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ABSTRACT Zeroing neural network (ZNN) is an effective method to calculate time-varying problems.
However, the ZNN and its extensions separately addressed the robustness and the convergence. To simul-
taneously promote the robustness and finite-time convergence, a nonlinearly activated integration-enhanced
ZNN (NIEZNN) model based on a coalescent activation function (C-AF) has been designed for solving
the time-varying Sylvester equation in various noise situations. The C-AF with an optimized structure
is convenient for simulations and calculations, which promotes NIEZNN accelerates convergence speed
without remarkable efficiency loss. The robustness and the finite-time convergence of the NIEZNN model
have been proved in theoretical analyses. Furthermore, the upper bounds of convergence time of the NIEZNN
model and the noise-attached NIEZNN model have been deduced in theory. At last, numerical comparative
results and the application to mobile manipulator have validated the efficiency and superiority of the
NIEZNN model based on the designed coalescent activation function.

INDEX TERMS Zeroing neural network, time-varying Sylvester equation, nonlinear activation functions,
robustness, Finite-time convergence.

I. INTRODUCTION
Sylvester equation has a wide field of application in dis-
turbance decoupling [1], image processing [2], linear least
square regression [3], control system [4] and robots [5].
Therefore, the study on the solution of Sylvester equation
has been investigated greatly [6], [7], [8], [9], [10], [11].
The Bartels-Stewart algorithm is a classical direct method to
solve Sylvester equation [12]. Based on this algorithm, some
extensions were proposed in [13] and [14]. Nevertheless, the
Bartels-Stewart algorithm was proven that it can complete
the calculation within a time complexity O(n3). When used
to large-scale real-time application, the Bartels-Stewart algo-
rithm cannot satisfy the requirement. In addition, based on
gradient means, a mass of iterative algorithms were exploited
to solve Sylvester equation [15], [16], [17], [18]. Those algo-
rithms worked well in static Sylvester equation. However,
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when applied to the dynamic (i.e. time varying) Sylvester
equation, these algorithms fail because the sampling rate is
too high in time-varying Sylvester equation.

In recent decades, the recurrent neural network (RNN)
as a typical representative of parallel algorithm, was greatly
applied in optimization [19], robotics [20], [21], game the-
ory [22], prediction [23]. Different from iterative algorithms,
RNN has excellent performance in parallel-distributed
processing and convenient hardware implementation. As a
competitive computational tool, RNN plays a pivotal role
in solving Sylvester equation [4], [24]. According to above
literatures, it is known that the solution error of RNN van-
ished to zero in time-invariant case, and the error failed in
vanishing to zero in time-varying case. For overcoming the
defect, a special kind of RNN was first proposed in [24],
which named zeroing neural network (ZNN). By exploiting
the velocity compensation of time-varying coefficients, ZNN
can exponentially converge to the theoretical solution of time-
varying Sylvester equation [25], [26]. The design formula of
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conventional ZNN (CZNN) is presented as follows:

Ė(t) =
dE(t)
dt
= −µE(t), (1)

where E(t) is the error monitoring function, the parameter
µ > 0. Due to the significant improvement in convergence
property, ZNN was studied deeply. The in-depth study can be
mainly summarized into two branches.

One is robustness. Noise is unavoidable in the solution
task of ZNN, such as some realization errors in hardware
implementation, the environmental disturbance. Sometimes,
the noise has significant impacts on the accuracy of ZNN.
Therefore, it is worth investigating the robustness of ZNN
with different noise. The evolution formula of CZNN has an
essential design defect: sensitive to noise [27], [28]. To over-
come this flaw, in [27] and [28], the evolution formula was
ameliorated by the integral unit as

Ė(t) = −µE(t)− ν
∫ t

0
E(s) ds, (2)

where the parameters µ > 0, ν > 0. Due to the design of
the integral unit, (2) is named as integration-enhanced ZNN
(IEZNN). IEZNN owns a noise-suppression property. The
improvement of robustness expanded the practical applica-
tion of ZNN.

