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ABSTRACT Precise knowledge of secondary arc extinction instant and fault nature (temporary or
permanent) is necessary for auto-reclosing after a single line-to-ground fault. Existing intelligent reclosing
schemes rely on the extraction of appropriate features using a signal processing module (SPM) during online
data monitoring. The value of features varied greatly under different operating scenarios as well as the
computational burden is greatly enhanced owing to SPMwhich significantly impacts the performance of the
auto-reclosing scheme. Hence, in this study bi-directional long short-term memory (Bi-LSTM) network is
designed which integrates feature extraction and classification process. Thus, the proposed scheme is directly
incorporated into the incoming voltage data without using any SPM/ filtering technique. The open-source
test system provided by the developers of Hydro-Quebec, Canada is used for training and testing. Around
4860 different signals are collected by varying power system parameters and secondary arc conditions to
develop dataset A. The Bi-LSTM model is tested under no noise, low noise of SNR 30, and high noise
of SNR 10. To ensure the efficacy of the proposed scheme, uni-directional long short-term memory (U-
LSTM), gated recurrent unit (GRU), andmachine learning models are also trained on the same dataset. Later,
for validation, a second dataset B is developed by varying surge impedance loading, frequency-dependent
transmission lines, and arc resistance. Then the efficiency of pre-trained artificial neural networks (ANNs)
is validated on this unseen dataset. The testing and validation on both datasets confirm superior efficiency
of Bi-LSTM in comparison to U-LSTM, GRU, and other models.

INDEX TERMS Artificial neural network (ANN) based reclosing, bi-directional long short-term memory
(Bi-LSTM), patterns based reclosing, secondary arc, single-phase auto-reclosing.

I. INTRODUCTION
The statistics have depicted that approximately 80% of the
transmission line faults are single phase-to-ground (SPL)
faults with transient nature on high voltage transmission
lines and occur owing to atmospheric discharges [1], [2].
The occurrence of such faults is followed by the opening of
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circuit breakers (CBs) of the compromised phase. This phase
is reclosed only after the fault removal and secondary arc
extinction. Traditional relays have fixed dead time after the
opening of CBs and reclosing attempt is performed after this
time [3], [4]. However, the extinction instant of secondary arc
is highly variable and dependent on meteorological factors
i.e., wind, snow, and humidity, etc., resulting in a high
probability of unsuccessful reclosing owing to fixed dead
time. These unsuccessful reclosing attempts severely disturb
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the transient stability of power system equipment [5]. Hence,
it is important to recognize the fault type (temporary or
permanent) and precise interval of arc extinction for taking
the reclosing decision [6].

Over the past few years, several researchers have presented
single-phase-auto-reclosing (SPAR) schemes to minimize
power outages and ensure system reliability. In [7], the total
harmonic distortion (THD) of the faulty phase voltage is
compared with the threshold after a pre-set time interval
to recognize the fault nature. It is observed that in the
case of temporary fault the amplitude of THD is higher
as compared to the permanent fault which assists in taking
decisions. In [8], wavelet packet transform (WPT) algorithm
is used in the signal processing module (SPM) during
online data monitoring (ODM). That SPM is used for the
extraction of harmonics from compromised phase voltage
signal. Then energy coefficients are developed from those
extracted harmonics which are further compared with an
adaptive threshold to recognize fault nature. The authors
of [9], used an unscented Kalman filter (UKF) in SPM
to estimate voltage harmonics. These harmonics are used
to develop two indices to monitor the extinction time of
secondary arc and fault type. The synchro-squeezing wavelet
transform (SWT) technique is used in [10], to filter the
sub-synchronous components from the faulty phase voltage.
These components have a very low frequency ranging
from 5 Hz to 55 Hz and appear after the secondary arc
extinction. In [11], harmonics present in uncompromised
terminal voltage are initially magnified using time-time
transform (TT- transform). These harmonics have high
amplitude during secondary arc interval and are used to
estimate the secondary arc extinction. Although the above-
mentioned harmonics-based schemes provide satisfactory
results under discussed scenarios. However, amplitude of
harmonics greatly varied under varying surge impedance
loading (SIL) of the transmission line eventually increases
risk of false decision making. Furthermore, during ODM
process, high computational burden is offered by SPM during
harmonics estimation which results in delayed reclosing.

