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ABSTRACT Bacterial classification is a vital step in medical diagnosis. This procedure normally has several
stages. An early stage involves inspecting the morphology of the bacterial colonies. Traditionally, a bacterial
colony expert inspects the sample to determine the type of bacteria through visual inspection or molecular
biology techniques. With advances in image processing, specifically, the use of deep and transfer learning
techniques, and the wide availability of cameras, we applied deep and transfer learning techniques to address
this task without requiring expert knowledge or sample shipping. We used a convolutional neural network
(CNN) to identify different bacterial colonies based on their appearance in images captured by cell phone
cameras. In this paper, we collected a dataset that contains images of different bacteria taken by cell phone
cameras with various settings. Thus, images of two classes of bacterial colonies were obtained in King
Abdulaziz City for Science and Technology. The dataset contains 8,043 images. The experimental results
show that our application has high accuracy without requiring expert inspections.

INDEX TERMS Deep learning, deep convolutional neural network, ResNet, VGG-16, AlexNet, DenseNet,
SqueezeNet, dataset, bacterial classification, bacterial colonies, bacteriology.

I. INTRODUCTION
Machine learning is a subdiscipline of artificial intelligence
(AI). According to [1], the aim of machine learning is
‘‘to develop algorithms that learn interpretation principles
from training samples and apply them to new data from
the same domain to make informed decisions’’. One of the
most popular subdisciplines of machine learning is neural
networks, specifically multilayer neural networks, which
is commonly known as deep learning. Deep learning has
become a popular research topic in different disciplines,
as deep learning approaches allow computers to perform
sophisticated tasks.

In recent years, the use of deep learning techniques in
biology and medicine has increased significantly. Bacterial
identification is a crucial step in disease diagnosis, infection
treatment, tracking of disease outbreaks associated with
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pathogens, and infectious disease prevention. Bacterial
identification has traditionally been carried out by handling
bacterial cells through many steps from bacterial culturing
to Gram staining and microscopy. Some of these steps take
several hours to complete. Alternatively, bacteria could be
accurately identified by studying bacterial genetic codes.
This genetic analysis includes DNA extraction, purifica-
tion, and polymerase chain reactions or sequencing in
some cases, which is considerably more expensive than
traditional methods and requires several costly instruments.
Fortunately, with the development of machine learning
and AI, bacterial identification can easily be achieved in
a single step by using image recognition and machine
learning. This technological advance offers a rapid and cost-
effective technique that addresses the time and cost problems
associated with existing bacterial identification methods. The
development of an automatic bacterial identification method
would be very beneficial for the healthcare and industrial
sectors.
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In recent years, the world has faced the COVID-19
pandemic. Scientists worldwide strove to develop appropriate
treatments. This situation revealed the lack of fast detection
techniques for microbes, and faster testing techniques are
needed for microorganisms [2].

We propose an image processing approach that uses deep
and transfer learning techniques to identify bacterial colonies
depending on the appearance of the colony morphology.
This approach is an effective alternative to traditional
methods such as molecular biology techniques, the VITEK
2 System, and mass spectrometry systems. In general,
existing methods are expensive, have substantial time costs
for data processing [3], and depend on instruments or
expertise that are not available in all laboratories. Our
bacterial colony classification approach is cost- and time-
effective and achieves high accuracy.

The key contributions of this paper are summarized as
follows:

We collected a new dataset of Escherichia coli (E. coli)
and Klebsiella pneumoniae (K. pneumoniae) bacteria using
mobile device cameras instead of microscope devices. To the
best of our knowledge, this is the first bacterial dataset
captured by RGB cameras for full and partial plates (no single
colonies).

We developed and applied a deep learning-based approach
on the newly collected dataset.

We conducted extensive experimental studies to evaluate
our approach using various model architectures and imaging
conditions, such as different camera angles, distances to
bacteria and backgrounds.

