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ABSTRACT In the presented paper, we investigate the problem of finding the maximum possible cardinality
of a dictionary of a prefix code for a string of a given length. Namely, we present a sharp proof of the
cardinality of such a dictionary using results from the number theory. What is more, the presented formula
is for the general case of a string over any, not just binary, alphabet. Furthermore, we give conditions on the
existence of the so-called canonical dictionary for such a string, where the codewords of the dictionary have at
most two different lengths, differing by one. Our approach is based on reformulating the problem of finding
the maximum possible cardinality of a dictionary for a string of a given length as the problem of finding
the maximum possible number of summands in the Kraft-Szillard partition of the number representing the
length of the string, by solving a Diophantine equation related to the canonical partition of the number. One
of the areas of applications of presented results is the security-estimate of ciphers based on prefix codes.

INDEX TERMS Prefix codes, maximum minimal dictionary, partitions of a natural number, Kraft-Szillard
partition, cipher based on prefix codes.

I. INTRODUCTION
A prefix code (a prefix-free code) over some q-ary alphabet,
or P-code for short, is a code where no codeword is a prefix
of another codeword [1], i.e. the codewords are prefix-free.
Due to this specific property, the code can be efficiently
decoded [5], which has led to the wide-spread adoption of
P-codes in many applications. For example, the well-known
Huffman code [7], commonly used for loss-less data com-
pression, is a particular type of a binary P-code.

Historically, prefix codes emerged from the area of cryp-
tography. The oldest known example of a P-code is the
Argenti code [8] from the 16th century. P-codes were also
used for encryption purposes by Peter the Great, where the
plaintext was the Cyrillic alphabet [8]. Furthermore, the
Soviet cipher known as VIC [9], used P-codes as one of
the rounds during the encryption. Nowadays, one area of
cryptography that employs prefix codes is the DNA cryptog-
raphy [15], in whichmany cryptosystems utilize binary prefix
codes as the plaintext space [11], [13], [14].
Example 1: To illustrate the idea of P-codes, let us con-

sider Table 1, where each lowercase letter is encoded
(mapped) to a codeword of a binary prefix code; each
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TABLE 1. An example of a binary P-code.

codeword is of length four or five. The set of such code-
words is usually called a dictionary. It is readily seen that no
codeword is a prefix of any other codeword. The source text,
written as a sequence of lowercase letters, is encoded by sub-
stituting each letter with the corresponding binary string and
concatenating the strings into the resulting encoded message.
Let the source text be pcode. Substituting each letter

by its corresponding binary codeword, the encoded form is
01111000101111000111101. Due to the prefix property of
codewords, the decoding of 01111000101111000111101 is
unique, i.e. the message pcode, and can be done efficiently.

In [4], the authors propose a modern symmetric encryption
algorithm based on binary prefix codes, whose goal is to sup-
plement the set of ciphers deployable in the IoT setting, see
e.g. [2]. The key of this cipher is theP-code itself, e.g. both the
set of prefix-free codewords and the mapping of some source
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alphabet onto this set. The encryption is done by encoding
a given plaintext with the secret P-code, along with the
inclusion of so-called null-ciphers, and the resulting cipher-
text is then the resulting concatenation of the codewords.
For example, if the P-code presented in Example 1 was the
secret key, then the plaintext pcode would be encrypted
as the ciphertext 01111000101111000111101. Since the
P-code is known only to legitimate users, an attacker wishing
to decrypt (decode) the ciphertext must first try to deter-
mine the used secret prefix code. If we assume the attacker
is in the possession of the ciphertext, he/she may try to
determine the secret P-code by examining all possible ways
in which the ciphertext can be split into different potential
prefix-free binary words, since they form the candidates
for a part of the dictionary of the P-code used for the
encryption/decryption, i.e. the key of the cipher. This directly
leads to the following problem, which was first studied in the
paper [4]:
Given the length n of a binary string x, |x| = n, where x is

a concatenation of words of an unknown P-code, what is the
maximum number k(n) of distinct prefix-free words to which
string x can be split?
Example 2: Consider the string x = 01111000101111

000111101 from Example 1. This string can be split into
distinct prefix-free words in a number of ways, e.g.:

• 01111−00010−111−1000111101, i.e. into four prefix-
free words,

• 011− 1100− 010− 111− 10− 0011− 1101, i.e. into
seven prefix-free words,

• 01111 − 00010 − 1111 − 00011 − 1101, i.e. into five
prefix-free words (this case corresponds with the dictio-
nary used in Example 1),

• . . .
• 01111000101111000111101, i.e. we can consider it as
one word.

