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ABSTRACT The accurate analysis and the characterization of guided-wave structures are important steps
in the design of microwave and optical systems. A numerical methodology based on a three-dimensional
discontinuous Galerkin time-domain (DGTD) finite element method is used to estimate the resonant
frequencies of various structures in a single run, with several polychromatic sources (dipole, plane wave,
etc). The proposed approach leads to simulations that are fast and accurate, this being the result of the local
discretization strategy of the full-wave time-domainMaxwell’s equations on unstructured tetrahedral meshes
that is easy to parallelize. The stability of the overall numerical scheme is obtained using an upwind numerical
flux and an implicit second-order accurate time integration scheme. The numerical methodology is verified
based on two problems with closed-form solutions. First, homogeneous and non-homogeneous waveguides
are studied using the proposed methodology. The WR-284 waveguide is used, and cut-off frequencies of the
first 7 modes are computed and compared with analytical solutions. Propagation characteristics of mode-
selective transmission lines (MSTL) are then investigated. These MSTL simulation results are verified using
measurement results of fabricatedMSTL,microstrip, and RWGprototypes up to 110GHz. Simulation results
show the flexibility, the robustness, and the high accuracy of the proposed numerical strategy.

INDEX TERMS Rectangular waveguides, mode-selective transmission lines non-homogeneouswaveguides,
gradient-index materials, cut-off frequency, dispersion, electromagnetic analysis, electromagnetic fields,
time-domain analysis, discontinuous Galerkin finite element method, numerical modeling.

I. INTRODUCTION
The analysis of electromagnetic fields has been the subject
of numerous studies over the past decades. The main two
conductor structures that can support verious TE, TM, and
TEMmode wave propagations are waveguides and transmis-
sion lines. In this paper, a numerical method is proposed for
analyzing waveguides and mode-selective transmission line
(MSTL).

Several authors have analyzed waveguides problem in the
literature. Their shape and cut-off frequency influence the
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design of microwave, millimeter-wave, and optic compo-
nents, such as filters [1], [2], [3], [4], [5], tuners [6], [7], phase
shifters [8], [9], attenuators [10], and circulator elements
[11], [12]. Waveguides can be filled with a homogeneous
or non-homogeneous dielectric medium. Propagation char-
acteristics of MSTL are then investigated. MSTL is studied
theoretically and experimentally by some researchers [13],
[14]. This type of transmission line has frequency-dependent
mode-switching behavior and is among low-loss and low-
dispersion transmission line [13] The MSTL is selected to
show the accuracy of the proposed numerical method to ana-
lyze the losses in materials and caused by leakage and radia-
tion in the interface between different layers in multiplayer
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transmission lines. For this purpose, the time-domain full-
wave Maxwell’ equations are discretized on bounded 3D
domains.

Maxwell’s equations can give multiple solutions for a
given problem.With homogeneous waveguides, two different
modes exist: the transverse electric mode (TE) and the trans-
verse magnetic mode (TM). For homogeneous rectangular or
circular waveguides, the partial differential equations can be
solved analytically. But for waveguides with complex shapes,
or filled with non-homogeneous materials, we cannot find an
analytic solution. For multilayered printed transmission line,
computing the losses due to radiation and leakage are also
challenging. Numerical methods, such as the finite difference
method [15], [16], [17], the boundary element method [18],
[19], [20], the method of moments [21], [22], [23], or the
finite element method [24], [25], [26] must therefore be
considered.

Various software packages, such as HFSS, ADS, CST,
and FEKO, are used to perform the numerical analysis for
Maxwell’s equations. They are in the frequency domain (FD),
or in the time domain (TD). FD methods are often more
computationally costly for computing wideband frequency
responses since, for each frequency, the simulation must be
run completely. Some of commercial software packages are
designed based on modified version of Maxwell’s equations
(green’s functions, Helmholtz equation, H-formulation, etc. ),
therefore they disregarded important physics phenomena that
can only be modeled using full-wave Maxwell’s equations.
Commercial simulation software is usually designed to study
either low frequency, or high frequency problems. Using
the full-wave Maxwell’s equations will make the simulation
software usable for various frequencies and media.

