
Received 9 September 2022, accepted 4 November 2022, date of publication 14 November 2022,
date of current version 18 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222062

Flow Fairness With Core-Stateless Resource
Sharing in Arbitrary Topology
GERGŐ GOMBOS 1, DÁVID KIS1, LILLA TÓTHMÉRÉSZ2, TAMÁS KIRÁLY2,
SZILVESZTER NÁDAS 3, AND SÁNDOR LAKI 1, (Member, IEEE)
1Department of Information Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
2Department of Operations Research, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
3Ericsson Research, 1117 Budapest, Hungary

Corresponding author: Sándor Laki (lakis@inf.elte.hu)

This work was supported in part by the National Research, Development and Innovation Fund of Hungary, financed under the Thematic
Excellence Program (National Challenges Subprogram) Funding Scheme, through the Project Application Domain Specific Highly
Reliable Information Technology (IT) Solutions, under Grant TKP2020-NKA-06.

ABSTRACT Resource sharing is of utmost importance in networking environments where substantial
overprovisioning is economically infeasible. Different centralized solutions have recently been proposed
for Wide Area Networks, Access Aggregation Networks and other closed networking domains, relying on
different ideas from exploiting the capabilities of Software Defined Networking for dynamically allocating
bandwidth among flows or other traffic aggregates, to moving bottlenecks from the network to a single
location (e.g., a gateway node). In contrast to centralized solutions, core-stateless resource sharing proposals
have also emerged, solving the resource allocation problem in a distributed way. In this paper, we focus on the
network-wide behavior of a recent core-stateless resource sharing proposal called Per Packet Value (PPV).
In PPV, each traffic aggregate is represented by a distribution of values carried by the packets. The distribution
is used to express the resource sharing policy. We provide a theoretical analysis of PPV and show that it
solves the generalized max-min fair allocation problem in arbitrary topology. PPV has provable convergence
in case of both scalable and non-scalable congestion control behaviors. To validate the theoretical results
under various network conditions, thorough simulations have been carried out in networks with real-world
topology. The method assumes congestion controlled sources since non-responsive UDP flows can generate
dead packets taking bandwidth away from well-behaving flows. To remedy the problem of dead packets,
we propose a lightweight core-stateless policer method that can autonomously rule the resource usage of
unfriendly flows, reducing the effect of dead packets in the system.

INDEX TERMS Resource sharing, max-min fairness, utility function, core-stateless forwarding.

I. INTRODUCTION
The bandwidth allocation of flows over the Internet is solved
by the congestion control mechanism of TCP. This model
assumes equal resource share among flows and only results
in fair resource allocation if the same or at least compati-
ble congestion control algorithms are used by the compet-
ing flows. In many networking scenarios flows may have
different priorities or weights. For example, 1) in an Access
Aggregation Network different subscribers may have Internet

The associate editor coordinating the review of this manuscript and

approving it for publication was Fung Po Tso .

access with different Service-Level Agreements (SLAs) and
their traffic mix may contain various number of flows with
different importance and throughput requirements; 2) in a pri-
vate Wide Area Network (WAN) interconnecting cloud com-
puting sites around the globe the service traffic may also have
different weights and priorities. These environments require
more sophisticated resource sharing than what is provided by
existing congestion controls.

Traditional resource sharing solutions like weighted-fair
queueing require per-flow states andmany queues to bemain-
tained at each potential bottleneck in the network. Though
it guarantees isolation and weighted-fair resource sharing,

120312 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7457-9794
https://orcid.org/0000-0002-5439-4856
https://orcid.org/0000-0002-8875-5330
https://orcid.org/0000-0001-9366-8285

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

existing hardware routers/switches have limited traffic man-
agement capabilities and thus can only maintain 8-16 queues
for each egress port that is far less than the number of active
flows. To overcome the complexity of stateful solutions, dif-
ferent core-stateless resource sharing approaches have been
proposed in the past decade. These solutions tag packets at the
edge, while resource sharing at any node of the network solely
relies on these tags carried by packets, enabling flow-unaware
operation of the network core. The key benefits of such solu-
tions include that they move the computational complexity
to the network edge, where per-flow packet marking can be
implemented in a distributed way (e.g., each flow is marked
by a separate packet marking instance running at the end-host
or edge-router, or in a telco cloud). Accordingly, nodes simply
use packet tags to decide how to handle the incoming packet
in case of congestion. Compared to traditional approaches,
this design enables high-scalability and can ensure accu-
rate resource sharing among a large number of flows with
ease. With the advent of programmable data planes [1], their
real-world deployment has also become possible in different
network domains [2], [3], resulting in more flexible and con-
figurable alternatives to traditional methods.

In this paper, we focus on a recent core-stateless pro-
posal called Per Packet Value (PPV) [4]. Though it has
been shown in the past years [3], [4], [5], [6], [7] that the
key concepts of PPV can provide a flexible and conges-
tion control-independent solution for resource sharing and
active queue management problems, these studies have only
focused on the analysis of a single bottleneck scenario. The
main aim of this paper is to examine the network-wide
behavior of the PPV framework with both theoretical and
simulation tools in arbitrary network topology. The key
contributions of this paper include:
• We introduce a mathematical model to describe and ana-
lyze the throughput allocation of the PPV framework in
steady state. We have shown the existence and unique-
ness of the equilibrium allocation. As a corollary, apply-
ing the same resource sharing policy to all flows the PPV
method solves the max-min fair allocation problem.

• We have extended the mathematical model to emu-
late the behavior of both scalable (Data Center
TCP/DCTCP-like) and classic (Additive IncreaseMulti-
plicative Decrease/AIMD-like) congestion controls and
shown that for scalable flows the throughput alloca-
tion converges to the equilibrium, while in case of
AIMD-like behavior there is no convergence (because of
the throughput oscillations) but guaranteed lower bound
for the assigned flow capacities can be proved.

• We also show that non-congestion controlled flows can
violate the expected fairness between flows in multi-
bottleneck cases. To remedy this issue also known as
dead packet problem [8], we introduce a lightweight
method called Core-Stateless Policer that can automati-
cally regulate misbehaving, unfriendly flows by apply-
ing adaptive source suppression in the edge marker.
Similarly to other components of the PPV framework,

the proposed policer runs in a flow-unaware way and do
not require global coordination.

• The theoretical results hold on an arbitrary topology,
but they rely on simplified models. To examine the
performance in more realistic environments, we carried
out large number of packet-level simulations on both
a simple parking lot and real-world topologies from
the TopologyZoo data set [9]. We consider both con-
gestion controlled flows with DCTCP and NewReno,
and unresponsive UDP traffic. The simulation results
are in accordance with the theoretical analysis, showing
that PPV method can effectively solve resource sharing
between congestion controlled flows and it also ensures
that non-responsive UDP flows cannot gain advantages
over well-behaving flows. The effect of unresponsive
flows can almost fully be eliminated with the proposed
core-stateless policer.

The remaining part of the paper is organized as follows: In
Sec. II, we summarize the state-of-the-art in resource sharing
field. In Sec. III, we present the concept of the PPV resource
sharing framework. In Sec. IV, we introduce a mathemati-
cal model for analysing of the PPV method in steady state.
In Sec. V, we extend the model with dynamic flow behaviour,
emulating both scalable and classic congestion control algo-
rithms. Sec. VI investigates the effect of TCP-unfriendly
flows, resulting in unnecessary packet drops caused by dead
packets of the non-congestion controlled flows. We also pro-
pose a lightweight core-stateless policer to eliminate the dead
packet problem by regulating misbehaving flows. In Sec. VII,
we confirm the mathematical results with simulations, using
various settings and real-world topologies. In Sec. VIII we
briefly discuss the results, comparing the achievements to the
state-of-the-art. Finally, Sec. IX concludes our results.

II. RELATED WORK
The area of sharing network resources have a rich litera-
ture with fundamentally different approaches. In this section,
we aim to give an overview of the most important related
work.

A. STATEFUL RESOURCE SHARING
The majority of existing resource sharing solutions deployed
in production networks rely on the common paradigm of
weighted queueing. These methods use flow states at the
bottleneck nodes for packet scheduling. A well-known real-
ization of weighted fair queueing discipline is the Deficit
Round Robin (DRR) scheduling [10]. It maintains a separate
queue for each flow (or at least for the active ones). Its buffer
management scheme assumes that when the buffer is full one
or more packets from the longest queue are dropped. DRR is
a sophisticated per-flow queueing algorithm that can achieve
high degree of fairness. Fair queueing with DRR can be han-
dled by specific hardware solutions consisting of hardware
queues, however it results in scalability issues if the number
of flows are large. For example, programmable switches only
consist of a limited number of queues per egress port that is
not enough for per-flow queueing.

VOLUME 10, 2022 120313

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

In addition, if we want to use a different resource sharing
policy, it is hard to change since it require the reconfiguration
of several network devices. One solution for this problem is
the OpenQueue [11] that provides a language in which we
can easily add or change policies and manage the buffers in
run-time at a high abstraction level.

Some recent proposals aim to handle these issues for data
center and WAN environments and go further by applying
policies described by utility functions to control weighted
queues of the bottleneck nodes or by enabling hierarchical
resource sharing with flexible policy definition. For exam-
ple, NUMFabric [12] aims at solving the network util-
ity maximization problem by splitting it between end-hosts
and switches, and introducing a weight exchange proto-
col between the two, promising fast convergence times
in data center environments. Though NUMFabric provides
very flexible means to describe a rich set of policies,
it still applies traditional weighted fair queueing in the
switches, and assumes ultra-low delay between hosts and
switches.