The string x is of length |x| = 23. It can be shown that
binary words of length 23 can be split at most into 7 distinct
prefix-free binary words, as seen in the second case, i.e. in the
binary case k(23) = 7. Therefore, if the string x was a
ciphertext, the attacker could try to find the dictionary of the
used P-code by examining all the possible ways how to split
the string x into prefix-free words, which in this case means to
try all possible splits of x into sets of 1, 2, 3, . . . , 7 prefix-free
words.

For n ≤ 26, the values of k(n) were found by exhaustive
search in the paper [4]. They are listed in column k of the cited
paper, Table 2. As indicated above, the value k(n) plays an
important part in the cryptanalysis of cryptosystems based on
prefix codes proposed in paper [4], since the value k(n) pro-
vides an upper-bound on the complexity of a possible attack
on the cipher in which the attacker would try to enumerate all
possible P-codes used in the encryption.
The above-mentioned problem concerns only the binary

prefix codes. In this paper, we study the generalization of the
problem to q-ary prefix codes, i.e.:

Problem 1: Given the length n of a q-ary string x, |x| = n,
where x is a concatenation of words of an unknown q-ary
P-code, what is the maximum number k(n) of distinct q-ary
prefix-free words to which string x can be split?

Furthermore, this problem can be reformulated into a
number theory problem of finding an integer partition of
n = n1 + n2 + . . . + nk , where the numbers ni satisfy the
so-called Kraft-Szillard inequality [1], [10]. The numbers ni
then represent the lengths of distinct prefix-free words into
which the string x can be split.

To our knowledge, the only known results on this problem
are the previouslymentioned paper [4], which contains exper-
imentally determined values of k(n) for n ≤ 26 in the binary
case and the paper [6], which contains the exact formula for
k(n), again in the binary case, determined by geometrical
assumptions. In the same paper, the authors prove that for
any integer partition of n = n1 + n2 + . . . + nk there exists
a partition of n consisting of k elements where ni = a or
a + 1 for a suitable number a. Such partition is called the
(a, a+1) canonical partition. Thus, finding themaximal value
of k for a canonical partition solves the problem in general.

In this paper, we present a sharp formula for k(n) using
results from the number theory. What is more, our formula
deals with the general case of a q-ary alphabet. This improves
the results of [4] and [6], which focus on the binary case only.
Furthermore, we determine the conditions on the existence of
two specific types of canonical partitions. Namely, we prove
step-by-step in Theorems 3-6 the following result:
Theorem 1: Let q, t be positive integers and n be such an

integer that tqt ≤ n < (t + 1)qt+1. Then the theoretical
maximum number of q-ary prefix-free words, into which a
q-ary string x of length n can be split, is k(n) = b (q−1)n+q

t+1

(q−1)t+q c.
Moreover, let n > q. Then

1) If n
t+1 > b

(q−1)n+qt+1

(q−1)t+q c, a q-ary string of length
n might be splittable into q-ary prefix-free words
of two lengths (t + 1, t + 2), such that there are
α = −n+ (t + 2)b (q−1)n+q

t+1

(q−1)t+q c words of the length

(t + 1) and β = n − (t + 1)b (q−1)n+q
t+1

(q−1)t+q c words of
the length (t + 2).

2) Otherwise, a q-ary string of length n might be splittable
into q-ary prefix-free words of two lengths (t, t + 1),
such that there are
α = −n+ (t + 1)b (q−1)n+q

t+1

(q−1)t+q c words of the length t

and β = n−tb (q−1)n+q
t+1

(q−1)t+q c words of the length (t + 1).

3) There exist exactly (q − 1)
(t+1

2

)
values of n, such that

strings of length n cannot be split into q-ary prefix-free
words of lengths (t, t + 1).

II. PRELIMINARIES
We first recall the definition of a q-ary prefix code. For a set
of symbols (or words)Q,Q+ denotes the set of all non-empty
finite concatenations of elements of Q.
Definition 1: LetA be an alphabet,Q be a q-ary alphabet

and V be a set, V ⊂ Q+. Then a q-ary code is a bijection
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TABLE 2. Ternary prefix-free code mapping κ from Example 3.

κ : A → V; A is called the source alphabet, elements of
V are called codewords and V is also called the dictionary
of the code. Specifically, a q-ary prefix code, for short a
q-ary P-code, is a q-ary code where no codeword is a prefix of
another codeword. A message x is a concatenation of finitely
many words from the dictionary V .