The other is finite-time convergence. As time is valuable
in solving time-varying issues, the research on finite-time
convergence has became a hot point in the field of ZNN.
As noted in literature [29] that appropriate nonlinear activa-
tion function can accelerate the convergence. Which inspires
researchers to explore certain nonlinear activation functions
to improve convergence of ZNN. For example, in [30], [31],
[32], [33], and [34], three nonlinear activation functions
(i.e. the bi-polar-sigmoid activation function, power activa-
tion function and power-sigmoid activation function) were
explored and widely adopted. It is worth pointing out that
these mentioned nonlinear activation functions have superior
convergence speed than the linear one, but cannot actualize
the finite-time convergence. The unified design formula of
the nonlinear activated ZNN (NAZNN) is presented as

Ė(t) = −µA(E(t)), (3)

where µ > 0, A(·) denotes a nonlinear activation func-
tion. For the purpose of enabling ZNN to converge in finite
time, in 2013, a sign-bi-power activation function (named
SBP-AF) was fisrt presented in [25], which actualizes the
finite-time convergence. After that, the finite-time conver-
gence of ZNN has been widely investigated [35], [36], [37],
[38], [39], [40], [41]. With its further study, the SBP-AF is
found that the structure is too redundant, which interferes
simulation calculation and hardware implementation. There-
fore, for improving the finite-time convergence, the structure
of SBP-AF can be further optimized.

Based on the above analysis, it can be concluded that the
robustness and finite-time convergence of ZNN can simul-
taneously investigated by designing a new unified formula

combined Eq. (2) and Eq. (3). The purpose of our work is
to establish a new nonlinearly activated IEZNN (NIEZNN)
model for solving the time-varying Sylvester equation in
different noise environments. Three cruces are considered
in the design of NIEZNN, one is the stability, to obtain
effective computation; the other is the robustness, to own
good noise immunity; and the last one is expediting the
finite-time convergence, to meet higher requirements in solv-
ing time-varying problems. A designed coalescent activation
function (C-AF) is embedded to the NIEZNN model, which
impels the NIEZNN possess better finite-time convergence
and noise suppression in solving the time-varying Sylvester
equation. In addition, theoretical conclusions are derived, and
the superiority of NIEZNN under additive noise is verified
via comparison of numerical experiments and application on
controlling mobile manipulator. The novelty and contribution
of this paper are summed up as below.
• A general framework of NIEZNN is proposed for solv-
ing time-varying Sylvester equation. Besides, a novel
nonlinear function is presented to activate the NIEZNN
mode, which is more convenient for simulations and
calculations.

• The robustness and the finite-time convergence of the
NIEZNN model have been proved in theoretical analy-
ses. Furthermore, the upper bounds of convergence time
of the NIEZNN model and the noise-attached NIEZNN
model have been deduced in theory.

• The existing neural networks are applied to solve
time-varying Sylvester equation for comparative pur-
poses, and abundant experimental validations (including
the application to mobile manipulators) demonstrate the
better finite-time convergence and robustness of the pro-
posed NIEZNN based on a novel C-AF.

II. PROBLEM FORMULATION AND MODEL
In this section, we are concerned with the following
time-varying Sylvester equation.

A(t)Y (t)− Y (t)B(t)+ C(t) = 0, (4)

where A(t),B(t) and C(t) present known time-varying matri-
ces, Y (t) is an unknown time-varying matrix.

The aim of our work is to obtain the solution of Y (t)
within finite-time in different noises by taking advantage
of the NIEZNN. Following the general design procedure of
ZNN model, the design process of the NIEZNN model for
time-varying Sylvester equation can be obtained as below.