Some software packages are based on the finite-difference
time-domain (FDTD) numerical method which is not
very accurate for complex geometries. The finite element
method (FEM) is the most popular numerical method that
can be used to discretizeMaxwell’s equations on unstructured
meshes. The FEM is a useful simulation tool for studying
problems with complex geometries. But waveguides with
anisotropic materials cannot be handled easily. The numerical
simulation of these problems can lead to unstable approx-
imations [27], [28]. The development of stable high-order
finite element discretizations for Maxwell’s equations is still
an active research topic.

In order to help control numerical instabilities, some stud-
ies propose to introduce modifications to Maxwell’s equa-
tions, which lead to nonphysical discrete approximations.
These techniques are known for not completely succeeding
in eliminating numerically induced oscillations [29], [30],
[31]. Edge elements, also known as Whitney elements of
degree 1, provide a cure to many problems associated with
nodal-based finite element approximations [32], [33], [34].
First, they make it easier to manage discontinuous permit-
tivities and permeabilities, since edge elements only enforce
the continuity of the tangential component of the dependant
variables, allowing the normal component of the vector fields

to be discontinuous. They also provide more accurate approx-
imations of vector fields near geometric singularities, such
as in regions in the vicinity of sharp corners. Finally, since
the numerical approximations are taken in the proper func-
tional space, spurious modes associated with nonzero eigen-
values are reduced or eliminated. These properties come at a
price, since edge elements necessitate an increased number
of degrees of freedom when compared to nodal discretization
techniques, which translates into simulations that necessitate
more time and memory.

A fast and accurate numerical methodology based on
a three-dimensional discontinuous Galerkin time-domain
(DGTD) finite element method with vector basis functions
(Whitney elements of degree 1) is proposed for analyzing
waveguides and mode-selective transmission line (MSTL).
The DGTD method does not necessitate the assembly of the
contributions of the elements of the mesh in a large matrix.
Instead, small local problems are discretized on each element
of the mesh, which makes the method easier to parallelize
[35], [36]. The numerical approximation of the discrete prob-
lem is therefore discontinuous, which adds to the flexibility
provided by the Whitney element. Both homogeneous and
non-homogeneous waveguides are studied to verify the pro-
posed numerical methodology, where the cut-off frequency
is computed for various modes in a single run. Propagation
characteristics of MSTL are also investigated in this work.
These analysis results are verified by the measured results
of fabricated prototypes of MSTL, microstrip, and RWG up
to 110 GHz.

II. MODELING
A. MAXWELL’s EQUATIONS FOR ELECTROMAGNETIC
FIELDS MODELING
The differntial form of Maxwell’s equations in a limited
region of interest are expressed as

∇ · E = 0 (Gauss’s law of E)

∇ ·H = 0 (Gauss’s law of H)

ε
∂E
∂t
−∇×H = J (Ampere’s law)

µ
∂H
∂t
+∇× E = 0 (Faraday’s law) (1)

where H is the magnetic field, E is the electric field, ε and µ
represent the permittivity and permeability of the material,
ρ is the charge density, and J is the current density. Dirichlet
andNeumann boundary conditionsmust be defined as bound-
ary conditions to have complete definition of the problem.
Dirichlet condition imposed the value and Neumann condi-
tion imposed the normal derivative of the electromagnetic
fields on the surface of the region.

