
Received 7 October 2022, accepted 6 November 2022, date of publication 14 November 2022, date of current version 21 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222312

TTP-Aided Secure Computation Using (k, n)
Threshold Secret Sharing With
a Single Computing Server
KEIICHI IWAMURA1, (Member, IEEE),
AND AHMAD AKMAL AMINUDDIN MOHD KAMAL 2, (Member, IEEE)
1Department of Electrical Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
2Department of Information and Computer Technology, Tokyo University of Science, Tokyo 125-8585, Japan

Corresponding author: Ahmad Akmal Aminuddin Mohd Kamal (ahmad.amin@rs.tus.ac.jp)

ABSTRACT Secure computation can be divided into those using homomorphic encryption and secret
sharing. The advantage of the former method is that the computation can be performed on a single
computing server and the computation process can be made public if the encryption key used is securely
managed. However, the latter is computationally light and capable of high-speed processing, but it requires
multiple independently managed computing servers, and processes of k or more servers cannot be disclosed.
When considering a business model for implementing secure computation that uses secret sharing, private
information can be leaked if computing servers are managed by the same organization. Therefore, we need a
complex business model in which multiple companies without conflicts of interest manage each computing
server independently and make a profit. However, this approach is difficult to implement in practice.
In this study, we proposed a secure computation using secret sharing. Moreover, by effectively using TTP,
we demonstrated that it is possible to realize secure computation with a single computing server. In addition,
we demonstrated that, if the security keys used are securely managed, the entire computational process can
be made public. In other words, we realize a method that addresses all the drawbacks of the aforementioned
methods, and it is possible to realize faster and more secure computations than conventional methods using
secret sharing.

INDEX TERMS Secure computation, secret sharing, multiparty computation, trusted third party, fast
processing.

I. INTRODUCTION
Society 5.0 achieves a high degree of convergence between
cyberspace (virtual space) and physical space (real space).
In Society 5.0, a large amount of data collected by countless
Internet of things (IoT) devices in physical space is auto-
matically sent to the clouds in cyberspace to be analyzed
and fed back into the physical space as new quality data
to solve various problems. However, because individuals’
personal and confidential information is often included in
the collected data, there are several issues in realizing both
privacy protection and data utilization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Mehmood .

Therefore, several studies have been conducted on the
concept of secure computation, which can perform various
computations while keeping the inputs private. Secure com-
putation methods can be divided into those using homomor-
phic encryption [1], [2], [3], [4], [5], [6], [7], [8] and secret
sharing [9], [10], [11], [12], [13], [14], [15].

Secure computation using homomorphic encryption can be
performed on a single computing server. If the encryption
keys used are securely managed, the entire computation pro-
cess can bemade public, making the practical implementation
of this method extremely easy and simple. However, this
method incurs extremely high computational costs.

However, secure computation using secret sharing is com-
putationally light and can be processed at high speeds.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120503

https://orcid.org/0000-0002-7941-3021
https://orcid.org/0000-0003-3941-4617

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

However, it requires multiple computing servers (generally,
the number of computing servers n required must be at least
three). Moreover, the computational processes for k or more
servers cannot be disclosed.

When considering a business that offers secure computa-
tion using secret sharing as a service, confidential informa-
tion distributed by secret sharing is leaked if the computing
servers are managed by the same organization. Therefore,
a business model is required in which multiple companies
without conflicts of interest manage each computing server
independently and still profit from it, which is difficult to
implement practically.

In addition, there are no known secure computation meth-
ods using secret sharing that achieve information-theoretic
security for n < 2k − 1 when performing multiplication,
and communication between computing servers is required
for each multiplication performed. Because communication
often requires more time than the actual secure computation
itself, a high-speed communication network between all com-
puting servers is necessary to perform high-speed processing
(including multiplication) in secure computation.

Damgård et al. proposed an SPDZ method that combines
somewhat homomorphic encryption (SHE) with secure com-
putation based on secret sharing to realize computational
security against a dishonest majority when k ≤ n < 2k − 1
[6], [7], [8]. The SPDZ method realizes secure computations
with n = k servers. However, the minimum number of
servers required is n = k = 2, which involves communi-
cation between two independent servers for each multiplica-
tion performed. Moreover, this method performs multiplica-
tion using a multiplication triple constructed using the SHE,
which significantly increases the overall process cost and
time [16].

Meanwhile, our research group at Tokyo University
of Science (TUS) proposed multiple variations of the
secure computation method (called TUS methods) that is
information-theoretic secure against semi-honest adversaries
when n ≥ k instead of n ≥ 2k − 1, by assuming a
trusted third party (TTP) [17], [18], [19], [20], [21]. The
characteristic of TUS methods is that the encryption of the
secret input is realized by multiplying the secret input with
a random number, and consecutive secure computations are
performed using secret sharing. Therefore, the overall com-
putational cost is significantly lower than that of the SPDZ
method that implements the SHE. However, the greatest dis-
advantage of TUS methods is that they require three con-
ditions to realize secure computations (described later in
Section II).

However, other research on secure computation using
secret sharing used TTP or reliable servers [22], [23],
[24]. However, the TTP implemented in these methods
is used as a supporting entity to reduce the amount of
computation and to reinforce security and is not used
to eliminate communication from the secure computa-
tion process or reduce the number of computing servers
required.

Our Contributions:
This paper leverages the TTP and proposes a secure com-

putation method using (k, n) threshold secret sharing. The
preliminary version of this appears in the poster presentation
in [25]. (k, n) threshold secret sharing is a method where a
secret input s is converted into n different values (known as
shares) and sent among n computing servers [26]. However,
the proposed method differentiates the parameters used for
shares and computing servers and proposes a secure compu-
tation that can be executed even when N < k , where n is the
number of shares and N is the number of computing servers.
The contributions of this study are as follows:

1) We demonstrate that (k, n) threshold secret sharing and
secure computation based on it can be realized with a
minimum of only one computing server. Therefore, our
proposedmethod can be hosted by a single organization
instead of multiple (generally, three or more) indepen-
dent organizations, as in most conventional methods.

2) We show that, if the security keys (random num-
bers) used are managed securely, the entire compu-
tational process can be made public, eliminating the
need for independent server management. This is typi-
cally possible in secure computations using homomor-
phic encryption. However, in our proposed method,
we also realize the advantage of homomorphic encryp-
tionwithout the significant computational cost incurred
by homomorphic encryption.

3) We demonstrate that secure computation using (k, n)
threshold secret sharing is possible without commu-
nication. When secure computations are performed
within a single computing server, no communication is
required between multiple servers. However, commu-
nication is still required between the TTP and single
computing servers. Therefore, we also discuss replac-
ing the role of TTP with a trusted execution environ-
ment (TEE) commonly found in the recent generation
of computer processing units (CPU). Replacing the
TTP with a TEE in the CPU removes the required
communication and enables high-speed computation.