Problem 1, presented in the Introduction, can be reformu-
lated as determining the maximum possible cardinality k(n)
of the so-calledminimal dictionarywith respect to some q-ary
string x of length n. The definition of the minimal dictionary
follows.
Definition 2: Let x be a q-ary string. Then a dictionary V

of a P-code with x ∈ V+ is called minimal with respect to x,
if for any w ∈ V , x 6∈ (V \ w)+.
Example 3: Example 1 provides an example of a binary

P-code, where the source alphabet A = {a, b, . . . , z}. For
a binary string x = 01111000101111000111101, Example
2 provides examples of four different minimal dictionaries
with respect to the string x, e.g. V = {01111, 00010, 111,
1000111101} or V = {011, 1100, 010, 111, 10, 0011, 1101}
are both such dictionaries, where x ∈ V+ and x 6∈ (V \
w)+ for any w ∈ V . What is more, the minimal dictionary
V = {011, 1100, 010, 111, 10, 0011, 1101} is of the maxi-
mum possible cardinality, |V | = 7, for a binary string x of
length 23.
As an example of a non-binary code, letA = {a, b, c, d, e},

and Q = {0, 1, 2} be a ternary (q = 3) alphabet. Let
V = {0, 10, 11, 12, 2} be a set of ternary prefix-free words.
Then we can construct a ternary P-code, e.g. by the P-code
mapping κ presented in Table 2.
Then, for example the string bead would be encoded

as 102012. Examples of minimal dictionaries with respect
to string 102012 include dictionaries V = {102012},
V = {1, 02, 012}, V = {10, 2, 0, 12}, but not {1, 020, 12},
since such a set of words does not fulfil the prefix-free
property or {10, 2, 0, 12, 11}, since such a set is not min-
imal. From all minimal dictionaries with respect to string
102012, the dictionary V = {10, 2, 0, 12} is of the maximum
possible cardinality, i.e. |V | = 4. The value 4 is also the
maximum possible cardinality of a minimal dictionary with
respect to any ternary string of length 6, i.e. for q = 3,
k(6) = 4.

A q-ary prefix code can be represented by a q-ary code
tree, in which each internal node has at most q children and
the leaves, i.e. the external nodes, represent the codewords
and can be labeled with the corresponding characters from
the source alphabet.
Example 4: The ternary prefix code from Example 3 can

be visualized with the following ternary code tree, where the
internal nodes are represented by circles and the external
nodes are represented by squares.

FIGURE 1. Ternary code tree of the ternary prefix code from Example 3.

We now recall the Kraft-Szillard inequality, which states
the necessary and sufficient conditions on the existence of
prefix codes.
Theorem 2: Let integers n1, n2, . . . , nk satisfy inequality

k∑
i=1

q−ni ≤ 1. (1)

Then there exists a q-ary P-code with codewords of lengths
ni, i = 1, 2, . . . , k. Conversely, if such numbers do not exist,
then there is no unambiguously decodable code with given
lengths of codewords.

In order to determine the formula for the maximum pos-
sible cardinality k(n) of a minimal dictionary with respect
to some q-ary string x of length n, we follow the approach
used in [6] and view the problem of finding the maximum
possible cardinality of the minimal dictionary as the problem
of finding an integer partition of n = n1+ n2+ . . .+ nk with
the maximum number of summands k , where the numbers ni
satisfy the Kraft-Szillard inequality [1], [10].
Definition 3: A k-partition of n is a sequence of k natural

numbers n1, . . . , nk such that

n = n1 + . . .+ nk .

A partition n = n1 + . . . + nk is a K-S k-partition
(Kraft-Szilard) with respect to q, if the numbers ni sat-
isfy (1). In addition, this partition will be called canonical
if
∣∣ni − nj∣∣ ≤ 1 for all 1 ≤ i, j ≤ k. We will denote such

canonical partition (a, a+ 1), where a = min{ni}.
It can be easily seen that determining the maximum pos-

sible cardinality k(n) of a minimal dictionary with respect to
some q-ary string x of length n is equal to determining the
maximumnumber k of distinct q-ary substrings x1, x2, . . . , xk
into which a string x of length n can be split, so that each
substring xi is not a prefix of another substring xj. This in turn
means that the lengths of these substrings, |x1| = n1, |x2| =
n2, . . . , |xk | = nk satisfy the Kraft-Szillard inequality (1) and
therefore form the K -S k-partition of the number n.
Example 5: Let q = 3 and let x = 0121110. We are again

interested in the maximum possible cardinality of the minimal
dictionary with respect to string x. One approach is to try to
split the string x into substrings xi which would be prefix-free
and count the number of distinct substrings, e.g.:

• (the trivial case): 0121110 (no splitting) leads to the
dictionary V = {0121110} with one word of length 7,
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FIGURE 2. Ternary code tree with the maximum number of external
nodes w.r.t. x = 0121110 .

• 01−21110 leads to the dictionary V = {01, 21110}with
2 words of lengths 2 and 5 respectively,

• 0−12−1110 leads to the dictionary V = {0, 12, 1110}
with 3 words of lengths 1, 2, and 4 respectively,

• 0 − 12 − 11 − 10 leads to the dictionary
V = {0, 10, 11, 12} with 4 words, one of length 1 and
three of length 2.

