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ABSTRACT Despite significant advances and innovations in deep network-based vehicle detectionmethods,
finding a balance between detector accuracy and speed remains a significant challenge. This study aims to
present an algorithm that can manage the speed and accuracy of the detector in real-time vehicle detection
while increasing detector speed with accuracy comparable to high-speed detectors. To this end, the Fast-
Yolo-Rec algorithm is proposed. The proposed method includes a new Yolo-based detection network and
LSTM-based position prediction networks. The proposed semantic attention mechanism in the spatial
semantic attention module (SSAM) significantly impacts accuracy and speed on par with the most recent
fast detectors. Recurrent position prediction networks, on the other hand, improve the detection speed by
estimating the current vehicle position using vehicle position history. The vehicle trajectories are classified,
and the LSTM network for the specified trajectory predicts the vehicle positions. The Fast-Yolo-Rec
algorithm not only determines the position of the vehicle faster than high-speed detectors but also allows
for the speed control of the detection network with acceptable accuracy. The evaluation results on a large
Highway dataset show that the proposed scheme outperforms the baseline methods.

INDEX TERMS Yolo-based detection network, attention mechanism, recurrent prediction network.

I. INTRODUCTION
The detection and classification of vehicles in intelligent
transportation systems play a crucial role in urban traffic
management, reducing traffic violations, measuring vehicle
speeds, and enabling more detailed violation evaluation [1],
[2], [3], [4].

Convolutional neural networks (CNNs) are among the
most successful methods for promoting object detection.
They are excellent at learning image features and can
perform various tasks related to classification and bound-
ing box regression [5]. CNN-based methods are divided
into one-stage and two-stage detection networks. One-stage
detectors have high inference speeds. On the other hand, two-
stage detectors have significant localization accuracy and
low speed. These networks have revolutionized the detection
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of objects; however, despite recent advances, the tradeoff
between the speed and accuracy of such networks remains
a major challenge [6]. Two-stage detection networks, such as
R-CNN [7], Fast R-CNN [8], and Faster R-CNN [9], focus on
areas of the image that are more likely to contain the target
rather than the entire image. Each of these areas is processed
separately by the network. Due to a large number of selected
regions, in the range of 1000 to 2000, the network can process
the image thousands of times. While single-stage detectors,
such as Yolo [10], process the image only once. Therefore,
single-stage networks run much faster.

Several variants of YOLO have been introduced in recent
years, including YOLOV2 [11], YOLOV3 [12], YOLOV4,
and YOLOV5 [13], [14], [15]. Although the new versions
of YOLO are more accurate, their execution speed is not
noticeably faster than the basic model. This paper presents
a Yolo-based method called Fast-Yolo-Rec to address this
issue. In this algorithm, the position of the vehicles is

120592
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7891-293X
https://orcid.org/0000-0002-6471-8455


N. Zarei et al.: Fast-Yolo-Rec: Incorporating Yolo-Base Detection and Recurrent-Base Prediction Networks

predicted in several input frames, and in some of them, detec-
tion is used to determine the position of the vehicles. This
is because predicting the situation of vehicles is done much
faster than detecting them, which increases the average speed
of implementing the Fast-Yolo-Rec algorithm. On the other
hand, the accuracy of the presented algorithm is maintained
due to the use of the detector network in this algorithm. These
networks complement each other and help maintain accuracy
and increase speed.

The proposed detector in Fast-Yolo-Rec uses a seman-
tic attention mechanism. This mechanism improves vehicle
positioning accuracy and reduces the target miss rates based
on its superior performance. The accuracy of the proposed
detector in the Fast-Yolo-Rec algorithm is comparable to the
last versions of YOLO. Still, its number of parameters is less,
and its speed is higher. The reason for achieving this desired
result is using the meaningful attention mechanism, which
is implemented using U-Net-based segmentation networks.
In this mechanism, feature maps are generated so that they
make a significant distinction between the vehicles and the
image background. Until now, such a mechanism has not
been used in YOLO family detectors. This mechanismmakes
vehicle positioning more accurate, and the miss rate of the
target is reduced. Despite this mechanism, there is no need
to deepen the network to achieve higher accuracy. Thus,
many problems caused by deepening the network, such as
overfitting and high hardware volume, are solved. On the
other hand, the speed of the detector does not sacrifice its
accuracy.

In the Fast-Yolo-Rec algorithm, motion prediction is also
used in addition to detection. In motion prediction, only
helpful information is processed in sequential images. Con-
secutive images in the traffic control system have much
redundancy due to the stability of surveillance cameras and
the existence of a common background in their recorded
images. The reason for the high speed of prediction compared
to detection is the elimination of these redundancies.

Traditional methods that use motion include optical flow
and the use of differential images. [16], [17], [18]. Differen-
tial methods have several significant drawbacks. They cannot
detect the position of stationary objects and are not suitable
for detecting slow and fast objects. Furthermore, when the
background of an image changes, they mistakenly assume the
change is a moving object.

Optical flow-based detection methods calculate the direc-
tion and velocity of each pixel in an image and use them to
separate the moving region from the image background [19].
They are highly dependent on the quality of the input images.
Considering the mentioned problems, instead of traditional
motion-based detection methods, deep neural networks are
used formotion prediction, which also finds long-term depen-
dencies and therefore has higher accuracy.

To improve the prediction accuracy, before using deep neu-
ral networks, the trajectory of each car is classified, and it is
determinedwhether the carmoves in a straight line or changes
its direction to the right or left. Then, predictive networks are

performed according to the trajectory specified by the classi-
fier. Another solution is the shortening of the prediction time.
Research [20], [21], and [22] shows that shorter forecasting
time increases forecasting accuracy. Therefore, in this study,
prediction is done only in even frames, and detection is used
in other frames. Although, according to the complexity of the
scene, the time of prediction and detection can be changed
and the accuracy and speed of the algorithm can be managed.
In fact, the balance between accuracy and speed is one of the
challenges of the detection problems that have been addressed
in this study. Overall, the main contributions of the present
work include:

• It proposes a flexible algorithm (Fast-Yolo-Rec) in terms
of speed and accuracy to find vehicle positions. Depend-
ing on the complexity of the image and the predefined
speed and accuracy, only the proposed detection network
or the integration of the proposed detection and predic-
tion networks can be used in an alternating period. In this
research, these two networks are used alternatingly. The
detection network is used in primary and odd frames,
and the prediction network is used in even frames.
Since the predicted network is faster than the detection
network, the algorithm speed increased. The prediction
network accuracy are improved by regularly using infor-
mation from the detector in specified frames. These two
networks complement each other and improve speed and
accuracy.

• A Yolo-based detection network (SSAM-YOLO) that
has the following advantages over high-speed one-stage
detection networks:

� It decreases the hardware requirement and acceler-
ates detection by reducing the number of learnable
parameter.

� It improves the detection accuracy using a novel
semantic attention mechanism (unlike in popular
Yolo-based detection networks) and more effective
feature maps where vehicles are effectively differ-
entiated from the background.