At first, define the error monitoring function:

E(t) = A(t)Y (t)− Y (t)B(t)+ C(t). (5)

Then, define a evolution formula for E(t), which simulta-
neously achieves finite-time convergence and noise tolerance.
Combining the design characteristics of (2) and (3), a novel
evolution formula is defined as following:

Ė(t) = −µA1
(
E(t)

)
− νA2

(
E(t)+ µ

∫ t

0
A1(E(s)) ds

)
, (6)
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FIGURE 1. The curves of C-AF (7) with different parameters values.

where µ > 0 and ν > 0 are the scale parameters,
A1(·) and A2(·) denote the nonlinear activation functions,
which are odd and monotone increasing. As we know that
the SBP-AF designed in [25] can endow ZNN finite-time
convergence, but the structure is too redundant, which inter-
feres simulation calculation and hardware implementation.
If we continue to expedite the convergence speed, much
efficiency will be sacrificed. Therefore, we propose a new
coalescent activation function (named C-AF) combined the
simplified form of SBP-AF with a linear activation function
as following:

A(x) = αsgnθ (x)+ βx, (7)

where sgnθ (·) is defined as

sgnθ (x) =


| x |θ if x > 0,
0, if x = 0,
− | x |θ , if x < 0.

(8)

To illustrate the proposed C-AF, Fig. 1 plots the curves of
the C-AF with different parameters values. From the figure,
we can see that the effect of α and β is more significant than θ ,
a larger value of the parameters α and β prompts function (7)
has a faster rate change.

At last, combining (5) and (6), the NIEZNN model is
obtained for solving time-varying Sylvester equation.

A(t)Ẏ (t)− Ẏ (t)B(t) = Y (t)Ḃ(t)− Ȧ(t)Y (t)

− Ċ(t)− µA1
(
A(t)Y (t)

−Y (t)B(t)+ C(t)
)

− νA2
(
A(t)Y (t)− Y (t)B(t)+ C(t)

+µ

∫ t

0
A1(A(s)Y (s)− Y (s)B(s)

+C(s)) ds
)
. (9)

As we know that noise is inevitably in the practical envi-
ronment. In general, especially in noise disturbed situation,
a zeroing neural network might develop to an unstable state
(e.g. oscillation, divergence and chaos). In this case, noise

leads to failure of the computing task. In order to inves-
tigate the anti-noise performance of NIEZNN model (9)
for solving time-varying Sylvester equation, we extend the
NIEZNN model (9) by appending a random noise as follow
noise-attached NIEZNN model:

A(t)Ẏ (t)− Ẏ (t)B(t) = Y (t)Ḃ(t)− Ȧ(t)Y (t)− Ċ(t)

−µA1
(
A(t)Y (t)− Y (t)B(t)+ C(t)

)
− νA2

(
A(t)Y (t)− Y (t)B(t)+ C(t)

+µ

∫ t

0
A1(A(s)Y (s)− Y (s)B(s)

+C(s)) ds
)
+ o(t), (10)

where o(t) denotes a random noise matrix, the random noise
may be constant noise or time-varying noise.
Remark 1: The parameters µ and ν can adjust the con-

vergence of neural network systems of NIEZNN model (9).
A large value ofµ and ν can accelerate the convergence. As to
the robustness, a large value of µ and ν is apt to make the
neural network system sensitive to noise. The integral unit
in NIEZNN model (9) can eliminate instability of control
systems with additional noise. Therefore, in applications,
parameters µ and ν are set as large as hardware permits.
Remark 2: The matrix-form NIEZNN model is trans-

formed into an initial-value ODE problem via MATLAB,
which makes simulation and calculation more easy and
efficient.

III. ROBUSTNESS AND FINITE-TIME CONVERGENCE
ANALYSES
In this section, theoretical analyses are presented, which show
the robustness and finite-time convergence of the NIEZNN
model with the proposed C-AF (7).

A. ROBUSTNESS
The robustness of NIEZNN model (9) is incarnated by
analysing noise-attached NIEZNN model (10).
Theorem 1: In front of an unknown additive noise, the state

matrix Y (t) generated by noise-attached NIEZNN model (10)
is stable and globally converges to the theoretical solution
Y ∗(t) of (4), that is to say, E(t) will globally converges to zero
with time.

