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ABSTRACT Considering the complex structure weight of the existing tool wear state monitoring model
based on deep learning, prone to over-fitting and requiring a large amount of training data, a monitoring
method based on Transfer Learning and Improved Deep Residual Network is proposed. First, the data
is preprocessed, one-dimensional cutting force data are transformed into two-dimensional spectrum by
wavelet transform. Then, the Improved Deep Residual Network is built and the residual module structure
is optimized. The Dropout layer is introduced and the global average pooling technique is used instead of
the fully connected layer. Finally, the Improved Deep Residual Network is used as the pre-training network
model and the tool wear state monitoring model combined with the model-based Transfer Learning method
is constructed. The results show that the accuracy of the proposed monitoring method is up to 99.74%.
The presented network model has the advantages of simple structure, small number of parameters, good
robustness and reliability. The ideal classification effect can be achieved with fewer iterations.

INDEX TERMS Tool wear, condition monitoring, deep residual network, transfer learning, convolutional

neural network.

I. INTRODUCTION
Tool wear state has great influence on the dimensional accu-
racy, surface integrity and machining efficiency of the work-
piece. In the cutting process, due to thermodynamic coupling,
chatter, abnormal wear and breakage of tool, these factors
directly affect the service life of cutting tools, and even lead to
abnormal machine shutdown and personnel injury. Therefore,
it is great significance to monitor the tool wear state, it can
effectively improve tool durability, reduce production costs,
increase production efficiency and processing quality, and
raise the reliability and safety of the processing process.
Tool wear condition monitoring can be divided into direct
measurement method and indirect measurement method [1].
The direct measurement method directly measures the state
change of the tool. The wear area is directly observed by
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optical measurement method, isotope method and resistance
method. Direct measurement method has high accuracy. Due
to environmental constraints, it is inconvenient to conduct
direct observation and the cost is high in the actual process-
ing. The indirect measurement method can monitor the tool
wear state by analyzing the associated dynamic information
during the cutting process. Indirect method is low cost and
strong anti-interference ability. The indirect measurement
method has become a hot topic in tool wear monitoring with
the rapid development of signal processing and intelligent
fault diagnosis. The commonly used models of indirect mea-
surement method in tool wear state monitoring include neural
network [2], fuzzy inference [3], fuzzy neural network [4],
dynamic Bayesian network [5], support vector machine [5],
etc. The proportion of tool condition monitoring models is
shown in Fig. 1.

Neural networks have made great progress in tool wear
monitoring. Deep learning network models, represented by
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FIGURE 1. Proportion of tool condition monitoring model.

convolutional neural network and deep residual network,
have been gradually applied to tool wear monitoring in recent
years. Fatemeh et al. [6] enhanced the influence of tool
wear in signals. The convolutional neural network (CNN)
was used to estimate tool wear and different data sets were
validated. It shown that the method was feasible. Convo-
lutional neural networks can automatically identify features
from multi-scale signal matrices, the method was verified by
S45C steel workpiece end milling experiments with different
processing parameters [7]. Wu et al. [8] built the experimental
system on the machine tool. The wear image information
of all blades in machining gap was obtained by matching
frame frequency of industrial camera and spindle speed of
machine tool. Then convolutional neural network was used
to identify the tool wear state. The method has effectiveness
and practicability. The cutting force generated by mechanical
force model instead of experimental cutting force, which was
used to predict tool wear state. Convolutional neural network
was applied to confirmed the feasibility of this method by
Su [9]. Convolutional neural network is also widely used in
machining surface roughness estimation, bearing fault diag-
nosis, tool wear detection and other aspects [10].

Residual network has a good performance in tool wear state
monitoring [11], intelligent diagnosis of rolling bearings [12]
and fault diagnosis of gear boxes [13]. It has strong versatility
and operability. Ma et al. [14] used deep residual network
to achieve data-driven fault diagnosis, experimental results
shown that the detection accuracy of the proposed method is
significantly higher than the early faults. Peng et al. [15] fused
multi-source information. Deep residual network (DRNN)
was used for fault diagnosis of rotating machinery. The pre-
sented method performed well in feature learning, model
training, noise resistance, fault tolerance and fault diagnosis.

Although deep learning has made great achievements in the
field of fault diagnosis. But the deep learning model still has
some flaws. The training of deep learning needs a lot of data,
once the data is insufficient, it will cause the phenomenon of
over-fitting. The maximum pooling layer of deep learning is
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poor in retaining local information, it is difficult to process
missing data, complicated weight of network structure and
easy to ignore the correlation of attributes in data set. In addi-
tion, the parameters of the model increase exponentially when
hidden layers are increase. It is huge to train a deep learning
network model in the number of label samples, time and
computing power.