II. RELATED WORK
Several recent studies have shown that deep learning
techniques can be applied to develop valuable medical
and biological applications using different algorithms [4].
These applications have been utilized in hospitals, veterinary
clinics, and food industries as image classification tools in
biological andmedical settings [5]. A deep learning technique
for classifying different species of bacteria was recently
proposed by [6], and a set of single colony images was
used to train their model. In comparison, in this paper,
several models were trained to differentiate two types of
bacteria using images of both full and partial plates acquired
at different angles and distances that could be viewed by
human eyes without requiring any technical devices that
might simplify feature extraction. The convolutional neural
network (CNN)model has been shown to identify five species
of bacteria with 95% accuracy [7]. The CNN model has
also been demonstrated to count bacterial colonies without
human intervention [8]. Moreover, deep learning models
identified 90% of the bacterial colonies in the first 3 hours
of growth and more than 95% of the bacterial colonies after
12 hours [9]. Reference [2] used ResNet-18 and ResNet-50
models on a dataset that contained approximately 660 images
of 33 species of bacteria and achieved 99.35% accuracy.
Reference [10] used a machine learning process to classify

2,520 images of Klebsiella and achieved an accuracy of
96.71% using an extreme learning machine. Another study
aimed to achieve early identification of pathogenic bacteria in
food and water with a computational live bacterial detection
system that regularly captures coherent microscopy images
of bacterial growth inside a 60-mm-diameter agar plate and
analyzes these time-lapse holograms using a deep neural
network [9].

Transfer learning has been used to detect, identify, and
classify bacteria. For instance, the authors in [11] performed
bacterial classification using atrous convolutions and transfer
learning. Atrous learning was applied to increase the number
of dimensions. VGG-16 with transfer learning was utilized
to perform atrous convolutions. Approximately 660 images
in the DIBaS dataset were used to train, validate, and test
the models, and the bacterial images were classified into
33 categories. The results show that the proposed atrous
transfer learning model achieved good results, obtaining a
classification accuracy of 95%.

The authors in [12] achieved bacterial classification using
a pretrained DenseNet-201 model. Microscopic images of
bacterial pathogens were classified into six categories. Trans-
fer learning was applied with the frozen weight technique,
in which the weights of all layers except the classification
layer were held constant. After image augmentation and
resizing, more than 40,000 image pairs were used to train and
test the proposed model. The results indicated that DenseNet-
201 outperformed VGG-16 and ResNet-18, achieving an
accuracy of 99.2%.

The study in [13] identified and classified longitudi-
nal bacteria using transfer learning with ResNet-18. The
dataset contained approximately 5000 microscopic images
of Thiosymbion bacteria. Each image included only one
cell shape. With transfer learning, ResNet-18 accurately
classified 99% longitudinal cell divisions. Furthermore, [14]
presented an open source tool called MotilityJ for detecting
the spread of bacteria. The proposed tool was developed using
deep transfer learning. Several deep learning models, such
as ResNet-101 and EfficientNet-B3, were used for transfer
learning. The results show that the proposed tool segmented
bacterial colonies with up to 100% accuracy.

Transfer learning has also been used extensively to detect
COVID-19 and pneumonia. For instance, [15] presented a
classification approach for rapidly differentiating between
COVID-19, pneumonia, and healthy persons by using VGG-
19 and transfer learning on chest X-ray images. A freely
available dataset of approximately four thousand (3797)
images was used in their analyses. Several image processing
techniques were applied to preprocess the images, including
resizing the images to 256× 256, applying a Gaussian filter,
and equalizing the histograms across each RGB channel.
Transfer learning was exploited by using VGG-19, a 19-layer
CNN-based architecture pretrained on the ImageNet dataset.
An accuracy of 97%was achieved on the test data. The results
indicate that transfer learning can improve the performance of
deep learning models.
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In [16], the authors applied transfer learning to investigate
the performance of a CNN for automatically detecting
coronaviruses. Two datasets composed of X-ray images
obtained from public medical repositories were used. Each
dataset contained more than 1400 images, including COVID
(200), healthy (500) and viral or bacterial pneumonia images
(700). Transfer learning was applied because the number of
confirmed COVID-positive images was small. With transfer
learning, pretrained CNN model weights are used, which
addresses the lack of training images. Five CNN models
were used in their analyses: VGG-19, Inception, Xception,
Inception ResNet v2, and MobileNet. The results indicate
that MobileNet and VGG-19 achieved the highest accuracy
of 96.7%.