4) Finally, we show that it is possible to build an effective
business model for secure computation using (k, n)
threshold secret sharing.

II. RELATED WORKS
This section explains the basic methodology required to real-
ize secure computation using (k, n) threshold secret sharing
and describes conventional methods of secure computation
based on secret sharing.

A. (k, n) THRESHOLD SECRET SHARING
Secret sharing is a method to convert a secret input s into n
different values (known as shares) and distribute them to n
different computing servers. A secret sharing that satisfies
both conditions stated below is known as (k, n) threshold
secret sharing. However, n ≥ k > 1.

120504 VOLUME 10, 2022

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

1) Any k−1, or fewer shares will reveal nothing about the
secret input s.

2) Any k or more shares will allow for the reconstruction
of the secret input s.

Therefore, if the computing servers that store the shares
are managed by the same organization, k (or more) shares
are collected, and the secret input is leaked.

Examples of (k, n) threshold secret sharing include meth-
ods that use polynomials for the distribution of secret input
proposed by Shamir [26] (hereinafter called Shamir’s (k, n)
method), a method that involves the XOR operation proposed
by Kurihara et al. [27] (hereinafter called the XOR method),
and additive secret sharing. Unless otherwise stated, Shamir’s
(k, n) method is used, and the prime number used is p. In addi-
tion, the share of the secret input s held by each server Si
(i = 0, . . . , k − 1) is denoted by [s]i.

B. SPDZ METHOD BY DAMGÅRD ET AL
Damgård et al. proposed a secure computationmethod known
as SPDZ (pronounced ‘‘speedz’’) method that enables secure
multiparty computation even against a dishonest majority in
the setting of n = k [6], [7], [8]. In the SPDZ method, the
secret input belongs to one of the n players, and even if all
players (n − 1) other than the owner collude, provided that
the owner keeps their share of the secret secure, the secret
input of the owner will not be leaked.

The SPDZmethod consists of pre-processing and an online
phase. It ensures the confidentiality of secret inputs using
additive secret sharing. Addition can easily be achieved using
the SPDZ method. However, multiplication in the SPDZ
method is based on Beaver circuit randomization [28] (or
Beaver multiplication). To perform multiplication, shares of
random numbers [a], [b], [c], called a multiplicative triple
that satisfies ab = c are used.

In the SPDZmethod, for example, the process in which the
secret input x is reconstructed from its shares [x], is denoted
as x = open([x]); however, because this process is performed
twice for each multiplication, two communications will be
required for each multiplication.

The protocol for multiplying xy proposed in the SPDZ
method is described below. However, constructing a mul-
tiplication triple requires SHE, which entails a prohibitive
computation cost and thus significantly increases the overall
process time. Moreover, the overall security achieved using
the SPDZ method is related to computational security.
Pre-processing

1) Generates multiplication triple [a], [b], [c].
Distribution

1) Compute shares [x] and [y] for secret inputs x and y
using additive secret sharing.

Secure computation
1) Each server reconstructs d = open([x] − [a]) and e =

open([y]− [b]), and computes the following:

[xy] = de+ e[a]+ d[b]+ [c]

C. TTP-AIDED SECURE COMPUTATION
Although there are few studies on secure computation using
secret sharing that assumes a TTP, there are a few exam-
ples [22], [23], [24] as described below.

When analyzing images acquired by mobile sensors with
a convolutional neural network (CNN), to reduce the com-
munication delay from the mobile sensor to the CNN, two
edge servers are placed on the mobile sensor side, and CNN
feature extraction is jointly performed using secret sharing.
This study used a TTP to compute the multiplication triple
required in the SPDZ method and sent it to the two edge
servers [23]. Therefore, this method reduces the computa-
tions by computing the multiplication triple of the SPDZ
method with TTP instead of SHE. However, similar to the
SPDZ method, this method still requires communication
between edge servers for eachmultiplication and independent
management of the two edge servers.

There are also methods that assume two independent TTPs
and maintain security even if the information in one TTP
is leaked. However, because the two TTPs are independent,
the amount of communication between the servers and TTPs
is excessive; therefore, we must improve communication
efficiency.

There are also examples where a server originally in the
system momentarily takes on a trusted server role (known
as partial TTP). For example, partial TTP is a server that
assumes no collusion with input users who participate in
secure computation and improves the security of secure
computation [22].

In contrast, the following TUS methods and our proposed
method include the collusion of computing servers and play-
ers as one of the possible attacks to be considered during
the security evaluation. In addition, we do not require any
assumptions, such as the role of partial TTP.

D. TUS METHODS
TUS methods were used to represent the secure computation
methods proposed by the research group at the Tokyo Univer-
sity of Science (TUS).

The first variation of the TUS method was proposed
by Shingu et al. [17] to perform a two-inputs-one-output
secure computation (called the TUS 1 method), in which
the secret input of a client is first encrypted with a ran-
dom number. When performing secure multiplication, the
encrypted secret is momentarily restored as a scalar value,
and multiplication is performed using the scalar value ×
polynomial approach to prevent an increase in the polynomial
degree.

However, the TUS 1 method introduces another problem:
when computation involving a combination of operations,
such as ab+ c, is performed, if the adversary has information
about one of the inputs and the output, they can specify the
value of the remaining two inputs. Therefore, a condition
in which computation involving a combination of addition
and multiplication is not performed is needed, in addition
to the existing condition, in which the input of the secure

VOLUME 10, 2022 120505

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

computation does not include the value 0. Therefore,
the TUS 1 method can enable highly effective specific
computation, such as the computation of Rivest–Shamir–
Adleman (RSA) encryption. However, they cannot handle
computations that require a combination of addition and
multiplication.

To solve this problem, Kamal et al. [18] introduced an
improved TUS 2method, in which the computation involving
a combination of addition and multiplication can also be
performed securely. This method has been proven secure
under the following three conditions:
(1) The values of the inputs and outputs of the computation

do not include 0.
(2) Random numbers restored by each server are fixed.
(3) Each server holds a share [ε] of a random num-

ber ε and shares [ε0], . . . , [εk−1] of k random num-
bers ε0, . . . , εk−1 unknown to the adversary. Here,
ε =

∏k−1
i=0 εi.

In addition, this method is secure against computations that
involve a combination of product-sum operations. Therefore,
this method can realize any arithmetic computation under the
setting k ≤ n < 2k−1. However, the TUS 2 method incurs a
significantly higher computational cost than the conventional
method for n ≥ 2k − 1; therefore, it is not the most efficient
method.