Proof: The evolution formula of noise-attached
NIEZNN model (10) is presented as

Ė(t) = −µA1
(
E(t)

)
− νA2

(
E(t)+ µ

∫ t

0
A1(E(s)) ds

)
+ o(t), (11)

the ijth entry of Ė(t) of (11) can be obtained as below:

ėij(t) = −µA1
(
eij(t)

)
− νA2

(
eij(t)+ µ

∫ t

0
A1(eij(s)) ds

)
+ oij(t), (12)

we set

1ij(t) = eij(t)+ µ
∫ t

0
A1(eij(s)) ds, (13)
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the derivative of (13) can be gotten as:

ėij(t) = 1̇ij(t)− µA1(eij(t)). (14)

Finally, substituting (13),(14) into (12), we have

1̇ij(t) = −νA2(1ij(t))+ oij(t), (15)

for analyzing the stability of (12), a Lyapunov function can-
didate is constructed as following

Sij(t) =

(
νA2(1ij(t))− oij(t)

)2
2

.

Obviously, Sij(t) is a positive-definite function, based on
ėij(t) = 1̇ij(t) − µA1(eij(t)), the derivative of Sij(t) can be
computed as

Ṡij(t) = (νA2(1ij(t))− oij(t))ν
∂A2(1ij(t))

∂1ij
1̇ij(t).

= −ν
∂A2(1ij(t))

∂1ij
(νA2(1ij(t))− oij(t))2.

Because of the given condition that A2(·) is an odd
monotone increasing function, we can conclude that
∂A2(1ij(t))

∂1ij
> 0, therefore, Ṡij(t) is negative definite. Which

means Sij(t) will globally converge to zero with time goes
on, i.e.,

lim
t→∞

Sij(t) = lim
t→∞

(
νA2(1ij(t))− oij(t)

)2
2

= 0,

that is equivalent to

lim
t→∞

(νA2(1ij(t))− oij(t)) = 0.

According to Eq.(15), we have the conclusion

lim
t→∞

1̇ij(t) = 0.

based on ėij(t) = 1̇ij(t) − µA1(eij(t)) again, with the time
goes on, we have

ėij(t) = −µA1
(
eij(t)

)
,

which is the NAZNN design formula, we can construct a
Lyapunov function candidate Zij(t) = e2ij(t)/2, obviously,
Zij(t) is positive definite. Besides, the derivative of Zij(t) can
be obtained easily as:

Żij(t) = eij(t)ėij(t) = −µeij(t)A1
(
eij(t)

)
,

from the given condition that A1(·) is an odd monotone
increasing function, we have Żij(t) ≤ 0, i.e., Żij(t) is negative
definite, that’s to say eij(t) globally converge to zero with time
going on in noise situation. The proof is completed. �

B. FINITE-TIME CONVERGENCE
Theorem 2: The state matrix Y (t) generated by the NIEZNN
model with the proposed C-AF (7) is stable and glob-
ally converges to the theoretical solution Y ∗(t) of (4) in
finite-time

tup ≤
µ+ ν

µνβ(1− θ )
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
},

where e+(0) and e−(t) represent the largest and the smallest
values of E(0).

Proof: Based on the evolution formula (6), the element
of Ė(t) can be obtained as below:

ė(t) = −µA1
(
e(t)

)
− νA2

(
e(t)+ µ

∫ t

0
A1(e(s)) ds

)
. (16)

Same as the proof of Theorem 1, we also set

1(t) = e(t)+ µ
∫ t

0
A1(e(s)) ds,

so we have 1(0) = e(0) when t = 0. Besides, we also have

1̇(t) = −νA2(1(t)),

Based on the design of the proposed C-AF (7) and
NIEZNN (9) model,

1̇(t) = −ν(αsgnθ (1(t))+ β1(t))

= −ναsgnθ (1(t))− νβ1(t), (17)

considering the definition of sgnθ (·) in (8), we have
1) If 1(0) > 0, (17) can be derived as

1̇(t) = −να(1(t))θ − νβ1(t),

which is equivalent to

(1(t))−θ
∂1(t)
∂t
+ νβ(1(t))1−θ + να = 0. (18)

To solve the differential equation (18), we set ϕ(t) =
(1(t))1−θ , then

∂ϕ(t)
∂t
= (1− θ )(1(t))−θ

∂1(t)
∂t

.