� The scale change robustness of the detection net-
work is increased by using detection heads with
two different scales, 13 × 13 and 26 × 26, and
the multi-receptive field block (MRF block) in the
backbone of the detector. Transferring feature maps
of different receptive fields created by parallel paths
in the MRF block facilitates the detection of objects
of different sizes.

• It provides an efficient and effective algorithm for vehi-
cle trajectory classification and vehicle position predic-
tion based on LSTM recurrent networks and regression.
It is more accurate than traditional trajectory predicting
methods.

The SSAM-YOLO detection network has comparable
accuracy to the last version of YOLO detectors. The base-
line Highway category from the CDNet2014 dataset is used
to train and evaluate the proposed detector. The proposed
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detection network has almost the same level of accuracy as
YOLOV4_Tiny but 29.38% fewer parameters. It also has 31%
fewer parameters and 46% fewer floating point operations
than YOLOV7_TINY. Therefore, it has higher speed at the
same accuracy. The feature maps produced by the proposed
attention mechanism, which successfully separates vehicles
from the background, enable the efficient reduction of this
parameter. Despite this module, the network is not deepened
to obtain better features. The use of fewer parameters accel-
erates the algorithm and downsizes the hardware. Using the
predictor and the SSAM-YOLO detector allows the proposed
Fast-Yolo-Rec to take advantage of both methods simulta-
neously and achieve high accuracy in vehicle detection in
addition to the appropriate speed. The results obtained from
the implementation of the proposed method and its compari-
son with the baseline methods are discussed in the evaluation
section.

II. RELATED WORK
In recent decades, vehicle detection has greatly inter-
ested machine vision researchers. Cameras have increas-
ingly advanced in terms of hardware. They are today more
cost-effective and widely used in traffic control systems.

There are two broad categories of vehicle detection meth-
ods: traditional and deep network-based. Models based on
colors, object contours, and optical flow [23], [24] and back-
ground modeling algorithms, such as a mixture of Gaussian
(MOG) and its subtraction from the input image [25], [26],
HOG and Haar-like features [27], Generalized-Huff, and
Kalman filter are commonly used as methods of the former
group to detect and predict the positions of vehicles [28], [29].
Principal component analysis (PCA) is employed to provide
more efficient data, and support vector machines (SVMs) are
used to classify data [30], [31].

In the latter group of methods, features are determined
automatically with the help of deep networks. The perfor-
mance of such features depends on the training dataset, the
type, and the effectiveness of the network. A larger number
of training data and higher relevance lead to higher accuracy.
Networks-based detectionmethods are divided into two-stage
and one-stage groups. Two-stage methods, such as RCNN,
are more accurate; however, they lack sufficient speed in
real-time applications. They use region search [32] in the
image and convolutional network, have a long training time,
and require large memory. Mask RCNN, FPN, and R-FCN
[33] have improved the feature extraction and classification
efficiency of convolutional networks.

Single-stage networks, such as SSD [34] and YOLO, are
faster and less accurate than two-stage methods. SSD utilizes
MutiBox [35], Region Proposal Network (RPN), and multi-
scale representation methods to more accurately locate an
object. The YOLO network divides an image into a set of
grids. Each grid is responsible for predicting objects whose
center points are located within the grid. YOLO variants, e.g.,
YOLOV2, YOLOV3, and YOLOV4, have been introduced.
YOLOV2 improves the YOLOV1 using Darknet-19 as the

backbone and anchor boxes to predict the bounding boxes
and batch normalization, which normalizes the input of each
layer and accelerates network convergence. YOLOV2_Tiny
is a very efficient and effective variant in real-time appli-
cations. YOLOV3 detects objects at different scales. Thus,
it is slower than YOLOV2 and has higher scale change
robustness. Moreover, YOLOV4 improves YOLOV3 using
CSPDarknet53. Then the concept of a decoupled head was
introduced in YOLOX. It has been updated to use a decoupled
head and achieve higher accuracy. There are variations of
YOLOX split into two categories; Standard Models for high
precision and Light Models for edge devices. YOLOX-s is
able to achieve the same accuracy as YOLOv4 with half the
processing time [36].

YOLO v5 uses Cross-Stage Partial Connections with
Darknet-53 as the Backbone and Path Aggregation Net-
work as the Neck, just like the YOLO v4. The significant
improvements include novel mosaic data augmentation and
auto-learning bounding box anchors. Based on YOLOv4,
[14] proposes a YOLOV4-5D network for improving detec-
tion accuracy. The backbone network in YOLOV4-5D is the
SPDarknet53_dcn(P). The last output layer in the CSPDark-
net53 is replaced with deformable convolution to enhance
the detection accuracy. In YOLOV4-5D, a new feature fusion
module (PAN++) is designed, and five scale detection layers
are used to improve the detection accuracy of small objects.

According to the benchmarking performed by Meituan’s
team, YOLOv6 outperforms YOLOv5 in terms of accuracy
and speed. YOLOv6 uses the EfficientRep backbone. Unlike
the previous YOLO architectures, which use anchor-based
methods for object detection, YOLOv6 opts for the anchor-
free approach. This makes YOLOv6 faster compared to most
anchor-based object detectors [37]. After that, YOLOV7 was
presented by Chien-YaoWang and colleagues [38]. YOLOv7
enhances object detection by creating a network architecture
that predicts bounding boxes more accurately than its com-
petitors at comparable inference speeds. This method uses
the extended efficient layer aggregation networks (E-ELAN)
to achieve these results. The E-ELAN does not change the
gradient transmission path of the original architecture but
uses group convolution to increase the cardinality of the
added features.

Several works sought to increase the accuracy of detec-
tion networks. Tinier-YOLO was developed based on Tiny-
YOLO-V3 [39]. The fire module in SqueezeNet is chosen
in Tinier-YOLO by looking into the number of fire modules
and their locations within the model. A convolutional neural
network (CMNet) was proposed for fast vehicle detection in
complex scenes [40]. First, it suggests a connect-and-merge
residual network (CMRN). Then, a multi-scale prediction
network (MSPN) is used to accurately regress the vehicle
shape and categorize different types of vehicles.

An intelligent traffic-monitoring system was developed
using YOLO and a convolutional fuzzy neural network
(CFNN) [41]. It logs the traffic flow on the road. It uses a
vehicle-counting technique along with the detection of vehi-
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FIGURE 1. Schematic of the proposed Fast-Yolo-Rec algorithm.

cles to estimate the traffic flow. Then, two efficient models
(i.e., CFNN and VectorCFNN) and a network mapping fusion
method are proposed to classify vehicles.

A context-exploited method was introduced to integrate
features from various receptive fields to obtain contex-
tual representation and improve detection accuracy [42].
To encode the context, it employed multi-branch diverse
receptive field module principles.

[43] proposes a Compressed Sensing Output Encoding
(CSOE) for detecting pixel coordinates of small objects and
crowd counting and localization. The proposed detection
framework in [43] consists of a crowd location encoding
scheme based on compressed sensing and an end-to-end
trainable network made up of observation layers and sparse
reconstruction layers and achieves excellent results in scenes
with high crowd density. [44] creates an oriented surgical tool
with CSLE, a new backpropagation rule for sparse recon-
struction, and an end-to-end trainable network. Its approach
is quite effective in casting-oriented object localization as
regression in encoding signal space.