To solve the above problems, this paper put forward a tool
wear state monitoring method based on Transfer Learning
and Improved Deep Residual Network. Firstly, wavelet trans-
form is used to process cutting force signals for eliminating
the influence of manual features and obtaining the required
spectrum. Secondly, convolution series omits a large number
of training tuning parameters. Thirdly, the residual module is
improved to place the LeakyReLU activation function before
the convolution layer. Fourthly, the Dropout layer is added to
randomly lose network units and weights connected to them
during training to reduce overfitting and improve accuracy.
Fifthly, global mean pooling technique is used to reduce the
number of training parameters and test time of the model.
Finally, all the convolutional layers of the pre-training net-
work are frozen to construct the required full connection layer
for Transfer Learning after the construction of the Improved
Deep Residual Network and the tool wear state monitoring is
realized.

Il. DATA PREPROCESSING

The data collected in this paper were the cutting force sig-
nals of a certain type of aero-engine blisk. The signal was
a one-dimensional time-varying unsteady signal. When the
deep learning model in the field of Computer Vision (CV)
is a pre-training model, one-dimensional signals should be
converted into two-dimensional image data. There are two
transformation methods. The first method is based on data
reconstruction, which directly intercepts and splice the one-
dimensional cutting force signal to reconstruct the two-
dimensional image. The method is simple in operation, but
the frequency domain information of the signal is ignored.
The second method is based on time-frequency domain con-
version, including Fourier Transform (FT) [16] and Wavelet
transform (WT) [17]. Fourier Transform (FT) has poor abil-
ity to characterize non-stationary signals, which may lead
to information loss when extracting deep features. Wavelet
transform (WT) uses window function with fixed area and
variable shape to balance time resolution and frequency res-
olution through multi-resolution analysis. Therefore, wavelet
transform will be used in this paper to process the data.

A. WAVELET TRANSFORM

French scholar Morlet [18] put forward wavelet transform.
It has been widely used in signal processing, image process-
ing, applied mathematics and many other fields. It is mainly
used in filtering, denoising, compression and transmission
in signal processing and analysis. The wavelet function is
defined as follows:
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FIGURE 2. The data acquisition process.

If W (t) € L? (R) satisfies the admissibility condition:
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Then W (t) is called an admissible wavelet (integral
wavelet, fundamental wavelet), Where ¥ (w) is the Fourier
transform of W (t). The wavelet function generated by the
fundamental wavelet can be expressed as:

—1 — bR
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where, a is the expansion factor and b is the translation
factor. The area of W, , (¢) is fixed, the size of a only affects
the length of W, ;, (¢). The discrete wavelet function can be
written as:

W
Wiy (1) = ay 2w (0"~ ko), jkez @

The discrete wavelet transform coefficient can be repre-
sented as:
o

Wik ()= [ f )Yk (0)dt “

The reconstruction formula of discrete wavelet transform
is as follows:

FO=CY " 3T Wi 5)

where C is a constant independent of the signal.

B. BLISK PROCESSING TEST AND SIGNAL ACQUISITION

The workpiece material was titanium alloy TC17. The disk
and blades used in the test were provided by Zhuzhou Dia-
mond Cutting Tools Co., LTD. The blade arrangement of disk
milling cutter was left, middle and right. The blade model is
indexable YBG212. It is made of hard alloy steel with TiAIN
non-coating. The parameters of disk and blade were shown
in Table 1. The powerful compound machine developed by
Northwestern Polytechnical University was used. The pro-
cessing method was climb milling and cooling by emulsion.
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Acquisition of cutting force signal

Tool scanner

TABLE 1. Disk milling cutter and blade parameters.

The blade Diameter ~ Thickness  Cutting tool rake ~ Sampling
number Angle rate
(PCs) (mm) (mm) ©) (KHz)
39 420 15 15 10
Blade width Blade setting After the Radius of tool tip arc
Angle Angle
(mm) © © (mm)
6 +2 0 0.8

The monitoring device for cutting forces was the piezoelectric
force measuring instrument Kistler 9255B. The tool wear
in flank was measured by the IFM-G4 automatic tool mea-
suring instrument. The dynamometer was fixed on the work
table and the workpiece was fixed on the dynamometer with
four 12mm bolts. The instantaneous cutting force signal was
amplified by multi-channel amplifier Kistler 5080 and trans-
mitted to computer by data acquisition card PCI-DAS602/16.
The data was recorded by DEWESoftX?2 software and the cut-
ting force signal was collected. The data acquisition process
was shown in Fig. 2.