B. INITIAL AND BOUNDARY CONDITIONS
Since the problems under study are time dependent, initial
conditions E(x, t0) = E0(x) and H(x, t0) = H0(x), for all
x ∈ �, allow us to compute the discrete variablesEh(x, t) and
Hh(x, t) over the time interval I = [t0 , tf ]. The appropriate
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boundary values must be imposed on the surface area or
perpendicular to the surface depending on the problem under
study. They can be defined for the electromagnetic fields in
media 1 and 2 as

n · (E1 − E2) = gE (Dirichlet)

n× (E1 − E2) = hE (Neumann)

n · (H1 −H2) = gH (Dirichlet)

n× (H1 −H2) = hH (Neumann)

where n is the unit normal vector to 0 and gE , hE , gH and
hH are known functions defined on 0 × I (or with a subset
of 0). A well known example is given by the perfect electric
conductor (PEC) boundary condition:

n ·H = 0
n× E = 0

on 0 × I (2)

which can be used, as an example, with conductors at
microwave frequencies. Another example is the perfect mag-
netic conductor (PMC) boundary condition:

n · E = 0
n×H = 0

on 0 × I (3)

which is often used as a symmetry boundary condition.

C. NONDIMENSIONALIZATION
Dimensionless forms are usually used to help identify the
dominant physics of a given system. But from a numerical
modeling point of view, it can also act as a natural precondi-
tionner. The order of magnitude of each term of system (1)
can vary significantly, which can lead to an ill-conditioned
discrete problem. Given the reference quantities t0, `0, µ0,
ε0,, ρ0, E0 and H0, we define the nondimensional variables
t̃ = t/t0, x̃ = x/`0, µ̃ = µ/µ0, ε̃ = ε/ε0, σ̃ = σ/σ0
Ẽ = E/E0 and H̃ = H/H0. The dimensionless form of
system (1), after replacing J by σE, then becomes:

∇̃ · Ẽ = 0

∇̃ · H̃ = 0

51
(
µ̃
∂H̃
∂ t̃

)
+ ∇̃× Ẽ = 0

52
(
ε̃
∂Ẽ
∂ t̃

)
−53 σ̃ Ẽ = ∇̃× H̃ (4)

where 51 =
µ0 H0 `0
E0 t0

, for dielectric materials 53 ≈ 0,

and 52 =
ε0 E0 `0
H0 t0

, for conducting materials 52 ≈ 0, and

53 =
E0 `0 σ0
H0

. In this study, for a unit reference magnetic
field strength of H0 = 1A/m, we define the reference
electric field strength as E0 = H0Z0 for an impedance of
Z0 = 120π �, the reference permeability µ0 is chosen as
4π × 10−7H/m, and the reference permittivity ε0 is given by
8.85× 10−12 F/m. Finally, t0 and `0 are problem dependent.
The nondimensional quantities will be written without ‘‘∼’’
in the remainder of the paper.

D. NUMERICAL METHODOLOGY
Industrial problems often involve complex geometries. This
leads us to base this numerical study on the finite element
method (FEM). Many authors discretize a modified version
of system (1), which sometimes leads to ill-conditioned dis-
crete problems. This explains why we choose to perform a
direct finite element discretization of the third and fourth
equations of system (1) using the discontinuous Galerkin
FEM, also known as the discontinuous Galerkin time-domain
(DGTD) method. In addition to the fact that it can provide a
stable discrete problem, it’s local nature makes it a numer-
ical method that is easy to parallelize, which results in fast
solvers for the discretization of Maxwell’s equations. After
discretizing the domain of definition of the problem � using
tetrahedral elements, we obtain the finite element mesh�h =

∪iKi where element i is being denotedKi, andwhere elements
are not overlapping, i.e. Ki ∩ Kj = ∅ for i 6= j. Let’s now
consider one of those tetrahedral elements K of �h.