A transfer learning approach for addressing the lack
of training data available for identifying COVID-19, viral
pneumonia and healthy individuals in lung X-ray images is
presented in [17]. Model integration and transfer learning
techniques were applied before classification. Specifically,
pretrained ResNet-152 and ResNet-101 models were trained
on the obtained datasets to accurately classify images
into three classes. In the model integration stage, these
models were combined by freezing their weights. Two
publicly available datasets, namely, Chest X-ray and RSNA
Pneumonia, were used for training and testing. The resulting
model classifies a given image into one of three classes and
achieved an accuracy of 96.1%.

A generative adversarial network (GAN) based on transfer
learning to automatically detect pneumonia caused by
COVID-19 is presented in [18]. The model classifies the
images into two classes: healthy and pneumonia. The dataset
contains approximately 5800 chest X-ray images. The small
size of the dataset does not affect the model performance
because transfer learning and the GAN prevent overfitting,
thereby improving model performance. The GAN generates
a large number (90%) of similar images to increase the
number of training images while preventing overfitting. Four
CNN models were selected to perform transfer learning and
identify pneumonia images: ResNet, AlexNet, SqueezeNet,
and GoogLeNet. The results indicate that ResNet displayed
the best performance, achieving the highest accuracy of 99%
on the test data.

A modified CNN transfer learning approach for detecting
COVID-19 in chest X-ray and CT images is presented
in [19]. Deep transfer learning was applied by modifying
some layers of a pretrained AlexNet model. In addition
to the COVID detection approach, the authors generated
publicly available datasets composed of CT and X-ray
images collected from several sources. The dataset contained
approximately 500 images, including 120 X-ray images and
340 CT images. The approach detected COVID-positive
images with 98% accuracy. Another study [20] proposed a
transfer learning approach for identifying COVID-19 and
differentiating COVID-19 from viral pneumonia, bacterial
pneumonia, and healthy lungs. Two classification models
(multiclass and binary) were implemented after training nine

deep transfer learning models. These models range from
eight layers in AlexNet to 201 layers in DenseNet. Two
freely available datasets, including COVID-19 chest X-ray
and pneumonia datasets, were used for transfer learning. The
results indicate that ResNet achieved an average accuracy of
98.75%, and 100% accuracy was achieved in differentiating
COVID-19 from healthy individuals, viral pneumonia, and
bacterial pneumonia.

In [21], the authors proposed a computer-aided COVID-
19 diagnosis algorithm based on preprocessed chest X-ray
images. Numerous preprocessing techniques were applied
to enhance the images and improve the classification
accuracy. These preprocessing techniques include histogram
equalization and low-filter algorithms. Next, these images
were combined and used as input in a transfer learning
CNN trained on a publicly available dataset of 8474 images.
The VGG-16 transfer learning model classifies images
into three classes, namely, COVID pneumonia, non-COVID
pneumonia, and healthy, with an accuracy of 94.5%. The
results indicate that preprocessing images can improve the
detection process and COVID-19 detection results.

The authors in [22] presented an ensemble transfer
learning approach for detecting COVID-19 in chest X-rays
while differentiating between viral and bacterial pneumonia.
Ensemble learning was applied by merging the results of
several pretrained models, including ResNet v2, DenseNet-
201 and VGG-16. The model learns deep features in chest
X-ray images and uses these features to implement binary
and multiclass classification. Two datasets with more than
1600 images were used for training and testing. The model
achieved accuracies of 99% and 96.1% on the two datasets.

Another transfer learning technique for performing mul-
ticlass classification for COVID-19 detection is presented
in [23]. Two datasets containing 5500 images of thoracic
radiographs were used to train ResNet and classify images
as healthy, viral pneumonia, or bacterial pneumonia. Fur-
thermore, an experiment was performed to compare the
performance of the CNN with and without transfer learning.
The results indicate that the transfer learning approach with
ResNet-50 achieved an accuracy of 97%, outperforming deep
learning methods without transfer learning.