Few researchers have used voltage/current phasor infor-
mation from single or both ends of the transmission line
for taking reclosing decisions [12]. The authors of [13],
recognized fault type using single-ended voltage magnitude
derivative of compromised phase. Further, the combination
of voltage and angle derivatives is used to determine the
quenching time of the secondary arc. The analysis of voltage
phasors in the modal domain using the Clarke matrix is
presented in [14]. That modal domain conversion of faulty
terminal phasor is used in developing criteria which are
eventually used to take reclosing decisions. In [15], a phasor
measurement unit-based algorithm is developed. The voltage
and current phasors are collected from both terminals of the
transmission line through the communication channel. Then
data before and after secondary arc extinction is compared
to develop a criterion of reclosing. In [16], the authors
developed a mathematical model of transmission line using

voltage magnitude and angle values of healthy phases. That
developed model is then compared with the actual voltage
phasor collected from both ends of the transmission line. The
observation has confirmed that estimated values are close
to actual values after secondary arc extinction and assist in
taking reclosing decision. Although voltage/current model-
based techniques provides suitable results in the absence
of noise. However, as these models are developed without
considering noise, hence high SNR can lower the model
accuracy. Furthermore, the communication-based schemes
required fast communication channel to take appropriate
action without delay.

Researchers have also applied intelligent artificial neural
networks (ANNs) to solve the issue of reclosing owing
to their high accuracy and reliability. The authors of [17],
presented particle filter and convolutional neural network-
based reclosing technique. In this research, initially non-
linear state space model is designed to estimate the harmonics
of the compromised phase through the particle filter. Then
dataset is developed by simulating various scenarios which
are further used as an input to the convolutional neural
network for training and testing purposes. This work reported
detection accuracy of 100% under noise-free conditions
and 95.9% under high SNR. In [18], the authors used
discrete wavelet transform (DWT) along with long short-term
memory (LSTM) to predict fault nature and the instant of
secondary arc extinction. DWT is used as SPM to extract
useful features which are further used by LSTM to classify
the fault. Furthermore, one more LSTM is used to predict the
secondary arc extinction. This technique reported precision
of 99.20% in recognizing the fault. Similarly, least square
error based digital filter is used in [19], to extract features
from faulty phase signal. These features are input to the
support vector machine (SVM) classifier for recognizing
faults. This research did not report any performance accuracy.
In [20], FFT and Prony analysis-based techniques are used
to extract useful components from the faulty phase. These
features are used by Levenberg Marquardt (LM) and error
backpropagation (EBP) algorithms to train the network.
Further, the Taguchi method is used for optimization in these
algorithms. An accuracy of 99% is reported for LM and
94.79% for EBP. Even though these techniques provide high
accuracy on the trained datasets. However, the accuracy of
such schemes needs to be elaborated under unseen datasets.
Moreover, these techniques have SPM to extract features
from the voltage/current signals. These SPMs offer a high
computational burden during online data monitoring and are
responsible for reclosing delays.

As depicted through the literature review there are several
efforts directed toward reliable single-pole auto reclosing,
some challenges still exist, including low accuracy towards
unseen circumstances, delayed detection under noisy/noise-
free conditions owing to the filtering process, high computa-
tional complexity, and imprecise recognition of secondary arc
extinction under unusual very short and long-time intervals.
To bridge the research gaps, this paper introduces novel
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FIGURE 1. General architecture of transmission line.

bi-directional long short-term memory (Bi-LSTM) networks.
The following are key features of the proposed scheme.

1. The novel variant version of LSTM is designed
which architecturally introduces forward and backward
LSTM layers and is known to be bi-directional LSTM
(Bi-LSTM) which solved complex non-linear unseen
classification problems with superior accuracy.