C. PROCESS THE DATA

According to the spindle speed with 70r/min and the feed
speed with 20mm/min, 30mm/min and 40mm/min, the cut-
ting force signals were divided into three categories. A total
of 5164 sets of data were used to analyze tool wear at different
feed rates. All-pass filter was used to remove interference
from cutting force signal. The cutting force signal, spectrum
diagram and scale diagram were showen in Fig. 3, Fig. 4,
and Fig. 5, respectively. The first Type data groups (S with
70r/min and F with 20mm/min) were shown in Fig. 6, the
second type (with 70r/min and F with 30mm/min)S were
shown in Fig. 7 and the third type (S with 70r/min and F with
40mm/min) were shown in Fig. 8.
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The input signal was decomposed into some subband sig-
nals by wavelet transform. Some of these subband signals
can be used to represent the trend of the signal, the coef-
ficients of these subbands can be set to 0. The signal was
reconstructed by discrete wavelet inverse transformation to
remove the trend of cutting force signal. The reconstructed
signal was shown in Fig. 9. Fig. 9 shows the first group of
data reconstruction signals of the first type.

Ill. DEEP LEARNING MODEL FRAMEWORK

A. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a typical deep learn-
ing network architecture inspired by biological visual per-
ception mechanism. Typical convolutional neural networks
are composed of convolutional layer, pooling layer, full con-
nection layer and Softmax classification layer, as shown in
Fig. 10.

The convolutional layer is the core of the convolutional
neural network, which can extract the required features
according to the objective function. The convolution layer
is to extract features by calculating the inner product of the
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overlapping region between the 2d convolution kernel and
the corresponding input image and traversing every pixel on
the whole image through a nonlinear activation function. The
mathematical model of the convolution layer is expressed as
follows:

df=f (3o + b)) )

where x} is the value of the j feature map of layer /, f is

nonlinear activation function, xf —1is the ith feature map value
of layer [ — 1, k is convolution kernel, 5! is the j-th bias
parameter of layer /. The activation function used is Rectified
Linear Units(ReLU), its mathematical model is as below:

ReLU (x) = max (0, x) x € (—00, +00) 7

The pooling layer is usually located after the convolu-
tion layer to reduce the size of the feature graph and intro-
duce invariability. Its mathematical model is represented as
follows:

3l = (Bldown (/=" +1})) @®)

where down()is a sub-sampling function. The full connection
layer is the last layer of convolutional neural network, which
is used to perform classification and regression tasks. Its
mathematical model is written as below:

y=f(Wx+b) 9)

where ¥ is the output of full connection, W is the weight
matrix multiplied by the input eigencolumn vector X, b is the
offset column vector, f (-) is the activation function. The full
connection layer adopts SoftMax function as the activation
function output. The SoftMax function is defined as:

&
;= =1,... 1
Sl lev eZVl’ l ’ 7N ( O)
Zﬁ = Zwﬁjxfl (11

where wﬁj is the weight from the j neuron to the i neuron in

layer [ — 1.

B. IMPROVED DEEP RESIDUAL NETWORK

He et al. [19] presented the deep residual network to solve the
problem of gradient disappearance in convolutional neural
network extracting deep features. The deep residual network
[20] is composed of multiple residual modules with jump-
ing connections. The residual module can effectively solve
the problems of gradient dispersion and gradient explosion
after network deepening. The residual module is defined as
follows:

vi=F @, (W) +x (12)
xi41 =1 1) (13)

where x; and y; represent the input and output of the residual
module, W; is the weight matrix, F (x;, {W;}) is the residual
mapping to be learned by the network, f (-) is the Rectified
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Linear Units (ReLU). For the layer residual module, the
learning characteristics from shallow to deep are written as
follows:

"F (o (W)

XL =x;+ 2:1

When the corrected Linear Units (ReLU) [21] input is less
than 0, the weight cannot be updated and the subsequent

(14)
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training is in a silent state. Therefore, the advanced activation
function LeakyReLLU was used instead of ReLLU function
to improve the robustness of the model. The mathematical

expression of the LeakyReLU function is as follows:
y = max(0, x) + & min(0, x) (15)

where ¢ is a small constant. It can retain some values of the
negative axis. There is still a small gradient of non-zero output
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when neurons are not activated. It can avoid the pitfalls of the
ReLU function.