BwE [13] proposed by Google uses rate limiting instead
of weighted queues to manage the resource sharing for a
globally-deployed private WAN. It introduces a bandwidth
function to define flexible policies. BwE also shares the idea
of the PPV framework [4] that routers cannot support the
scale and complexity of enforcing per-flow policies. The dif-
ference between the two solutions is BwE uses a centralized
control while PPV solves the throughput allocation in a fully
distributed way.

B. STATELESS RESOURCE SHARING
Several resource sharing architectures have been proposed in
the past decade that work without any per-flow states inside
the network. Such architectures typically consists of two kind
of nodes: 1) stateful Edge Nodes that are located close to the
subscribers and responsible for packet marking; 2) stateless
Core (or Resource) Nodes deployed in the core of the network
that perform simple packet processing solely based on the
markings of incoming packets. According to this terminol-
ogy, all the packet forwarding elements that could potentially
be a bottleneck in the network are Core Nodes, including
Edge Nodes as well.

The most widely known of such architectures is Diff-
Serv [14] where markings identify a set of pre-defined poli-
cies called Per-Hop Behaviors (PHBs) to be applied by the
routers. One of the key disadvantages of this approach is that
Core Nodes have to be re-programmed whenever a new PHB
(a new policy) is introduced, since Edge Nodes only assign
packets to traffic classes and mark them accordingly, but the
PHB logic is implemented by the Core Nodes.

Another such proposal is Core Stateless Fair Queuing [15]
that implements a single policy: proportional fair bandwidth
sharing andmarks packets of each flowwith its estimated rate
at the edge. In contrast to DiffServ, the logic of the policy
to be applied is implemented by Edge Nodes while Core
Nodes solely use the packet markings during dropping and

scheduling, resulting in a highly scalable bandwidth alloca-
tion approach.

Rainbow Fair Queueing (RFQ) [16] assigns a few drop
precedence levels called colors to the packets while Core
Nodes drop packets according to the assigned precedence
level.

This concept is extended by the PPV method [4] that uses
scalar values as packet markings instead of a few colors.
PPV method uses a Throughput-Value Function to express
operator policies and solves the resource sharing problem
by maximizing the total transmitted packet value. It aims at
providing a practical, distributed approximate solution for the
network utility maximization problem [17]. Different AQM
algorithms [3], [5], [6], [7], [18] have also been proposed as
extensions for the PPV concept.

A recent core-stateless resource sharing proposal is
ABC [19] that measures the activity level of flows and
encodes activity information into packets that is solely used
at forwarding nodes to enforce fair-bandwidth sharing among
users by dropping packets with high activity values more
likely. This solution is similar to the PPV method, but is less
flexible in defining operator policies.

Core-stateless networking solutions used to be a widely
examined research area in the early 2000s, however only a
very few proposals [4], [5], [6], [18], [19] have been pub-
lished in the past few years. With the emerging trend of
softwarization in computer networks and with the advent of
programmable data planes, their applicability has become
possible even in production environments.

III. PER PACKET VALUE
In this section, we briefly overview our core-stateless
resource sharing framework called PPV and introduce the key
definitions needed for the network-wide performance analy-
sis. Similarly to other core-stateless proposals [2], [14], [15],
[16], [19], the PPV framework consists of two key elements:
1) a packet marker which assigns values to each packet of a
flow (or in more general a traffic aggregate) according to a
predefined resource sharing policy; and 2) a scheduler that
solely uses the values carried by packets to make a deci-
sion on which packet to drop or mark with ECN Congestion
Encountered (CE) flag if the buffer is full or its size exceeds
a predefined threshold. Accordingly, each flow (or traffic
aggregate) has its ownmarker instance that labels each packet
entering the PPV networking domain with a drop precedence
called Packet Value (PV). Though policy-based marking is
aware of flow states, each flow has its own marker operating
independently, and thus can be implemented and deployed in
a distributed way.

The scheduler is implemented by all the nodes (e.g.,
routers, end-hosts) in the PPV domain as each of them could
be a potential bottleneck. When the buffer is congested, these
nodes always drop (or mark with ECN CE) one or more
packets with the smallest PV, instead of dropping the last
packet or uniformly at random. Several works, such as [5],
[6], [7], and [3], have shown that this dropping strategy

120314 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

can efficiently be implemented using simple FIFO queues
(see Sec. II).

Note that in the remaining part of the paper, we use the
term flow to express the trafficwhose packets belong together.
Accordingly, a flow can represent the packets of a TCP con-
nection, the traffic of an application, the total traffic of a given
user, or any combinations of them.

A. POLICY ENCODING
As mentioned, the core essence of PPV is how packets
of a flow are tagged with PVs. To this end, we use a
Throughput-Value Function (TVF) that is defined as the
derivative of a utility function: Va(x) = U ′a(x). Note that for
each flow a the utility function Ua(x) expresses the applica-
tion gain (or the value realized by the network operator) if
throughput x is assigned to the flow from the shared network-
resources. The derivative of the utility function represents the
extra value (e.g., the increase in profit for the operator) that
can be generated if extra throughput is given to flow a.
In the PPV method, TVFs are used to label packets where

the packet value expresses the gain that is only realized if the
packet is delivered (marginal utility in other words). The TVF
V (·) defines the PV distribution of a flow for any sending
rate R. Specifically, the throughput contribution of packets
with PV at least V (x) in the flow should be x (for any x : 0 ≤
x ≤ R). A practical packet marker [7] of flow a continuously
measures the flow’s sending rate R, chooses a rate x from
range [0,R] uniformly at random at packet arrival and assigns
PV p = Va(x) to the given packet.
Fig. 1 illustrates how the TVFs and PVs can be used to

share the bottleneck capacity between various flows. In the
first case, the bottleneck capacity is 10 Mbps shared between
three flows. The red, blue and green curves on the right side
represent the TVFs of Flow1, Flow2 and Flow3, resp. The
gray dotted line illustrates the cutoff value that results in a
resource allocation 0, 6.25 and 3.75Mbps for Flow1, Flow2
and Flow3, resp. This allocation is ensured by only transmit-
ting packets with PV above the cutoff level. One can observe
that Flow1 has no packet with PV above this threshold and
thus it cannot even transmit a single packet. In the case of
a 45Mbps bottleneck, the cutoff value is much smaller and
thus all three flows have non-zero assigned throughput. The
purple dotted line represents the cutoff value, leading to 10,
17.5 and 17.5Mbps throughput allocation for Flow1, Flow2
and Flow3, resp. In this case, packets below the threshold
marked by the purple line are only dropped (or marked with
ECNCE). One can observe that the inverse function of a TVF
is basically a bandwidth function introduced in [13] to express
resource sharing policies, and thus bandwidth function poli-
cies can easily be mapped to TVFs in the PPV system, and
vice versa.

In general, at high congestion only packets with high PVs
are transmitted, more precisely packets with PV above a cer-
tain PV threshold that we call Congestion Threshold Value
(CTV). The CTV at a bottleneck represents the minimal PV
that can successfully be transmitted via the congested link.

FIGURE 1. Resource sharing with the PPV framework.

FIGURE 2. Policy examples as throughput-value functions.

The observed CTV reflects the actual congestion level, since
at a congested link the total throughput of packets having PV
at least the current CTV is exactly the bottleneck capacity.
CTV is not a parameter of the proposed system, but an emer-
gent property of the applied drop minimum-PV first AQM
strategy. The amount of high and low PV packets determines
the resource share between various flows, resulting in that
at high congestion, aggregates with larger share of high PV
packets get more throughput.

Fig. 2 depicts few example policies expressed as TVFs.
Voice traffic is rate limited and has a guaranteed throughput
need. It is defined by the red curve, assigning the maximum
PV up to the rate limit, and above that the smallest value
is assigned to the packets, emulating a rate limiter policy.
The blue, orange and green TVFs express weighted fairness
between the different flow groups, where the weights rely
on the congestion level (CTV). For example, at high conges-
tion (I.) a Gold flow can get twice the throughput of a Silver
flow; at medium congestion (II.) Silver flows get 10 Mbps
throughput and the rest can be used byGold flows; at low con-
gestion (III.) 1:4 resource share is defined between Silver and
Gold flows. For the evaluations in this paper we configured
the Gold and Silver policies to always achieve 2:1 resource
sharing.

B. POTENTIAL APPLICATIONS
Good Quality of Service in novel applications such as
AR/VR, cloud rendered gaming, HD or holographic video
conferencing and remote presence requires high bandwidth,
low latency or both. End users connect to the Internet with dif-
ferent subscriptions and access properties. As gigabit-speed
access links became widespread, the possibility of temporal

VOLUME 10, 2022 120315

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

and even permanent overloads in the Access Aggregation
Network has increased. These periods can be handled by
over-provisioning, but it has a high price: high infrastructure
cost and underutilization in most of the time. Weighted Fair
Queueing (e.g., DRR scheduling) is a widely adopted solu-
tion to ensure complex resource sharing policies in access
networks, where resource sharing is controlled among traffic
aggregates (TAs), e.g., between virtual operators, network
slices, users, or subflows of users. Nowadays, QoS is typi-
cally enforced in the border gateway of the access network,
since all traffic going towards or coming from the Internet
flow through this node. Note that this solution puts high com-
putational load on the gateway node and has further limita-
tions. PPV could serve as a lightweight alternative for such
network environments.

Another area where PPV-like resource sharing could have
potential benefits is cloud networking where it can ensure
complex resource sharing policies between tenants and/or
its subflows. The access to the shared resources at tenant
level is described in the Service Level Agreement, reflecting
the per-tenant payment granularity applied by today’s data
centers.

Moreover, PPV could also have potential benefits in any
other physical network infrastructures (e.g., private WAN,
5G/6G RAN, etc.) that are shared among virtual networks
(e.g., slices, virtual operators). It can solve not only the isola-
tion of virtual networks but the differentiation between traffic
groups inside virtual slices.