2. The proposed Bi-LSTM scheme provides superior
performance under no noise, low noise of SNR
30, and high noise of SNR 10. Also, to compare
the performance with other ANN techniques, uni-
directional long short- term memory (U-LSTM), gated
recurrent unit (GRU), support vector machine (SVM),
and decision tree (DT) are trained on the same dataset
and then validated on another dataset. The performance
metrics have shown the outstanding performance of Bi-
LSTM on both datasets.

3. In contrast to previously existing ANN schemes, the
proposed algorithm once trained does not require any
feature extraction module before the ANN module
for online grid data monitoring. Thus, computational
cost and time delay involved during detection is
significantly reduced.

4. The proposed scheme does not require any local/global
thresholds, linear/non-linear filters, and communica-
tion modules for taking the decision.

II. PRELIMINARIES OF THE MATHEMATICAL MODEL FOR
TRANSIENT AND PERMANENT FAULT
A. PATTERNS OF POST-ARC INSTANTANEOUS TERMINAL
VOLTAGE FOR TRANSIENT FAULT
The general architecture of the extra high voltage transmis-
sion line with shunt and the neutral reactor is depicted in
Figure 1. During the normal state the instantaneous value of
current and voltage at phase P is given as:

iP(t) = IP cos(ωt) (1)

vP(t) = VP cos(ωt + φ) (2)

where IP and VP depicts the peak value of phase P; φ is the
angle and ω is the angular frequency.

After the secondary arc is extinguished, the terminal
voltage comprised of electrostatic coupling voltage from the

FIGURE 2. Post-arc patterns after extinction of secondary arc at t =

0.915 s.

other two healthy phases and electromagnetic voltage is very
small that it is ignored. The relationship is given as [21],

Vy =
VMQ + VMR

2
X0

X0 + Xmt
(3)

=
1
2
|X0
/
X0 + Xmt |(VMQ + VMR) (4)

X0 =
(
jωL0/1− ω2C0L0

)
and

Xmt =
(
jωLmt/2(1− ω2CmtLmt

)
Xmt and X0 are the mutual and self-capacitive impedances

respectively, VMP,VMQ and VMR are the terminal voltages
of phase P, Q and R. ILP, ILQ and ILR are the shunt-
reactor currents and ILN is the neural reactor current. The
instantaneous value of the electrostatic coupling voltage vy(t)
is given as.

vy(t) = W cos(ωt + φ + π ) (5)

Here W =
(
VA
/
2
)
|X0
/
Xmt + X0|

The compromised phase terminal voltage consists of
many frequency oscillations whose amplitude is near to the
power frequency component and phase opposite to it. The
instantaneous value is given as:

vf (t) = W cos(ω′t + φ) (6)

Eventually, the instantaneous value of the terminal voltage
after secondary arc extinction is given as:

VMP(tf )(t) = W
[
cos(ω′t + φ)− cos(ωt + φ

]
(7)

Thus, specific patterns are observed after the secondary arc
extinction as depicted in Figure 2.

B. INSTANTANEOUS TERMINAL VOLTAGE FOR
PERMANENT FAULT
When the permanent fault occurs, the capacitance discharges
immediately, and only electromagnetic coupling exists which
is given as [21]

Vm =
(
IQ + IR

)
ZmutL ′ (8)

where IQ and IR are the currents of the corresponding phases
in phase P. Zmut indicates the mutual inductance and L ′ is
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FIGURE 3. Permanent fault with no patterns.

FIGURE 4. Unfolded architecture of RNN.

the distance from the measurement point to the fault point.
Eventually, the faulty phase for permanent fault is given as

VMP(pf )(t) = H cos(ωt − 90)

H = Zmut l ′IP (9)

In contrast to the temporary fault, only a single frequency
component exists in the permanent fault as seen in Figure 3.
These patterns present strong candidate to identify temporary
fault with arc extinction and permanent fault.