So, (18) can be written as

∂ϕ(t)
∂t
+ (1− θ )νβϕ(t)+ (1− θ )να = 0.

The solution of above differential equation is

ϕ(t) =
(α
β
+ ϕ(0)

)
e(1−θ )νβt −

α

β
.

As we know that1(t) converges to 0 at the finite time t∗, that
is 1(t∗) = 0 and ϕ(t∗) = 0. Thus,(α

β
+ ϕ(0)

)
e(1−θ )νβt

∗

−
α

β
= 0.

VOLUME 10, 2022 121523



Y. Lei et al.: Nonlinearly Activated IEZNN Model for Solving Time-Varying Sylvester Equation

FIGURE 2. Starting from a randomly initial state Y (0), state matrix Y (t) synthesized by the NIEZNN model converges to the theoretical solution
precisely and rapidly. The results verify the finite time convergence in Theorem 2.

Solving the above equation, in the case of 1(0) > 0, we
obtain the upper limit of convergence time

t∗ =
1

νβ(1− θ)
ln
β(1(0))1−θ + α

α

=
1

νβ(1− θ)
ln
β | 1(0) |1−θ +α

α
.

2) If 1(0) < 0, similarly, we have the result that

t∗ =
1

νβ(1− θ)
ln
β(−1(0))1−θ + α

α

=
1

νβ(1− θ)
ln
β | 1(0) |1−θ +α

α
.

3) If 1(0) = 0, obviously,

t∗ = 0 =
1

νβ(1− θ )
ln
β | 1(0) |1−θ +α

α
.

Therefore, we can have the conclusion that1(t) converges
to 0 when t > 1

νβ(1−θ )max{lnβ|1
+(0)|1−θ+α
α

, lnβ|1
−(0)|1−θ+α
α

}.

Because of 1(0) = e(0), for 1(t), the upper bound of the
finite convergence time t1 of the NIEZNN model is obtained
as

t1 <
1

νβ(1− θ)
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
}.

When t > t1, 1(t) = 0 and 1̇(t) = 0, from ė(t) = 1̇(t) −
µP1(e(t)), we have

ė(t) = −µA1(e(t)),

adopting the same way in 1̇(t) = −νA2(1(t)), for e(t), the
upper bound of the finite convergence time t2 of the NIEZNN
model is obtained as

t2 <
1

µβ(1− θ )
max{ lnβ|e

+(0)|1−θ+α
α

,

lnβ|e
−(0)|1−θ+α

α
}.
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FIGURE 3. Residual errors synthesized by the NIEZNN model
embedded C-AF (7).

Finally, we conclude that NIEZNN (9) model can converge
to zero in finite time, and the upper bound of convergence
time is estimated as

tup = t1 + t2

<
µ+ ν

µνβ(1− θ )
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
}.

The proof completes. �
To investigate the finite-time convergence of noise-

attached NIEZNN model (10), we have the following
theorem.
Theorem 3. In front of an unknown additive noise o(t) with

its element satisfying oij(t) ≤ $ ($ > 0), the state matrix
Y (t) generated by noise-attached NIEZNN model (10) with
the proposed C-AF (7) is stable and globally converges to the
theoretical solution Y ∗(t) of (4) in finite-time

tup ≤
µ+ ν

µνβ(1− θ )
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
},

where e+(0) and e−(t) represent the largest and the smallest
values of E(0).
Proof: Based on the Theorem 1, the element of Ė(t) can

be obtained as below:

ė(t) = −µA1
(
e(t)

)
− νA2

(
e(t)+ µ

∫ t

0
A1(e(s)) ds

)
+ o(t).