Though PPV requires new packet tagging and schedul-
ing mechanisms that make its deployment difficult,
programmable switches could enable its real-world and incre-
mental deployment in the future.

IV. MODEL AND ANALYSIS OF STEADY STATE
In this section, we introduce a mathematical model to analyse
the network-wide properties of the PPV method in steady
state, and show that it can solve the generalization ofmax-min
fair allocation problem over arbitrary topology.

Let N = (V ,E) be a directed graph (the network) with
vertex set V , edge set E and link capacities g ∈ RE

>0. We con-
sider a k-commodity flow problem with fixed paths: Pi is
a path from si ∈ V to ti ∈ V , di ∈ R+ is the maxi-
mum demand of the i-th flow, and vi : [0, di] → R+ is
a strictly monotone decreasing, continuous throughput-value
function (TVF) with vi(di) = 0 (i ∈ [1, k]). Note that the
strictly monotone decreasing and continuous properties of
TVFs (e.g., see Fig. 2) can be ensured by replacing horizontal
or vertical line segments with segments having a small or
large negative slopes, resp. A throughput allocation is a k-
tuple x = (x1, . . . , xk) where 0 ≤ xi ≤ di (i ∈ [1, k]). We use
the notation

x(e) =
∑
i:e∈Pi

xi (e ∈ E).

An allocation x is feasible if

x(e) ≤ ge for every e ∈ E .

For a throughput allocation x and a link e ∈ E , we define
the cutoff value (CTV as defined in Sec. III) αe(x) as

αe(x) = inf

α ≥ 0 :
∑
i:e∈Pi

min{xi, v
−1
i (α)} < ge

 ,
where v−1i (α) is defined as 0 if α > vi(0).

For an allocation x, the truncated allocation x̄ =

(x̄1, . . . , x̄k) is defined as

x̄i = min
{
xi,min

e∈Pi
v−1i (αe(x))

}
(i ∈ [1, k]).

Since TVFs vi are continuous, an allocation x is feasible if and
only if x = x̄. A feasible allocation is called an equilibrium
allocation if

xi = x̄i = min
e∈Pi

v−1i (αe(x)) (i ∈ [1, k]).

Note that v−1i (αe(x)) is between 0 and di for any x.

A. EXPLANATION
This model corresponds to a static interpretation of the PPV
framework. The value xi corresponds to the sending rate of
flow i, and ge is the maximum capacity of link e. The TVF vi
is the same as the function V introduced in Sec. III, which is
the derivative of the utility function.

Each packet of flow i is marked with a random value vi(z)
where z ∈ [0, xi] is chosen uniformly at random. Link e
discards every packet with value less than αe(x), represent-
ing that the PPV method drops packets with smallest packet
values when the buffer is full. To compute the effective rate of
flow i, we should consider the rate of non-discarded packets;
this can be computed as

min
{
xi,min

e∈Pi
{v−1i (αe(x))}

}
= x̄i.

Thus, x̄i is the effective rate of flow i. The throughput alloca-
tion x is feasible if no packet is discarded; it is in equilibrium
if it is feasible and an increase in the sending rate of any flows
results in packet loss.

B. EQUILIBRIUM: EXISTENCE AND UNIQUENESS
We first show that the equilibrium allocation exists, is unique
and results in a fair allocation. The mathematical proof of this
theorem is described in Appendix A.
Theorem 1: For a throughput allocation x, let v↓(x) denote

the vector obtained by ordering v1(x1), . . . , vk (xk) in decreas-
ing order. There is a unique equilibrium allocation, and
it is the unique feasible allocation for which v↓(x) is
lexicographically minimal among all feasible throughput
allocations.

As a corollary of this theorem, we can also claim the fol-
lowing statements: 1) since v↓(x) (representing the vector
of cut-off values) is lexicographically minimal and v(·) is
strictly monotone decreasing, the equilibrium allocation is
the feasible allocation that maximizes the delivered packet

120316 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

values. 2) If we assume that all flows apply the same TVF
v(·) (same resource sharing policy), the equilibrium allocation
x1, . . . , xk is a max-min fair allocation. 3) If each TVF vi(·) is
the derivative of an appropriate utility functionUi(·), the equi-
librium allocation is also the feasible throughput allocation
that maximizes the minimum of flow utilities, generalizing
the definition of max-min fair allocation.

V. CONGESTION CONTROLLED FLOW MODEL
In the previous section, we have investigated the properties
of PPV framework in steady state. Flows on the Internet
have no prior knowledge about the network state. Some flows
use constant sending rates while others are controlled by
congestion control mechanisms. In this section, we exam-
ine the dynamic behaviour of flows with respect to various
update protocols which are simplified models of congestion
control algorithms. In this simplified model, flow rates are
updated in discrete time steps (phases). Each phase is consid-
ered as a steady state where the definitions of the previous
section apply, and the sending rate xi is updated for the next
phase based on the difference between xi and x̄i. Note that
x̄i expresses effective rate of non-discarded packets (i.e., the
arrival rate at the destination of the flow). We say that a flow
xi has loss in a given phase if x̄i < xi; otherwise, it is lossless.
We will show that the following types of update protocols are
well-behaved.

A. TIGHT CUT UPDATE PROTOCOLS
Definition 2 (Tight Cut Update): If xi > x̄i, then the send-

ing rate is x̄i in the next phase. Otherwise the sending rate is
at least min{di, xi +1} for some fixed 1.
One specific instance of the tight cut update strategy is

what we call the slowly growing protocol. It emulates the
behavior of scalable congestion controls. Though scalable
congestion control like DCTCP [20] was originally intro-
duced for data center networks to remedy the performance
issues of traditional TCP, recent works propose the applica-
tion of similar solutions (e.g., TCP Prague [21], Google’s
BBRv2 [22]) over the Internet or at least in closed net-
working domains (e.g., access aggregation networks, private
WANs).
Definition 3 (Slowly Growing): For the next phase, the

sending rate of terminal i is x̄i if xi had loss in the last phase,
otherwise the sending rate ismin{di, xi+1}, where1 is fixed
in advance.

One can observe that tight cut strategies always probe the
throughput carefully and reduces the rate proportionally to
the congestion level in case of packet loss. It is not sur-
prising that this strategy shows convergence to equilibrium
allocation:
Theorem 4: If each flow follows some tight cut update pro-

tocol, then the throughput allocation converges to the equilib-
rium of the network.

Proof of the theorem and additional technical lemmas are
detailed in Appendix B.

B. AIMD, A NON TIGHT CUT UPDATE PROTOCOL
We also examine a (non tight cut) update protocol that mimics
the classic AIMD-based congestion control (e.g., TCP Reno,
NewReno).
Definition 5 (AIMD): For the next phase, the sending rate

of terminal i is xi
2 if xi > x̄i, otherwise it increases to

min{di, xi +1}, where 1 is fixed in advance.
AIMD halves the sending rate in case of congestion,

otherwise it increases the rate linearly by adding a con-
stant factor, resulting in the well-known sawtooth-like
oscillations.

It does not have such nice behavior as tight cut pro-
tocols, but the use of the PPV framework can guaran-
tee a lower bound for the assigned capacity even for this
case. Our first result recovers the empirically known fact
that if the AIMD protocol is used, sending rates might
fluctuate.
Claim 6: If some flows use the AIMD update protocol,

then the flow throughput values might not converge to the
equilibrium.

Proof: We show an example where the network is a
single edge with two flows. Let d1, d2 = 2, v1(x) = v2(x) =
2 − x. Let ge = 3. In this case the equilibrium is (x1, x2) =
(32 ,

3
2). This is clearly a feasible allocation, and for αe = 1

2 ,
x1 = x̄1 = x2 = x̄2 = 3

2 .
To show a process that does not converge to this equi-

librium, let us start with flow throughput values (x1, x2) =
(118 ,

7
8). It is easy to check that in this case the consecutive

throughput values will be (128 ,
8
8), (

13
8 ,

9
8), (

14
8 ,

10
8), (

14
8 ,

11
8),

(78 ,
11
8), (

8
8 ,

12
8), (

9
8 ,

13
8), (

10
8 ,

14
8), (

11
8 ,

14
8), (

11
8 ,

7
8) and from

this point, the protocol will cycle. �
As another negative result, we show the following:
Claim 7: A flow using AIMD-like update protocol might

receive smaller channel capacity in average than a flow using
a tight cut protocol, even if their TVFs agree.

Proof: Wegive an examplewith twoAIMDand a slowly
growing protocol, where the AIMD protocols cycle, and on
average they get smaller capacity than the slowly growing
protocol.

Let our network consist of an edge. We will have three
flows x1, x2 and x3. x1 and x2 will follow the AIMD protocol,
while x3 the slowly growing protocol. Let d1, d2, d3 = 2,
v1(x) = v2(x) = v3(x) = 2− x and ge = 9

2 .
Let the protocol start with (x1, x2, x3) = (118 ,

7
8 ,

13
8).

Then the throughput values of the following phases will be:
(128 ,

8
8 ,

14
8), (

13
8 ,

9
8 ,

15
8), (

14
8 ,

10
8 ,

14
8), (

7
8 ,

11
8 ,

13
8), (

8
8 ,

12
8 ,

14
8),

(98 ,
13
8 ,

15
8), (

10
8 ,

14
8 ,

14
8), (

11
8 ,

7
8 ,

13
8), from where the protocol

will cycle.
For x1 and x2, the average capacity is 21

16 . While for x3, the
average capacity is 28

16 . As the di and the vi are symmetric for
the three flows, the equilibrium is where each flow gets one
third of the capacity, that is, 3

2 =
24
16 . �

However, we can show that using the PPV method for
dropping packets, there is a guaranteed lower bound for the
capacity assigned to flows using the AIMD protocol.