III. BI-LSTM BASED RECLOSING MECHANISM
A. THEORETICAL BACKGROUND OF BI-LSTM
The recurrent neural networks (RNNs) are capable to learn
the implicit non-linear relationships present in the datasets by
recurring processing the sequence input [22]. The traditional
architecture of RNN with ‘K’ layers is depicted in Figure 4.
The relationship between the data input xn at the time step n
and the output On is represented by the following equations

hnl = gnl (Un.xn +Wl .hn−1 + bx) (10)

On = gnK (V
n
K .h

n
K + by) (11)

where gnK denotes the activation function of the l th layer at
n, and l = 1, 2, . . . .,K .by and bx represents the bias terms,
VK ,Wl and Un are the weight matrices, and hnl denotes l th

layer sharing state vector. At every iteration, RNN parameters
get updated to minimize the loss function L(On, yn), where yn
indicates desired output. Although RNN learns the temporal
features through its sharing feature in the state vector,

FIGURE 5. Bi-LSTM network.

however, it cannot capture long-term dependencies owing to
vanishing gradient problems during backpropagation in the
model training.

Keeping insight, into the limitations of RNN, an improved
architecture of RNN known as LSTM is presented. LSTM
overcomes the problem of vanishing gradient by introducing
a memory unit cell in its structural model. This unit has the
property to add or delete the new inputs. There are three
controlling gates that are responsible for unit operation by
controlling data flow [23]. The input gate takes previous
net outputs and new necessary inputs, forget gate removes
useless memories from the state vector. Lastly, the output
gate determines the new output of the corresponding unit.
Although limitations associated with RNN are addressed
by LSTM however, it is capable to capture only forward
dependencies. In addition, various researchers have proved
that output is not the only product of preceding inputs but
the result of complex correlations. In contrast to U-LSTM,
Bi-LSTM incorporates two-way sequence learning, forward
direction learning as well as backward direction learning
to capture the irregularities and hidden features present in
the input sequence data [24]. The forward LSTM takes the
information of past data and the backward LSTM captures
future dependencies and relations to use the information of
time n− 1 and time n+ 1 at an instant n.
Let the data sequence of input is x = {x1, x2 . . . . . . .xn},

the hidden layer data sequence is h = {h1, h2 . . . . . . .hn}, thus
at time n, the computational process of the memory block is
represented as:

gn = tanh(wxgxn + whghn−1 + bg) (12)

in = σ (wxixn + whihn−1 + bi) (13)

fn = σ (wxf xn + whf hn−1 + bf ) (14)

sn = son−1fn + i
o
ngn (15)

on = σ (wxoxn + whohn−1 + bo) (16)

hn = oon tanh(sn) (17)
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FIGURE 6. Framework of the proposed network.

where b and w terms indicate the bias vectors and weight
matrices separately. Gn denotes input squashing vector, fn
indicates forget gate activation function, in and on are input
and output activation functions respectively, sn represents cell
state vectors and hn is hidden state vector. The LSTM layer
output is related to the input at time n and to the output at time
n−1, n−2, n−3, . . . . . . , t−N . Nevertheless, the certain time
output is related to the earlier time and the successive time.
In contrast, Bi-LSTM output layer is dependent on the output
at time n+ 1, n+ 2, n+ 3, . . . ., n+ N along with the input
at time n and output at time n− 1, n− 2, n− 3, . . . ., n− N .
In this Figure 5, w1 are the matrices of the weight between

the input and forward layer
(
wxg,wxi.wxf and wxo

)
. The w2

consist of matrices of weight between the input and the back-
ward layer

(
wbkxg ,wbkxi .wbkxf and wbkxo

)
,w3 consist of matri-

ces of weight in the forward layer
(
whg,whi.whf and who

)
,

w4 includes the matrices of weight in the backward layer(
wbkhg ,wbkhi .wbkhf and wbkho

)
, w5 is the matrices of weight

between the forward layer and the output, w6 indicates the
matrices of the weight between backward layer and the
output. wbk is the backward layer weight with same meaning
as w in the forward layer. Similarly, the equations for the
backward direction are given as:

gbk_n = tanh(wbk_xgxn + wbk_hghn+1 + bbk_g) (18)

ibk_n = σ (wbk_xixn + wbk_hihn+1 + bbk_i) (19)

fbk_n = σ (wbk_xf xn + wbk_hf hn+1 + bbk_f ) (20)

sbk_n = sobk(n+1)fbk_n + i
o
bk_ngbk_n (21)

obk_n = σ (wbk_xoxn + wbk_hohn+1 + bbk_o) (22)

hbk_n = oobk_n tanh(sbk_n) (23)

The output of the memory block contains the hbkn and hn
that are also known to be the Bi-LSTM layers. This is the
basic architecture of Bi-LSTMwhich is further optimized for
the proposed auto-reclosing strategy as discussed in the next
subsection.