[45] proposes a dual-branch center face detector
(DBCFace). This paper improves face detection via a
dual-branch fully convolutional framework without extra
anchor design and NMS. It uses two parallel detectors,
does not rely on NMS, and achieves similar performance
as anchor-based methods with multi-branch. [46] proposes
a novel architecture named Serial and Parallel Group Net-
work (SPGNet), which can capture discriminativemulti-scale
information while keeping the structure compact. Various
computer vision tasks, such as image classification, object
detection, and person re-identification, have been used to
evaluate the SPGNet.

[47] proposes a co-attention scheme containing class-
agnostic attention (CA) and semantic attention (SA). These
capture object boundary details and global context-aware
information from low-level and high-level features. This
model can filter out the distracting distraction of background
information by fusing these two attentions.

Despite significant breakthroughs in deep learning net-
works for object detection, the trade-off between detection

accuracy and speed remains a challenge. The present study
aims to improve the detection speed of the algorithm while
maintaining an accuracy comparable to the most recent vari-
ants of high-speed detectors, like recent variants of YOLO.
Our research also has the ability to locate the occluded vehicle
using the pre-blocking areas, which is a benefit. The detec-
tor network cannot determine its position when a vehicle is
blocked behind an obstacle, such as a larger vehicle or bus.
Nonetheless, the predictive network in the proposed Fast-
Yolo-Rec can quickly locate the location. Thus, it can be
said that another advantage of our research is that it has
the ability to locate the occluded vehicle based on the pre-
blocking areas. This study handles this challenge by integrat-
ing deep learning networks, such as Yolo-based convolutional
networks, classifiers, recurrent networks, and segmentation
networks.

III. PROPOSED ALGORITHM
Figure 1 depicts the proposed algorithm. It uses two distinct
deep networks to find vehicle positions. One deep network is
implemented in odd frames (SSAM-YOLO), while the other
is executed in even frames. These networks include the recur-
rent vehicle position prediction network and a YOLO-based
detection network. The detection network uses the semantic
attention mechanism and is executed in the first 64 frames of
consecutive images and odd-numbered frames. As prediction
is faster than detection, using a prediction block accelerates
the algorithm. In even frames, time-series data should be
provided for the trajectory prediction network before using
the prediction network. These accurate data are obtained
from the detection network in odd frames and increase the
accuracy of the prediction network. A rise in the prediction
time usually causes errors. The results in this study depict that
for a prediction time below 28 frames, the position prediction
error is below two pixels, which is desirable. Frames are used
alternatingly in the prediction network, and the prediction
time of one frame has a very good accuracy.

Therefore, the proposed algorithm has a high speedwithout
losing accuracy, which is not the case with even the fastest
detectors. In addition to the time of prediction shortening to
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FIGURE 2. Schematic of the proposed SSAM-YOLO detector in Fast-Yolo-Rec algorithm.

increase accuracy, the vehicle trajectory is identified using
a classification network. Then, according to the recognized
trajectory, the position of the vehicle is determined through
the prediction network trained for that trajectory. The classi-
fication network identifies whether the vehicle moves straight
or takes a lane change. Then, based on the direction identified
by the classifier, the recurrent network trained for the corre-
sponding direction is used.

A. DETECTION NETWORK
SSAM-YOLO is proposed as a Yolo-based detection net-
work, as shown in Figure 2. The backbone, neck, and head
are the three main components of YOLO-based detectors.

Due to their higher resolution and more accurate spatial
features, the extracted feature maps of the backbone are
more effective for vehicle detection than for other feature
maps in the detection network. The head and neck are more
helpful in classifying vehicles since they provide higher
semantic data and depth, despite lower spatial detail due
to lower resolution. This paper proposes a design for the
SSAM-YOLO detector that improves the accuracy of vehi-
cle position detection and increases scale change robust-
ness in light of the MRF block and SSAM module in the
backbone, referred to as the Semantic Attention Network
(SemAtt-Net).

The MRF Block is constructed to improve feature map
extraction at a 104∗104 resolution with various receptive

fields. In this block, residual connections are used. A struc-
tural comparison based on the residual connections between
multiple blocks is shown in Figure 3. Figure 3(a) indicates
the residual-based block in the YOLOV3 detector, in which
two series residual branches are used. Figure 3(b) illustrates
the utilization of two residual branches in the CSP blocks
of the YOLOV4 detector. Figure 3(c) depicts the structure of
the proposed MRF block. The backbone of YOLOV4_Tiny
consists of three CSP blocks. The input and output of this
block are concatenated by two connections, one of which is
the residual connection, and the other one is composed of a
slice layer, two 3 × 3-layer convolutions, and a layer with
a factor of 1× 1 convolutions. In the second connection, the
layers are successive, and the output attributemaps of the CSP
block in this connection are calculated in the 5 × 5 received
field.

The proposed MRF block includes one residual connec-
tions, two 3 × 3 convolution blocks, one atrous convolution
block, and one 1×1 convolution block. The extracted feature
maps in the MRF block are concatenated into a 3 × 3 and
a 5 × 5 receptive field and transferred to the following con-
volutional layers. Feature maps with a 3 × 3 receptive field
and those with a 5 × 5 receptive field in the previous blocks
are transferred to the next layer through the MRF block used
instead of the earlier blocks.

Thus, feature maps include more spatial details due to
their smaller receptive field. The atrous layer also considers
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FIGURE 3. Comparison of blocks with residual branches between (a) two
residual blocks in the sequence in YOLOV3, (b) a CSP block in YOLOV4
with two residual blocks, and (c) proposed MRF block.

another 5× 5 receptive field with different detail. Therefore,
the proposed detector effectively detects vehicles of different
scales, a challenge in conventional detection networks.

Apart from the MRF block, the SSAM module is used to
improve feature maps in the backbone of the SSAM_YOLO
detector. The SSAM module in SSAM_YOLO is a
UNET-based semantic segmentation network encoder known
as LSSN, which was very lightly designed in terms of the
number of parameters. This network helps the detector gen-
erate desired feature maps in its backbone. Vehicles in these
maps are well distinguished from the background, increasing
the precision of the detector.

LSSN receives independent training (first training stage).
The encoder is then employed as the SSAM module in the
detection network. The SSAM module in the detection net-
work pays attention to the spatial positions of vehicles in
feature maps with a resolution of 26 × 26 and effectively
distinguishes between (foreground) and background vehi-
cles. The detection and LSSN segmentation networks are
trained using the same images. As a result, SSAM_YOLO
can be trained using transfer training. Also, when training
SSAM_YOLO, the learning rate in the SSAM module is
zeroed, and the remaining detector training is carried out
(second training stage).

As mentioned, the LSSN network is designed and trained
to use its encoder in the SSAM_YOLO detector; however,
feedback from the encoder to the decoder in LSSN deceler-
ates the detector. Hence, such feedback is eliminated in the
SSAM module. To reduce the feedback dependence of train-
able parameters in LSSN, minimal feedback is used. More-
over, to decrease the number of SSAM module parameters
and accelerate the detector, convolution layers at resolutions
52× 52, 104× 104, and 208× 208 were eliminated from the
complete UNET network, utilizing only the pooling layer to
obtain a lower resolution.