(19)

We also set 1(t) = e(t)+ µ
∫ t
0 A1(e(s)) ds, then, we have

1̇(t) = −νA2(1(t))+ o(t), (20)

where A2(·) adopts the proposed C-AF (7), o(t) is set as
$1θ (t). Eq.(20) is represented as:

1̇(t) = −ν(αsgnθ (1(t))+ β1(t))+$1θ (t)

= −ναsgnθ (1(t))− νβ1(t)+$1θ (t), (21)

according to the definition of sgnθ (·) in (8), when 1(0) > 0,
Eq.(21) can be derived as

1̇(t) = −να1θ (t)− νβ1(t)+$1θ (t),

which is equivalent to

(1(t))−θ
∂1(t)
∂t
+ νβ(1(t))1−θ + να −$ = 0. (22)

We set ϕ(t) = (1(t))1−θ , then

∂ϕ(t)
∂t
= (1− θ )(1(t))−θ

∂1(t)
∂t

,

so, Eq.(22) can be written as

∂ϕ(t)
∂t
+ (1− θ )νβϕ(t)+ (1− θ)(να −$ ) = 0. (23)

The solution of the differential equation (23) is

ϕ(t) =
(να −$

νβ
+ ϕ(0)

)
e(1−θ )νβt −

να −$

νβ
.

As we know that1(t) converges to 0 at the finite time t∗, that
is 1(t∗) = 0 and ϕ(t∗) = 0. Thus,(να −$

νβ
+ ϕ(0)

)
e(1−θ )νβt

∗

−
να −$

νβ
= 0.

Solving the above equation, in the case of 1(0) > 0, we
obtain the upper limit of convergence time

t∗ =
1

νβ(1− θ )
ln
νβ(1(0))1−θ + να −$

να

<
1

νβ(1− θ )
ln
νβ(1(0))1−θ + να

να

<
1

νβ(1− θ )
ln
β(1(0))1−θ + α

α

=
1

νβ(1− θ )
ln
β | 1(0) |1−θ +α

α
.

When 1(0) ≤ 0, similarly, we have the result that

t∗ <
1

νβ(1− θ )
ln
β | 1(0) |1−θ +α

α
.

Therefore, we can have the conclusion that 1(t) converges
to 0 when t > 1

νβ(1−θ )max{lnβ|1
+(0)|1−θ+α
α

, lnβ|1
−(0)|1−θ+α
α

}.

So, the upper bound of the finite convergence time t1 of the
noise-attached NIEZNN model is obtained as

t1 <
1

νβ(1− θ )
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
}.

When t > t1, 1(t) = 0 and 1̇(t) = 0, from 1(t) = e(t) +
µ
∫ t
0 A1(e(s)) ds, we have ė(t) = 1̇(t)− µP1(e(t)), then

ė(t) = −µA1(e(t)),

where A1(·) adopts the proposed nonlinear activation func-
tion (7), for e(t), as Theorem 2, the upper bound of the finite
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FIGURE 4. State trajectories synthesized by the NIEZNN model, the IEZNN model and the NAZNN model in constant noise o(t) = 5,
where red dotted curves denote theoretical.

convergence time t2 of the noise-attached NIEZNN model is
obtained as

t2 <
1

µβ(1− θ )
max{ln

β | e+(0) |1−θ +α
α

,

ln
β | e−(0) |1−θ +α

α
}.

Finally, we conclude that noise-attachedNIEZNNmodel (10)
can converge to zero in finite time, and the upper bound of
convergence time is estimated as

tup = t1 + t2

<
µ+ν

µνβ(1−θ)max{lnβ|e
+(0)|1−θ+α

α
,

lnβ|e
−(0)|1−θ+α

α
}.

In summary, the finite-time convergence of the noise-attached
NIEZNN model is proven. �

IV. SIMULATION AND VERIFICATION
The robustness and finite-time convergence characteristics of
NIEZNN model are analyzed in Section III. In this section,
numerical experiment results are conducted to validate the

superiority of the presented NIEZNN model (9) for solv-
ing time-varying Sylvester equation in noise situations. For
comparative purposes, on the one hand, the IEZNN, NAZNN
and the proposed NIEZNN model are adopted. On the other
hand, linear activation function, some representative nonlin-
ear activation functions (including PS-AF and SBP-AF) and
the proposed C-AF are embedded in NIEZNN model (9)
and noise-attached NIEZNN model (10). Without loss of
generality, we set θ = 0.2, α = β = 1, µ = ν = 2.
ExampleTo solve Y (t) of (4), the coefficients forA(t),B(t)

and C(t) are chosen as following

A(t) =
[
sin(3t) − cos(3t)
cos(3t) sin(3t)

]
,

B(t) =
[
3 0
0 4

]
,

C(t) =
[
sin(t) − cos(t)
cos(t) sin(t)

]
.