B. PROPOSED BI-LSTM ARCHITECTURE FOR
AUTO-RECLOSING SCHEME
The framework of auto-reclosing scheme is depicted in
Figure 6. The first step consists of voltage data acquisition for
training, testing and validation. The dataset A composed of
{Xi}Li=1 =

{
x1, x2, x3, . . . , xp

}
signals, sampled at 3840 Hz,

where Lis the total number of signals that is 4860, and xp rep-
resents the pth sample with value 4609 in the current research.
The dataset B consist of {Xi}Ji=1 =

{
x1, x2, x3, . . . , xp

}
signals, where J represents the total number of signals
which is 486 in the validation set. Both datasets are labeled
by permanent fault as 0 and the temporary fault with arc
extinguished as 1. Further, dataset A is segregated to train the
proposed Bi-LSTM architecture. The first layer is comprised
of an input sequence layer in which the length of the
signals is provided. Following the input sequence layer is
the Bi-LSTM layer with 850 neurons in the hidden layer.
The cells and hidden states are updated by the hyperbolic
tangent ‘tanh’ function assigned at the state activation level.
Further, sigmoid function σ (c) = (1 + e−c)−1 is applied
as a gate activation function. In contrast to random weight
initialization, glorot weight initializer is used to enhance
the robustness and avoid the risk of exploding or vanishing
gradient problems. This function also known as Xavier
initializer recommends sampling the weights of the layer in a
way that preserves the input variance, and it remains constant
as information flows through the network.
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FIGURE 7. Test system under study.

Further, a fully connected layer is linked which multiples
the input matrix with the weight matrix and adds a bias vector.
Later rectified linear unit (ReLU) layer activation function is
used. This layer assists in handling non-linear and interaction
effects. After that Batch normalization layer is connected
which permits layers to learn independently of other layers
thus reducing the sensitivity of network initialization and
speed-up the training process. Afterward, the SoftMax
activation function is applied which converts the set of
numbers to the probabilities set with each corresponding
to a relative scale and the sum of probabilities equals 1.
Finally, the classification layer is used for recognizing
temporary faults with arc extinction and permanent fault. The
dropout layers are added to the architecture where necessary.
U-LSTM, GRU, and other models are also trained on the
same dataset and their performance evaluation is discussed
in the next sections.

IV. DATA COLLECTION AND RESULTS
A. TEST SYSTEM UNDER STUDY
The test system is composed of generators with a rating of
4200 MVA, double circuit transmission with a line length of
200 km and carrying two shunt compensators with individual
capacity of 200 MVAR each line. In Figure 7 XGen is the
generator, SC1, SC2 etc., indicates the shunt compensators,
EQnet signifies equivalent network with short circuit capacity
of 20 GVA. The specifications of the test system for training,
testing and validation are detailed in Table 1. Further arc
model designed by the developers of Hydro Quebec and
online available on the MATLAB website [25] is used to
ensure efficacy of the proposed technique.

B. DATASET FOR OFFLINE TRAINING
In practical scenarios, SLG faults can occur at any TL length
and at any system condition. Keeping in sight. dataset A is
developed by changing fault location between 10% to 90%,
shunt compensation 50% to 90% and secondary arc 0.1� to
100� as shown in Table 2.

In set A, the frequency-independent transmission line
model which applies Bergeron’s traveling wave method
is simulated to collect data of temporary fault with arc

TABLE 1. Test system specifications.

extinguished (TFAE) and permanent fault (PF). The data
collected in set A is also corrupted with low and high noise
of SNR 30 and SNR 10 respectively to test the accuracy of
the proposed scheme. The dataset is split into 90% training
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TABLE 2. Total number of cases and condition for training and testing.