The residual module is shown in Fig. 11. By learning
residuals, part of the original input information is directly
transmitted to the next layer through the identity mapping
layer to alleviate the problem of feature loss in the infor-
mation transmission of the convolution layer. This structure
improves the expression ability of the model and avoids the
degradation caused by the deepening of network layers.

The residual optimization structure is adopted to facilitate
the construction of deep network and reduce the number of
network parameters and computation, as shown in Figure.11.
Firstly, a 1 x 1 convolution layer is used for dimensionality
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reduction. Then, another 1 x 1 convolution layer is used
for dimensionality reduction after the 3 x 3 convolution
layer. Compared with the traditional residual structure, the
proposed structure not only ensures the accuracy of calcu-
lation, but also reduces the number of parameters and saves
calculation force. In Fig. 12, d is the input data dimension and
the parameters in the box are the convolution kernel size and
output channel of each layer.

The data set collected in the actual operation often con-
tains a certain amount of abnormal data that will induce the
network to learn as a rule, lead to over-fitting problems and
reduce model accuracy. Therefore, Dropout technology will
introduce into the residual module in this paper. Dropout
technology was proposed by Hinton et al. [22] to solve the
overfitting problem. The idea of Dropout technology is to
randomly discard some of the hidden layer neurons to reduce
the chance of abnormal data to learn and diminish the impact
of abnormal data on the network. The operation diagram of
Dropout is shown in Fig. 13. Figure 13(a) shows the deep
feedforward network and Figure 13(b) shows the deep feed-
forward network after Dropout. The number of intermediate
features, redundancy and complex co-adaptive relationships
between neuron are reduced by adding a Dropout layer. It can
also increase the orthogonality between the features of each
layer and avoid over-fitting.

Furthermore, the LeakyReL U activation function is placed
before the convolution layer to achieve direct connection
between the input and output, which maximizes the retention
of transmitted information. Since the number of redundant
parameters in the fully connected layer is not conducive to
the operation of the network, the global average pooling layer
is adopted in this paper to replace the full connection layer.
The global average pooling directly pools the input features
without neurons, which can simplify the network structure
and omit a lot of network parameters. The internal structure of
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(a) Deep feedforward network

(b)Deep feedforward network
processed by dropout Technology

FIGURE 13. Dropout operation schematic diagram.
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the Improved Residual Module is shown in Fig. 14. The struc-
ture of the Improved Deep Residual Network is displayed in
Fig. 15.

C. TRANSFER LEARNING

The realization methods of Transfer Learning are divided into
sample transfer [23], feature transfer [24], model transfer [25]
and relationship transfer [26]. The model transfer method
was adopted in this paper. The Improved Deep Residual
Network was used as a pre-training network model, in which
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all convolutional layers were freezed, all required connec-
tion layers were built and global fine-tuning was performed.
In Transfer Learning, synthetic samples are used as source
domain Dy and the training set after data enhancement is used
as target domain D;. Samples in source domain and target
domain follow the same label distribution. The data from
Dy is pre-trained to the model and the parameters are saved.
The weight matrix can be recorded as W;. W, was applied to
initialize the parameters of the target network. The data of D;
was used to retrain the whole network and a new model was
obtained through fine-tuning.

Yosinski et al. [27] evaluated the migration ability of con-
volution layers at different positions through a large number
of experiments. It was found that the features extraced from
the lower convolutional layer had strong migration ability,
while the features extraced from the higher convolutional
layer that related to specific tasks were not suitable for migra-
tion and needed to be retrained on new data sets.

Therefore, the proposed network is adopted freezing of
the low level network parameter and the high level network
parameters that migrated from the network parameters trained
by cutting force data. In this paper, most of the architecture
of the Improved Deep Residual Network model was retained
when pre-training the network model. The fully connected
layer was rebuild. The parameters of the first seven residual
network modules are frozen and used as shallow feature
extractors. The parameters of the 8th residual module are
randomly initialized to learn the deep features. Softmax clas-
sification of layer is used to obtain the tool wear status.

D. TRANSFER LEARNING WITH IMPROVED DEEP
RESIDUAL NEURAL NETWORKS
Aiming at the deficiency of traditional deep learning model,
an Improved Deep Residual Network model based on Trans-
fer Learning and Improved Deep Residual Network was pro-
posed for tool wear monitoring. Transfer Learning is adopted
to train the target domain to establish the sample recog-
nition and classification model, which can avoid the time
and computing power wasted by repeated training on the
network model. The deep residual network is used to solve
the problems of gradient dispersion, gradient explosion and
degradation after network deepening. The residual module
is improved to enhance the robustness of the model during
training. The schematic diagram of Transfer Learning and
Improved Deep Residual Network framework is shown in
Fig.16, and the basic process is shown in Fig.17.