• Since any such dictionary is prefix-free, the words satisfy
the Kraft-Szillard inequality.

• The string x cannot be split into 5 words, which would
be prefix-free, therefore the maximum cardinality of the
corresponding minimal dictionary would be 4, as seen
for example in the case V = {0, 10, 11, 12}.

Equivalently, if we use the tree-representation of a prefix
code, we are looking for a ternary tree with the maximum
number of external nodes, where the given string 0121110 is
formed by a concatenation of codewords corresponding to
all external nodes, in some order. Such a ternary tree, with
4 external nodes, is presented in Figure 2.
Generally, for any ternary string of length n = 7,

we are looking for such a partition into substrings of lengths
n1, . . . , nk so that 7 = n1 + . . . + nk , which would
satisfy the Kraft-Szillard inequality where q = 3. There
is for example the K-S 4-partition of the number 7 into
7 = 1+ 2+ 2+ 2, i.e. n1 = 1, n2 = n3 = n4 = 2,
since 3−1 + 3−2 + 3−2 + 3−2 ≤ 1, i.e. the potential lengths
of substrings are 1, 2, 2 and 2, as seen in the partition of
0121110 into 0 − 12 − 11 − 10. Note that this partition is
also the canonical partition, since |ni− nj| ≤ 1 and since the
values are 1 and 2, it is denoted the (1, 2) canonical partition.
Furthermore, there does not exist a K-S 5-partition of 7,

since there does not exist any way how to split a ternary string
of length 7 into 5 substrings whose lengths would satisfy
the Kraft-Szillard inequality. Therefore, in the ternary case,
k(7) = 4.
Note that the value 4 of the maximum possible cardinality

for minimal dictionaries of ternary strings of length 7 is
the theoretical maximum. Some ternary strings of length
7 may have minimal dictionaries of cardinalities strictly
smaller, e.g. the string 0000000 has only minimal dictionaries
V = {0} and V = {0000000}, both of cardinality one.

In the next section, we derive the formula for the maximum
value of k such that theK -S k-partition of the number n exists,
for the general q-ary case. This value k then provides the
maximum possible cardinality k(n) of a minimal dictionary

with respect to some q-ary string of length n, or in another
terms, the maximum number k(n) of distinct q-ary prefix-free
words to which a q-ary string of length n could be split.

Furthermore, we will determine the condition for the exis-
tence of two special canonical K -S k-partitions, (t, t+1) and
(t + 1, t + 2) partitions.

III. CANONICAL K -S k-PARTITIONS OF N
In [6], the authors prove, for the binary case (q = 2), that for
every n there exists a maximum k such that a canonical K -S
k-partition of n exists. We will prove a generalized version of
the same result, for an arbitrary q, using the number theory.
Hereafter, we denote N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.
For n ∈ N, k(n) will stand for the largest integer k such that
there exists a K -S k-partition of n.
Throughout this paper, we will use the following fact: For a

given integer q and any integer n, there exists a unique integer
t such that

t qt ≤ n < (t + 1) qt+1. (2)

Let Nt = {n > 2 : t qt ≤ n < (t + 1) qt+1}. Then
|Nt | = qt ((q− 1)t + q). For further purposes, we derive:
If n < (a + 1) qa+1, then n(q − 1) < (q − 1)(a + 1) qa+1

and n(q − 1) + qa+1 < (q − 1)(a + 1)qa+1 + qa+1 which
yields

n(q− 1)+ qa+1

(q− 1)a+ q
< qa+1. (3)

On the other hand, if aqa ≤ n, then (q − 1)aqa ≤ n(q − 1)
and (q− 1)aqa + qa+1 ≤ n(q− 1)+ qa+1 which yields

qa ≤
n(q− 1)+ qa+1

(q− 1)a+ q
. (4)

Thus

qa ≤
n(q− 1)+ qa+1

(q− 1)a+ q
< qa+1. (5)

Suppose now that for all ni, ni = a or ni = a+ 1. Hence

n = αa+ β(a+ 1), (6)

i.e. we have α members of the partition of value a, and β of
value a + 1, where α + β = k is the number of elements of
the partition, α, β ∈ N0. In our special case, all solutions α, β
of this equation can be found as follows [12]:

1) Since gcd(a, a + 1) = 1, one can easily find integers
u and v such that au+ (a+ 1)v = 1. Moreover, in this
case we can set u = −1, v = 1.

2) Thus we have one solution of (6), namely α0 = nu =
−n, β0 = nv = n.

3) Therefore every integer solution (α, β) can be written
as (α0+ (a+1)j, β0−aj), j = 0,±1,±2, . . ., or (−n+
(a+ 1)j, n− aj), j = 0,±1,±2, . . ..