Therefore, Tokita et al. [19] proposed an improved ver-
sion known as the TUS 3 method, which incorporates the
XOR method to achieve more efficient secure computa-
tion and eases one of the conditions, wherein the limit
on the inputs of secure computation is removed; however,
the three conditions remain. Moreover, because the TUS 3
method included communication in secure computation, the
improvement in processing speed was limited to a certain
extent.

Subsequently, Iwamura et al. [20] proposed the TUS 4
method, which divides the computation into pre-processing
and secure computation and concentrates the processes that
require communication in the pre-processing phase. More-
over, the communication required in the TUS 4 method is
independent of the number of multiplications performed. The
TUS 4 method performs the following extended product-
sum operation: In addition, the TUS 4 method solves
conditions (1) and (2), leaving only condition (3).

l∑
i=1

(
a1,ia2,i · · · ami,i

)
In addition, Ochiai et al. [21] proposed the TUS 5 method,

which is secure against malicious adversaries.

III. PROPOSED METHOD
This section describes our proposed method that can realize
secure computation with a single computing server using
(k, n) threshold secret sharing and is secure against a semi-
honest adversary. Contribution (1) can be realized using the
following algorithm:

A. PROPOSED PROTOCOLS
As with the TUS 4 method [20], our proposed method also
supports the following extended product-sum operation:

l∑
i=1

(
a1,ia2,i · · · ami,i

)
However, for simplicity, the protocol described below

assumes mi = l = 2 to compute the following operation.
However, for ease of understanding, let a1,1 = a1, a2,1 = a2,
a1,2 = a3, a2,2 = a4.

a1,1a2,1 + a1,2a2,2 = a1a2 + a3a4

In the following algorithm, inputs a1, a2, a3, a4 and the
output (computation result a) are chosen from modulo p and
are numbers less than or equal to p− 2 in modulo p. In addi-
tion, random numbers throughout the proposed method were
selected from uniformly distributed random numbers, and
zero was not used. All values used in the protocol are in
GF(p), and all operations, including secret sharing, are per-
formedwithin modulo p. We assume that p to be a sufficiently
large prime number to improve security (described later in
Section III.B).

We also assume that the communication between the play-
ers, computing server, and TTP is secure. For simplicity,
in the following, the number of computing servers is assumed
to be N = 1 (referred to as server S), and shares n and
threshold k are assumed to be n = k > 2. However,
to consider when n > k , the parameters n and k are used
separately below. Additionally, when n = k , additive secret
sharing can be used.

Therefore, in the protocols described below, we consider a
system model with one TTP, one computing server S, and g
players Ui (i = 1, . . . , g) (hereinafter g = 4) that provides
secret inputs a1 (Player U1), a2 (Player U2), a3 (Player U3),
a4 (Player U4), and one player who restores the computation
result a = a1a2 + a3a4.
Protocol 1.1: Processes by TTP
1) TTP generates n − 1 random numbers τj (j = 1, . . . ,

n− 1). Here, τ0 = 1.
2) TTP generates random numbers d, bi (i = 1, . . . , g)

and computes the following auxiliary random numbers:

d
b1b2

,
d
b1
,
d
b2
,

d
b3b4

,
d
b3
,
d
b4

3) TTP distributes d and the computed auxiliary random
numbers using Shamir’s (k, n) method and computes
the following shares:

τj

[
d

b1b2

]
j
= τj ×

[
d

b1b2

]
j
,

τj

[
d
b1

]
j
= τj ×

[
d
b1

]
j
,

τj

[
d
b2

]
j
= τj ×

[
d
b2

]
j
,

120506 VOLUME 10, 2022

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

τj

[
d

b3b4

]
j
= τj ×

[
d

b3b4

]
j
,

τj

[
d
b3

]
j
= τj ×

[
d
b3

]
j
,

τj

[
d
b4

]
j
= τj ×

[
d
b4

]
j
,

τj [d]j = τj × [d]j

4) TTP sends bi to Player Ui (i = 1, . . . , g), random
number d used for the last computation to the player
who reconstructs the computation result, and shares of
auxiliary random numbers above to server S.

Protocol 1.2: Encryption of secret inputs
1) Each player Ui computes the following for their secret

input ai and sends it to S:

bi (ai + 1) = bi × (ai + 1)

Protocol 1.3: Secure computation
1) Server S computes the following for j = 0, . . . , n− 1.

τjd [(a1a2 + a3a4)+ 1]j

=

{
b1(a1+1)× b2(a2 + 1)×τj

[
d

b1b2

]
j
−b1(a1+1)

× τj

[
d
b1

]
j
− b2(a2 + 1)× τj

[
d
b2

]
j
+ 3× τj [d]j

}
+

{
b3(a3 + 1)× b4(a4 + 1)× τj

[
d

b3b4

]
j

− b3(a3 + 1)× τj

[
d
b3

]
j
− b4(a4 + 1)× τj

[
d
b4

]
j

}
2) TTP distributes 0 using Shamir’s (k, n) method and

computes the following:

d[0]j = d × [0]j (j = 0, . . . , n− 1)

3) TTP obtains τmd[a + 1]m from server S, divides it
by τm, and computes d[a + 1]m + d[0]m. However,
m = 1, . . . , k − 1 and a = a1a2 + a3a4.

4) For computation with repetition, TTP sends the follow-
ing to server S:

d[a+ 1]m + d[0]m, d[0]0

5) Server S adds d[0]0 to d[a+ 1]0, reconstructs d(a+ 1)
as new input, and performs consecutive computations
using the new input.

Protocol 1.4: Reconstruction process
1) In the last computation, server S and TTP send the

following to the player:

d[a+ 1]0, d[a+ 1]m + d[0]m, d[0]0

2) The player adds d[0]0 to d[a + 1]0, reconstructs
d(a+ 1), divides it by d , and subtracts it by 1 to obtain
the computation result (a1a2 + a3a4).

B. SECURITY OF THE PROPOSED METHOD
For g-input-1-output secure computation, regardless of the
secure computationmethod used, if g−1 input and one output
are known, the remaining input will be leaked. Moreover,
if g inputs are known, the output will be leaked.
Therefore, we assume only the following semi-honest

adversaries. Alternatively, we assume all conceivable and
effective collusion in our proposedmethod, unlike themethod
described in Section II.C, where assumptions, such as the
existence of a partial TTP, are made to avoid certain col-
lusions, such as the collusion between the players and the
computing servers.