Firstly, the data was preprocessed as follows:

e The cutting force signals were collected.
e The one-dimensional cutting force were converted into
two-dimensional signals by wavelet transform.

Then, the deep residual network was set up as follows:

e The LeakyReLU activation function was applied to
replace ReLU function in the residual module to
improve the robustness of the model.
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e The LeakyReLU activation function was placed before
the convolution layer to maximally retain the transfer
information.

e Dropout technology was introduced into the residual
module to discard part of the redundant information in
the network, which can improve the over-fitting phe-
nomenon of the network.

e The global average pooling layer was used instead of the
fully connected layer to simplify the network structure.

Finally, the model was migrated as follows:

e After the Improved Deep Residual Network was built,
all convolutional layers were frozen and the fully con-
nected layer was reconstructed for Transfer Learning.

e The tool wear state monitoring was completed by train-
ing network.

IV. TOOL WEAR MONITORING APPLICATIONS

A. EXPERIMENTAL ENVIRONMENT AND

PARAMETER INDEX

Deep learning framework Matlab2021a was adopted to ver-
ify the feasibility of the presented network model in this
paper. The experimental environment is shown in Table 2.
To improve the performance of the proposed networks in
this paper, ablation experiments were used to determine the
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TABLE 2. Table of experimental environment.

Environment Configuration information
CPU:Intel(R) Core(TM) i7-8750H
Hardware Memory: 8GB
GPU:NVIDIA GeForce GTX 1050Ti
Software Matlab2021a, DEWEsoftX,

Windows11,0rigin2021.

optimal network parameters. The parameters of the ablation
experiment are shown in Table 3.

B. EXPERIMENTAL RESULTS

In the case of wear, the cutting force data were collected
in this paper. The spindle speed was 70 r/min, the feeding
speed were 20 mm/min, 30 mm/min and 40 mm/min. A total
of 5164 sets of data were divided into three categories. The
ratio of training set, validation set and test set is 6:3:1.
In the Improved Deep Residual Network model, and then
Transfer Learning. The accuracy of the ablation experiment
training process was shown in Fig. 18(a). The Model 1,
Model 2 and Model 3 are the same network models with
different parameters and the Model 4 is the Improved Deep
Residual Network without Transfer Learning. The accuracy
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FIGURE 16. Transfer learning and improved deep residual network framework.

TABLE 3. Ablation experiment parameter index.

Parameter types Transfer Learning Transfer Learning Transfer Learning Improved Deep Transfer Learning
and Improved Deep and Improved Deep and Improved Deep Residual Network4 and Deep Aesidual
Residual Network1 Residual Network2 Residual Network3 without Transfer Networks
(Modell) (Model2) (Model3) Learning (Model4) (ResNet50)
Dataset Training set 3099 3099 3099 3099 3099
Parameters Validation set 1550 1550 1550 1550 1550
Test set 515 515 515 515 515
Data categories 3 3 3 3 3
Network Iterative rounds 40 40 40 40 40
model Number of iterations 4 4 4 4 4
parameters
per round
Small batch size 128 128 128 128 128
Random inactivation 0.5 0.1 0.5 0.5 0
Vector 0.001 0.001 0.01 0.001 0.001

of Model 1, Model 2, Model 3, Model 4 and ResNet50
[28] were 99.74%, 94.55%, 92.33%, 84.78% and 91.67%,
respectively. The accuracy of Model 1 was the highest. It was
decided to use the Model 1 as the final network. Fewer train-
ing times can achieve ideal classification effect. The loss rate
of ablation experimental training was shown in Fig. 18(b).
The confusion matrix of Model 1 was displayed in Fig. 19,
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where Fig. 19(a), Fig. 19(b), Fig. 19(c) and Fig. 19(d) are for
the training set, the validation set, the test set and the overall
dataset, respectively.