4) In our case α, β ∈ N0. Thus j must satisfy
n

a+ 1
≤ j ≤

n
a

(7)
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and the number of non-negative solutions is not greater than
n
a
−

n
a+ 1

+ 1 =
n

a(a+ 1)
+ 1.

Since our partition must be a K -S k-partition, we have

α

qa
+

β

qa+1
≤ 1, or qα + β ≤ qa+1. (8)

This yields

q(−n+ (a+ 1)j)+ (n− aj)

= −n(q− 1)+ (q(a+ 1)− a)j ≤ qa+1, (9)

or

j ≤
n(q− 1)+ qa+1

(q− 1)a+ q
, (10)

and it is not difficult to prove that for n ∈ Na, it follows from
aqa ≤ n that

n(q− 1)+ qa+1

(q− 1)a+ q
≤
n
a
. (11)

On the other hand, it follows from n < (a+ 1)qa+1 that

n
a+ 1

<
n(q− 1)+ qa+1

(q− 1)a+ q
. (12)

Since α + β = −n + (a + 1)j + n−aj = j, to have k(n) =
max{α+β}, we must also have jmaximal. At the same time,
assuming (2), the smallest a = t and we have obtained the
proof of the following theorem, which states the existence of
the (t, t + 1) canonical K -S k-partition of n.
Theorem 3: Let n ∈ Nt and b

n(q−1)+qt+1

(q−1)t+q c ∈ [ n
t+1 ,

n
t ].

Then there exists a solution of the equation n = αt +
β(t + 1) satisfying conditions qα + β ≤ qt+1 and k(n) =
max{α + β}= max{j} where α, β are non-negative integer
solutions. This solution is attained for j = b n(q−1)+q

t+1

(q−1)t+q c =

k(n).
Now, we illustrate our steps with two Examples.
Example 6: Let q = 2, n = 21. Then 2×22 ≤ 21 < 3×23,

i.e. t = 2 and we put a = t = 2. Thus we have

2α + 3β = 21.

Since gcd(2, 3) = 1, there exist solutions of our equation of
the form (−21+ 3j, 21− 2j). Considering only non-negative
solutions, 21

3 ≤ j ≤ 21
2 , yields j = 7, 8, 9, 10. Thus all non-

negative solutions (α, β) = (9, 1), (6, 3), (3, 5), (0, 7).

At the same time, j ≤ n(q−1)+qa+1

a(q−1)+q =
21+8
4 = 7.25. Thus

there exists j ∈ N satisfying both conditions, namely j = 7
and thus there exists one canonical K-S 7-partition (2, 3) of
the number 21, i.e. 21 = 2× 0+ 3× 7.
Moreover, we may try to find a (t+1, t+2) partition. Then

3α + 4β = 21,

(α, β) = (−21+ 4j, 21− 3j) = (3, 3), (7, 0),
21
4
≤ j ≤

21
3
,

i.e. j = 6, 7. Both values of j satisfy (10), and thus k =
α + β = 6 or 7, and k(n) = max j = 7, the same as in the
case of (t, t+1) partition, i.e. in this case the canonical K-S
7-partition (3, 4) of the number 21 is 21 = 3× 7+ 4× 0.
Example 7: Let q = 3, n = 70. Then 2×32 ≤ 70 < 3×33,

i.e. t = 2. Thus we have

2α + 3β = 70.

All solutions are of the form (−70 + 3j, 70 − 2j).
Considering only non-negative solutions, 70

3 ≤ j ≤
70
2 , j = 24, 25, . . . , 35. This yields all non-negative
solutions (α, β) = (2, 22), (5, 20), (8, 18), (11, 16),
(14, 14), (17, 12), (20, 10), (23, 8), (26, 6), (29, 4), (32, 2),
(35, 0).
At the same time j ≤ n(q−1)+qa+1

a(q−1)+q =
140+27

7
.
= 23.86. Thus,

since 23 6∈ {24, 25, . . . , 35} there does not exist j satisfying
both conditions.
But if we let a = t + 1 = 3, i.e.

3α + 4β = 70,

then 70
4 ≤ j ≤

70
3 , j = 18, 19, . . . , 23. This

yields all non-negative solutions (α, β) = (2, 16), (6, 13),
(10, 10), (14, 7), (18, 4), (22, 1).
Moreover, j ≤ n(q−1)+qa+1

a(q−1)+q =
140+81

9
.
= 24.56. Thus

there exist 6 canonical K-S k-partitions (3, 4) of the number
70 with k = α + β = 18, 19, . . . , 23, max k = 23. This
example also shows that to have a maximal k = k(n), it is
not sufficient just to find some canonical K-S k-partition,
since e.g. the canonical partition (3, 4) with (α, β) = (2, 16)
has k = 18, but the canonical partition (3, 4) with (α, β) =
(22, 1) has k = 23, the maximum one. Therefore, in this case,
the canonical partition (3, 4) of the number 70with maximum
k = 23 is 70 = 3× 22+ 4× 1.
We emphasize that if j = b n(q−1)+q