VOLUME 10, 2022 120317

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

Theorem 8: If a flow xi follows the AIMD protocol, then
after some time,

xi ≥
1
2
min{di,min

e∈Pi
v−1i (βe)}

always holds.
Accordingly, each flow gets at least half of their capacity

in the equilibrium allocation. The proof of the theorem can be
found in Appendix C. Note that this lower bound cannot hold
if packets are dropped randomly, instead of using the PPV
method.

VI. POLICING UNFRIENDLY FLOWS
In general network typologies, per link control of resource
sharing cannot solely ensure that the ideal resource allocation
is reached. The current Internet relies on end-to-end conges-
tion control that reduces the sending rates of flows when they
detect network congestion.

It has been shown that the efficiency of this approach
depends on two assumptions: 1) all flows are cooperative
and 2) they are homogeneous or at least react to congestion
similarly. However, these assumptions can easily be violated
by unfriendly flows that do not implement congestion control
at all, are drop-tolerant or increase their transmission rates
too aggressively and thus they are not TCP-friendly. In the
presence of unfriendly flows, links could be busy transmitting
packets that will only be dropped later along the network path,
occupying scarce bandwidth from other well-behaving flows
on links before the congested link. It also means that some
packets may be dropped because of other packets called dead
packets [8] that end up being dropped on a later link, causing
unnecessary packet drops. This problem is mitigated by end-
to-end congestion control as that keeps packet loss small.
Flow policers (e.g., [23]) can similarly mitigate this problem
by enforcing good flow behavior even for unresponsive flows,
but they require additional per-flow states in network nodes.
It would be desirable to apply a lightweight flow policer
which is easy to deploy and implement without increasing
the complexity of network nodes.

In this section, we introduce the concept of Core-Stateless
Policing (CSP), which extends our PPV framework with flow
policing, enabling to handle the problem of dead packets
efficiently. It only keeps per-flow states in the flow’s packet
marker instance thus does not require any new flow states
in the core of the network. It requires an extra bit called
notification flag in packet headers and infrequent signaling
messages from the bottleneck scheduler to the packet marker.
Typically no (or very rare) signaling is needed for congestion
controlled flows. However, CSP regulates unresponsive flows
within the core-stateless network domain. Its control loop is
clocked by the round trip delay between the bottleneck nodes
and the given packet marker instance instead of the end-to-
end RTT of the flow.

To control unresponsive flows, CSP requires the addition
of four basic mechanisms to the packet marker component
and the scheduler: In addition to labeling packets with PVs as

previously, a packet marker instance also maintains a cut-off
value called marker CTV (CTVm) and a PV range defined by
PVmin and PVmax , expressing packet values If a packet arrives
with a PV less thanCTVm, the marker will drop it as the polic-
ing action. However, if the PV is in range [PVmin,PVmax] and
a packet has not been tagged with the notification flag for
ttagging = 5 ms it sets the notification flag in the outgoing
packet. Whenever a bottleneck scheduler drops a packet, if its
notification flag is set, it also sends a control message to
the packet marker containing the PV of the dropped packet.
When a marker receives a control message, where the carried
value PV is greater than CTVm, it sets CTVm = PV .

In addition to setting CTVm, the marker decreases CTVm
periodically: if no control message was received with PV >

CTVm within an update period tupdate = 30 ms, the coded
marker CTV is decreased with a constant CTVstep = 64 (it
stands for ∼ 3% increase in rate). CTV is not decreased
below 0.

Whenever the marker’s rate measurement (R) or CTV
(CTVm) is updated the PV range is updated as follows: rmax =
min((1− f1) ·R,TVF−1(CTVm)), where TVF−1(CTVm) is the
policing rate determined by CTVm. PVmin = TVF(rmax) and
PVmax = TVF(f2 · rmax). f1 (0.1 by default) represents the
allowed loss rate of the flow within the domain, before polic-
ing is activated. Packets representing the rate range [0.9·R, R]
are not generating control messages, which means that until
10% (f1) of the flow’s packets are lost, the policing is not
activated. It was designed so that congestion controlled flows
will not activate policing in normal cases. Furthermore, polic-
ing itself limits the loss rate thus the control itself limits
the necessary signaling. f2 (0.8 by default) is introduced in
order to have more meaningful tagged packets. It limits how
high the PV of a packet tagged with the notification flag
could be, and dropping a packet with smaller PV has higher
probability.

The signaling message from the scheduler to the packet
marker can be constructed using only packet header informa-
tion and scheduler state, no per-flow state or policy knowl-
edge is required in the core-stateless scheduler. The tagged
packets may include the address of the marker instance in
an extension header. Alternatively, a scheduler may send the
signaling directly to the source address of the packet, when
it is ensured in the domain that these packets can be termi-
nated in the relevant packet marker. This design is lightweight
enough for implementing the signaling in P4 programmable
switches [1].

One can observe that CSP artificially extend non-
responsive flows with congestion control following the
previously introduced tight-cut update protocol, and thus
Theorem 4 also holds:
Claim 9: If each flow is controlled by CSP (or follows

another tight cut update protocol), then the throughput allo-
cation converges to the equilibrium of the network.

Note that the algorithm parameters could be tuned based
on the allowed loss rate of the flow within the domain, the
signaling load, and how conservative the policing shall be.

120318 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 3. Simple scenario to demonstrate the effect of Core-Stateless
policing.

VII. SIMULATION-BASED EVALUATION
Though the theoretical results described in the previous
section hold on an arbitrary topology, they rely on simplified
models. To examine the performance of the PPV framework
under more realistic conditions, we have carried out a large
number of packet-level simulations with NS-3.31 network
simulator. Both packet marker and scheduler components as
described in Sec. III have been implemented in the simulator,
including the Core-Stateless Policing (CSP) implementation.
CSP was disabled by default, when enabled it is explicitly
stated. For packet marking, we use two resource sharing poli-
cies: Gold and Silver. The corresponding TVFs are depicted
in Fig. 2. The packet marker encodes the PV into a 16 bit
header field (the identification field of IPv4 header). The
scheduler component can work in both drop and ECN mode.
In drop mode, it simply implements the drop minimum PV
first AQM strategy when the buffer is full. Note that it can
drop either the newly arrived packet or one or more packets
from the middle of the buffer. In ECN mode, the scheduler
buffer is infinite, the unmarked packets having the smallest
PVs are marked with ECN CE until the amount of unmarked
packets is below a predefined marking threshold. We used
NewReno or DCTCP for TCP congestion control. A single
flow consisted of 5 TCP connections.

A. CORE-STATELESS POLICING
To show the benefits of Core-Stateless Policing we created
a simple parking lot scenario with three nodes, A, B and C,
as depicted in Fig. 3. We load this topology with 4 flows.
Flow 1 transmits between nodes A and C and thus loads both
the AB and BC bottlenecks, it has an end-to-end RTT of
14 ms. Flow 2 is between AB, and Flow 3 and Flow 4 are
between BC, each has an end-to-end RTT of 9 ms. The capac-
ity of both links is 100 Mbps and the buffer is 125 KB long.

Fig. 4a shows the resulting baseline throughput on the two
links when all flows are using unresponsive UDP transmitting
at 100 Mbps. Though Flow 1 only gets 33.3 Mbps on link
BC, it still takes its share of 50 Mbps on link AB, resulting
in 16.6 Mbps worth of dead packets. Fig. 4b shows the same
scenario with CSP switched on. While the throughput on link
BC do not change, as a consequence of the core-stateless
policing, Flow 1 gets much smaller throughput on AB and
consequently Flow 2 can use the remaining capacity of the
AB link getting close to the ideal 66.6 Mbps. To demonstrate

Algorithm 1 CTV-Search Algorithm
1: Throughput allocation, x = {x1, . . . , xk}
2: Initial allocation, ∀j ∈ [1, k] : xj← dj
3: Initial cutoff values, ∀e ∈ E : αe← 0
4: Set of ready edges, Ê ← ∅
5: for it = 1 to |E| do
6: Max. cutoff value, αmax ←−∞
7: Bottleneck link w. max. cutoff, emax ← None
8: for each e ∈ E\Ê do
9: αe← findCTV(e, x)
10: if αe > αmax then
11: αmax ← αe
12: emax ← e
13: end if
14: end for
15: for each xj ∈ x | emax ∈ Pj do
16: xj← min(xj, v

−1
j (αmax))

17: end for
18: Ê ← Ê ∪ {emax}
19: end for

the operation of our CSP algorithm in this case, we depict the
scheduler CTVs of the two links and the marker CTV used in
Flow 1 and Flow 2 in Fig. 5. The link CTVs are only depicted
when a packet is lost on a given link in the last 100 ms. It is
visible how the marker CTV used by the policer for both
flows are oscillating around the CTVs of respective bottle-
neck links. Note that link AB is the bottleneck for Flow 2,
while link BC is the bottleneck for Flow 1. The marker CTV
is always somewhat smaller than the link CTV (as intended,
to allow some packet loss for the flows). It is regularly set
to a higher value closer to the link CTV when the algorithm
decreased the marker CTV too much.

To evaluate the effect of CSP on TCP traffic we investi-
gated mixed scenarios where Flow 1 is still an unresponsive
UDP, but the rest of the flows (2, 3, 4) are using NewReno
TCP congestion control. Fig. 4c is the baseline without CSP.
In addition to the degradation seen in the UDP only case
(Fig. 4a), the Reno flows cannot even completely utilize their
fair shares on any of the links due to the aggressiveness of the
UDP flow. Fig. 4d shows that when CSP is applied, the traffic
of the UDP flow (Flow 1) will be less overwhelming for TCP
flows: Flow 3 and Flow 4. Also, the UDP flow is limited on
link AB close to its fair share on the other link BC, resulting
in higher TCP throughput for Flow 2. The resulting sharing
is less perfect than in the previous UDP-only case, but still
there is significant improvement not only by solving the dead
packet problem, but also by controlling the aggressiveness of
UDP traffic. Fig. 6 depicts the link and marker CTVs for this
case. It is visible that for Flow 2 (TCP) the marker CTV is
only rarely set, and it is restored fast by the algorithm, while
for Flow 1 (UDP) it is continuously kept close to the CTV of
link BC. The CTV of link BC is somewhat less stable than in
the UDP-only case, due to the presence of the adaptive TCP
traffic of Flow 3 and Flow 4.