The base functional space associated with the weak forms
of Maxwell’s equations is expressed as

H (curl ;�) =
{
u ∈ [L2(�)]3 :∇× u ∈ [L2(�)]3

}
which is a variation of the H1(�) Sobolev space used with
classical finite element formulations, where L2(�) is the set
of square-integrable functions. The discrete finite element
approximationsEh ≈ E andHh ≈ H will belong to a discrete
functional subspaceUh ⊂ H (curl ;�). Discrete test functions
vh and wh will also be taken in Uh.
The classical approach consists in using the piecewise N-th

order polynomial Lagrange approximation of the form

Eh =
4∑
j=1

Ej vj

Hh =

4∑
j=1

Hj wj (5)

where the Ej and Hj are scalar degrees of freedom in each
node which are four for linear and ten for quadratic polyno-
mial function. The nodal elements have the disadvantage that
imposes continuous functions of the spatial variable, and they
also cause difficulties near sharp corners. To overocome these
problems the vectorial approximations or vectorial degrees
of freedom Ej and H j are used instead of nodal degree of
freedoms. Linear edge element, also called Whitney element,
is applied which is the most popular and simlest basis func-
tion were proposed by Nédélec [40].
To obtain the weak form of Faraday’s law and Ampere’s

law, the test functions v and w must be multiplies in the
equations of system (4) taken in an appropriate functional
space, and we integrate over each element. The details about
the process of obtainng the weak form of Maxwell’s equation
can be found in [41]. The weak form associated with the third
and fourth equations of system (1) are∫

K
∂t (µH)·v dx+

∫
K
(∇×E)·v dx
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FIGURE 1. Numerical flux.

≈

∫
∂K
[n×(E−E∗)]·v ds∫

K
∂t (εE) · w dx−

∫
K
(∇×H) · w dx ≈

−

∫
∂K
[n× (H −H∗)] · w ds (6)

where ∂K is the boundary of element K. The right-hand side
of the equations in system (6) are named flux, which is there
to complete the scheme and guarantee the continuity between
the solution on each edge of two neighbor elements. There are
several possible choice of this flux function here we choose
the up-winding flux with Z± = (Y±)−1 = µ±/ε±. The H∗,
and E∗ are expressed in the form

H∗ =
1
{{Z}}

(
{{ZH}} +

1
2
[E]
)

E∗ =
1
{{Y}}

(
{{YE}} +

1
2
[H]

)
where {{u}} represents the average and [u] is used for defining
the jumps along a normal vector between two elements. These
notations are defined as

{{u}} =
u− + u+

2
[u] = n̂− · u−+ n̂+ · u+

here ‘‘+’’ and ‘‘−’’ refers to the left and right side of the
interface which is shown in Fig. 1. The right-hand side of the
equations in system (6) can be written as

GH = n×
(
H−H∗) = n×

1
2{{Z}}

(
{{Z+H}}−[E]

)
GE = n×

(
E−E∗

)
= n×

1
2{{Y}}

(
{{Y+E}}−[H]

)
(7)

The M, S, and F matrices can be defined as

M =
∫
K
v · w dx

S =
∫
K
v · ∇ × w dx

F =
∫
∂K

v · w dx (8)

FIGURE 2. Waveguide geometry and dimensions.

where all these matrices are local and based on integrals of
the basis functions.

M ∂t (µH)+ S (∇×E) ≈ F GE

M ∂t (εE)− S (∇×H) ≈ −F GH (9)

The second-order accurate backward differentiation for-
mula (BDF) is used to discretize the transient derivative of
Maxwell’s equations. The general formula for a second order
BDF can be written as

dy(tn +1t)
dt

≈
y(tn +1t)− 4

3y(tn −1t)+
1
3y(tn − 21t)

1t
(10)

where 1t denotes the step size. The BDF is a populare
implicit methods based on Lagrange interpolation polyno-
mial for the numerical integration of ordinary differential
equations, see [37]. More details of the DG-based strategy
can be found in [38] and [39].

III. NUMERICAL AND EXPERIMENTAL RESULTS
The proposed numerical methodology is assessed based on a
two-part analysis. The developed DGTD solver is first used
to study rectangular homogeneous and non-homogeneous
waveguides with known cut-off frequencies, at two different
TE and TMmodes. The computed numerical results are com-
pared with closed-form analytical solutions. This approach is
then used to study the behavior of MSTLs, which meets the
stringent requirements for high-quality guided-wave signal
propagation. The proposed MSTL is implemented and char-
acterized for an experimental verification.