FIGURE 8. Confusion matrix of testing.

and 10% testing. The offline training of Bi-LSTM, U-LSTM,
GRU and other machine learning models is performed on
MATLAB using machine learning and deep learning toolbox.
Further, the processor used is Intel R©Core i5-3570 CPU @
3.40 GHz 3.80 GHz and installed RAM of 16 GB.

C. TESTING ACCURACY OF THE MODEL
The testing accuracy of the Bi-LSTM model is depicted in
Figure 8. As observed in the absence of noise, proposed
model correctly identified all the labeled signals with a
temporary fault with arc extinguished and permanent faults
with 100% accuracy. Further, when the model is subjected
to the SNR 30 dataset, the accuracy of TFAE remains 100%
and the accuracy of PF reaches 98.76. Thus 1.23% of signals
are misclassified under PF. In addition, under high noise

of SNR 10, TFAE yield an accuracy of 98.76%, and PF
correctly identifies 95.06% of signals. To elaborate further,
performance metrics are computed from the following
formulas and given in Figure 9.

The following are formulas for performance metrics on
which accuracy, precision, recall, and F1-score are computed.

Accuracy = #TN + #TP/
#FP+ #TP+ #TN + #FN

Precision = #TP/
#FP+ #TP

Recall = #TP/
#FN + #TP

F1 = 2 ∗ recall ∗ precision/
precision+ recall

where TP indicates true positives, FP depicts false positives,
similarly, FN shows false negatives, and FP is false positives.

Under no noise, all the performance metrics accuracy,
precision, recall, and F1-score yield 100% accuracy. Further,
when low noise of SNR 30 is present, overall accuracy from
100% goes a bit down to 99.38%. Further, the precision and
F1-score achieved is 98.78% and 99.38% respectively. The
recall remained 100% for the SNR 30 scenario. When the
signals are corrupted with high noise, the overall accuracy
goes from 99.38% (SNR 30) to 96.91%. Further recall score
also goes from 100% (SNR 30) to 98.76%. Moreover, the
precision and recall values achieved are 95.23% and 96.96%
in comparison to earlier achieved 98.78% and 99.38%
at SNR 30.

D. VALIDATION OF PRE-TRAINED MODEL ON SET B
1) FREQUENCY-DEPENDENT TRANSMISSION LINE MODEL
To validate the efficacy of the proposed scheme the
frequency-dependent transmission line (FDTLs) model with
parameters mentioned in Table 1 is taken into consideration.
In FDTLs, line parameters are converted to a rational model
using the vector fitting algorithm. This model expresses
asymmetric aerial as well as submarine lines with high
accuracy. It is a built-in block present in Simulink which is
used to implement the model.

2) SURGE IMPEDANCE LOADING (SIL)
Surge Impedance loading (SIL) is defined as the power which
TLs carry when magnetic field energy owing to current
equates to the static field energy because of voltage. It is
a useful benchmark to analyze the load-carrying capability
of TLs. In this research, dataset B consists of varying SIL
information to validate proposed reclosing strategy.

The SIL of the line-2 is calculated by using available
data of positive sequence capacitance and inductance of
frequency-dependent transmission line (provided in Table 1)
and line-to-line voltage, as follows:

SILline2 = V 2
l−l

/√
L1
/
C1

= (735× 103)2/

√
(0.87× 10−3)

/
(1.345× 10−8)

≈ 2122MW
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FIGURE 9. Performance metrics under no-noise, SNR 30 and SNR 10.

FIGURE 10. Performance metrics of Bi-LSTM, U-LSTM, GRU, SVM and DT under validation set.

So, line 1 has also SIL of 2122 MW. Hence theoretically
maximum power transferred from both transmission lines
is 4244 MW. Thus, the active power of the generator is
adjusted in such a way that after computation of the load flow
tool in power GUI the power transferred at the receiving end
corresponds to 15%, 30%, 45%, 60%, 75%, and 90% SIL as
given in Table 3.

The following are the cases taken in the validation dataset.
In total 480 cases are simulated, and 6 cases are replicated to
make equal to testing case as given in Table 4.