In [24], the authors proposed a deep transfer learning
approach using ResNet-50, DenseNet-121 and VGG-19.
However, in most of the literature, transfer learning is
used with small datasets. In this paper, a large number of
images is classified into one of four categories, namely,
opaque lungs, healthy lungs, COVID-19 pneumonia, and
viral pneumonia. A large dataset with more than 20,000 chest
X-ray images was used for transfer learning to train and
validate the model, achieving an accuracy of 94%. The results
indicate that transfer learning is a promising approach for
identifying COVID-19 and conventional pneumonia in chest
X-ray images.

Table 1 shows the results of some recent research related
to our work. The table includes AI methods for classifying
bacteria that achieved the highest reported accuracy on the
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TABLE 1. A comparison of different bacteria classifiers. DB indicates a digital image of a bacterial species in the dibas bacterial hyperspectral image
database.

dataset, including the sample size, dataset name and image
type. These studies used datasets containing microscopic
images of bacterial cells, whereas a new dataset with bacterial
colonies images was collected in our study, using mobile
devices cameras to directly capture the colonies without using
any microscopes or magnification devices.

As shown in Table 1, several popular CNN architectures,
such as AlexNet [32], VGGNet [33], and ResNet [34], have
been widely used in research. We experimented with various
architectures to investigate the applicability and usability of
our dataset and report all results to provide an in depth review
of the applicability and limitations of the proposed dataset.

III. APPROACH
This approach was developed based on the success of CNN-
based models for solving image classification tasks by using
previously labeled data to learn how to classify new data.
We designed our approach using state-of-the-art architectures
and evaluated it on our in-house collected dataset. Regardless
of the architecture, the model is initialized with random
weights or with weights from a model pretrained on another
dataset. Then, themodel outputs random classes. Next, during
training, those weights are adjusted to obtain more reasonable
outputs.

To initialize the model weights, we used the weights of
a model trained on a different dataset, which is a common
method in deep learning known as transfer learning. Transfer
learning involves drawing on what has been learned from
other datasets to address a previous task to solve the current
task of interest. Additionally, via experimentation, we found

that transfer learning yields better performance than other
approaches.

In this paper, we used various popular CNN architectures,
such as ResNet-18, AlexNet, VGG-16, SqueezeNet, and
DenseNet 161, to identify two bacterial species in digital
images of bacterial colonies. During the training phase,
as shown in Figure 1, the model was exposed to images of
both classes accompanied by sample class labels. During each
learning step, the model weights were adjusted to increase the
number of times that the model predicted the correct class
and decrease the number of times that the model predicted
the incorrect class. With sufficient time and training data, the
model should be able to classify a new sample correctly.

Our approach is simple and commonly used when applying
CNNs for classification tasks. We used a CNN followed
by a classifier layer that has two output values representing
the different bacterial types, as shown in Figure 1. A cross
entropy loss and soft max layer were used during training,
aiming to minimize the loss via backpropagation during each
iteration.

During the testing phase, the CNN and classifier layer
are both fixed, and their weights are held constant. The
weights learned during the training phase are used to output
the predicted results, which are later used to evaluate our
approach, as shown in Figure 2. The CNN and classifier
layers can vary, and we tested various networks.

IV. DATASET
The dataset collected in this study consists of 8,043 digital
images of colonies of two different bacterial strains: E. coli
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FIGURE 1. Overview of the training phase.

FIGURE 2. Overview of the testing phase of our approach. The Network
weights are fixed here.

and K. pneumoniae. These digital images were collected
in the National Centre for Biotechnology–KACST in the
Kingdom of Saudi Arabia. The bacterial strains were initially
streaked on MacConkey agar plates and incubated at 37◦C
for 24 hours. A single colony was taken with a 10 µl loop
and restreaked on a freshMacConkey agar plate for increased
purity. These plates were incubated under the same conditions
as the other plates in the dataset.