A. WAVEGUIDE
The rectangular waveguide illustrated in Fig. 2 is first stud-
ied. It is assumed that it is homogeneous with perfectly elec-
tric conducting (PEC) walls (cf. eqn (2)). A basic sinusoidal
plane wave is often used as a source. Although plane wave
source can be practical in some situations, it is not worth
running a complete time-domain simulation to only get a
system response for a single frequency. Frequency-domain
methods are usually better suited in these situations. In order
to obtain a wider frequency spectrum with good control over
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FIGURE 3. Wideband Gaussian function representation in the time
domain and in the frequency domain.

theGaussian function, modulation using a sinusoidal function
is considered,

Hz(x, t) = H0 sin(ωt) exp(−(t − t0)2/2σ 2)

where the duration σ , centered at t0, is chosen with a
frequency range of 0 –10 GHz, ω = π (fmax + fmin) =
10π × 109, and t0 = 2 × σ = 0.2 × 10−9. The boundary
conditions at the input (for z = 0mm) and the output (for
z = 150mm) of the waveguide are therefore given by

H(x, t) =
(
0, 0,Hz(x, t)

)
Fourier transforms of the time response is used to compute the
frequency response of rectangular waveguides. The Gaussian
function and its Fourier transforms are illustrated in Fig. 3.
A Gauss pulse is applied at a corner of the geometry, and
the components of the electrical and magnetic fields are
computed at the center of the waveguide. Numerical and
analytical time and frequency responses of the TE mode
for three components of the electromagnetic field (Hz, Ex ,
and Ey) are given and illustrated in Fig. 4. Numerical and
analytical values of the TMmode for three components of the
electromagnetic field (Ez,Hx andHy) are given and illustrated
in Fig. 5. Each peak shown in the 0 –10 GHz range of the
frequency response represents the mode cutoff frequency. All
quantities of Figs 4 and 5 are normalized. The computed
results agree with analytical solutions. As expected, the mesh
grid size and the time-step size influence the accuracy of the
computed approximations. In our case, the mesh grid size
used is h = 2 mm, for a total of 0 tetrahedra, and the time-step
size is1t = 5 ps, which result in a relative nodal error of less
than 1%.

The second verification problem consists of a rectangular
waveguide with dimensions 8× 4× 32 cm, which is excited
for the lowestmode TE10 at a frequency of f = 3 GHz. In this

case, the TE10 electromagnetic field is such that

Hz(x, t) = cos
(πx
8

)
cos (2π ft)

Two cases are considered. The first waveguide is filled with
air (εr = 1 and µr = 1). The relative permittivity of the
second waveguide varies linearly from 1 to 5 over the length
of the waveguide, i.e. εr (x) = 1

8 z + 1. The computational
domain �h is discretized into 40, 000 tetrahedral elements,
and the time-step size used is 1t = 10−3. The reference
quantities for the normalization are: H0 = 1, E0 = 120π ,
`0 = 0.1, f0 = t−10 = 3 GHz, and 51 = 52 = 1. Fig. 6
shows the three different components of electromagnetic field
(Hx ,Hz,Ey) for air field waveguides and non-homogeneous
waveguides. The phase constant can be calculated from the
magnitude of Hx components.

All the values in figures are normalized amount. As a
source, the basic sinusoidal plane wave is chosen. Dielectric
filled metallic waveguide has the same property as the air-
filled one with the only exception that the cut-off frequency
for the TE modes is varies in different part of waveguide due
to change od dielectric properties.

The phase constant calculations are done in nine different
slices where the magnetic field has their maximum values
which are presented in Fig. 7a. The electromagnetic field
component (Hx andEy) along z-axis are shown in Figs. 7a, 7b.
The results in Fig. 7 are in good agreement with the analyt-
ical solutions for TE10 mode for different values of relative
dielectric permittivities.