E. VALIDATION ACCURACY OF THE MODELS
The proposed Bi-LSTM model along with U-LSTM, GRU,
SVM, and DT pre-trained on set A are evaluated on
dataset B through accuracy, precision, recall, and F1-score.
It is observed from Figure 10 that Bi-LSTM achieves a

TABLE 3. Generator active power corresponding to power transferred.

significantly high accuracy of 95.26% as compared to 90.3%
and 85.5% of GRU and U-LSTM respectively. Although
SVM and DT show outstanding performance on the testing
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TABLE 4. Total number of cases and conditions for validation dataset.

dataset, however on the validation dataset they yield only 50%
and 49.3% accuracy respectively. For the precisionmetric, the
Bi-LSTM method achieves the best outcome with a 91.3%
rate, followed by GRU and U-LSTM with rates of 83.7%
and 77.14% respectively. SVM and DT fared worse with a
precision rate of 50% and 49.38% respectively.

Further for the recall metric, Bi-LSTM, GRU, U-LSTM,
and SVM attain a rate of 100% and DT (49.3%). Finally,
for the F1-score, Bi-LSTM outperforms all other models and
yields 95.4%, as compared to 91.1% for GRU and 87.09%
score for U-LSTM. Again, SVM and DT show significantly
poor performance and yield only 66.6% and 49.38% scores
respectively. The confusion matrix for individual accuracy is
also provided in Figure 11.

FIGURE 11. Validation accuracy of each class.

These results depicted that the performance metrics
of SVM, and DT significantly degraded under unseen
circumstances. This is because the proposed approach for
the models is to automatically extract features from the raw
data signal. However, these two discussed models depict
significantly lower performance owing to a lack of capturing

temporal and hidden dependencies in the data. Similarly, U-
LSTM and GRU provide better performance than SVM and
DT however, the score was unsatisfactory. Compared to all,
Bi-LSTM provides better performance owing to the property
of capturing long-term temporal dependencies in forward as
well as backward direction.

TABLE 5. Comparison with other schemes.

F. DISCUSSION AND COMPARISON
The comparison of the proposed technique is performed with
several techniques as depicted in Table 5. It is observed that
the proposed strategy has no SPM computational burden in
comparison to all other mentioned techniques. This compu-
tational burden appears while online data monitoring and
severely affect the performance of the reclosing technique.
Further, according to the authors’ best knowledge, no scheme
in the literature has performed validation of classifiers on
an unseen dataset, that is trained on a different dataset.
This confirms that proposed model can handle a large
variety of transmission lines having different characteristics
without needing training for each transmission system.
In addition, 100% testing accuracy and F1-score is shown
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in the absence of noise. The proposed model works does
not require any communication channel or threshold which
depicts its promising reliability for the modern power
systems.

V. CONCLUSION
In this paper, a bi-directional long short-term memory
network is proposed for precise detection of secondary arc
extinction and recognizing the type of fault. The results
have shown that Bi-LSTM has shown 100% overall accuracy
under no-noise, 99.38% under SNR 30, and 96.91% under
SNR 10. Further to ensure the efficacy of the proposed
scheme, Bi-LSTM, U-LSTM, GRU, SVM, and DT were
trained on dataset A and evaluated on dataset B with different
system characteristics. The results have shown that Bi-LSTM
achieved an overall accuracy of 95.27% in comparison to
90.33% yield of GRU, 85.19% of U-LSTM, 50%, and 49.4%
of SVM and DT respectively. Further, the following are the
superiority of the proposed scheme in comparison to other
schemes
• No need for signal decomposition/feature extraction
technique during online monitoring of signal.

• Independence from setting the thresholds.
• High performance under high noise as well as under
low noisy conditions. Furthermore, no linear/non-
linear filter is required for signal filtering under noisy
conditions.

• Low computational complexity enhances the speed of
fault detection.

• Performs well under unseen data of a wide range of
scenarios i.e., surge impedance loading, arc resistances,
and transmission line models.

• The scheme uses data from the single end of the
transmission line, thus no communication channel is
required.
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