Three different mobile phones were used to collect these
photos (iPhone Xs Max, iPhone 11 Pro and iPhone 7). All
phone cameras were set at 1080p resolution to obtain higher-
quality photos. The horizontal and vertical resolution of all
images was 72 dots per inch (dpi).

Different shooting settings were also used in the collecting
process in ‘‘controlled’’ and ‘‘uncontrolled’’ environments
to obtain a wider range of image qualities, camera poses,
lighting conditions, etc. In the controlled environment,
the distance between the camera and plate, camera pose,
lighting conditions, and camera itself were fixed during
image collection. In the uncontrolled environment, these
conditions were not fixed. Table 2 summarizes the conditions
in the controlled and uncontrolled environments, while
Figure 4 presents fragments of the images.

All images in the dataset were processed depending on
whether the image was in the training or testing set. All
training data were resized to 224 x 224 pixels and randomly
flipped for horizontal or vertical transformations, and all
values were converted to tensors. The preprocessing for the
testing data, however, included only two steps: the images
were resized to 224 x 224 pixels, and the pixels were

FIGURE 3. Dataset samples before and after preprocessing.

FIGURE 4. Dataset samples from different categories.

normalized for color clarity. Figure 3 shows some sample
images before and after preprocessing. It is worth noting that
we applied different preprocessing steps for the training and
testing data to increase the variety in the training data, thereby
increasing the accuracy and noise robustness of our model.

V. DATASET VALIDATION
The validity and authenticity of the newly collected images
in the dataset used in this study were first confirmed by
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TABLE 2. Conditions in the controlled and uncontrolled environments.

identifying both bacterial strains using the VITEK 2 system.
Then, we tested the common features of colonies produced
by both bacterial strains when streaked on MacConkey
agar plates. These features include the color, appearance
and texture of the colonies. The E. coli colonies are
known to appear as round, dome-shaped colonies that
are slightly depressed in the middle, with bump point
locations in the middle of the depression. These colonies
can also appear as rough-edged, flat, or flared colonies [35].
In contrast, K. pneumoniae colonies appear as round, dome-
shaped, mucoid, pink colonies, as shown in
Figure 4 [36], [37].

VI. EXPERIMENT
A. SYSTEM SETUPS AND MODEL PARAMETERS
We used five CNN architectures: ResNet-18 [38], AlexNet
[32], VGG-16 [33], SqueezeNet [39], and DenseNet 161
[40]. All models were pretrained on the 1000-class ImageNet
dataset [41]. The output of the classifier layer in all models
was reshaped to suit our classification task. Therefore, we
edited the classifier layer to have one of two classes, E. coli or
K. pneumoniae, as its output. We used Google Colab to train
themodels. Google Colab provided different resources during
each run; however, these resources affect only the running
time, which is beyond the scope of this paper. The model
parameters were set as follows:

Learning rate = 0.0001

Momentum = 0.9

Batch size = 8

Optimizer = Stochastic gradient descent

Number of epochs = 30

The above training settings were chosen after repeating
Experiment #1 several times and estimating the model
accuracy on a validation dataset, which is a subsection of the
training dataset.

B. RESULTS
Given that the dataset and approach are the first of their
kind, there are no baseline or existing state-of-the-art
methods with which we can compare our model. Thus,
we used multiple architectures and experimental conditions

to provide sufficient evidence demonstrating the applicability
and effectiveness of our approach.We evaluated our approach
on each model with five different experimental settings in
terms of the data distributions and selections for training and
testing. Table 3 shows the number of bacterial plates used for
each experiment.

In the first experiment, we used 241 controlled training
images and 50 controlled testing images to evaluate the
applicability of our approach in the easiest scenario where
the training and testing data are similar. In the second
experiment, we applied 5-fold cross-validation to assess
the model under various data divisions and to measure the
accuracy with more robustness. The dataset was divided as
follows:

Fold 1 contains E. coli and K. pneumoniae training images
from plates 1 to 8 and testing images from all other plates.