If adversaries 1 and 2 are not given the information that
each attacker requires, the proposed method is a secure com-
putation that achieves a high level of security against all
possible semi-honest adversaries. However, to simplify the
evaluation, we first considered Adversary 0.
Adversary 0:The adversary knows the information of com-

puting server S and attempts to learn the inputs and/or outputs
of the computation.
Adversary 1: A player who knows g − 1 inputs become

an attacker. Adversary 1 knows g − 1 secret inputs and the
random numbers used to encrypt them. Furthermore, Adver-
sary 1 knows the information from server S, and based on
this, they attempt to learn the remaining secret input and/or
the computation result.
Adversary 2: A player who knows g− 2 inputs and output

becomes an attacker. Adversary 2 knows g−2 inputs, random
numbers used to encrypt them, and information required to
reconstruct the computation result. Furthermore, Adversary 2
knows the information from server S, and based on this, they
attempt to learn the remaining two secret inputs individually.

1) SECURITY AGAINST ADVERSARY 0
The adversary knows the shares of the auxiliary random
numbers computed in Protocol 1.1 (processes by TTP). Addi-
tionally, Adversary 0 learns bi(ai + 1) from Protocol 1.2
(encryption of secret inputs). Moreover, from the computa-
tion result in Protocol 1.3 (secure computation), Adversary 0
learns τjd[a + 1]j. If the computation is repeated (i.e., the
computation result is used for the consecutive computation),
Adversary 0 also learns d[a+1]j+d[0]j and inputs d(a+1) for
the consecutive computation. However, let j = 0, . . . , k − 1,
and i = 1, . . . , 4.
If the overlapping information in the information shown

above is removed and organized, Adversary 0 knows infor-
mation A:

A =
{
τj

[
d

b1b2

]
j
, τj

[
d
b1

]
j
, τj

[
d
b2

]
j
, τj

[
d

b3b4

]
j
,

τj

[
d
b3

]
j
, τj

[
d
b4

]
j
, τj [d]j , bi (ai + 1) , τjd [a+ 1]j ,

d [a+ 1]j + d [0]j , d [0]0 , d (a+ 1)
}

VOLUME 10, 2022 120507

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

Regarding the information presented in A, the following
attack can be considered (attack A): For simplicity, we let
n = 3.

1) The attacker assumes random τ1 and τ2 and recon-
structs the auxiliary random numbers computed in pro-
tocol 1.1 (processes by TTP).

2) The attacker computes the following from the recon-
structed auxiliary random numbers: However, ()′′

shows a reconstructed value in which the correctness
of the value has not been verified, indicating that the
value may or may not be the correct value as originally
computed by the TTP:(

d
b1b2

)′′
(d)′′ =

(
d
b1

)′′ (d
b2

)′′
3) The attacker verifies whether the above equation holds,

and if not, it changes τj and returns to Step (1). If the
above holds, τj is included as one of the candidates;
then, τj is changed to different values and returns to
step (1).

Here, if the prime p used is sufficiently large (for example,
a 128-bit prime number), attack A requires extensive compu-
tations to be realized.

However, if the attacker has infinite computational power,
the candidates for τj can be narrowed. If the correct τj is
computed, d is known; if d is used with d/b1, b1 is known
and a1 is leaked. The same applies to inputs other than a1.
Regarding the computation result, if τj, d are known,

τjd[a+ 1]j can be solved to learn a.
When describing the protocol for our proposed method

in Section III.A, mi = l = 2 is used for simplicity. How-
ever, values that do not leak for any other mi, l are not
included in A; therefore, the same security is achieved even
for any mi, l.
Therefore, the proposed method does not realize

information-theoretic security against Adversary 0; instead,
it realizes computational security corresponding to the size of
the prime p.

2) SECURITY AGAINST ADVERSARY 1
Consider the situation wherein Adversary 1 knows the values
related to all inputs other than input a1. Here, the differ-
ence from Adversary 0 is that, in addition to the informa-
tion obtained by Adversary 0, Adversary 1 also knows all
the inputs (other than a1) and the random number used to
encrypt them in Protocol 1.2 (encryption of secret inputs).
Therefore, Adversary 1 knows information B. However, let
j = 0, . . . , k − 1 and i = 2, . . . , 4.

B =
{
τj

[
d

b1b2

]
j
, τj

[
d
b1

]
j
, τj

[
d
b2

]
j
, τj

[
d

b3b4

]
j
,

τj

[
d
b3

]
j
, τj

[
d
b4

]
j
, τj [d]j , b1 (a1 + 1) , ai, bi,

τjd [a+ 1]j , d [a+ 1]j + d [0]j , d [0]0 , d (a+ 1)
}

The same attack as that in A is possible regarding the infor-
mation shown in B. However, because Adversary 1 knows
values related to all inputs other than input a1, in step (2) of
attack A, for example, the following is computed:

b2

(
d
b2

)′′
= (d)′′

Although this is less computationally complex than
attack A, it still requires a significant computational cost
corresponding to the size of p. If τ1, τ2 can be narrowed down
(or computed) from the computation above, a1 will be known,
as in attack A, and the computation result will also be leaked.

This remains true even if the input a1 unknown to Adver-
sary 1 is changed to another input.

In Section III.A, mi = l = 2 was used for simplicity.
However, values that do not leak for anymi, l are not included
in B, and therefore the same security level is achieved.

Therefore, the proposed method does not realize
information-theoretic security against Adversary 1; instead,
it realizes computational security, which corresponds to the
size of prime p.

3) SECURITY AGAINST ADVERSARY 2
Consider the situation wherein Adversary 2 knows all inputs
other than a1 and a2, and information collected during the
reconstruction of the computation result. The difference from
Adversary 0 is that, in addition to the information of Adver-
sary 0, Adversary 2 also knows all the inputs (other than
a1, a2) and random numbers related to them in Protocol 1.2
(encryption of secret inputs). Moreover, Adversary 2 knows
the value of d and the computation result a = a1a2+ a3a4 in
Protocol 1.4 (reconstruction process). Therefore, Adversary
2 knows information C . However, let i = 3, 4.

C =
{
τj

[
d

b1b2

]
j
, τj

[
d
b1

]
j
, τj

[
d
b2

]
j
, τj

[
d

b3b4

]
j
, τj [d]j ,

τj

[
d
b3

]
j
, τj

[
d
b4

]
j
, b1 (a1 + 1) , b2 (a2 + 1) , ai, bi,

τjd [a+1]j , d [a+1]j+d [0]j , d [0]0 , d (a+1) , d, a
}

Adversary 2 knows the information on d used in the
previous computation. Therefore, if the computation is not
repeated, the adversary can attempt to restore d from τj[d]j
in step (2) of attack A and narrow down τj if they match. The
computation shown in the previous section (security against
Adversary 1) for step (2) of attack A is effective when the
computation is repeated. However, both are computationally
intensive (depending on the size of p).