Figure 4 compares the proposed light semantic segmen-
tation network (LSSN) to a complete segmentation network
(CSN) with more feedback and convolution layers in output.
As can be seen, the reduction of feedback and convolu-
tion layers decreases segmentation accuracy on foreground
boundaries in the output of the LSSN network; however,

FIGURE 4. Comparison of segmentation networks for (a) the input image,
(b) complete segmentation network, and (c) proposed LSSN network.

boundary accuracy in the final layer of LSSN with a
resolution of 416×416 has no significant effect on the output
of the SSAM module with a resolution of 26 × 26 (due to
high pooling); But the number of parameters and network
feedback quantity in LSSN is dropped dramatically, and the
use of its encoder in the backbone of the detector accelerates
detection.

In the output feature maps, only the central pixels of the
cars are separated from the background. Therefore, the MFD
block is designed to pay more attention to the cars in the
feature maps. The MFD block consists of three maximum
pooling layers with receptive fields 2×2, 3×3, and 4×4 (RF1,
RF2, and RF3 in Figure 2). This block uses multiple receptive
fields for maximum pooling with stride = 1 (no pooling)
and has a dilation-like function to ensure that full attention
is paid to pixels corresponding to vehicles. More attention
improves vehicle detection accuracy and reduces target miss
rates.

Figure 5(a) depicts a 416 × 416 input image of the
SSAM_YOLO network, while Figs. 5(b)-5(d) show the out-
put feature maps of the convolution layer C6, SSAM mod-
ule, and MFD block shown in Figure 2. The foreground
(vehicles) is effectively differentiated from the background
in Figs. 5(c)-5(d).

As can be seen, the proposed SSAM module, MFD block,
and transfer learning used to train the SSAM_YOLO detec-
tion network provide more effective features than standard
Yolo detector convolution layers (figure 5(b)). Finally, con-
catenating the feature maps from figure 5(d) to the feature
maps from figure 5(b) and applying them to the next layer
improves detection accuracy.

In this study, other factors improve vehicle detection accu-
racy, including the selection of suitable anchors. YOLO
can function efficiently when several objects are associated
with one grid cell. However, in the case of an overlap,
where one grid cell contains two different objects, anchor
boxes can be used to enable one grid cell to detect sev-
eral objects. To increase detection accuracy in the proposed
SSAM_YOLO detector, the number and size of anchors were
chosen more accurately from a different perspective than in
other detectors.

Typically, the number of anchor boxes is determined by the
number of object classes detected. In this study, 11 anchors
were chosen based on the mean intersection over union to
have greater scale robustness in detection.

VOLUME 10, 2022 120597



N. Zarei et al.: Fast-Yolo-Rec: Incorporating Yolo-Base Detection and Recurrent-Base Prediction Networks

FIGURE 5. Comparison of feature maps for (a) input image, (b) output of
convolution layer C6 (Figure 2), (c) output of the proposed SSAM module,
and (d) output of the proposed MFD block.

B. TEMPORAL-SPATIAL INFORMATION PREPARATION
The position prediction block uses the history of vehicle
movement as time series data and predicts the position of the
vehicle in even frames according to it.

X = [X (t−th), . . . ,X (t−1),X t ] (1)

where th is a fixed (history) time horizon,

X t = [x(t)0 , y
(t)
0 , x

(t)
1 , y

(t)
1 , . . . , x

(t)
n , y

(t)
n ] (2)

where x and y are the vehicle coordinates at time t . Since there
are several vehicles in each image, a specific name or unique
label should be assigned to each vehicle as long as the vehicle
is in the surveillance camera field of view so that the data of
each vehicle are stored in a dedicated sub-tensor for the exact
vehicle. Let [x(t−th)0 , y(t−th)0 , . . . , x(t)0 , y

(t)
0 ] be the position his-

tory of the first vehicle and [x(t−th)n , y(t−th)n , . . . , x(t)n , y
(t)
n ] be

the position history of vehicle n. The area history of vehicles
is [A(t−th)0 , . . . ,A(t)0 ] to [A(t−th)n , . . . ,A(t)n ], and the intensity

average history is [I (t−th)0 , . . . , I (t)0 ] to
[
I (t−th)n , . . . , I (t)n

]
. The

similarity distance criterion (SDC) for a vehicle with features
[x(t+1), y(t+1), I (t+1),A(t+1)] can be defined as:

DPOS0 =
(
x(t+1) − x(t)0

)2
+

(
y(t+1) − y(t)0

)2
(3)

DAR0 =
(
A(t+1) − A(t)0

)2
(4)

DIN0 =
(
I (t+1) − I (t)0

)2
(5)

D0
=
√
α (DPOS0)+ β(DAR0)+ γ (DIN0) (6)

DPOSN =
(
x(t+1) − x(t)n

)2
+

(
y(t+1) − y(t)n

)2
(7)

DARN =
(
A(t+1) − A(t)n

)2
(8)

DINN =
(
I (t+1) − I (t)n

)2
(9)

Dn =
√
α (DPOSN )+ β(DARN )+ γ (DINN )

(10)

SDC = [D0, . . . ,Dn] (11)

label =
{
arg (SDC)min (SDC) < Th
n+ 1min (SDC) ≥ Th

}
(12)

where D0 is the similarity distance with the first vehicle seen
in the scene, Dn is the similarity distance with the vehicle n
in the background, and SDC contains all of them. A vehicle
label is determined by the minimum value of the SDC and
its index. As can be seen, the similarity distance between two
vehicles is calculated by the square of the distance between
the positions, the average intensity, and their area. Here, α, β,
and γ are hyper parameters.

Figure 6 illustrates the labelling output of several sequen-
tial frames from the Highway dataset. As can be seen,
labelling is stable, and the label of each vehicle remained
unchanged in consecutive frames. According to these labels,
the position of each vehicle in consecutive frames is recorded
as the history of the movement of that vehicle specifically for
it. Then, it is recorded in the FIFO-like temporal tensor and
used in the prediction block.

C. POSITION PREDICTION AND TRAJECTORY
CLASSIFICATION BLOCKS
In addition to designing a fast and accurate SSAM_YOLO
detection network, the position prediction network is pre-
sented in this study. The goal of this predictor is to maxi-
mize the vehicle position detection speed. Unlike traditional
motion prediction methods, LSTM-based recurrent networks
account for long-term time dependencies and are thus more
accurate than conventional position prediction models, e.g.,
the constant acceleration (CA) model. The position of a vehi-
cle in the current frame (p2) is compared to that of the vehicle
in the previous frame (p1) in this model.

p2 =
1
2
a1t2 + v1t + p1 (13)

where acceleration a and velocity v are assumed to be known.
However, this assumption is not always the case, and the
speed and acceleration of vehicles may change many times,
depending on traffic flow and driver. In recurrent networks,
redirection is learned by the network for different modes of
speed and acceleration over time. Since they contain several
nonlinear activation functions, they could predict complex
movement patterns and trajectories with different acceler-
ations and velocities. These functions determine the data
points of the previously saved frames that should be kept or
excluded and the data of the current frame that should be
added. Assuming ht−1 and Xt to be the inputs, the operation
of the LSTM network can be formulated as:

it = σ (WiXt + Uiht−1) (14)
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FIGURE 6. Visual results of the proposed stable labelling on consecutive images with different time interrupt ((a) to (d)).