t+1

(q−1)t+q c 6∈ [ n
t+1 ,

n
t ], i.e. the

value of j is smaller than the minimal integer on the left end
of the interval [ n

t+1 ,
n
t ], then it must be the first integer on

the right end of the interval [ n
t+2 ,

n
t+1 ]. This suggests to let

a = t + 1 in (6), which leads to the following theorem on the
existence of the (t + 1, t + 2) canonical K -S k-partition of n.
Theorem 4: Let n ∈ Nt and b

n(q−1)+qt+1

(q−1)t+q c ∈ [ n
t+2 ,

n
t+1 ].

Then there exists a solution of the equation n = α(t + 1) +
β(t + 2) satisfying conditions qα + β ≤ qt+2 and k(n) =
max{α + β} = max{j} where α, β are non-negative integer
solutions. This solution is attained for j = b n(q−1)+q

t+1

(q−1)t+q c =

k(n).
Proof: All values of j leading to non-negative solutions

α, β are in the interval [ n
t+2 ,

n
t+1 ]. Under our supposition

b
n(q−1)+qt+1

(q−1)t+q c belongs to this interval, and thus

(α, β) = (−n+ (t + 2)j, n− (t + 1)j),

j =
⌈

n
t + 2

⌉
, . . . ,

⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
.
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Moreover,

max{α + β} = max{j} =
⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
.

Now, we must prove that this solution also satisfies (9), i.e.

qα + β

= −n(q− 1)+ ((t + 1)(q− 1)+ q)
⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
= −((q− 1)t + q)

n(q− 1)+ qt+1

(q− 1)t + q
+ qt+1

+ ((t + 1)(q− 1)+ q)
⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
= ((q− 1)t + q)

(
−
n(q− 1)+ qt+1

(q− 1)t + q

+

⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋)
+ qt+1 + (q− 1)

⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
.

Since −1 ≤ bxc − x ≤ 0, and by (3) we have

qα + β ≤ qt+1 + (q− 1)
⌊
n(q− 1)+ qt+1

(q− 1)t + q

⌋
≤ q× qt+1 = qt+2.

This finishes the proof. �
Now, we will find a condition under which we can

distinguish to which interval, [ n
t+2 ,

n
t+1 ] or [ n

t+1 ,
n
t ],⌊

n(q−1)+qt+1

(q−1)t+q

⌋
belongs to. This is determined by values on

the left side of the interval [ n
t+1 ,

n
t ]. If

n
t+1 >

⌊
n(q−1)+qt+1

(q−1)t+q

⌋
,

then necessarily
⌊
n(q−1)+qt+1

(q−1)t+q

⌋
∈ [ n

t+2 ,
n
t+1 ] which yields

that there is a (t+1, t+2) partition only. Thus we proved the
following theorem:
Theorem 5: Let n ∈ Nt . If n

t+1 >
⌊
n(q−1)+qt+1

(q−1)t+q

⌋
, then there

exists a (t + 1, t + 2) K-S partition of n, only. Otherwise,
there exists a (t, t + 1) partition. In both cases, k(n) =
b
n(q−1)+qt+1

(q−1)t+q c.
Example 8: Let q = 2, t = 2. Then |Nt | = 22(2 + 2) =

16,Nt = {8, 9, . . . , 23}. There are precisely 3 integers n such
that there exists a (t + 1, t + 2) partition only. Namely for
n = 19, 22, 23. For n = 19, the value k(n) = k(19) = 6 and
for n = 22 and n = 23, the value k(22) = k(23) = 7. This
in turn means w.r.t. our original problem that the maximum
cardinality of the minimal dictionary of a binary string of
length 19 can be 6, and the maximum cardinality of the
minimal dictionary of a binary string of length 22 or 23 can
be 7.
Let q = 3, t = 2. Then |Nt | = 32(2 × 2 + 3) = 63,Nt =
{18, 19, . . . , 80}. There are precisely 6 integers n such that
there exists a (t + 1, t + 2) partition only, namely for n =
70, 73, 76, 77, 79, 80. For n = 70, we have k(70) = 23, for
n = 73 we have k(73) = 24, for n = 76 and n = 77 we

have k(76) = k(77) = 25, and for n = 79 and n = 80 we
have k(79) = k(80) = 26, which in turn means w.r.t. our
original problem that a ternary string of length 70 might be
splittable up to 23 ternary prefix-free substrings, a ternary
string of length 73 might be splittable up to 24 ternary prefix-
free substrings, etc.

