threshold for IOU in all experiments was 0.5.

C. EVALUATION METRICS
In this study, precision, recall, F1_score, FPS parameters, and
GFLOPs were used to evaluate the proposed method’s detec-
tion performance. The precision and recall were respectively
calculated by:

precision =
TP

TP+ FP
, (11)

recall =
TP

TP+ FN
. (12)

The F1_score is amathematical expression of the harmonic
average of accuracy and recall, and it is defined by:

F1_score =
(
1
n

∑ 2× precision× recall
precision+ recall

)2

. (13)

Further, the AP is mathematically expressed as follows:

AP =
∫ 1

0
P(R)dR. (14)

Generally, mAP (0.5:0.95) represents IOU from 0.5 to
0.95. In this study, mAP was calculated at intervals of
0.05 and then averaged; mAP0.5 and mAP0.75 denoted the
map values for IOU of 0.5 and 0.75, respectively.

The receiver operation characteristic (ROC) curve
describes the relationship between the true positive rate
(TPR) and the false positive ratio (FPR). The AUC is defined
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FIGURE 10. The P-R curves: (a) SSDD dataset; (b) HRSID dataset.

FIGURE 11. The ROC Curves. (a) SSDD. (b) HRSID.

as the area between the ROC curve and the coordinate axis.
The TPR and FPR are respectively defined as follows:

TPR =
TP

TP+ FN
. (15)

FPR =
FP

FP+ TN
. (16)

where FPS represents the detection speed, and it is given by:

FPS =
N
T
. (17)

where N denotes the number of samples in the test set, and
T is the amount of time required for testing the model on the
test set.

The GFLOPs are used to measure the computation amount.
Namely, network complexity is proportional to the number of
performed calculations. The GFLOPs represent the number
of parameters in the network. In a neural network, parameters
generally refer to the weights and biases that are learned
during the training process.

D. ABLATION EXPERIMENT
To confirm the efficiency of the decoupled head and coor-
dinated attention module in detecting target ships in SAR
images, ablation experiments were performed on the SSDD
and HRSID datasets. Figure 8 presents the P-R curves of
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FIGURE 12. The detection result of different algorithms on the SSDD dataset. (a) Ground truth; (b) Faster RCNN; (c) RetinaNet; (d) SSD; (e) the proposed
method.

TABLE 5. Performance comparison of different attention mechanisms on the SSDD dataset.

the ablation experiment on the SSDD dataset. The mAP
results of the ablation experiment are given in Table 1. The

results showed that the decoupled detection head used to
replace the coupled detection head for decoupling could
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FIGURE 13. The detection results on the HRSID dataset.
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handle classification and regression problems. This improved
the mAP by 1.07% and significantly enhanced network per-
formance. In addition, inspired by the ConvNeXt [56], the
coordinate attention module was added to the third stage for
achieving robust feature learning. The coordinate attention
module was also incorporated in the fourth and fifth phases
with deeper semantics. This improved the mAP by 1.80%
compared to the baseline network. The network obtained by
combining decoupled detection head and coordinate attention
showed a mAP improvement of 2.43% compared with the
baseline network. Figure 9 shows the P-R curve of the abla-
tion experiment on the HRSID dataset, and the corresponding
mAP results are presented in Table 2. Compared with the
baseline, the decoupled detection head increased the mAP by
2.28%, the coordinate attention enhanced the mAP by 2.24%,
and the combination of decoupled detection head and coordi-
nate attention improved the mAP by 4.32%. It is noteworthy
that the HRSID dataset included a large number of small tar-
gets and rich data, thus enabling the decoupled detection head
and coordinate attention to affect the network’s performance
significantly.

E. COMPARATIVE EXPERIMENT
Next, the proposed algorithm was compared with the Faster
RCNN, SSD, RetinaNet, and ImYOLOv4. The comparison
results are presented in Tables 3 and 4. The P-R curves of dif-
ferent algorithms obtained on the SSDD and HRSID datasets
are presented in Figure 10. The ROC curves of different
algorithms obtained on the SSDD and HRSID datasets are
presented in Figure 11. The experimental results showed that
although the number of parameters in the proposed algorithm
was slightly larger than in the SSD and RetinaNet, it outper-
formed the other methods by more than 4% on the F1_score.
In terms of precision and recall, the proposed method sur-
passed the previous methods by more than 2% and 3%,
respectively. Further, in terms of mAP0.5, the performance of
the proposed method was more than 1.4% higher than those
of the other methods; also, the proposed method achieved
a significant improvement in mAP0.5:0.95. As shown in
Table 4, the proposed method outperformed other methods
on the F1_score by more than 1.2% and by more than 1%
and 2% on precision and recall, respectively. The proposed
method improved the mAP0.5 by more than 1.1%, as well
as mAP0.75. Moreover, the proposed method had the lowest
computational complexity of 32.27 GFLOPs, while those of
the Faster R-CNN, RetinaNet, and SSDwere 109.7, 87.7, and
107.5 GFLOPs, respectively.