FIGURE 7. Proposed vehicle position prediction architecture.

ft = σ (Wf Xt + Uf ht−1) (15)

ot = σ (WoXt + Uoht−1) (16)

ct = tanh (WsXt + Usht−1) (17)

st = it � ct + ft � st−1 (18)

ht = ot � tanh(st ) (19)

where ht−1 is the network output in the preceding frame,
while Xt stands for the data introduced in the current frame v.

It contains the historical trajectory [X t−T+1v , . . . ,X tv] of the
vehicle obtained from the time series data preparation block.
Also, ‘‘�’’ denotes the dot product symbol.

Weight matrices Wi, Ui, Wf , Uf , W0, and U0 represent
the input, forget, and output gates, respectively, ht is the
network output, and state cell st is updated in each frame. The
LSTM network is employed to regress vehicle trajectories in
two modes of lane keeping and right turns in the Highway
dataset. The proposed algorithm architecture is depicted in
Figure 7. It includes sections on temporal-spatial information

preparation (TSIP), trajectory classification (TC), and vehicle
position prediction (VPP). Subsection 3.2 described the TSIP
block. The vehicle trajectory is determined in the TC section,
which is designed to improve prediction performance.

The classifier determines whether the vehicle is mov-
ing in a straight line or changing lanes. The trajectories of
vehicles may differ. Given that in this study, there are two
categories of straight trajectory and rightward lane change
in the dataset used to train recurrent networks, a classifier
with two classes is proposed, and KL-LSTM or RLD-LSTM
networks are employed to predict vehicle positions based on
the classifier-identified trajectory class.

Trajectory classification is carried out by sampling var-
ious trajectories learned for each trajectory. It consists of
two trajectory feature extraction (TFE) blocks with different
receptive fields, a fully connected layer, and a soft-max layer.

The TFE block has three parallel paths. In the first path,
the convolution layer is initially used. Let x be the input of
the TFE block, and convolution filters are determined using
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weights w1 and bias b1. The first convolution layer output
feature map (f 1s1) is written as:

f 1s1(x;w1, b1) = w1 ∗s1 x + b1 (20)

where ∗s1 is the convolution operation with stride s1.After
the convolution layer, the batch normalization (BN) layer and
drop-out layer are exploited. BN plays a key role in avoiding
vanishing gradients. For B1 representing a batch of feature
maps, BN is defined as:

B1 = batch
(
f 1s1
)

(21)

B̂1 =
B1 − µB1√
σ 2
B1 + ε

(22)

D1 = Drop
(
B̂1
)

(23)

where B̂1, σB1, and µB1 are the normalized array, variance,
and mean of batch B1, respectively. The value of ε is set
to 0.001 to prevent null point division. After normalization,
the dropout layer is used. The dropout layer is a mask that
nullifies the contributions of some neurons to the next layer
and leaves others unmodified. Then, another convolution
layer is used, the input of which is the dropout output, and
convolution filters are determined using weights w2 and bias
b2. The output feature map f 2s1 is defined as:

f 2s1(D1;w2.b2) = w2 ∗s2 D1+ b2 (24)

where ∗s2 is the convolution operation with stride s2. Then,
the batch normalization (BN) layer, ReLU activation layer,
and dropout layer are used.

B2 = batch
(
f 2s1
)

(25)

B̂2 =
B2 − µB2√
µ2
B2 + ε

(26)

R = max
(
0, B̂2

)
(27)

D2 = Drop(R) (28)

The use of ReLU helps prevent exponential growth in
computation required to operate the classifier network and
introduce non-linearity into the BN layer output. The second
path in the TFE block is a residual connection used to improve
network learning. The third path is a convolutional layer
whose receptive field is different in the two TFE blocks;
RF=1 in the first block and RF=5 in the next block, while
the receptive fields of the first path are the same for the two
TFE blocks. The output feature map f 3s1 is defined as:

f 3s2(x;w3, b3) = w3 ∗s3 x + b3 (29)

Finally, the feature maps from the first and third paths and
the input of the TFE block are combined to form the final
feature map outMRF .

outMRF =
∑N

i=0
(x (i)+ D2 (i)+ f 3s2(i)) (30)

The obtained properties are transferred through a fully con-
nected layer fc_MRF to the Softmax layer. This layer deter-
mines the probability of each of the two trajectory classes.

S(fc_MRFk ) =
exp(fc_MRFk )∑N
k=1 exp(fc_MRFk )

(31)

where N is the length of fcMRF (i.e., 64). After trajectory
classification, VPP is executed, where there are two groups of
LSTM networks: KL_LSTM and RLD_LSTM. KL_LSTM
networks are executed when the straight-line trajectory
(Keep-Lane) class is specified in TC, and RLD_LSTM net-
works are selected when the redirection mode is set to the
right. The trajectory is non-linear and more complex in the
latter, and RLD_LSTM networks are more than KL_LSTM
networks.

IV. RESULTS AND DISCUSSION
This section evaluates the proposed algorithm using High-
way data from the CDNet2014 dataset. The algorithm con-
sists of several DNN networks, including the SSAM_YOLO
detection network and the lightweight semantic segmenta-
tion network LSSN, designed to prepare the SSAM module
in SSAM_YOLO. Also, the KL_LSTM trajectory classifier
network and RLD_LSTM are used in the algorithm. These
networks were trained using the adaptive moment estimation
optimization algorithm. The performance of the proposed
algorithm is evaluated through comparison to previous works
in the average precision (AP), average execution time, and
RMSE. The tests were conducted in MATLAB with GPU
computing facilities on a PC with a Core i7–3.60GHz CPU,
16GB RAM, GTX1060 GPU, and a Microsoft WINDOWS
10-64bit OS.

A. DATASET
In this study, several deep networks are trained, some of
which, i.e., SSAM_YOLO and LSSN networks, are used in
odd frames, while the others, i.e., KL_LSTM, RLD_LSTM,
and trajectory classification networks, are used in even
frames. Due to the design of the SSAM module in the detec-
tor, which is responsible for dividing the image into two
classes, i.e., vehicles and background, the detection network
training requires a dataset suitable for object detection and
segmentation tasks.

The KL_LSTM and RLD_LSTM prediction networks are
used in even frames, and their input is time-series data that
includes the positions of vehicles in consecutive images.
Thus, a training dataset of consecutive images is required.
And for this reason, the accuracy obtained from our tests is
higher and closer to each other than similar references that
have used datasets that include scattered and non-sequential
images. The Highway dataset from the CDNet2014 dataset
contains 1700 consecutive images captured by Highway
surveillance cameras, and it also has good ground-truth data
for image segmentation. As a result, it is suitable for training
the LSTMs and LSSN networks used in this study. However,
it does not have relevant data to train the detector. Therefore,
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the Video Labeler of MATLAB is used to handle the ground-
truth challenge of the detector. It enables labelling of the
ground-truth data in an image sequence. This app can define
rectangular regions of interest (ROI) labels.