Consider now the numbers n ∈ Nt which do not have aK -S
(t, t+1) partition, i.e. for these numbers n

t+1 > b
(q−1)n+qt+1

(q−1)t+q c.
Let us denote the remainder of (q− 1)n+ qt+1 after division
by (q− 1)t + q as rn, i.e.

rn =
(
(q− 1)n+ qt+1

)
mod (q− 1)t + q. (13)

Since b (q−1)n+q
t+1

(q−1)t+q c =
(q−1)n+qt+1−rn

(q−1)t+q , the inequality n
t+1 >

b
(q−1)n+qt+1

(q−1)t+q c can be rewritten as

qt+1 −
n

t + 1
< rn. (14)

Therefore, a number n does not have a K -S (t, t+1) partition
if its corresponding value rn satisfies (14). Now, we will find
all integers n ∈ Nt satisfying (14). For simplicity, we will
denote the modulus (q−1)t+q asm, i.e.m = (q−1)t+q =
(q−1)(t+1)+1. We will use the following notation: we can
arrange all integers from the set Nt , |Nt | = qtm, into a matrix
of the size qt × m as follows

Nt =


n(0)0 n(0)1 . . . n(0)m−1
n(1)0 n(1)1 . . . n(1)m−1
...

... . . .
...

n(q
t
−1)

0 n(q
t
−1)

1 . . . n(q
t
−1)

m−1

 .
Here N (i) are rows and Mj are columns, respectively, where
i = 0, 1, . . . , qt − 1, and j = 0, 1, . . . ,m − 1. Thus n(i)j =
tqt + im+ j.

Now we must identify all numbers n = n(i)j ∈ Nt which
satisfy (14). This will be done by proving the next 3 lemmas.
Lemma 1: Let n(i)j and rn(i)j

, where 0 ≤ j ≤ (q− 1)(t + 1)

be as above. Then, for each n ∈ Nt there exist unique integers
u, k such that j = (t + 1)u + k, 0 ≤ u ≤ q − 1, 0 ≤ k ≤ t ,
and

rn(i)j
=

{
(q− 1)k − u; if (q− 1)k − u ≥ 0
(q− 1)k − u+ m; otherwise.

(15)

Proof: We start with the calculation of

rn(i)j
=

(
(q− 1)n(i)j + q

t+1
)
mod m

= qtm+ (q− 1)im+ (q− 1)j mod m

= (q− 1)j mod m.

Since gcd(q − 1,m) = 1, rn(i)j
is uniquely determined for

0 ≤ j < m, i.e. its value remains the same within each column
Mj. Further, for j = (t + 1)u+ k this yields

(q− 1)((t + 1)u+ k) mod m = (q− 1)k − u mod m.

�
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Now we will calculate the left and right sides of (14) for a
special case of i = qt − 1− t, j = t + 1. On the left side we
have

qt+1 −
n(q

t
−1−t)

t+1

t + 1

= qt+1 −
tqt + (qt − 1− t)((q− 1)t + q)+ (t + 1)

t + 1

=
q(t2 + 2t + 1)− (t2 + 2t + 1)

t + 1
=

(q− 1)(t + 1)(t + 1)
t + 1

= (q− 1)(t + 1).

On the right side if j = t + 1, then for all numbers in the
column Mt+1 we have

rn(i)t+1
= −1+ (q− 1)(t + 1)+ 1 = (q− 1)(t + 1).

Thus in this special case left and right sides of (14) are
the same. Moreover, since the left hand side sequence is
decreasing and rn ≤ (q − 1)(t + 1), it follows that n(q

t
−1−t)

t+1
is the first number in the matrix where the left and right sides
of (14) are the same. Thus we proved
Lemma 2: The first n ∈ Nt , where qt+1 − n

t+1 = rn,

is n(q
t
−1−t)

t+1 .
The next lemma states some periodical properties of entries

in the matrix Nt .
Lemma 3: The following is valid for numbers n(i)j :

1) Let h = t + 1, j + h < m. If qt+1 −
n(i)j
t+1 = rn(i)j

, then

qt+1 −
n(i)j+h
t+1 = rn(i)j+h

.

2) Let h = t + 1, j + h ≥ m. If qt+1 −
n(i)j
t+1 = rn(i)j

, then

qt+1 −
n(i+1)j+h−m
t+1 = rn(i+1)j+h−m

.

3) The number of places where qt+1 − n
t+1 = rn in each

row, beginning with the row N (qt−1−t)
j , is q− 1.

Proof:
1) Under our supposition it follows that

n(i)j+h − n
(i)
j

t + 1
+ rn(i)j+h

− rn(i)j
= 1+ h(q− 1) mod m = 0.

2) Again direct calculation yields

n(i+1)j+h−m − n
(i)
j

t + 1
+ rn(i)j+h−m

− rn(i)j
= 1+ (h− m)(q− 1) mod m = 0.