VOLUME 10, 2022 120319

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 4. The effect of core-stateless policing on unresponsive flows.

FIGURE 5. UDP-only scenario, marker (CSP) and link CTVs.

FIGURE 6. Mixed scenario with one UDP and three TCP flows, marker
(CSP) and link CTVs.

B. IDEAL THROUGHPUT ALLOCATION
To calculate the ideal (equilibrium) throughput allocation
introduced in the previous sections, we designed an algorithm
called CTV-Search (Alg. 1). CTV-Search was inspired by the
well-known Waterfilling algorithm [24] used to calculate the
max-min fair allocation.

The algorithm calculates the cutoff values (CTVs) applied
by each edge in the network and the equilibrium alloca-
tion according to the definition of Sec. IV. In each iteration
(line 5) the algorithm finds the largest cutoff value among the

FIGURE 7. The parking lot topology with various traffic patterns. Silver
and Gold flows are marked with S and G, resp.

non-ready edges and updates the flow throughput values xj
accordingly. In line 9, findCTV(e, x) finds the cutoff value
αe so that

∑
xj∈x|e∈Pj min(xj, v

−1
j (αe)) = ge. This method can

be approximated by applying a binary search in the packet
value range until |

∑
xj∈x|e∈Pj min(xj, v

−1
j (αe))−ge| < ε does

not hold. One can observe that the loop in line 8 iterates over
all the non-ready edges and finds the possible maximal cutoff
value among the non-ready edges. The edge where this cutoff
value is applied ismarked as ready. Note that the largest cutoff
value leads to the most significant throughput limitation as
the TVFs are strictly monotone decreasing. One can observe
that the algorithm determines the cutoff values in decreasing
order.

In the following sections, we use this algorithm to calculate
the ideal throughput allocation of flows to which we compare
the empirical throughput values of packet-level simulations.

C. STATIC FLOWS IN A PARKING LOT TOPOLOGY
In this scenario, we use a simple parking lot topology depicted
in Fig. 7 with different traffic intensities. The traffic is gener-
ated along four different routes in the topology: (1) A desig-
nated flow between source U1 and sink U4, using either Gold

120320 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 8. Simulation results on the parking lot topology with different traffic intensities and congestion controls. The green dot represents a designated
flow (either Gold or Silver policy).

FIGURE 9. Simulation results of the DRR method on the parking lot
topology with different traffic intensities and congestion controls. The
green dot represents a designated flow.

or Silver policy (see Fig. 2); (2) flows with Silver policy use
the route between source U2 and sink U3; (3) We generate
traffic with Gold policy from B1 to B2 and (4) from B3
to B4. We have a single designated flow, while the number
of flows along other routes is varied (1 or 10 flows). Each
link in the topology has 100 Mbps capacity and 2.5 ms link
delay. The flows are TCP connections with either DCTCP
(scalable) or NewReno (AIMD-like) congestion control,
or non-responsive UDP traffic without or with Core-Stateless
Policing (CSP). The buffer size used in the scheduler is
190 KB for NewReno and 50KB for UDP experiments. In the
DCTCP scenario, the scheduler operates in ECN mode and
the ECNmarking threshold is set to 190KB. The TCP sources
are greedy with infinite data, while the UDP sources have
a constant 100 Mbps sending rate. Fig. 8 depicts the simu-
lation results for various settings and traffic intensities. The
y-axis represents the relative error of the observed through-
put values for Gold and Silver flows and the single des-
ignated flow. The relative error of a flow i is defined as
(xi − x̄i)/x̄i, where xi is the observed average throughput
of flow i, while x̄i is the ideal throughput according to the
equilibrium allocation. The x-axis represents the various sce-
narios with flow types (DCTCP, NewReno, UDP, UDP-CSP),
the policy of the designated flow (G as Gold, S as Silver) and
the number of flows with the applied policies along routes
(3), (2) and (4). For example, G1-S1-G10 represents 1 Gold
flow along (3), 1 Silver flow along (2) and 10 Gold flows
along (4).

As it can be observed the UDP scenarios deviate the
most from the ideal share. These flows do not respond to

congestion signals (packet drops) which is assumed by the
definition of equilibrium allocation. Note that a UDP source
in our simulation sends unresponsively at a constant rate,
thus unnecessary drops due to dead packets can happen. For
example, in the G1-S1-G10 case, the Gold designated UDP
flow shares the link M1-M2 with another Gold UDP flow,
leading to 50 Mbps-50 Mbps. On the second link (M2-M3)
the Silver flow gets also 50 Mbps and the designated flow
does not experience any drops. Finally, the last link (M3-M4)
is shared between the designated flow and 10 other Gold UDP
flows, limiting the designated flow to 9.1 Mbps (same as the
other 10 Gold flows in (4)). In the equilibrium allocation
the Silver flow gets 100 − 9.1 = 90.9Mbps that cannot be
guaranteed in presence of unresponsive flows. It is visible that
enabling CSP solves this issue, and all allocations are close
to ideal.

The second highest deviation is for DCTCP flows, though
that is in the acceptable range. The deviation is even smaller
for Reno flows, while for UDP-CSP it is consistently close to
the ideal.

As a comparison, we also executed the same scenarios with
DRR scheduling. Fig. 9 depicts simulation results for TCP
NewReno and UDP flows. In DRR, the flows are equally
weighted, expecting fairness between them. One can observe
that the results are very similar to what we get with the PPV
method. In NewReno cases, the single designated flow get
slightly lower throughput than the equal share that is caused
by its conservative congestion control. In case of UDP flows,
the designated flow causes dead packets in several scenarios
(e.g., 1-1-10, 1-10-1, 1-10-10), leading to significant devia-
tions from the fair share. This is similar to the UDP cases
without CSP in Fig. 8.

D. DYNAMIC TRAFFIC BEHAVIOR
In the second scenario, we also use the same parking lot
topology with the same link settings (100 Mbps link capacity
and 2.5 ms link delay). The traffic is varied over time: 1) the
single designated Gold flow is present from the beginning of
the simulation to its end; 2) 5 Silver flows from U2 to U3
starts at 10 s and ends at 60 s; 3) 5 Gold flows enters the
system along route B1 to B2 at 20 s and they are closed at
40 s; 4) 5 Gold flows from B3 to B4 are present between
30 and 50 s.

VOLUME 10, 2022 120321

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 10. The traffic intensities along the different routes are varied.
The flows use TCP NewReno congestion control.

FIGURE 11. The traffic intensities along the different routes are varied.
The flows use TCP DCTCP congestion control.

FIGURE 12. We selected three topologies from the database of
TopologyZoo [9].

Fig. 10 depicts the throughput of TCPflowswith NewReno
congestion control. The flow throughput values along the dif-
ferent routes are marked with solid lines while black dashed

curves denote the ideal throughput levels. The simulation
splits into 7 regions: 1) (0-10 s) the designated Gold flow
solely uses the network, resulting in slightly less throughput
than 100 Mbps; 2) (10-20 s) the designated flow shares the
link M2-M3 with 5 Silver flows. According to the applied
TVFs, the desired resource share between Gold and Silver
flows is 2:1 that is also reflected by the observed throughput
values (both Silver and Gold). 3) (20-30 s) In addition to the
Silver flows, the designated flow also shares the link M1-M2
with 5 Gold flows. One can observe that all flows get the
same throughput. This is caused by theM1-M2 link where the
designated flow is limited to 100/6 = 16.7 Mbps, and thus
Silver flows on link M2-M3 immediately occupy the unused
capacity. 4) (30-40 s) Another 5 Gold flows enter the system,
crossing link M3-M4. One can observe that this extra traffic
does not affect the throughput of other flows. 5) (40-50 s)
The 5 Gold flows crossing M1-M2 link are closed, but
the designated flow remains limited by another bottleneck
link M3-M4, sharing the resource with 5 other Gold flows.
6) (50-60 s) The 5 Gold flows crossing M3-M4 leave the
system. We get the same resource share as in range 10-20 s.
7) (60-70 s) The designated flow occupies the available
resources. Fig. 11 shows the same experiment with DCTCP
congestion control, the results are very similar to NewReno.

E. REALISTIC TRAFFIC
In addition to static flows, we also evaluated the PPV method
in the parking lot topology (Fig. 7) with more realistic
dynamic traffic patterns. We assume Poisson arrival with
arrival rate 2 flows/s on each path. NewReno is used as
TCP congestion control. For each arrival, the file sizes (flow
sizes) to be downloaded are chosen from four discrete values
(10 kB, 100 kB, 1 MB and 10 MB) with equal probability.
Themaximumnumber of active downloads per path is limited
to 50, each flow has a separate Gold or Silver packet marker.
We created evaluation scenarios to compare the resource shar-
ing accuracy with and without the PPV method. Each evalu-
ation scenario lasts 600 s.

Fig. 19 depicts the download times (flow completion times)
of the 10 kB flows for all 4 paths with both simply tail
drop (no resource sharing control) (Ref) and the PPV method
(G/S). The box plot shows the minimum value, the 25th (bot-
tom of the box), 50th (black line), 75th (top of the box),
and 99th percentiles, while the mean value is illustrated as
a triangle. Fig 20 depicts the same for flows of 10 MB size.