B. EVALUATION METHODS
The Highway dataset was used to train the detection network.
The performance of the detection network was then assessed
using standard detection network evaluation metrics, i.e.,
AP and average execution time. For various recall levels,
AP measures precision. Precision and recall are the two cri-
teria that were used. The precision criterion represents the
percentage of true positives. The recall criterion calculates
the ratio of true positives to all possible outputs:

Precision =
TP

TP+ FP
(32)

Recall =
TP

TP+ FN
(33)

A true positive (TP) is an outcome where the model cor-
rectly predicts the positive class of the detected vehicles.
Similarly, false positive (FP) and false negative (FN) are the
outcomes where the model incorrectly predicts the positive
and negative classes, respectively. The performance of the
LSTM-based prediction network is evaluated using RMSE:

RMSE =

√√√√√(
1
N
)
N∑
j=1

(x̂j − xj)
2
+ (ŷj − yj)

2 (34)

where N denotes the number of vehicles in the training set.
[x̂ ij , ŷ

i
j] is the predicted position of the vehicle at time step j.,

and [x ij , y
i
j] is the actual position at time step j. These networks

were trained for vehicle position prediction on Highway
through regression. The average execution time of the Fast-
Yolo-Rec algorithm was used to measure the speed of the
algorithm in sequential frames.

C. EVALUATION RESULTS
Networks were trained in the Fast-Yolo-Rec algorithm with
a batch size of 4 and a total of ten epochs. The learning rate
for the first half of the epochs is 0.001 and for the second half
of them is 0.0001. This tutorial was additionally optimized
using the SGD and Adam algorithms. Figure 8 shows preci-
sion, recall, and logarithmic average miss rate to assess the
performance of the detection network.

Figure 9 depicts the performance of the detection algorithm
for the Highway dataset. The proposed detector considers
only the perimeter box with the highest score using the
Non-Maximum Suppression (NMS) filter for vehicles with
two or more perimeter boxes. The results show that the
proposed method is efficient and effective. The MFD block
offers improved performance with emphasis on features of
the SSAM module, a dilation-like function, transfer learning
in SSAM_YOLO detector training, and an optimal number of

FIGURE 8. Comparison of Yolo detectors and SSAM_YOLO in terms of
(a) precision, recall, and (b) miss rate.

anchors. Table 1 compares the proposed detector with vari-
ants of Yolo-based detection methods on consecutive images
in the Highway dataset with one vehicle class. SSAM_YOLO
has comparable accuracy to other detectors. As can be seen,
its accuracy is almost equal to that of YOLOV4_Tiny and
nearly 29.38% fewer parameters than YOLOV4_Tiny.

The accuracy of YOLOV7_TINY is only 1.18% higher
than the proposed SSAM_YOLO detector, while it has a
significantly higher computational cost (31% more param-
eters and 46% more floating point operations). Therefore,
the proposed detector has less complexity and more effec-
tiveness. In addition, SSAM_YOLO has a lower target miss
rate than other detectors. The output feature maps of the
SSAM module show the effectiveness of this module well.
On these maps, the vehicle is well distinguished from the
background. Distinguishing between target and background
is extremely useful for network positioning and loweringmiss
rates. This implies that the proposed detector has fewer learn-
able parameters than others, leading to faster training, lower
hardware demand, and higher cost-effectiveness. In light
of this advantage over YOLOV4_Tiny and being compara-
ble to YOLOV7_TINY, the proposed detector outperforms
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FIGURE 9. Visual results of the SSAM-YOLO detection network on Highway dataset.

TABLE 1. Performance comparison of the proposed YOLO-based detection network and earlier YOLO detection network variants for consecutive images
on the Highway (baseline category of CDNet2014).

TABLE 2. Ablation study of the proposed method in terms of average precision (AP) and miss rate.

YOLOV2 and YOLOV3. The YOLOV2 detector has one
head of detection, and the YOLOV3 detector has two heads.

Table 1 also shows that the proposed detector requires 74%,
77%, 39% and 46%fewer floating-point operations (FLOPs)
than YOLOV2_TINY, YOLOV3_TINY, YOLOV4_TINY
and YOLOV7 TINY, respectively. Table 2 compares the per-
formance of the proposed SSAM-YOLO detector’s SSAM
module, MRF, and MFD blocks to assess the impact of each
detector module on the final output.

The SSAM module improves average precision and miss
rate by 3.92% and 5.26%, respectively, while the MRF block
improves by 1.22% and 2.68%, and the MFD block improves
by 0.64% and 0.25%. Table 2 shows that the combination of
three modules in the detector Network achieves an average
precision and miss rate of 94% and 6.95%, respectively.

The first five consecutive convolution layers employed by
YOLOV2_Tiny and YOLOV3_Tiny are referred to as FCCL
Table 1.

TABLE 3. Number of parameters in the first five consecutive convolution
layers (FCCL).

Table 3 reports the number of parameters in various FCCL
layers.

In addition to achieving the desired detection accuracy
through the SSAM_YOLO detector, vehicles position deter-
mination was accelerated through (1) the SSAM_YOLO
detector by decreasing the number of parameters and
the hardware demand compared to detectors of similar
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FIGURE 10. Trajectory prediction of two vehicles using the proposed and CA models (the first 64 positions in the trajectories were used for
trajectory prediction); (a) the vehicle is driving straight, (b) the vehicle is taking a rightward lane change right, (c) RMSE for the proposed
model versus CA model.

FIGURE 11. Execution time comparison of the proposed Fast-Yolo-Rec algorithm for different n-frame periods at m
predictions and n-m detections of SSAM-YOLO.

performance and (2) the periodic prediction using the recur-
rent networks. The proposed Fast-Yolo-Rec algorithm uses
trajectory classification and recurrent networks for vehicle
position prediction. As shown in Figure 10, the actual tra-
jectories of two independent vehicles are displayed in black,
the predicted position of the proposed model in this study is
shown in cyan, and the position prediction of the CA model
is indicated in violet. In Figure 10(a), the vehicle moves in a

straight line; in Figure 10(b), the vehicle changes lanes to the
right. As can be seen, the trajectories are effectively predicted,
and the proposed model is more accurate than the CA model.
The higher accuracy of the proposed model stems from the
LSTM networks and trajectory classification.

The LSTM networks consider long-term time dependen-
cies, in contrast to the CA model. Figure 10(c) depicts the
RMSE for a more accurate comparison of the two models.
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As can be seen, the prediction error of the proposed model is
lower than that of the CAmodel. The prediction implemented
in successive frames without using detector data in alternat-
ing frames to compare the two models more rationally. The
average RMSE in the proposed Fast-Yolo-Rec algorithm is
50% lower than the RMSE displayed in Figure 10(c) due to
using the results of proposed detector with excellent accuracy
in odd frames. The results of the proposed algorithm for
an n-frame period are shown in Figure 11, while prediction
was performed m times and detection was performed n-m
times in an n-frame period. As can be seen, the prediction
and detection networks shortened the average time of the
proposed algorithm with a negligible RMSE, as shown in
Figure 10 (c). Hence, the accuracy of the algorithm does not
undergo a significant change, while detection speed increases
significantly.