3) Since we start at the position t + 1, and the next such
situation occurs after each h = t + 1 entries, we have
(q − 1)(t + 1) such positions altogether. In the row
N (qt−1−t), the last position where this happens is the
last column. Therefore, due to 2., in the next row, such
position starts at the position t , etc. Thus in the last row
N (qt−1), first such position is in the columnM1 and the
last one is in columnM1+(q−2)(t+1).

�

From Lemma 1 it follows that r (i)j does not depend on
i, i.e. is the same for a fixed j. Thus, if both sides of (14)
are equal for n(i)j , then all n(i+k)j , k = 1, 2, . . . satisfy (14).
By Lemma 2, the first number with both sides of (14) equal
is n(q

t
−1−t)

t+1 in row N (qt−1−t) and column Mt+1. The column
Mt+1 therefore contains t numbers that satisfy (14). And by
Lemma 3, also columnsM(t+1)+k(t+1), k = 1, 2, . . . , (q− 2)
contain t numbers that satisfy (14), so this argument leads to
(q− 1)t numbers that satisfy (14).
Further, it follows from Lemma 3 that the first number in

row N (qt−t) with both sides of (14) equal is n(q
t
−t)

t , therefore
the column Mt contains t − 1 numbers satisfying (14). And
again by Lemma 3, there are altogether q − 1 columns,
Mt+k(t+1), k = 1, 2, . . . , (q − 2), which contain (t − 1)
numbers that satisfy (14), i.e. this argument leads to another
(q− 1)(t − 1) numbers that satisfy (14), and so on.

The resulting number of n(i)j , which satisfy (14) is therefore

(q− 1)(t + (t − 1)+ (t − 2)+ . . .+ 2+ 1)

= (q− 1)
t(t + 1)

2
= (q− 1)

(
t + 1
2

)
,

which proves the following theorem on the non-existence of
(t, t + 1) partition for some numbers n.
Theorem 6: Let n ∈ Nt . Then the number of integers n for

which there does not exist a (t, t + 1) K-S partition is (q −
1)
(t+1

2

)
.

Combining the results in Theorems 3-6, we obtain the
following theorem, which summarizes the results presented
in this paper and is a reformulation of Theorem 1, in terms of
K -S k-partitions of n with respect to q.
Theorem 7: Let q, t be positive integers and let n be such

an integer that tqt ≤ n < (t + 1) qt+1. Then the maximum
k, for which there exists a K-S k-partition of n is k =
b
(q−1)n+qt+1

(q−1)t+q c, with respect to q. Moreover, let n > q. Then

1) If n
t+1 > b

(q−1)n+qt+1

(q−1)t+q c, there exists a canonical

(t + 1, t + 2) K-S k-partition of n, with respect
to q, n = α(t + 1) + β(t + 2), such that
α = −n+ (t + 2)b (q−1)n+q

t+1

(q−1)t+q c and β = n − (t +

1)b (q−1)n+q
t+1

(q−1)t+q c.
2) Otherwise, there exists a canonical (t, t + 1) K-S k-

partition of n, with respect to q, n = α(t)+ β(t + 1),
such that α = −n + (t + 1)b (q−1)n+q

t+1

(q−1)t+q c and

β = n−tb (q−1)n+q
t+1

(q−1)t+q c.

3) There exist exactly (q − 1)
(t+1

2

)
values of n, such

that there does not exist the (t, t + 1) canonical K-S
k-partition of n, with respect to q.

IV. CONCLUSION
In this paper, we investigated the maximum cardinality of
minimal dictionaries of strings of q-ary prefix codes.We have
reformulated the problem of finding such cardinalities, as the
problem of finding the maximum number of summands k in
the q-ary K -S k-partition of the number n.
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The main result of our paper, a sharp formula on the maxi-
mum k such that theK -S k-partition of n exists, is presented in
Theorem 7 and proven per-partes in Theorems 3-6. Its prac-
tical implications include the security-estimate of encryption
systems based on prefix codes, e.g. [4], since the value k(n)
provides an upper-bound on the complexity of a possible
attack on the cipher, in which the attacker would try to
exhaustively search through all possible P-codes potentially
used to create a given q-ary string of length n. For example,
if the attacker obtains a binary (q = 2) ciphertext of length
1024, it can be split into k(1024) = 142 prefix-free words,
i.e. the attacker can potentially create minimal dictionaries of
cardinalities 1, 2, 3, up to 142, which could all have been a
part of the used key of the cipher. Obviously, the larger the
number k(n), the longer it takes the attacker to create all the
possible dictionaries.

Furthermore, we have also determined the conditions of
the existence of the canonical K -S k-partition of n of type
(t, t + 1), where tqt ≤ n < (t + 1)qt+1.
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