One can observe that in case of tail drop flows on path
U1-U4 experience the longest download times. On this path,
only 571 flows were launched out of the 1129 flow arrivals
according to the applied arrival rate in the Poisson model and
because of the applied concurrent download limit 50. This
path competed with all 3 other paths and thus resulted in
increased RTTs and packet losses.

When we applied the PPV method the download times of
path U1-U4 became comparable to that of other paths. The
download times of other paths increased not only because of
the PPV-based resource sharing, but also because of serving

120322 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 13. Deutsche Telekom; Ideal vs. Experimental throughput.

FIGURE 14. Geant; Ideal vs. Experimental throughput.

FIGURE 15. Sprint; Ideal vs. Experimental throughput.

FIGURE 16. DRR NewReno Ideal vs. Experimental throughput.

FIGURE 17. DRR Udp Ideal vs. Experimental throughput.

more flows on the long path. With PPV, all the flow arrivals
were served on the long path, therefore the overall load of
the system increased One can also see that the download
times in case of 99% of the 10 kB flows also decreased for

all paths, as PPV-based per-flow resource sharing improves
consistency.

This scenario is based on complex bottleneck structure [25]
where congestion control itself cannot handle RTT unfairness

VOLUME 10, 2022 120323

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

FIGURE 18. Cumulative distribution function of relative errors.

FIGURE 19. Download times for 10 kB file sizes.

FIGURE 20. Download times for 10 MB file sizes.

and thus flows on the long path gets much less throughput
share than their fair share. However, PPV-based resource
sharing can also ensure good fairness among flows with very
different RTTs.

F. EVALUATION IN REALISTIC TOPOLOGIES
In the last scenario, we evaluate the performance in three
real-world network topologies chosen from the Topology-
Zoo [9] collection: 1) Deutsche Telekom, 2) Geant and
3) Sprint. The topologies are illustrated in Fig. 12. Since these
networks are different in size, we set the number of simu-
lated flows to be proportional to the number of nodes N in
the network: N 2/10 flows for Deutsche Telekom and Geant,
and N 2 for Sprint. Note that Sprint topology only consists
of a small number of nodes. The source and the destination
of each flow have randomly been selected. Half of flows
use Gold while the other half Silver policies. The sending
rate of each the UDP flows is 100 Mbps. The packet size is
800 bytes for all sources. Every link on the topology has the
same capacity of 100 Mbps while the link delay is calculated
according to the geographic distance of its two end-points.
To this end, we have applied the formula described in [26] for
converting geographic distances to link delays. The flows are
either TCP connections with DCTCP or NewReno conges-
tion control, unresponsive UDP, or UDP controlled by CSP.

TABLE 1. Root-mean-square error (RMSE in Mbps) of the simulation on
the different topolgies.

TABLE 2. Root-mean-square error (RMSE in Mbps) of the simulation on
the different topolgies with DRR.

Figs. 13, 14 and 15 show scatter plots comparing the observed
throughput of flows to their ideal throughput allocation for
Deutsche Telekom, Geant and Sprint topologies, resp. One
can observe that using NewReno congestion control there
is only a small deviance from the ideal throughput for all
topologies. DCTCP shows similar behavior with a somewhat
wider deviance around the ideal throughput. The Deutsche
Telekom case shows some significant outliers (e.g., 25 Mbps
assigned throughput instead of the 50 Mbps ideal). These
measurement points belong to flows crossing intercontinental
links where the delay is large and thus the buffers used in
the simulation are undersized, prohibiting these TCP flows
to fully utilize the available capacity. Though unresponsive
UDP flows show large deviations from the ideal throughput,
in most cases flows get smaller effective throughput than their
ideal and there are no cases when the occupied throughput is
significantly larger than the equilibrium allocation. For accu-
rate resource sharing with the PPV framework, the flows need
to be congestion controlled. Still the PPV framework ensures
that unresponsive sources cannot make extra benefit from
their greedy behavior, thus the smaller throughput values.
When Core-Stateless policing is enabled for the unresponsive
UDP flows (UPD-CSP) the allocation is almost perfect. This
shows that the PPV framework together with CSP not only
avoids the dead packet problem, but it can also converge well
to the ideal allocation.

Table 1 shows the root-mean-square error of the throughput
values for the different investigated scenarios.

120324 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

Figs. 16 and 17 show the same evaluation scenarios with
DRR scheduling for NewReno and UDP flows, resp. The
results are similar to what we get with the PPVmethod. Sprint
seems slightly better.

Fig. 18 shows the distribution of relative errors experienced
in the different topologies.Most relative error values are close
to 0 and the deviance is more significant in the negative
direction where the flows get smaller throughput than their
ideal. One can also observe that the CDF of the DCTCP case
is less steep than the one of other flow types. Its reason is that
DCTCP has been developed for smaller RTTs where it can
react to congestion faster. UDP-CSP results in an allocation
that is close to the ideal. These figures also show that DRR
results in very similar relative errors as the PPV method. The
purple and orange, and the brown and green curves run very
similarly. Using NewReno, PPV results in positive relative
errors with larger probability than DRR, leading to the con-
clusion that DRR slightly underutilize the network resources.
In case of UDP, there are not significant differences between
the two resource sharing methods.

Table 2 shows the root-mean-square error of the throughput
values for DRR scenarios.

VIII. DISCUSSION OF THE RESULTS
Our theoretical analysis and simulation-based evaluation
show that PPV method can maximize the minimum utility
of flows in an arbitrary topology if the sending rates are
controlled by either a congestion control or a policer like CSP.
In this section, we discuss the results with respect to state-of-
the-art methods.

PPV shares the core-stateless idea of Core-Stateless Fair
Queueing (CSFQ) [15]. CSFQ labels packets with flow rate
estimates and calculates the fair rates at each potential bot-
tlenecks. In case of congestion, the ratio of the two rate esti-
mates determines the drop probability to be applied on the
incoming packet. As a result, routers drop the throughput of
flows above the fair rate. One can observe that the behavior
of CSFQ can be emulated by the PPV method. If each flow
uses the same TVF (e.g., v(x) = 1/x, x > 0), the drop
minimum packet value first strategy leads to a cutoff value
(CTV) that represents the fair share at a given bottleneck.
The PV-based dropping will cut the flow throughput to the
fair share. As a consequence, our theoretical results hold
for CSFQ as well: it ensures max-min fair allocation with
both classic and scalable congestion controls. Max-min fair
allocation is a well-known property of CSFQ. Though CSFQ
can ensure simple weighted fairness, it is not able to handle
bandwidth-function like policies as PPV.

Among the stateful alternatives, DRR [10] scheduling can
also be used to ensure max-min fair allocation. However,
it needs to maintain a large number of queues at each poten-
tial bottlenecks in the network, resulting in scalability issues.
If queues are shared with other flows, the resulted fairness
is getting worst. DRR can also be extended to support flows
with different weights but weights need to be maintained
at any points of the network, making the management and

configuration of such an approach much more complicated
than CSFQ and PPV. The dead packet problem caused by
unresponsive flows also holds for DRR.

Another stateful approach, BWE [13] was proposed by
Google to implement bandwidth function-based resource
sharing in its private WAN. BWE uses the principle of Soft-
ware Defined Networking (SDN) and solves resource sharing
in a centralized way. Similarly to PPV, BWE also provides a
provable solution for the generalized max-min fair allocation
problem. PPV follows a distributed approach while BWE
is a centralized method that requires continuous feedback
between the logically centralized controller and the network
nodes.

IX. CONCLUSION
In this paper, we have analyzed the network-wide behavior
of a recent core-stateless resource sharing proposal called
Per Packet Value (PPV). Our theoretical results show that
the PPV framework provides a distributed solution for the
generalized max-min fair allocation problem in an arbitrary
topology. We have shown the existence and uniqueness of
the equilibrium allocation which is a feasible throughput
allocation maximizing the transmitted packet values in the
network. We have extended the mathematical model to emu-
late the behavior of both scalable (DCTCP-like) and clas-
sic (AIMD-like) congestion controls. The results have also
been validated with thorough packet-level simulations, using
various topologies. The simulation results are in accordance
with our theoretical analysis, showing that the PPV method
can effectively solve resource sharing between congestion
controlled flows and it also ensures that non-responsive
UDP flows cannot gain advantages over well-behaving flows.
Finally, we have also proposed core-stateless policing that
can regulate unfriendly flows that do not react to packet
losses. It applies a lightweight mechanism that does not affect
the behavior of well-behaving flows.

APPENDIX A
THE EXISTENCE AND UNIQUENESS OF EQUILIBRIUM IN
STEADY STATE
Proof of Theorem 1:We first prove that every feasible allo-

cation x for which v↓(x) is lexicographically minimal is an
equilibrium. Suppose that x is not an equilibrium allocation;
then there is an index i such that xi < di and xi < v−1i (αe(x))
for every e ∈ Pi. Let F = {e ∈ Pi : x(e) < ge}. If e ∈ Pi \ F ,
then there is at least one index j such that xj = v−1j (αe(x)) by
the definition of αe(x). Let

J =
⋃

e∈Pi\F

{j ∈ [1, k] : xj = v−1j (αe(x))}.

Note that vi(xi) > vj(xj) for every j ∈ J . We can choose an
ε > 0 such that ε < ge−x(e) for every e ∈ F and vi(xi+ε) >
vj(xj − ε) for every j ∈ J . Define

x ′j =


xj + ε if j = i,
xj − ε if j ∈ J ,
xj otherwise.

VOLUME 10, 2022 120325

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

Then x ′ is a feasible allocation such that v↓(x ′) is lexicograph-
ically smaller than v↓(x), a contradiction.