Fold 2 contains E. coli and K. pneumoniae training images
from plates 9 to 16 and testing images from all other plates.

Fold 3 contains E. coli and K. pneumoniae training images
from plates 17 to 24 and testing images from all other plates.

Fold 4 contains E. coli and K. pneumoniae training images
from plates 25 to 32 and testing images from all other plates.

Fold 5 contains E. Coli training images from
plates 33 to 36, K. pneumoniae training images from plates
33 to 39, and testing images from all other plates.

The third experiment used 291 controlled training images
and 4,387 uncontrolled testing images to evaluate the
effectiveness of the model when the test images were
acquired under slightly different conditions and to measure
the reduction rate. In the fourth experiment, we used 2,614
uncontrolled training images and 1,772 uncontrolled testing
images to evaluate the robustness of the model on a variety
of data. In the fifth experiment, we used 4,386 uncontrolled
training images and 291 controlled testing images to assess
the comparative performance of the model when trained on
a variety of data versus controlled data. Table 4 shows the
details of each experiment. The number of available images
during the training phase varies in each experiment.

The results of all experiments evaluating the approach
in various conditions and settings indicate the applicabil-
ity of our method. As shown in Table 5, the VGG-16
architecture yielded very high accuracy, outperforming all
other architectures under all conditions and image settings,
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TABLE 3. Number of bacterial plates used for each experiment.

TABLE 4. Experimental results in detail.

TABLE 5. Experimental results in detail. The architecture with the highest accuracy per setting is indicated in bold font.

including different cameras, angles, camera poses, and
lighting conditions. The accuracy of VGG-16 in experiment
#3 was 86%, which is expected given that the model was
trained on images obtained under more controlled settings,
i.e., easier tasks, and tested on images obtained under less
controlled settings, i.e., harder tasks.

To gainmore insight into the training phase, Figure 5 shows
the loss during each epoch, which decreases as expected.
In general, the results are consistent with common knowledge
about training on data with higher variety (uncontrolled data),
demonstrating that the model obtains higher robustness and
accuracy than models trained on less varied data (controlled
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TABLE 6. More detailed results, including the (%) of F1-score, precision and quality, for two architectures: SqueezeNet and DenseNet.

TABLE 7. More detailed results, including the (%) of F1-score, precision and recall, for three architectures: ResNet, AlexNet and VGG-16.

data). Moreover, more training data improves model per-
formance, thereby explaining the increased accuracy. The
experimental results show the effectiveness of our approach.

To further analyze the results, in addition to the accuracy,
we calculated the F1-score, precision and recall, and the
results are shown in Tables 6 and 7. In general, the
results confirm that the model has good performance and is
consistent across different classes of bacteria.

VII. DISCUSSION AND CONCLUSION
This paper presented and evaluated a bacterial colony
classification approach. The approach was developed and

evaluated on real-world data that we collected in house.
The collected data is, to the best of our knowledge, first
of its kind. The evaluation process contained various data
conditions and architectures. Two bacterial colonies were
prepared for this study: Escherichia coli and Klebsiella
pneumoniae. The colonies were prepared under two settings:
controlled and uncontrolled. The controlled and uncontrolled
datasets contained 321 and 7,722 images, respectively.
A comprehensive explanation of five experiments performed
on the dataset is provided in this paper. The applicability,
effectiveness, and robustness of the dataset and approach
were tested. The accuracy of the proposed method ranged
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FIGURE 5. Training loss for some of the experiments using the VGG-16
architecture.

from 72-100%. Higher accuracy was obtained by using the
controlled dataset for training and testing or the uncontrolled
dataset for training.

The higher accuracy reported when using the uncontrolled
data for training was due to the increase in the amount of data
and image variety in terms of pose and lighting conditions,
which increased the robustness of the approach.

The proposed approach was trained using a dataset
captured by different mobile devices on full or partial plates.
This approach increases the speed and efficiency of the iden-
tification process in laboratories and does not require expert
assistance. Thus, we believe that the proposed model offers
considerable value to laboratories, as our method may accel-
erate their work and reduce the need for expert experience.
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