C. ALGORITHM CONTRAST
In order to verify the reliability of the proposed model in
this paper, comparison experiments were conducted using
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Support Vector Machine(SVM), Decision Tree Algo-
rithm(DT), Naive Bayes(NB), K-Nearest Neighbor(KNN),
Neural Network(NN) and classical Convolutional Neural
Network (VGG16) [29] for comparative experiments. The
VGG16 network is a Convolutional Neural Network model
proposed by Simonyan et al. in “Very Deep Convolutional
Networks for Large Scale Image Recognition”. The VGG16
model has better performance in classification tasks and its
name comes from the Oxford University Geometry Group
(Visual Geometry Group) abbreviation. The results were
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FIGURE 18. Raining accuracy and loss rate.
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Loss

shown in Fig. 20. The classification accuracy of VGG16
network, SVM, DT, NB, KNN and NN were 95.5%, 78.8%,
76.5%, 72.0%, 719.9% and 75.7%, respectively.

As shown in the figure, the model of Transfer Learning
and Improved Deep Residual Network used in this paper had
higher accuracy.

V. DISCUSS

The one-dimensional convolutional neural network was
used to train time signals for bearing fault diagnosis by
Zhang et al. [30] Due to the initial phase difference of time
samples, the learning process of convolutional neural net-
work would be interfered. Therefore, wavelet transform
was applied to convert the collected one-dimensional time-
varying unsteady cutting force signals into two-dimensional
data and the two-dimensional signals were used as the input
of the deep learning network model in this paper. Wavelet
transform has good effect on characterizing abrupt and singu-
lar signals and is suitable for processing cutting force signals.
Moreover, all-pass filter is adopted to reduce the correlation
between different features extracted.

Tool wear monitoring based on deep learning has been
studied deeply. Zhang et al. [31] adopted wavelet packet
decomposition to process the cutting force data and fused the
signal characteristics. The sample error was 8.2%. However,
the problem of gradient dispersion or gradient explosion
caused by the deepening of network layers was ignored.
Deep residual network was applied to solve this problem in
the paper. The residual structure was improved to replace
the traditional ReLU activation function with an advanced
LeakyReLU activation function and introduce a Dropout
layer. In order to make full use of effective resources and save
computational power, the Improved Deep Residual Network
was used as the pre-training model and the model migration
method was adopted to tool wear monitoring of machining
aero-engine blisk.

To verify the feasibility of the proposed network, ablation
experiments were used to compare network models with
different parameters. The proposed method was compared
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with several commonly used machine learning methods in
section 4. The traditional model K algorithm with the highest
accuracy of shallow learning was 79.9% and the VGG16
network with the highest accuracy of deep learning was
95.5%. The input of shallow learning was one-dimensional
time-varying unsteady cutting force signal without wavelet
transform. The shallow learning was difficult to deal with
missing data, prone to over-fitting problems and easy to
ignore the correlation of attributes in the data set, which
lead to low accuracy in generally. Data was preprocessed
and wavelet transform was used in traditional deep learning.
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But the problem of network degradation caused by gradient
explosion and gradient disappearance had not been solved.

The spectrum graph was directly input the presented
method of Transfer Learning and Improved Deep Residual
Network, which can avoid the complex process of feature
extraction and data reconstruction and can learn representa-
tive features directly from raw data Moreover, it can combine
feature extraction and fault diagnosis in a model (end-to-
end). The structure nodes of the proposed network in this
paper are 112 layers. The structure nodes of the traditional
deep residual network ResNet50 are 177 layers. The accuracy
rate of the proposed network was 8.07% higher than that
of ResNet50. Experimental results showed that the proposed
network simplified the network structure, improved the com-
puting efficiency and enhanced the robustness.

VI. CONCLUSION

A tool wear monitoring method based on Improved Deep
Residual Network and Transfer Learning was presented in
this paper. Dropout layer was introduced to prevent the occur-
rence of overfitting phenomenon. The LeakyReL U activation
function was added to improve the robustness. The Transfer
Learning model was applied to pre-trained to improve the
accuracy and generalization performance of the model moni-
toring. It was compared with convolutional neural network,
support vector machine and other machine learning. The
conclusions were as follows:

e The proposed model is suitable for tool wear monitoring.
The data is directly input the model without manual
feature extraction of processed 2D data. The *“end-to-
end” model structure has better operability and versatil-
ity. The model can be changed by modifying parameters,
which has strong flexibility and growth.

e Compared with traditional machine learning, the accu-
racy of the presented model was 99.74% and the VGG16
network with the highest accuracy in traditional machine
learning was 95.5%. The proposed model has excellent
fault diagnosis performance.

e The feasibility of the proposed method was verified
by cutting forcee signals in this paper. Other types of
signals can be used to verify the method in future studies.
The method can also be applied to other mechanical
equipment fault diagnosis.
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