The effectiveness and accuracy of NIEZNN model (9)
are illustrated in Figs.2-3. The overlap of the values syn-
thesized by NIEZNN model (9) and the actual solution
is demonstrated in Fig. 2. This figure shows, over a
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FIGURE 5. Residual errors synthesized by the NIEZNN model, the IEZNN model and the NAZNN model in different noises. (a) In constant noise
o(t) = 5. (b) In time-varying noise o(t) = 2t .

FIGURE 6. Residual errors synthesized by the NIEZNN model with different activation functions in different noises. (a) In constant noise
o(t) = 4. (b) In time-varying noise o(t) = t .

finite-time, the accurate solution of the above time-varying
Sylvester equation can be generated by the NIEZNN
model. Furthermore, Fig. 3 exhibits the residual error
‖E(t)‖F of NIEZNN model (9) can diminish to zero
within 0.75 s. which is less than the upper bound tup ≤
µ+ν

µνβ(1−θ )max{lnβ|e
+(0)|1−θ+α

α
, lnβ|e

−(0)|1−θ+α
α

} ≈ 1.64 s.

In Figs. 4-5, the superiority of the NIEZNN model on
robustness and finite-time is displayed by comparing dif-
ferent models and activation functions. For comparison, the
IEZNN model and the NAZNN model are adopted. Fig. 4
illustrates the analytical solutions and the generated solutions
by different model with constant noise o(t) = 5. The simu-
lation results reveal that the state solution generated by the
NAZNN model can not converge the analytical solution in
noise situation, the IEZNN model possesses a better robust-
ness but can’t achieve finite-time convergence. Although
disturbed by noise o(t) = 5, the state solution generated
by the proposed NIEZNN model rapidly converges to the

analytical solution. The corresponding residual error ‖E(t)‖F
is displayed in Fig. 5(a). For further verification, a linear
time-varying noise o(t) = 2t is considered, the simulation
results are depicted in Fig. 5(b). When faced time-varying
noise, the residual error of the proposed NIEZNN model still
quickly converges to zero, which takes no more than 1 s.
On the contrary, the residual error of IEZNN model does not
decline to zero and remains at approximately 0.8 s. Moreover,
the residual error of the NAZNN model keeps climbing over
time.

Next, we discuss the choice of activation function. The fol-
lowing two representational activation functions are investi-
gated inNIEZNNmodel. One is the power-sigmoid activation
function (noted PS-AF)

A(x) =

{
xλ (with λ ≥ 3), if | x |≥ 1,
1+e−ζ

1−e−ζ ·
1−e−ζx

1+e−ζx (with ζ > 2), if | x |< 1.
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FIGURE 7. The tracking experiment results synthesized by the control law of the NIEZNN model with µ = ν = 150 in an additive noise. (a) The
path of joint angle. (b) The theoretical and the synthesized trajectory. (c) The comparison between the theoretical and synthesized velocity.

FIGURE 8. Residual errors synthesized by the control law of the NIEZNN model with µ = ν = 150 in an additive noise. (a) Velocity error.
(b) Position error. (c) Acceleration error.

Another is SBP-AF A(x) = 1
2 sgn

θ (x) + 1
2 sgn

1/θ (x), where
the parameter θ ∈ (0, 1), and sgnθ (·) is defined same as (8).
Fig. 6 shows the corresponding experimental results of the
NIEZNNmodel activated by different activation functions for
solving time-varying Sylvester equation in noise disturbed
situation. In Fig. 6(a), under a constant noise o(t) = 4, in
Fig. 6(b), under a linear time-varying noise o(t) = t . The
experimental results verify again the advantages in effective-
ness, robustness and finite-time convergence of the proposed
NIEZNNmodel, furthermore, the residual errors of NIEZNN
model activated by the designed C-AF converge to zero
faster than the same model activated by SP-AF and SBP-AF
(λ = 3, ς = 4) under noise situation. The new C-AF with
simpler structure is convenient for simulations and calcula-
tions, and what’s more, which accelerates convergence speed
without remarkable efficiency loss.