For the second part of the proof, let x be an equilibrium
allocation. Let t1 > t2 > · · · > ts be the values in
{v1(x1), v2(x2), . . . , vk (xk)} in decreasing order, without mul-
tiplicity. For any allocations x ′, let Iq(x ′) = {i ∈ [1, k] :
vi(x ′i) = tq}. We prove the following property, which implies
the theorem:
Claim 10: If x ′ is a feasible throughput allocation for

which v↓(x ′) is lexicographically minimal, then Iq(x ′) = Iq(x)
for every q ∈ [1, s].

Proof: We prove the claim in increasing order of q;
suppose it is true for 1, . . . , q − 1. Notice that it is enough
to prove Iq(x ′) ⊇ Iq(x), because if Iq(x ′)) Iq(x), then v↓(x ′)
cannot be lexicographically minimal. Let i ∈ Iq(x). Since x is
an equilibrium allocation, we have

xi = x̄i = min
e∈Pi

v−1i (αe(x)).

If xi = di, then obviously x ′i ≤ di = xi, but it cannot be
strictly smaller since v↓(x ′) is lexicographically minimal.
Suppose that xi < di; then there is an edge e ∈ Pi such

that x(e) = ge and xi = v−1i (αe(x)). Let J = {j : e ∈ Pj}.
Since xi = v−1i (αe(x)), i ∈ argminj∈Jvj(xj), and therefore J ⊆
I1(x) ∪ · · · ∪ Iq(x). Since v↓(x ′) is lexicographically minimal
and I`(x ′) = I`(x) if ` < q, we must have x ′j ≥ xj for every
j ∈ J . But

∑
j∈J x

′
j ≤ ge =

∑
j∈J xj, so x

′
j = xj for every

j ∈ J , in particular x ′i = xi. �
If Iq(x ′) = Iq(x) for every q ∈ [1, s], then x = x ′, so the claim
implies the theorem. �

APPENDIX B
CONVERGENCE TO THE EQUILIBRIUM ALLOCATION WITH
TIGHT CUT UPDATE PROTOCOLS
Let us start with a technical lemma before proving Theorem 4.
Lemma 11: If αe(x) > 0 for a given edge e ∈ E, then

αe(x) = max
{
α ≥ 0 :

∑
i:e∈Pi min{xi, v

−1
i (α)} ≥ ge

}
=

max
{
α ≥ 0 :

∑
i:e∈Pi min{xi, v

−1
i (α)} = ge

}
.

Proof: If αe(x) > 0, then there exist α such that∑
i:e∈Pi min{xi, v

−1
i (α)} ≥ ge. Since the functions v−1i are

monotone decreasing and continuous, also the function α 7→∑
i:e∈Pi min{xi, v

−1
i (α)} is monotone decreasing and contin-

uous. Hence, the set {α :
∑

i:e∈Pi min{xi, v
−1
i (α) ≥ ge} is a

closed interval. It follows that

inf

α ≥ 0 :
∑
i:e∈Pi

min{xi, v
−1
i (α)} < ge


= max

α ≥ 0 :
∑
i:e∈Pi

min{xi, v
−1
i (α)} ≥ ge

 ,
and by continuity this point has

∑
i:e∈Pi min{xi, v

−1
i (αe(x))} =

ge. �
For the proof of Theorem 4, we also need a couple of

definitions and additional lemmas.

Definition 12 (Equilibrium Bound of an Edge): Let e be
an edge in the network N , and suppose that xi1 , . . . , xij are
the flows that use edge e. Take the network Ne that consists of
the single edge e, and throughput allocation xi1 , . . . , xij with
their original throughput-value functions. We denote by βe
the cutoff value of the equilibrium allocation on Ne.
Lemma 13: The value of βe is

max
x alloc. for Ne

α ≥ 0 :
j∑

k=1

min{xik , v
−1
ik (α)} = ge

 .
Proof: By Lemma 11, it is enough to prove

βe = max {αe(x) : x is a throughput allocation for Ne } .

As the equilibrium allocation of Ne is a throughput allocation
for Ne, it is enough to prove that αe(x) ≤ βe for each allo-
cation of Ne. We can assume without loss of generality that
flows using edge e are 1, . . . , j.
Let y be the equilibrium allocation of Ne. By definition,

βe = αe(y).
If βe = 0, then

∑j
i=1 di ≤ ge and yi = di for each

i = 1, . . . , j. Then for each throughput allocation x, we have∑j
i=1 xi ≤

∑j
i=1 di ≤ ge, hence αe(x) = 0.

If βe > 0, then
∑j

i=1 v
−1
i (βe) = ge. Suppose that

for an allocation x, αe(x) ≥ βe. Then v−1i (αe(x)) ≤
v−1i (βe) by the monotonicity of the functions vi. Since
αe(x) ≥ βe > 0, we have αe(x) > 0. Hence by
Lemma 11, we have

∑j
i=1min{xi, v

−1
i (αe(x))} = ge. Thus,∑j

i=1min{xi, v
−1
i (αe(x))} =

∑j
i=1 v

−1
i (βe) = ge. As all

the summands in the second sum are greater or equal to the
corresponding summand of the first sum, this is only possible
if min{xi, v

−1
i (αe(x))} = v−1i (βe) for each i = 1, . . . , j. By the

strict monotonicity of the TVFs, this implies αe(x) = βe. �
Lemma 14: For any edge e and throughput allocation x of

network N , αe(x) ≤ βe.
Proof: This follows directly from Lemma 13, since the

restriction of x to coordinates used by e gives an allocation
for Ne, and αe(x) only depends on these coordinates. �
Lemma 15: Let our network consist of a single edge e, and

suppose that all flows use some tight cut protocol. Then the
value of αe increases monotonically in each phase.

Proof: If αe = 0 in a phase, then this is obviously true,
so assume αe > 0. A flow xi has loss if xi > v−1i (αe(x)), and
in this case in the next phase, it is going to be x̄i = v−1i (αe(x)).
A flow xi is lossless if xi ≤ v

−1
i (αe(x)), and in this case in the

next phase, its sending rate is going to be larger than xi = x̄i.
Hence in both cases, for throughput allocation x ′ of the next

phase, min{x ′i , v
−1
i (α(x))} ≥ min{xi, v

−1
i (α(x))}. Adding up,∑k

i=1min{x ′i , v
−1
i (α(x))} ≥

∑k
i=1min{xi, v

−1
i (α(x))} ≥ ge,

thus, αe(x ′) ≥ αe(x) by Lemma 11. �
Lemma 16: Suppose that in a network, the edge e is used

by flows x1, . . . xj, and xi ≥ v
−1
i (βe) for each 1 ≤ i ≤ j. Then

αe(x) = βe.
Proof: Let y be the equilibrium allocation of Ne on

x1, . . . xj and defined arbitrarily for the rest of the coordinates.

120326 VOLUME 10, 2022

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

If βe = 0, then yi = di and
∑j

i=1 yi =
∑j

i=1 di =∑j
i=1 v

−1
i (βe) ≤ ge. If βe > 0, then by Lemma 11,∑j

i=1 yi =
∑j

i=1 v
−1
i (βe) = ge. Since αe(x) only depends

on x1, . . . xj, for the determination of αe(x) we can imag-
ine that the network only consists of the edge e and apply
Lemma 14, to deduce that αe(x) ≤ βe. Hence for each i,
v−1i (αe(x)) ≥ v−1i (βe). Thus,

∑j
r=1min

{
xi, v
−1
i (αe(x))

}
≥∑j

i=1 v
−1
i (βe) ≥ ge. From the definition of αe(x),

it follows that
∑j

r=1min
{
xir , v

−1
ir (αe(x))

}
≤ ge. Hence

min
{
xi, v
−1
i (αe(x))

}
= v−1i (βe) = yi for each i = 1, . . . j.

From the strict monotonicity of the TVFs, we conclude that
αe(x) = αe(y) = βe. �

Proof of Theorem 4: Let N = (V ,E) be our network.
Partition the edges E = E1 ∪ · · · ∪ Es such that βe = βe′ if
e, e′ ∈ Ei for some 1 ≤ i ≤ s, and βe > βe′ if e ∈ Ei, e′ ∈ Ej
and 1 ≤ i < j ≤ s.
Claim 17: If e ∈ E1 and x1, . . . xj are the flows such

that e ∈ Pi, then eventually, αe gets fixed to βe, and for
i = 1, . . . , j, xi gets fixed to v

−1
i (βe) regardless of the rest

of the network.
Proof: Suppose that in a given phase, a flow xi has loss

because of an edge e′, that is, x̄i = v−1i (αe′ (x)). By Lemma 14,
αe′ (x) ≤ βe′ . Also, since e ∈ E1, βe ≥ βe′ . Hence x̄i =
v−1i (αe′ (x)) ≥ v−1i (βe′) ≥ v−1i (βe) using the monotonicity
of vi.

If flow i is lossless, then xi increases by at least1 or attains
di in the next phase. Hence eventually each flow rate xi, i =
1, . . . j will have value at least v−1i (βe). Hence by Lemma 16
in the next phase, αe(x) = βe, and xi = v−1i (βe). From this
time on, e prevents flow rates x1, . . . xj from increasing, while
by our previous argument, another edge e′ cannot cut these
flows below the actual values, hence flow rates x1, . . . xj get
fixed on the actual values, and so does αe on βe. �
Stop the process after αe(x) gets fixed to βe for each e ∈ E1.

Let us call β1 = βe for any edge e ∈ E1. We can assume that
for some j, x1, . . . xj are the flows that use any of these edges.
Then from this point, such a flow xi will always have value
v−1i (β1). Hence we get an equivalent problem if we contract
each e ∈ E1 to a point, forget the flows x1, . . . , xj, and for
each edge e′ and each 1 ≤ i ≤ j, if e′ ∈ Pi, then we subtract
v−1i (β1) from ge′ .