The red line in Figure 10 (c) shows the average prediction
RMSE on the first 28 frames of the prediction. As can be seen,
the detection accuracy of the first 28 frames is better than the
subsequent frames, and the RMSE error is lower for them.
Therefore, prediction accuracy is higher for n ≤ 28.

The algorithm was executed for n=2 and m=1 at 129 fps.
In this state, the proposed SSAM_YOLO detection network
was executed in odd frames and prediction networks was
performed in even frames each at this speed. The algorithm
was executed at 146, 176, and 213 fps for (n=3 and m=2),
(n=7 and m=6), and (n=11 and m=10), respectively.

V. CONCLUSION
The proposed Fast-Yolo-Rec technique accelerates vehicle
position detection. It consists of two main parts: 1) vehicle
detection network. 2) a maneuver classifier and networks for
predicting vehicle position that use an alternating cycle with
a certain number of frames. The detector network is used
in some frames, and the classifier and predictor networks
are used in other frames of this cycle. The accuracy of the
Fast-Yolo-Rec algorithm has improved as the increasing the
accuracy of the SSAM_YOLOdetector, and it has accelerated
in light of the vehicle position prediction network. As predic-
tion is faster than detection, the use of detection in the first
64 frames and odd frames and the use of the predictor in even
frames of the input images enhances the average speed of the
algorithm. Moreover, by using a vehicle trajectory classifier,
the accuracy of the prediction network is boosted compared to
traditional vehicle position prediction approaches and LSTM
networks that are particularly trained based on the output of
the classifier.

The accuracy of the SSAM_YOLO detector in the Fast-
Yolo-Rec algorithm is also increased through theMRF block,
attention mechanism in the LSSN network and SSAM mod-
ule, MFD block, transfer learning in the training of the
SSAM_YOLO network, and the optimal number of anchors.
An image contains several vehicles, and the data for each
vehicle should be stored in a dedicated array for the same
vehicle. Thus, stable labelling is required to obtain the data
for the position prediction network. This data includes the

vehicle positions over time. This is fulfilled by using the
detection network in odd frames, and no extra processing
is required. The proposed detection and prediction networks
are complementary and assist in finding the positions of
vehicles faster than well-known high-speed detectors, leading
to sufficient accuracy, speed, and greater flexibility. The flexi-
bility of the proposed Fast-Yolo-Rec algorithm arose from the
changing frequency of using the aforementioned networks in
a periodic cycle. The real-time vehicle detection performance
of the proposed algorithm is demonstrated using a real-life
Highway dataset.

REFERENCES
[1] Z. Li and D. Hensher, ‘‘Understanding risky choice behaviour with travel

time variability: A review of recent empirical contributions of alternative
behavioural theories,’’ Transp. Lett., vol. 12, no. 8, pp. 580–590, Sep. 2020.

[2] X. Chen, Y. Chen, andG. Zhang, ‘‘A computer vision algorithm for locating
and recognizing traffic signal control light status and countdown time,’’
J. Intell. Transp. Syst., vol. 25, no. 5, pp. 533–546, Sep. 2021.

[3] D. Ding, J. Tong, and L. Kong, ‘‘A deep learning approach for quality
enhancement of surveillance video,’’ J. Intell. Transp. Syst., vol. 24, no. 3,
pp. 304–314, May 2020.

[4] N. Mahmoud, M. Abdel-Aty, Q. Cai, and J. Yuan, ‘‘Estimating cycle-level
real-time traffic movements at signalized intersections,’’ J. Intell. Transp.
Syst., vol. 26, no. 4, pp. 400–419, Jul. 2022.

[5] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, ‘‘Object detection with deep
learning: A review,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 11, pp. 3212–3232, Nov. 2019.

[6] C. G. Manuel, T.-M. Jesus, L.-B. Pedro, and G.-G. Jorge, ‘‘On the perfor-
mance of one-stage and two-stage object detectors in autonomous vehicles
using camera data,’’ Remote Sens., vol. 13, no. 1, p. 89, 2020.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[8] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[9] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2015.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[11] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition, Jul. 2017,
pp. 7263–7271.

[12] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[13] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[14] Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y. Li, M. A. Sotelo, and Z. Li,
‘‘YOLOv4–5D: An effective and efficient object detector for autonomous
driving,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021.

[15] U. Nepal and H. Eslamiat, ‘‘Comparing YOLOv3, YOLOv4 and YOLOv5
for autonomous landing spot detection in faulty UAVs,’’ Sensors, vol. 22,
no. 2, p. 464, Jan. 2022.

[16] P. Singh, B. B. V. L. Deepak, T. Sethi, and M. D. P. Murthy, ‘‘Real-time
object detection and tracking using color feature and motion,’’ in Proc. Int.
Conf. Commun. Signal Process. (ICCSP), Apr. 2015, pp. 1236–1241.

[17] L. Xiao and T.-Q. Li, ‘‘Research on moving object detection and track-
ing,’’ in Proc. 7th Int. Conf. Fuzzy Syst. Knowl. Discovery, Aug. 2010,
pp. 2324–2327.

[18] H. Wang, P. Wang, and X. Qian, ‘‘MPNET: An end-to-end deep neural
network for object detection in surveillance video,’’ IEEE Access, vol. 6,
pp. 30296–30308, 2018.

[19] Y. Liu, Y. Lu, Q. Shi, and J. Ding, ‘‘Optical flow based urban road
vehicle tracking,’’ in Proc. 9th Int. Conf. Comput. Intell. Secur., Dec. 2013,
pp. 391–395.

[20] N. Deo and M. M. Trivedi, ‘‘Convolutional social pooling for vehicle
trajectory prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2018, pp. 1468–1476.

120604 VOLUME 10, 2022



N. Zarei et al.: Fast-Yolo-Rec: Incorporating Yolo-Base Detection and Recurrent-Base Prediction Networks

[21] Y. Yoon, T. Kim, H. Lee, and J. Park, ‘‘Road-aware trajectory prediction
for autonomous driving on highways,’’ Sensors, vol. 20, no. 17, p. 4703,
2020.

[22] L. Lin, W. Li, H. Bi, and L. Qin, ‘‘Vehicle trajectory prediction using
LSTMswith spatial–temporal attentionmechanisms,’’ IEEE Intell. Transp.
Syst. Mag., vol. 14, no. 2, pp. 197–208, Mar. 2021.

[23] L. H. Pham, T. T. Duong, H. M. Tran, and S. V.-U. Ha, ‘‘Vision-based
approach for urban vehicle detection & classification,’’ in Proc. 3rd World
Congr. Inf. Commun. Technol. (WICT ), Dec. 2013, pp. 305–310.

[24] L.-W. Tsai, J.-W. Hsieh, and K.-C. Fan, ‘‘Vehicle detection using normal-
ized color and edge map,’’ IEEE Trans. Image Process., vol. 16, no. 3,
pp. 850–864, Mar. 2007.