To emphasize the benefits of the proposed strategy even
further, various types of targets, such as small targets,
nearshore targets, and dense targets, were selected to com-
pare the detection results of different methods on the SSDD
dataset, as shown in Figure 12, where the ground truth is
denoted by the green box, and the predictions of the algo-
rithms are represented by the red boxes.

Figures 12(a) show the detection results of the ground
truth, Fast RCNN, RetinaNet, SSD, and the proposed

FIGURE 14. The P-R curves of the attention mechanism experiment.
(a) Decoupled head model; (b) Experiment 1; (c) Experiment 2;
(d) Experiment 3.

TABLE 6. The description of two large SAR images.

algorithm, respectively. As presented in Figures 12(b)-12(d),
for nearshore and small targets, the degrees of false alarm
and missed detection were obvious. The proposed method
reduced the probability of missed detections and false alarms
and had a good performance. For small and dense targets,
Faster RCNN had a smaller number of missed detections than
the other algorithms, as shown in Figures 12(c) and 12(d);
however, the missed detection problem was still prominent.
In contrast, the proposed algorithm could effectively rec-
ognize dense and small objects, having a low percentage
of missed detection. The detection results obtained on the
HRSID are shown in Figure 13, where the green box repre-
sents the ground truth, and the red box represents the predic-
tion box. The results suggested that the proposedmodel could
detect targets that were close to shore and dense and small.

F. ATTENTION MECHANISM EXPERIMENT
Further, an experimental investigation of various effects of
coordinate attention in the YOLOv4 hierarchical structures
was conducted. Namely, the effects of coordinated attention,
SE, and CBAM in the ship target detection task from SAR
images were investigated using the YOLOv4 as a baseline
network.
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FIGURE 15. The P-R curve of the different attention mechanisms. (a) SSDD. (b) HRSID.

FIGURE 16. The intermediate feature visualization results.

First, a comparative experiment was performed on the
SSDD dataset using different addition positions. In Exper-
iment 1, coordinate attention was added before all residual
layers, and in Experiment 2, coordinate attention was added
to all residual layers. Inspired by the ConvNeXt, the features
learned by the model in the third stage were the most robust.
At the same time, the MobileNet showed that the features
learned by the model in the fourth and fifth stages had high

FIGURE 17. The annotated Google map of the two aforementioned
locations.

semantics. Thus, in Experiment 3, the residual layers of P3,
P4, and P5 received coordinate attention. Figure 14 shows
the P-R curve obtained by adding the attention mech-
anism to the decoupled optimization model in different
positions.

The results of Experiment 1 showed that when the CA
modulewas added to all residual layers, themAPwas reduced
by 3.31% compared with the decoupled optimization model.
The results of Experiment 2 demonstrated that when the CA
module was added to all residual layers, the mAP increased
slightly, namely by only 0.4%, compared with the decoupled
optimization model. Thus, the effect of the attention mecha-
nism was not obvious. The results of Experiment 3 showed
that the addition of the attention mechanism to the residual
layer of P3, P4, and P5 increased the mAP by nearly 1.4%
compared with the decoupled optimization model. The three
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FIGURE 18. The detection results of the adaptability experiment.
(a) Image 1; (b) Image 2.

experiments showed that adding coordinate attention to the
residual layers of P3, P4, and P5 could be effective.

Figure 15 presents the P-R curves of different atten-
tion methods obtained on the SSDD and HRSID datasets.
As shown in Figure 15, the coordinate attention mechanism
outperformed the SE and CBAM in the ship detection task
from SAR images. Table 5 compares the performances of dif-
ferent attention mechanisms on the SSDD dataset. As shown
in Table 5, all three attention models could improve the
model’s map, but the CBAM and SE reduced the decoupled
model’s recall rate. The CA improved the model’s map the
most, while also improving the model’s recall rate. Therefore,
among the three attention mechanisms, the CA provided the
greatest enhancement to the model’s detection.

In addition, as shown in Figure 16, the intermediate feature
visualization results demonstrated the benefits of the coordi-
nate attention module proposed in this paper.

After introducing the coordinate attention mechanism, the
model could effectively deal with the multi-scale problem in
the task of ship target detection in SAR images.

G. ADAPTABILITY EXPERIMENT
To ensure that the selected model could be migrated easily,
two large SAR images were selected, and their real geo-
graphical locations were marked, as presented in Figure 17.
In Figure 17, the Strait of Malacca is denoted by the orange
color, and the Strait of Singapore is represented in red. These
locations represent famous shipping routes in the world.
The descriptions of the two large scene images are given in
Table 6. As shown in Table 6, the VV polarized target ships
with high backscattering value and interference broadband
(IW) mode of sentry 1 were selected. Due to the limited GPU
memory, it was impossible to use large-scale images in model
training directly. Therefore, the training and test were per-
formed by segmenting the subgraphs in the document [57].
The adaptability of the proposed algorithm was also tested,
and the obtained results are shown in Figure 18.

The detection results in Figure 18 show that the suggested
model could successfully detect the majority of the target
ships.