This way we have a problem with a smaller number of
edges and flows. Eventually we get a situation where each
flow rate is fixed, hence the system is in equilibrium. �

APPENDIX C
LOWER BOUND FOR THE AIMD-LIKE UPDATE PROTOCOL
In this section, we provide the mathematical proof for the
guaranteed lower bound for the capacity assigned to flows
by the AIMD protocol.

Proof of Theorem 8: Let B = min{di,mine∈Pi v
−1
i (βe)}.

We show that after xi first has loss, it always has value at least
B/2. While xi is lossless, its value always increases by at least
1, hence eventually xi will have loss or it will attain di.

If xi has loss in a phase, then x̄i = v−1i (αe(x)) for some
e ∈ Pi. Moreover, by Lemma 14 and by the monotonicity of
vi, v
−1
i (αe(x)) ≥ v

−1
i (βe), so x̄i ≥ B. As xi follows the AIMD

protocol, in the next phase, x ′i =
xi
2 ≥

x̄i
2 ≥

B
2 . In subsequent

phases, if xi has loss then we can repeat the same argument to
show that it is at least B/2 in the next phase. Thus, xi remains
above B/2 in all subsequent phases. �

REFERENCES
[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[2] Z. Yu, J. Wu, and B. Vladimir, ‘‘Twenty years after: Hierarchical
core-stateless fair queueing,’’ in Proc. 18th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), Apr. 2021, pp. 29–45. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/yu

[3] F. Fejes, S. Nadas, G. Gombos, and S. Laki, ‘‘A core-stateless L4S
scheduler for P4-enabled hardware switches with emulated HQoS,’’ in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
May 2021, pp. 1–2.

[4] S. Nadas, Z. R. Turanyi, and S. Racz, ‘‘Per packet value: A practical
concept for network resource sharing,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[5] S. Laki, G. Gombos, S. Nádas, and Z. Turányi, ‘‘Take your own share of
the PIE,’’ in Proc. Appl. Netw. Res. Workshop, Jul. 2017, pp. 27–32.

[6] S. Nádas, G. Gombos, P. Hudoba, and S. Laki, ‘‘Towards a congestion
control-independent core-stateless AQM,’’ in Proc. Appl. Netw. Res. Work-
shop, Jul. 2018, pp. 84–90.

[7] S. Laki, S. Nadas, G. Gombos, F. Fejes, P. Hudoba, Z. Turanyi, Z. Kiss,
and C. Keszei, ‘‘Core-stateless forwarding with QoS revisited: Decoupling
delay and bandwidth requirements,’’ IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 503–516, Apr. 2020.

[8] T. Kelly, S. Floyd, and S. Shenker, ‘‘Patterns of congestion collapse,’’ Int.
Comput. Sci. Inst., Univ. Cambridge, Cambridge, MA, USA, Tech. Rep.,
2003.

[9] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
‘‘The internet topology zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Sep. 2011.

[10] M. Shreedhar and G. Varghese, ‘‘Efficient fair queueing using deficit
round Robin,’’ in Proc. Conf. Appl., Technol., Architectures, Protocols
Comput. Commun. (SIGCOMM), New York, NY, USA, 1995, p. 231, doi:
10.1145/217382.217453.

[11] K. Kogan, D. Menikkumbura, G. Petri, Y. Noh, S. I. Nikolenko,
A. Sirotkin, and P. Eugster, ‘‘Towards software-defined buffer manage-
ment,’’ IEEE/ACM Trans. Netw., vol. 28, no. 5, pp. 2337–2349, Oct. 2020.

[12] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, ‘‘NUMFabric: Fast and flexible bandwidth allocation in datacen-
ters,’’ in Proc. ACM SIGCOMM Conf., New York, NY, USA, Aug. 2016,
pp. 188–201.

[13] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni,
E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila,
M. Robin, A. Siganporia, S. Stuart, and A. Vahdat, ‘‘BwE: Flexible, hierar-
chical bandwidth allocation for wan distributed computing,’’ in Proc. ACM
Sigcomm, New York, NY, USA, 2015, pp. 1–14.

[14] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E. Davies.
(Dec. 1998). An Architecture for Differentiated Services. Internet
Requests for Comments, RFC Editor, RFC 2475. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2475.txt

[15] I. Stoica, S. Shenker, and H. Zhang, ‘‘Core-stateless fair queueing: A scal-
able architecture to approximate fair bandwidth allocations in high-speed
networks,’’ IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 33–46, Feb. 2003.

[16] Z. Cao, E. Zegura, and Z. Wang, ‘‘Rainbow fair queueing: Theory and
applications,’’ Comput. Netw., vol. 47, no. 3, pp. 367–392, Feb. 2005.

[17] F. Kelly, ‘‘Charging and rate control for elastic traffic,’’ Eur. Trans.
Telecommun., vol. 8, no. 1, pp. 33–37, Jan./Feb. 1997.

[18] S. Nádas, G. Gombos, F. Fejes, and S. Laki, ‘‘A congestion control indepen-
dent L4S scheduler,’’ in Proc. Appl. Netw. Res. Workshop ZZZ, Jul. 2020,
pp. 45–51.

[19] M. Menth and N. Zeitler, ‘‘Fair resource sharing for stateless-core
packet-switched networks with prioritization,’’ IEEE Access, vol. 6,
pp. 42702–42720, 2018.

VOLUME 10, 2022 120327

http://dx.doi.org/10.1145/217382.217453

G. Gombos et al.: Flow Fairness With Core-Stateless Resource Sharing in Arbitrary Topology

[20] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, ‘‘Data center TCP
(DCTCP),’’ ACM SIGCOMM Comput. Commun. Rev., New York, NY,
USA, vol. 40, no. 4, pp. 63–74, Aug. 2010.

[21] B. Briscoe, K. De Schepper, O. Tilmans, M. Kühlewind, J. Misund,
O. Albisser, and A. S. Ahmed, ‘‘Implementing the ‘prague requirements’
for low latency low loss scalable throughput (L4S),’’ in Proc. NetDev 0x13,
Prague, Czech Republic, Mar. 2019, pp. 1–11.

[22] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha,
Y. Seung, M.Mathis, and V. Jacobson, ‘‘Bbrv2: A model-based congestion
control,’’ presentation in ICCRG at IETF 104th Meeting, Mar. 2019.

[23] B. Briscoe, R. Woundy, and A. Cooper. (Dec. 2012). Congestion Expo-
sure (ConEx) Concepts and Use Cases. RFC. [Online]. Available:
https://www.rfc-editor.org/info/rfc6789

[24] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, ‘‘Iterative water-filling
for Gaussian vector multiple-access channels,’’ IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[25] J. Ros-Giralt, A. Bohara, S. Yellamraju, M. H. Langston, R. Lethin,
Y. Jiang, L. Tassiulas, J. Li, Y. Tan, and M. Veeraraghavan, ‘‘On the bottle-
neck structure of congestion-controlled networks,’’Proc. ACMMeas. Anal.
Comput. Syst., vol. 3, no. 3, pp. 1–31, Dec. 2019, doi: 10.1145/3366707.

[26] S. Laki, P. Matray, P. Haga, T. Sebok, I. Csabai, and G. Vattay, ‘‘Spotter:
A model based active geolocation service,’’ in Proc. IEEE INFOCOM,
Apr. 2011, pp. 3173–3181.

GERGŐ GOMBOS received the M.Sc. degree in
computer science from Eötvös Loránd University
(ELTE), in 2012, and the Ph.D. degree, in 2018.
The topic of his thesis is the semantic web and
the distributed computing in Hadoop environment.
Since 2018, he has been working as an Assistant
Professor at the Department of Information Sys-
tems, ELTE. His research interests include com-
puter networks, Hadoop and Spark environments,
big data architectures, and NoSQL databases.

DÁVID KIS received theM.Sc. degree in computer
science from Eötvös Loránd University, where he
is currently pursuing the Ph.D. degree. His cur-
rent research interests include computer networks,
the IoT, programmable data planes, and their
applications.

LILLA TÓTHMÉRÉSZ received the M.Sc. and
Ph.D. degrees in mathematics from Eötvös Loránd
University. Her research interests include combi-
natorial optimization, algorithms, and combinato-
rial geometry.

TAMÁS KIRÁLY received the M.Sc. and Ph.D.
degrees in mathematics from Eötvös Loránd Uni-
versity, Budapest, in 1999 and 2004, respec-
tively. He is currently an Associate Professor at
the Department of Operations Research, Eötvös
Loránd University, and also a member of the
MTA-ELTE Egerváry Research Group on Combi-
natorial Optimization. His research was presented
at conferences like FOCS, SODA, and IPCO, and
he published more than 30 articles in journals,

including Mathematical Programming, Journal of Combinatorial Theory,
Mathematics of Operations Research, andCombinatorica. His main research
interests include optimization, polyhedral combinatorics, approximation
algorithms, and game theory.

SZILVESZTER NÁDAS received the M.Sc. degree
in electrical engineering from the Budapest Uni-
versity of Technology and Economics, in 2000.
Since then, he has been with Ericsson Research,
Hungary. He has been working with traffic man-
agement for 20 years, and his main interest is con-
trolling resource sharing. He is also interested in
the interaction of different mechanisms of traffic
management (e.g., AQM and congestion control)
and he believes that more coordination among the
mechanisms is necessary.

SÁNDOR LAKI (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science
from Eötvös Loránd University, in 2007 and 2015,
respectively. He is currently an Assistant Profes-
sor with the Department of Information Systems,
Eötvös Loránd University. He has authored over
40 peer-reviewed papers and demo papers, includ-
ing publications at the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, INFOCOM, ICC, and
SIGCOMM. His research interests include active

and passive network measurement, traffic analytics, programmable data
planes, and their application for new networking solutions.

120328 VOLUME 10, 2022

http://dx.doi.org/10.1145/3366707