By contrast, Adversary 2 knows d[a + 1]j + d[0]j,
τjd[a+1]j when reconstructing the computation result. How-
ever, because the share of value 0 is added to d[a + 1]j,
the values of τj cannot be determined simply by the ratio of
the above shares. In addition, only one share of 0 is given
to the player who reconstructs the result (in this case, Adver-
sary 2), and because k > 2, the remaining shares of 0 cannot

120508 VOLUME 10, 2022

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

be analyzed and computed. In addition, τj does not leak from
d and resulting a. In addition, a1a2 can be determined from
a = a1a2 + a3a4, but a1 and a2 cannot be separated and
therefore are not leaked individually.

In Section III.A, mi = l = 2 was used for simplicity.
However, values that do not leak for anymi, l are not included
in C , and therefore the same security level is achieved.

Therefore, the proposed method does not realize
information-theoretic security against Adversary 2; instead,
it realizes computational security, which corresponds to the
size of prime p.

From the arguments above, if random numbers τj are
assumed to play the role of a security key, we can observe
that contribution (2) is realized.

IV. DISCUSSION AND CONSIDERATION
A. OPTIMIZATION AND GENERALIZATION
In Section III, we described our proposed method by setting
N = 1 and n = k . However, the proposed method can be
extended in several ways.

The simplest method is to set n = k = 3 to minimize
the processing performed by one server. However, a larger k
increases the number of combinations of τj and therefore also
increases the security of the proposed method. In addition,
when N > 2, if k = n = N , the computations in Protocol
1.3 (secure computation) can be performed by one server for
each j, and the process can be accelerated through parallel
computation. However, even if multiple servers are used in
parallel, there is no communication between the servers.

In addition, to simplify the explanation in our proposed
algorithm, τj in τj[εh]j is changed according to j. However,
even if up to k − 1 τj are the same, it still cannot be restored
(however, if the first k − 1 τj is set to τ0 = 1, because
k − 1 shares of value 0 must be sent to the player in protocol
1.4 (reconstruction process) and shares of 0 may be analyzed
(because the adversary knows k − 1 shares and input value
0), let τj from the first to k − 2 be 1).

Therefore, if τj up to j = 0, . . . , k − 3 is τ0 = 1, and τj for
j = k−2, k−1 are the same random number τ1, the TTP only
needs to divide the reconstruction result of j = k−2, k−1 by
τ1 during the reconstruction process. In addition, if n > k ,
if τj after that is updated every k − 1, it can be handled with
less τj for any n.
Next, we discuss security. Information-theoretic security

means that if a certain piece of information is not known,
the solution cannot be identified, even with infinite compu-
tational power. For example, in the case of (k, n) threshold
secret sharing with k = 2, even if an attacker knows one
of the shares but does not know the other remaining share,
the correct solution cannot be identified because there is a
solution for all combinations, even if the adversary assumes
all possible values for the other share, thereby realizing
information-theoretic security.

The same applies to the proposed method when only one
secret input exists. For example, if τj[ε1]j is solved with
all values in τj, information-theoretic security is achieved

because there is a solution for all of ε1. However, in con-
ventional secret sharing, when there are two secret inputs,
because there are all possible solutions for each input, there
are a total of p2 solutions when prime p is assumed. However,
when considering τj[ε1]j and τj[ε2]j in the proposed method,
there are solutions for ε1 and ε2 for all combinations of τj.

However, for example, when ε1 = ε2, p candidate solu-
tions remain in the conventional method; however, the com-
bination of τj that realizes ε1 = ε2 in the proposed method is
considerably narrowed (except for the correct answer). This is
also true when multiple εi values satisfy a specific relational
expression.

If τj[ε1]j, µj[ε2]j are used instead, the above problem is
solved. However, in the proposedmethod, the shares included
in the same equation must be encrypted by the same τj,
so possible candidates might be narrowed down.

However, the above discussion assumes that the recon-
struction is performed for all combinations of τj. Therefore,
the security of the proposedmethod is computationally secure
depending on the size of p when N = 1 or when the servers
are managed by the same organization.

However, in the proposed method, if N > 1 and multiple
servers can be managed independently in the same way as
normal secret sharing, not all shares can be gathered. There-
fore, even if attack A is performed, unknown shares cannot
be identified and restored. Here, the proposed scheme can
achieve information-theoretical security.

Thus, the proposedmethod is a secure computationmethod
that can achieve information-theoretical security by indepen-
dently managing servers when N > 1, and computational
security is guaranteed even when servers are not managed
independently or when N = 1.

B. ACCELERATING COMPUTATION USING TEE
In the proposed method, communication between the TTP
and server S occurs when the computation is repeated, or the
computation result is reconstructed.

However, a TEE is known as an alternative to realizing
TTP. A TEE is a technology that enhances security by provid-
ing an isolated execution environment in a processor (CPU).
An example of a TEEs is Intel’s Software Guard Extension
(Intel SGX) [29], [30], [31]. This extension function creates
a cryptographically protected area on the CPU and executes
a program therein. However, because Intel SGX uses public-
key cryptography in communication, its security is generally
computationally secure. However, the proposed method does
not achieve information-theoretic security when only one
computing server exists.

Therefore, for a single computing server, by setting
server S to be a server equipped with Intel SGX, and the TTP
used during the computation for repetition of computation
and/or the reconstruction of computation result to be Intel
SGX in that server, subsequent processes after protocol 1.2
(encryption of secret inputs) can be completed within a single
server, enabling extremely high-speed secure computation.
Intel SGX is available in Intel Core i7 and later and can be

VOLUME 10, 2022 120509

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

widely used. The following describes the changes/additions
made to the protocol shown in Section III when assuming
using a TEE, in this case, Intel SGX.
Additional Step in Protocol 1.1: Processes by TTP:
5) The TTP secret shares 0, calculates the following, and

sends d[0]m and τj to Intel SGX, and d[0]0 to server S.
However, let m = 1, . . . , k − 1.

d[0]j = d × [0]j (j = 0, . . . , n− 1)

Changes in Protocol 1.3: Secure computation: Step (2) is
removed, and the subsequent TTP computations are pro-
cessed using Intel SGX. However, d[0]0 in Step (4) of Pro-
tocol 1.3 (secure computation) and Step (1) of Protocol 1.4
(reconstruction phase) were not sent.

Intel SGX is known for its CrossTalk attack against
random-number generation [32]. However, with the above
changes, random number generation is performed by TTP,
and Intel SGX performs only addition; hence, there is no
problem. An attack called Cache Out [33] also exists wherein
the private key is inferred from the public key, but this can
be addressed by updating the BIOS version. Therefore, Intel
SGX can be used to realize high-speed, computationally
secure computation on a single computing server.

Hence, it is clear that contribution (3) can also be realized
by implementing the TEE.

C. TRUSTED THIRD PARTY (TTP)
Generally, a TTP is assumed to be trustworthy and reliable,
such that in the setting of multiparty (or secure) computation,
it will not collude with the adversary or attack the actual
computing server(s) to learn the secret inputs/output. How-
ever, information that TTPmight obtain should be considered
throughout the computation process.