B. MSTL
In this section, the numerical results of MSTL are shown
to experimentally verify the capability of the proposed
DGTD methods. To show the accuracy of the method, the
cross-sectional electromagnetic (EM) fields in MSTL are
examined, and its propagation constant is calculated and then
compared with the measured and HFSS simulated results.
Fig. 8 shows the structure of the proposed MSTL. The
geometry dimensions and dielectric substrate properties are
presented in Table 1. It consists of a homogeneous dielectric
substrate of thickness h and width d with εr . The top and
bottom planes are metals with the thickness of t and two
parallel slots of size s on the top. The metal strip at the center
of MSTL has the width of w. The dimensions are chosen in
such a way that MSTL supports a dominant quasi-TEMmode
of microstrip at lower frequency range covering DC. At the
cut-off frequency, a mode conversion from the propagating
quasi-TEM mode to a quasi-TE10 mode takes place. In fact,
it behaves similarly to the microstrip line cases over the
low frequency region and the same way as a rectangular
waveguide over the higher frequency region. For experimen-
tal verification, a standard printed circuit board (PCB) pro-
cess technology was adopted to implement the MSTL. The
MSTL prototype is fabricated on RT/duroid 6010LM lami-
nate from Rogers Corporation. Measurements are carried out
from 10MHz-to-110GHz using a vector network analyzer.
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FIGURE 4. Time and frequency responses of homogeneous waveguide for TE mode.

FIGURE 5. Time and frequency responses of homogeneous waveguide for TM mode.

More details about the fabricated MSTL can be find in [14]
and [42]

For numerical verification, the solution domain is dis-
cretized into 229, 282 tetrahedral elements. The problem
geometry is decomposed into eight subdomains and Mes-
sage Passing Interface (MPI) and domain decomposition
techniques are applied to make the simulation distribute on

various processors of a parallel computer [43]. The Whitney
basis function or edge elements are used as basis functions
because of stability and consistency properties specially for
eliminating spurious solutions at the interface of two layers
in MSTL systems. In oreder to have a good compromise
between accuracy and computational cost the time step of
0.5 × 10−3 is chosen.
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FIGURE 6. Electric and magnetic field distribution for TE10 mode in (a) air
field waveguide (b) non-homogenious waveguide.

FIGURE 7. a) Dispersion curves at different surfaces of the waveguide for
different values of εr . b) Hx , and Ey along z-axis. c) The y component of
the electric field inside the non-homogeneous waveguide.

The different components of the magnetic field
(Hx ,Hy,Hz) and electric field (Ex ,Ey,Ez) at two differ-
ent frequencies of 100GHz, and 10GHz along x-axis are
depicted in Figs. 10, and 11. As expected, all the components
of electric and magnetic fields have a noticeable change in
their distribution shape and magnitude in various time steps
specially around slots. A sketch of the electric and magnetic
field lines for the dominant quasi-TE10 waveguide mode of

FIGURE 8. Cross section view of MSTL.

TABLE 1. Geometrical and dielectric substrate parameters.

FIGURE 9. Measurements set-up and fabricated prototype.

MSTL at 100GHz are shown in Fig. 12. It can be observed
that MSTL should have the guided wave performance similar
to that of a dielectric-filled RWG when frequency is higher
than cut of frequency.

Phase and attenuation constant curves calculated using dif-
ferent method are plotted in Figs. 13a, 13b. As it shows, excel-
lent agreement between numerical, HFSS, and experimental
results is observed. It is confirmed that the low–dispersion
and low–loss behavior of MSTL makes it an outstanding
integrated waveguide in support of high-performance super-
broadband signal transmission and/or ultra-fast pulse prop-
agation in a fully-integrated platform. In order to evaluate
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FIGURE 10. Normalized electromagnetic field distributions of MSTL along x-axis at various times and f = 100 GHz.

FIGURE 11. Normalized electromagnetic field distributions of MSTL along x-axis at various times and f = 10 GHz.