[25] A. Faro, D. Giordano, and C. Spampinato, ‘‘Adaptive background mod-
eling integrated with luminosity sensors and occlusion processing for
reliable vehicle detection,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4,
pp. 1398–1412, Dec. 2011.

[26] K. Park, D. Lee, and Y. Park, ‘‘Video-based detection of street-parking vio-
lation,’’ in Proc. Int. Conf. Image Process., Comput. Vis., Pattern Recognit.
(IPCV), 2007, pp. 152–156.

[27] P. Negri, X. Clady, S. M. Hanif, and L. Prevost, ‘‘A cascade of boosted
generative and discriminative classifiers for vehicle detection,’’ EURASIP
J. Adv. Signal Process., vol. 2008, no. 1, pp. 1–12, Dec. 2008.

[28] Indrabayu, R. Y. Bakti, I. S. Areni, and A. A. Prayogi, ‘‘Vehicle detection
and tracking using Gaussian mixture model and Kalman filter,’’ in Proc.
Int. Conf. Comput. Intell. Cybern., 2016, pp. 115–119.

[29] V. Rin and C. Nuthong, ‘‘Front moving vehicle detection and tracking
with Kalman filter,’’ in Proc. IEEE 4th Int. Conf. Comput. Commun. Syst.
(ICCCS), Feb. 2019, pp. 304–310.

[30] Z. Chen, N. Pears, M. Freeman, and J. Austin, ‘‘Road vehicle classification
using support vector machines,’’ in Proc. IEEE Int. Conf. Intell. Comput.
Intell. Syst., Nov. 2009, pp. 214–218.

[31] Q. B. Truong and B. R. Lee, ‘‘Vehicle detection algorithm using hypothesis
generation and verification,’’ in Proc. Int. Conf. Intell. Comput., Berlin,
Germany, 2009, pp. 534–543.

[32] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
‘‘Selective search for object recognition,’’ Int. J. Comput. Vis., vol. 104,
no. 2, pp. 154–171, 2013.

[33] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via region-based
fully convolutional networks,’’ 2016, arXiv:1605.06409.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[36] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding Yolo series
in 2021,’’ 2021, arXiv:2107.08430.

[37] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and
X. Wei, ‘‘YOLOv6: A single-stage object detection framework for indus-
trial applications,’’ 2022, arXiv:2209.02976.

[38] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’
2022, arXiv:2207.02696.

[39] W. Fang, L. Wang, and P. Ren, ‘‘Tinier-YOLO: A real-time object
detection method for constrained environments,’’ IEEE Access, vol. 8,
pp. 1935–1944, 2020.

[40] F. Zhang, F. Yang, C. Li, and G. Yuan, ‘‘CMNet: A connect- and-merge
convolutional neural network for fast vehicle detection in urban traffic
surveillance,’’ IEEE Access, vol. 7, pp. 72660–72671, 2019.

[41] C.-J. Lin and J.-Y. Jhang, ‘‘Intelligent traffic-monitoring system based on
YOLO and convolutional fuzzy neural networks,’’ IEEE Access, vol. 10,
pp. 14120–14133, 2022.

[42] S. Xie, C. Liu, J. Gao, X. Li, J. Luo, B. Fan, J. Chen, H. Pu, and
Y. Peng, ‘‘Diverse receptive field network with context aggregation for fast
object detection,’’ J. Vis. Commun. Image Represent., vol. 70, Jul. 2020,
Art. no. 102770.

[43] Y. Xue, Y. Li, S. Liu, X. Zhang, and X. Qian, ‘‘Crowd scene analysis
encounters high density and scale variation,’’ IEEE Trans. Image Process.,
vol. 30, pp. 2745–2757, 2021.

[44] Y. Xue, Y. Li, S. Liu, P. Wang, and X. Qian, ‘‘Oriented localization of
surgical tools by location encoding,’’ IEEE Trans. Biomed. Eng., vol. 69,
no. 4, pp. 1469–1480, Apr. 2021.

[45] X. Li, S. Lai, and X. Qian, ‘‘DBCFace: Towards pure convolutional neural
network face detection,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 32,
no. 4, pp. 1792–1804, Apr. 2021.

[46] X. Wang, S. Lai, Z. Chai, X. Zhang, and X. Qian, ‘‘SPGNet: Serial and
parallel group network,’’ IEEE Trans. Multimedia, vol. 24, pp. 2804–2814,
2021.

[47] Y. Wu, S. Feng, X. Huang, and Z. Wu, ‘‘L4Net: An anchor-free generic
object detector with attention mechanism for autonomous driving,’’ IET
Comput. Vis., vol. 15, no. 1, pp. 36–46, Feb. 2021.

[48] H. R. Alsanad, O. N. Ucan, M. Ilyas, A. U. R. Khan, and O. Bayat, ‘‘Real-
time fuel truck detection algorithm based on deep convolutional neural
network,’’ IEEE Access, vol. 8, pp. 118808–118817, 2020.

[49] P. Adarsh, P. Rathi, and M. Kumar, ‘‘YOLO v3-tiny: Object detection and
recognition using one stage improved model,’’ in Proc. 6th Int. Conf. Adv.
Comput. Commun. Syst. (ICACCS), Mar. 2020, pp. 687–694.

[50] Q. Liu, X. Fan, Z. Xi, Z. Yin, and Z. Yang, ‘‘Object detection based
on Yolov4-tiny and improved bidirectional feature pyramid network,’’
J. Phys., Conf., vol. 2209, no. 1, Feb. 2022, Art. no. 012023.

NAFISEH ZAREI received the B.Eng. degree in
electrical and electronics engineering from the
Kashan University of Technology. She is currently
pursuing the Ph.D. degree with Isfahan Univer-
sity, Iran. Her research interests include the fields
of machine vision, image processing, and deep
learning.

PAYMAN MOALLEM was born in Tehran,
Iran, in 1970. He received the B.Sc. degree in
electronics engineering from the Isfahan Uni-
versity of Technology, Isfahan, Iran, in 1992,
and the M.Sc. degree in electronics engineering
and the Ph.D. degree in electrical engineering
from the Amirkabir University of Technol-
ogy, Tehran, in 1996 and 2003, respectively.
From 1994 to 2002, he conducted research for
the Iranian Research Organization Science and

Technology on the topics, such as parallel processing, robot stereo vision,
and DSP boards development. In 2003, he joined the University of Isfahan,
Isfahan, as an Assistant Professor, where he was promoted to an Associate
Professor and a Full Professor, in 2010 and 2015, respectively. He has
authored more than 300 papers published in peer-reviewed journals and
conference proceedings, and five books. His research interests include
remote sensing, image processing and analysis, computer vision, neural
networks, and pattern recognition.

MOHAMMADREZA SHAMS received the B.S.
degree from the Isfahan University of Technology,
in 2008, the M.S. degree from the University of
Tehran, in 2012, and the Ph.D. degree from the
University of Isfahan, Iran, in 2017, all in com-
puter engineering. He is currently an Assistant
Professor with the Computer Engineering Depart-
ment, University of Isfahan (Shahreza Campus).
His research interests include data mining, text
mining, computer vision, and deep learning.

VOLUME 10, 2022 120605