In our proposed method, discussed in Section III, because
the TTP does not handle any secret input(s) in Protocol 1.1
(processes by TTP), the secret input will not be leaked to
the TTP. In addition, τmd[a + 1]m is known by the TTP in
Protocol 1.3 (secure computation); however, because k shares
are not gathered, the computation result is not leaked to the
TTP.

In addition, by implementing a TEE, as discussed in
Section IV.B, the TPP can delete all generated random num-
bers after transmitting all the computed information to the
TEE, thereby eliminating the need for a secure key manage-
ment model in the TTP. The TTP can execute steps (1)–(3) in
protocol 1.1 (processes by TTP) locally, encrypt using a key
shared in advance with the player, and erase all the random
numbers used or generated. These steps can be performed
before communication with the server or players is estab-
lished, thereby allowing Protocol 1.1 (processes by TTP) to
be secured independently.

Moreover, the TEE receives the security key and holds it
until step (3) of Protocol 1.3 (secure computation). However,
suppose that the program executed by server S and the TEE
are made public (but the values used in computations are kept
in their encrypted state), the TEE will not be able to perform

any cheating, such as sending the security key to an adversary,
because all processes can be monitored. Moreover, because
the security key only acts as a session key, in this case, it can
be deleted from the TEE after step (3) of Protocol 1.3 (secure
computation).

However, when a TTP is assumed, there is always a ques-
tion of ‘‘wouldn’t it be better and more efficient if all compu-
tations are performed by the TTP?’’. Indeed, if all computa-
tions are entrusted to a single trusted TTP, secure computation
is possible without problems. However, here, the TTP will
have to know all secret inputs and the computation result, and
the processing load of the TTP will increase. Furthermore,
although the TTP is assumed to be secure, in the worst case,
where the TTP is successfully attacked, all information stored
by the TTP may be exposed.

Conversely, in our proposed method, the TTP does not
know any secret inputs or computation results. Moreover,
as explained previously, by making Protocol 1.1 (processes
by TTP) independent, even if the TTP is attacked, no infor-
mation is leaked because it has deleted all random numbers
generated.

Moreover, the roles of the TTP in our proposed method
are to generate random numbers in Protocol 1.1 (processes
by TTP) and to provide computation assistance when com-
putation with repetition is needed and when reconstructing
the result; however, these processes are computationally light
and do not increase the load of the TTP.

In addition, the proposed method described in Section III
is explained using the operation of a1a2 + a3a4 as an exam-
ple. However, in Protocol 1.2 (encryption of secure inputs),
by setting a2 = a3 = 1, adding a1+a4 is possible, by setting
a4 = 0, multiplication a1a2 is possible, and by setting a2 =
a4 = 0, no actual computation will be performed.
Alternatively, TTP can be made to perform a fixed form of

processing in protocol 1.1 (processes by TTP) by selecting
an appropriate mi, l in advance. Then, by adjusting the secret
input to be either 0 or 1 in Protocol 1.2, various operations can
be performed without informing the TTP of the actual type of
operation needed during the secure computation.

D. CONSIDERATION FROM A BUSINESS PERSPECTIVE
With the introduction of new privacy and security laws, such
as the General Data Protection Regulation (GDPR) by the
European Union (EU) [34], the demand for secure compu-
tational services is increasing rapidly.

Recently, there have been businesses based on secure
computation using homomorphic encryption, such as Par-
tisia [35]. Secure computation services using secret sharing,
such as Sharemind [36], have also been realized, but the
independent management of servers is essential in realizing
secure secret sharing. However, it is difficult to imagine a
business model in which multiple companies with no conflict
of interest manage each server independently and still profit
from it.

Therefore, in most business models that use secret sharing,
an organization often manages all computing servers and

120510 VOLUME 10, 2022

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

provides a somewhat secure computation service. However,
here, even if the customer entrusts their confidential informa-
tion by secret-sharing it with the servers, it is still possible for
the confidential information to be leaked if a single organiza-
tion manages all the servers.

Moreover, even if the security is guaranteed by a bind-
ing agreement, such as signing a nondisclosure agreement
(NDA) between the organization and the customers, it would
be faster to receive the information directly than to secret
shares to multiple servers owned by that single organiza-
tion, which is more costly. In addition, even if the organi-
zation claims that the servers are managed independently
by its subsidiaries or affiliated companies, they can still be
accessed by the same parent company. In contrast, a sin-
gle organization can manage the server in the proposed
method.

In cryptography, a public key infrastructure (PKI) is an
arrangement that binds public keys in public key encryption
with the respective identities of entities, such as people or
devices. The binding is commonly established through the
registration and issuance of certificates by an independent,
trusted party called the certificate authority (CA) [37].

Alternatively, in the security industry, a trusted third party
called CA is used in the PKI to store, sign, and issue cer-
tificates validating a public key. This indicates that TTP is
also considered viable as a business. When implementing
this business model in our proposed method, the TTP is not
involved in the actual secure computation; instead, it can
profit simply by generating random numbers for users who
want to participate in the secure computation.

In addition, our method is computationally light because
it performs secure computations based on secret sharing and
does not require communication when combined with a TEE.
In addition, it is safe to publicize the entire computation pro-
cess. Therefore, it is possible to execute relatively high-speed
secure computation even without a high-performance server
or high-speed communication network like other methods,
and it can be implemented in any computing environment.
Alternatively, the user can perform secure computation on
their locally available PC or server or can be entrusted to
an organization that provides a high-performance server as
a service.

Therefore, in the proposed method, if the TTP can be
realized and managed independently such as the CA, it will
be simple and easy to develop various business opportunities,
and it will be possible to further spread the use of secure com-
putation and make secure computation services accessible to
more users.

Therefore, contribution (4) is also realized.

V. IMPLEMENTATION ANALYSIS
The proposed method was implemented using C++. How-
ever, instead of assuming only a TTP, we implement our
method using N = 1 computing server equipped with Intel
SGX and one TTP to realize secure computation, as described
in Section IV.B.

Tables 1–4 show the times taken (in microseconds) to
realize secure computation on one machine with an Intel
Xeon processor and parameters n = k = 3. However,
for simplicity, in the implementation shown below, a single
machine plays the computing server S, TTP, TEE, clients
who input l-inputs, and players who reconstruct the result of
the computation. The details of the environment used in the
implementation are as follows:

• CPU: Intel Xeon E-2378G CPU @ 2.80GHz
• Memory: 16.00GB
• OS: Ubuntu Desktop 20.04.5LTS
• Code Language: C++

Tables 1 and 2 show the implementation results of the
secure computation phase of our proposed method to realize
inner-product computation of length l. The inner-product
computation is often used for statistical calculations, such as
variance and sum of squared deviation, and a wide range of
applications, such as in a secure search of gene sequences
and secure matrix calculation. In addition, because the com-
putation is not repeated in the inner-product computation,
communication is not required; therefore, steps (4) and (5)
are not required. The specific algorithm for this corresponds
to the case inwhichmi = 2 in the proposedmethod. However,
because the processes for pre-processing and encryption of
secret inputs can be performed in advance, these operations
are not subject to implementation.