FIGURE 12. Electromagnetic field distribution in the cross section of MSTL
at 100 GHz. The arrows of the electric and magnetic fields are sketched.

the effect of the basis functions, linear and quadratic nodal
polynomial orders (P1, P2), and Whitney basis functions are

TABLE 2. Degree of freedoms (DoFs), CPU time and the memory
requirements for various basis functions.

implied in the developed code. The computational require-
ments of the simulator for one period of time are demon-
strated in TABLE 2. The Euclidean norm of the error between
experimental and numerical results for phase constant at t̃ =
0.125 are plotted in Fig. 13c. This error is measured for linear
and quadratic Lagrange type nodal elements and Whitney
edge elements. The error values are depicted as a function
of maximum edge length (h). The results show that the

125250 VOLUME 10, 2022



H. Arab et al.: Full-Wave DGTD Finite Element Method for Electromagnetic Field Mode Analysis

FIGURE 13. a) Comparison between DGTD, HFSS, and measurement
results for normalized phase constants of the proposed MSTL.
b) Comparison between DGTD, HFSS, and measurement results for
Attenuation constant (α) of the proposed MSTL. c) The discrete L2-error
for phase constant obtained using DGTD with central fluxes, for different
degrees of basis functions.

dispersion error reduce notably by decreasing the mesh size
(h) for second order nodal andWhitney basis functions. How-
ever, using Whitney edge element requires a large number of
DoFs which resulting increase in computation cost (memory
and time). To compensate this issue, the geometry is divided
in not very fine mesh and Whitney basis function is applied.
The presented method has no limitation for applications, and
the processing time is all depend to the processor we used.
For presented problem, we use 4 GHz Intel Core i7, memory:
32 GB 1867 MHz DDR3. For more complicated problem we
need more power full processor and more memorry.

This paper, for the first time, analyze the full-wave time-
domain Maxwell’s equations in a 3D structure for model-
ing electromagnetic field propagation in three layers MSTL
system. The electromagnetic field components at the inter-
face between layers are computed accurately. Several authors
have studied the DGTD method for Maxwell’s equations,
and their results prove that the DGTD exhibits better consis-
tency, stability and convergence properties when compared
to the standard FEM. These advantages are because of the
element-based computation nature of DGTD and having a
local elements strategy [44], [45]. In this section, it is proven
that the acceptable results can be obtained (in comparison
to measurement results) with a relatively larger time step

and mesh size (h = 0.01, and 1t = 0.5 × 10−3) which
demonstrate the high stability of DGTD in compared to FEM.
Using MPI parallel computer library reduces the numerical
computational time significantly.

IV. CONCLUSION
In this paper, a 3D time domain DGTD has been introduced to
analyze the electromagnetic field propagation problem. As a
first example, the electromagnetic field inside homogeneous
and non-homogeneous waveguides are approximated and the
resonant frequencies are estimated. The developed code has
capability to give us all required information in a single
run for different polychromatic sources. The accuracy and
efficiency of present algorithms are assessed in comparison
with the analytical and measurement results. In the second
verification problem, the developed simulator is used for
the first time to study the behavior of MSTL. The phase
constants and attenuation are measured for specific MSTL
geometry and compared with measurement and HFSS soft-
ware results. The DGTD method can analyze accurately the
losses in matrials and caused by leakage and radiation in
the interface between different layers in multiplayer trans-
mission lines. The DGTD is an implicit variant of FEM
that equations are discretized using an element-by-element
strateg. This property of DGTD leads to better convergence
rates and lower computational cost specially for complex
multilayered geometries. In addition, the proposed method
can be used in various frequency ranges, complex geometries,
non-homogeneous materials, different excitation modes, etc.
MPI paralle computers technique makes the proposed imple-
mentation of the DGTD solver significantly faster. The com-
bination of the DGTD method, Whitney basis function, and
applying MPI techniques are the components of the proposed
numerical methodology that makes the developed solver
faster and more stable than commercial codes. The developed
code was validated based on both theoretical and measure-
ment results.
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