V. DISCUSSION
Currently, the three popular factions of target detection archi-
tecture on mobile terminals include the ShuffleNet [58, 59],
FBnet [60], and MobileNet [61]. The mobile target detection
architecture adopted in this work is MobileNetv3, and it
is presented in Figure 19. The core idea in the MobileNet
series refers to deep separable convolutions. The deep sep-
arable convolution divides an ordinary convolution into deep
and point-by-point convolutions. During the process of deep
convolution, the convolution kernel is divided based on the
channel dimension and convoluted with the input feature
map. However, it is noteworthy that the reduction in dimen-
sions of the characteristic map leads to the loss of useful
information. To address this issue, MobileNetV3 introduces
point-by-point convolution after deep convolution to ensure
the number of channels of the output feature map. Based on
these operations, the depth separable convolution reduces the
number of computations and parameters to about one-ninth
to one-eighth of the standard convolution at the cost of

FIGURE 19. The architecture of the MobileNetv3 is used in this work.
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FIGURE 20. The P-R curve of the lightweight model. (a) lightweight baseline on the SSDD dataset; (b) lightweight
baseline with decoupled head and coordinate attention on the SSDD dataset; (c) lightweight baseline on the HRSID
dataset; (d) lightweight baseline with decoupled head and coordinate attention on the HRSID dataset.

FIGURE 21. The P-R curve of the lightweight model after the introduction of the focus; (a) SSDD dataset; (b) HRSID dataset.

a 1% reduction in accuracy. Second, the inverse residual
structure with a linear bottleneck is implemented to reduce
information loss during the training process caused by a

low-dimensional ReLU. The pointwise (PW) convolution
is used to upgrade the dimensions before performing deep
convolution, and then convolution is performed in a high
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TABLE 7. The lightweight comparison on the SSDD dataset.

TABLE 8. The lightweight comparison on the HRSID dataset.

dimensional space to extract the features. The residual con-
nection structure introduced after the last layer’s activation
function is replaced by a linear function.

During the lightweight experiment, the backbone of the
baseline network was replaced with the MobileNetV3.
In addition, the coupling and attention mechanisms were
used to improve the performance of lightweight networks.
Figure 20 shows the P-R curve of the lightweight model.
The results in Figures 20(a) and 20(b) obtained on the SSDD
dataset show that after introducing the decoupled head and
coordinate attention module, the mAP increased by more
than 4% compared to the lightweight baseline. The results
presented in Figures 20(c) and 20(d) obtained on the HRSID
dataset showed that by introducing decoupled head and coor-
dinate attentionmodule, themAP increased by approximately
2% compared to the lightweight baseline. This further indi-
cated that the decoupled head and coordinate attention mod-
ule could be successfully applied to a lightweight network.
Moreover, the number of parameters of the lightweight model
was 7.1M, accounting for only 9.1% of the parameters of the
model presented in Figure 3. The accuracy achieved on the
SSDD dataset was lowered by 0.5%, whereas the accuracy
on the HRSID dataset was reduced by approximately 5%.
In addition, the computational complexity of our lightweight
model was 3.52 GFLOPs, and its detection frame rate was
49.32 FPS.

Next, the focus layer was introduced to the lightweight
model for further analysis, and the corresponding results are
shown in Figure 21. Besides, Tables 7 and 8 show the com-
parison of various performance metrics of the MobileNetv3
lightweight baseline network, MobileNetv3 lightweight net-
workwith coordinate attention and decoupled head, and focus
optimized network. Tables 7 and 8 show the results on the
SSDD and HRSID datasets, respectively.

To minimize the number of parameters in the lightweight
model, the original lightweight large and small models were

FIGURE 22. The P-R curve of the large and small, lightweight models.
(a) The P-R curve of the large lightweight model on the SSDD; (b) the P-R
curve of the small, lightweight model on the SSDD; (c) The P-R curve of
the large lightweight model on the HRSID. (d) The P-R curve of the small,
lightweight model on the HRSID.

analyzed. The small model had 1.8 M parameters, which
was one 1/4 of the original lightweight model. The effec-
tiveness was verified on the SSDD and HRSID datasets.
Figure 22 depicts the P-R curves of the large and small
models.

VI. CONCLUSION
By introducing the well-known optimization strategy, this
study improves the original YOLOv4’s detection accu-
racy. However, the complex YOLOv4 structure is not con-
ducive to mobile deployment. To address this problem, this
paper proposes a decoupled head and coordinate attention
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method. On the basis of lightweighting theYOLOv4 network,
the proposed method ensures good detection performance.
In addition, a decoupled head is proposed to optimize model
performance. Moreover, to address the problems of the chan-
nel attention system’s inability to gather precise position
information and CBAM’s inability to capture long-range
dependencies in the spatial domain, the coordinate attention
module is added to the third stage with the most robust learn-
ing features, the fourth and fifth stages with higher semantics.
Further, by introducing a two-way trunk, the detection per-
formance of the model for small targets is further improved.
According to the experimental results on two public datasets,
compared to the other five SAR ship detectors based on
CNN, the proposed decoupled head and coordinate attention
method is feasible and has higher detection performance.
Moreover, by using the proposed method, satisfactory detec-
tion results can be obtained in two large-scene images, indi-
cating the excellent migration ability of the proposed model
in marine monitoring.

The results presented in this study can be useful for further
research on SAR ship detection.
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