In Table 1, we list the time taken for each step in Protocol
1.3 (secure computation). From Table 1, we learn that Step
(1) requires the most amount of time; however, because no
communication is required during this step, it can be com-
pleted fairly quickly, with the result showing that less than
75 msec is required to compute an inner product of two
l = 4, 500 elements in Step (1). Moreover, steps (2) and (3)
are relatively light computationally and require considerably
less time than step (1).

However, in the implementation below, we assume n =
k = 3, indicating that the time shown in Step (1) is the total
time taken to compute the three shares. We also include the
detailed time taken to compute each share in Table 2. There-
fore, if N = 3 computing servers are used instead, and the
computation of Step (1) is performed in parallel (as explained
in Section IV.A), we can achieve a faster computing time,
albeit at the cost of communication required to collect the
final shares during reconstruction.

Table 3 shows the time required to perform a secure com-
putation l = 100 for eachmi = 3, 4, 5, and 6. From the result,
we learn that the time needed to perform secure computation
doubled when mi increased; however, our proposed method
still achieved fast computing speed because no communica-
tions were required (other than with the TTP). Table 4 shows
the time taken to compute each share in Step (1).

In our future study, we will also include a detailed imple-
mentation of conventional methods and perform a detailed
comparison of the computation time of each method. The
implementation described in this section was performed

VOLUME 10, 2022 120511

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

TABLE 1. Time in microseconds to realize secure computation of an
inner-product (mi = 2) of two l -inputs.

TABLE 2. Time in microseconds to compute each share in Step (1) of
protocol 1.3 (secure computation).

TABLE 3. Time in microseconds to realize secure computation of
l = 100 for each mi = 3, 4, 5, 6.

TABLE 4. Time in microseconds to compute each share in Step (1) when
n = k = 3.

without parallelization. However, in secure computation
based on secret sharing with multiple inputs, parallel compu-
tation is essential to improve the computation speed. There-
fore, in our future study, wewill also consider how to translate
our implementation into parallel computation to achieve a
faster computing speed.

VI. CONCLUSION
This study used TTP to show that secure computation using
(k, n) threshold secret sharing can be realized with a sin-
gle computing server. Moreover, we showed that, in our
proposed method, information-theoretic security could be

realized under the condition that the number of computing
servers N > 1, whereas computational security is guaran-
teed even when N = 1. We also discussed using TEEs to
replace TTP and showed that TEEs, such as Intel SGX, can
be implemented to reduce communication and enable high-
speed processing.

In a future study, we will consider the implementation
of parallel computation and perform a detailed comparison
with other conventional methods. We will also consider using
TEEs other than Intel SGX in the future.

ACKNOWLEDGMENT
The authors would like to thank Kota Shirai, Daichi Kuroi,
Prof. Masaki Inamura, and the people of GMOCybersecurity
by Ierae Inc., for their cooperation in the implementation.

REFERENCES
[1] P. N. Smart and F. Vercauteren, ‘‘Fully homomorphic encryption with

relatively small key and ciphertext sizes,’’ in Public Key Cryptography—
PKC (Lecture Notes in Computer Science), vol. 6056, P. Q. Nguyen and
D. Pointcheval, Eds. Berlin, Germany: Springer, Berlin, Heidelberg, 2010,
pp. 420–443.

[2] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 6110, H. Gilbert,
Ed. Berlin, Germany: Springer, 2010, pp. 24–43.

[3] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, ‘‘Semi-homomorphic
encryption and multiparty computation,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 6632,
K. G. Paterson, Ed. Berlin, Germany: Springer, 2011, pp. 169–188.

[4] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 6841,
P. Rogaway, Ed. Berlin, Germany: Springer, 2011, pp. 505–524.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ in Proc. 3rd Innov. Theor.
Comput. Sci. Conf. (ITCS). New York, NY, USA: Association for Com-
puting Machinery, 2012, pp. 309–325.

[6] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, ‘‘Multiparty computation
from somewhat homomorphic encryption,’’ in Advances in Cryptology—
CRYPTO (Lecture Notes in Computer Science), vol. 7417, R. Safavi-Naini
and R. Canetti, Eds. Berlin, Germany: Springer, 2012, pp. 643–662.

[7] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and P. Nigel Smart,
‘‘Practical covertly secure MPC for dishonest majority—Or: Breaking
the SPDZ limits,’’ in Computer Security—ESORICS (Lecture Notes in
Computer Science), vol. 8134, J. Crampton, S. Jajodia, and K. Mayes, Eds.
Berlin, Germany: Springer, 2013, pp. 1–18.

[8] M. Keller, ‘‘MP-SPDZ: A versatile framework for multi-party compu-
tation,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS).
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1575–1590.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, ‘‘Completeness theorems
for non-cryptographic fault-tolerant distributed computation,’’ in Proc.
20th Annu. ACM Symp. Theory Comput. (STOC). New York, NY, USA:
Association for Computing Machinery, 1988, pp. 1–10.

[10] D. Chaum, C. Crépeau, and I. Damgard, ‘‘Multiparty unconditionally
secure protocols,’’ in Proc. 20th Annu. ACM Symp. Theory Comput.
(STOC). New York, NY, USA: Association for Computing Machinery,
1988, pp. 11–19.

[11] R. Gennaro, O. Michael Rabin, and T. Rabin, ‘‘Simplified VSS and
fast-track multiparty computations with applications to threshold cryp-
tography,’’ in Proc. 17th Annu. ACM Symp. Princ. Distrib. Comput.
(PODC). New York, NY, USA: Association for Computing Machinery,
1998, pp. 101–111.

[12] R. Cramer, I. Damgård, and U. Maurer, ‘‘General secure multi-party
computation from any linear secret-sharing scheme,’’ in Advances
in Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 1807, B. Preneel, Ed. Berlin, Germany: Springer, 2000, pp. 316–334.

120512 VOLUME 10, 2022

K. Iwamura, A. A. A. M. Kamal: TTP-Aided Secure Computation Using (k, n) Threshold Secret Sharing

[13] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, ‘‘High-throughput
semi-honest secure three-party computation with an honest majority,’’ in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS). New York,
NY, USA: Association for Computing Machinery, 2016, pp. 805–817.