V. APPLICATION TO CONTROL MANIPULATOR
In this section, we introduce a mobile manipulator to certify
the applicability of theNIEZNNmodel. The repetitivemotion
scheme of themobilemanipulator can been found in [42]. The
position level, velocity level and the acceleration level can be
written as

minimize
1
2
(φ̈(t)+ κ)T (φ̈(t)+ κ)

subject to J (φ(t))φ̈(t) = ω̈ (t)

where κ := 2χφ̇(t) + χ t (φ(t) − φ(0)), here χ > 0,
and φ(t), φ̇(t), φ̈(t) respectively denote the vectors of
the manipulator’s joint-angle, joint-velocity and joint-
acceleration; J (φ(t)) represents the manipulator’s Jacobian
matrix; ω̈ (t) := ω̈(t)− J̇ (φ(t))φ̇(t). Based on the repetitive
motion scheme, a kinematics equation can be obtained by
using Lagrangian multiplier L(t) as

M (t)%(t) = ϕ(t),

where

M (t) : =
[

I J T (t)
J (t) 0

]
,

%(t) : =
[
φ̈(t)
L(t)

]
, ϕ(t) :=

[
−τ

ω̈ (t)

]
.

Then, we utilize the method of the proposed NIEZNN
model to control the motion of the mobile manipulator
under the a constant noise o(t) = 5. In this simulation
experiment, the mobile manipulator is allocated to track a
circular route (with the radius being 0.5 m ). The initial
joint-angle of the mobile manipulator is set as φ(0) =
[0, 0, π/12, π/6, π/12, π/6, π/12, π/6]T, and experimental
duration is 5 s. The experiment results synthesized by the
NIEZNN model are displayed in Fig. 7-8.

As shown from Fig. 7, the mobile manipulator excel-
lently performs the tracking task. Fig. 7(a) indicates the path
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of joint-angle from initial values to final values. Fig. 7(b)
indicates the synthesized trajectory overlaps with the the-
oretical trajectory. Fig. 7(c) depicts simulated velocity the
coincides with the theoretical velocity. In addition, Fig. 8
reveals the position error, acceleration error and velocity error
are less than 1.4 × 10−5, the accuracy can meet the needs
of practical application. The results of the trajectory-tracking
about mobile manipulator fully confirms the design method
of the NIEZNN model possesses stronger effectiveness and
accuracy.

VI. CONCLUSION
In order to simultaneously promote the robustness and
finite-time convergence, a nonlinearly activated integration-
enhanced zeroing neural network (NIEZNN) has been
designed for solving the time-varying Sylvester equation
in various noise situations. In addition, a new coalescent
activation function (C-AF) with simpler structure has been
designed to embed into the NIEZNN model, which is
convenient for hardware implementation, and accelerates
convergence speed without remarkable efficiency loss. Fur-
thermore, the robustness and the finite-time convergence of
the NIEZNN model have been proved in theoretical anal-
yses. Moreover, the upper bounds of convergence time of
the NIEZNN model and the noise-attached NIEZNN model
have been deduced in theory. Finally, the advantages of the
proposed NIEZNN model based on the designed C-AF have
been verified by comparing the NIEZNNmodel with existing
ZNN models for computing time-varying Sylvester equation
in noise situations. The comparing results and the application
to mobile manipulator have demonstrated the efficiency and
superiority of the NIEZNN model and the new coalescent
activation function. Compared with fixed parameters, time-
varying parameters in ZNN have significant superiority in
stability, convergence and robustness. In the future, exploring
a delicately time-varying parameter NIEZNN to solve time-
varying issues is a valuable direction.
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