[14] A. A. A. M. Kamal and K. Iwamura, ‘‘(Server-aided) two-party multipli-
cation of encrypted shares using (k, n) threshold secret sharing with N≥k
servers,’’ IEEE Access, vol. 9, pp. 113117–113129, 2021.

[15] A. A. A. M. Kamal and K. Iwamura, ‘‘Searchable encryption using secret
sharing scheme that realizes direct search of encrypted documents and
disjunctive search of multiple keywords,’’ J. Inf. Secur. Appl., vol. 59,
Jun. 2021, Art. no. 102824.

[16] C. Gentry, ‘‘A fully homomorphic encryption scheme,’’ Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009.

[17] T. Shingu, A. Ken, A. A. A. M. Kamal, and K. Iwamura, ‘‘Secure compu-
tation without changing polynomial degree in (k, n) secret sharing scheme,
(in Japanese),’’ J. Inf. Process., vol. 59, no. 3, pp. 1038–1049, 2018.

[18] A. A. A. Mohd Kamal and K. Iwamura, ‘‘Conditionally secure multi-
party computation using secret sharing scheme for n<2k-1 (short paper),’’
in Proc. 15th Annu. Conf. Privacy, Secur. Trust (PST), Aug. 2017,
pp. 2225–2255.

[19] K. Tokita and K. Iwamura, ‘‘Fast secure computation method based on
a secret sharing scheme even for n<2k-1 which can deal with the secret
zero,’’ IEEJ Trans. Electron., Inf. Syst., vol. 138, no. 12, pp. 1634–1645,
Dec. 2018.

[20] K. Iwamura and A. Kamal, ‘‘Secure computation by secret sharing using
input encrypted with random number,’’ in Proc. 18th Int. Conf. Secur.
Cryptography. Setúbal, Portugal: SciTePress, May 2021, pp. 540–547.

[21] S. Ochiai and K. Iwamura, ‘‘New approach to dishonest-majority secure
multiparty computation for malicious adversaries when n<2k-1,’’ in
Proc. 8th Int. Symp. Comput. Netw. Workshops (CANDARW), Nov. 2020,
pp. 355–361.

[22] H.Morita, N. Attrapadung, T. Teruya, S. Ohata, K. Nuida, and G. Hanaoka,
‘‘Constant-round client-aided secure comparison protocol,’’ in Computer
Security. ESORICS (Lecture Notes in Computer Science), vol. 11099,
J. Lopez, J. Zhou, and M. Soriano, Eds. Cham, Switzerland: Springer,
2018, pp. 395–415.

[23] K. Huang, X. Liu, S. Fu, D. Guo, and M. Xu, ‘‘A lightweight privacy-
preserving CNN feature extraction framework for mobile sensing,’’ IEEE
Trans. Dependable Secure Comput., vol. 18, no. 3, pp. 1441–1455,
Jun. 2021.

[24] Y. Liu, Z.Ma, X. Liu, S.Ma, andK. Ren, ‘‘Privacy-preserving object detec-
tion for medical images with faster R-CNN,’’ IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 69–84, 2022.

[25] K. Iwamura, A. A. A. Mohd Kamal, and M. Inamura, ‘‘TTP-aided secure
computation using secret sharing with only one computing server,’’ in
Proc. ACM Asia Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, May 2022, pp. 1243–1245.

[26] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[27] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka, ‘‘A new (k, n)-
threshold secret sharing scheme and its extension,’’ in Information Secu-
rity. ISC (Lecture Notes in Computer Science), vol. 5222, T. C. Wu,
C. L. Lei, V. Rijmen, and D. T. Lee, Eds. Berlin, Germany: Springer, 2008,
pp. 455–470.

[28] D. Beaver, ‘‘Efficient multiparty protocols using circuit randomization,’’
in Advances in Cryptology—CRYPTO (Lecture Notes in Computer Sci-
ence), vol. 576, J. Feigenbaum, Ed. Berlin, Germany: Springer, 1992,
pp. 420–432.

[29] Intel. Intel/Linux-SGX: Intel SGX for Linux*. GitHub. Accessed:
Oct. 4, 2022. [Online]. Available: https://github.com/intel/linux-sgx

[30] Intel. Intel R© Software Guard Extensions SDK Installation Guide.
Accessed: Oct. 4, 2022. [Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/guide/sgx-sdk-installation-guide.
html

[31] Intel. (2022). Intel R© Software Guard Extensions. Accessed:
Oct. 4, 2022. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/tools/software-guard-extensions/overview.html

[32] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, ‘‘CrossTalk:
Speculative data leaks across cores are real,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), 2021, pp. 1852–1867.

[33] S. V. Schaik,M.Minkin, A. Kwong, D. Genkin, andY. Yarom, ‘‘CacheOut:
Leaking data on Intel CPUs via cache evictions,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), Apr. 2021, pp. 339–354.

[34] B.Wolford.What is GDPR, the EU’s NewData Protection Law?Accessed:
Oct. 4, 2022. [Online]. Available: https://gdpr.eu/what-is-gdpr/

[35] Partisia. (Feb. 3, 2021).MPC Protocols. Accessed: Oct. 4, 2022. [Online].
Available: https://partisia.com/smc-protocols/

[36] Sharemind. Privacy Enhancing Technology for Data-Driven Business.
Accessed: Oct. 4, 2022. [Online]. Available: https://sharemind.cyber.ee/

[37] R. Housley, ‘‘Public key infrastructure (PKI),’’ in The Internet Encyclope-
dia, H. Bidgoli Ed. Hoboken, NJ, USA: Wiley, 2004.

KEIICHI IWAMURA (Member, IEEE) received
the B.S. andM.S. degrees in information engineer-
ing from Kyushu University, Japan, in 1980 and
1982, respectively, and the Ph.D. degree from The
University of Tokyo.

From 1982 to 2006, he belongs to Canon Inc.
He is currently a Professor with the Tokyo Uni-
versity of Science. His research interests include
coding theory, information security, and digital
watermarking. He is a fellow of the Information

Processing Society of Japan and the Chairperson of the Technical Committee
of Information Hiding and its Criteria for Evaluation and Technical Com-
mittee of Enriched Multimedia, Institute of Electronics, and Information and
Communication Engineers, Japan.

AHMAD AKMAL AMINUDDIN MOHD
KAMAL (Member, IEEE) was born in Penang,
Malaysia, in 1994. He received the B.S. and M.S.
degrees in electrical engineering and the Ph.D.
degree in engineering from the Tokyo Univer-
sity of Science, Japan, in 2017, 2019, and 2022,
respectively.

He is currently an Assistant Professor with the
TokyoUniversity of Science. His research interests
include information security and multiparty com-

putation using secret sharing and its application into searchable encryption.

VOLUME 10, 2022 120513

