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ABSTRACT Abraham’s and Owsley’s dominant mode rejection (DMR) beamformer modifies Capon’s
minimum variance distortionless response beamformer to force suitable constraints in the covariance matrix
estimation process to reduce degrees of freedom. DMR estimates the ensemble covariance matrix (ECM)
from a low-rank sample covariance matrix (SCM) by replacing the eigenvalues of the noise subspace
with the sample mean of those same eigenvalues. This estimated noise power is negatively biased when
the dominant subspace dimension is overestimated, which is common in practical implementations of
the DMR. The proposed median DMR exploits the Marchenko-Pastur distribution to estimate the noise
power from the median of the SCM eigenvalues. Simulations found that the median estimator was more
robust to overestimating the dominant subspace dimension, exhibiting a lower mean squared error than
the mean estimator. Simulations also found that the median DMR improves the white noise gain (WNG)
when compared to the standard DMR in snapshot deficient scenarios with overestimated interferer subspace
dimension. Higher WNG implies increased robustness to array perturbations. This work compares the
median DMR to standard DMR in simulations with perturbed array element phase responses in a scenario
with two interferers and background white noise. The median DMR preserved deeper notches than standard
DMR in this scenario, increasing the output signal-to-noise ratio by roughly 1 dB.

INDEX TERMS Adaptive beamformer (ABF), dominant mode rejection (DMR), median filtering random
matrix theory (RMT), sample covariance matrix (SCM).

I. INTRODUCTION
Hydrophone arrays permit both localizing the signal in the
space (known as spatial filtering or beamforming) and sup-
pressing background noise. The conventional beamformer
(CBF) is the most straightforward array processor and
the optimal beamformer in suppressing background white
noise [1]. In passive sonar applications, loud interferers can
overwhelm the CBF’s spatial filtering ability and contami-
nate its output, masking the desired signal [1], [2]. Capon’s
minimum variance distortionless response (MVDR) adap-
tive beamformer (ABF) potentially prevents masking of the
desired signal by creating destructive interference for the loud
interferers, but the trade-off is reduced background white
noise attenuation compared to the CBF [3]. The MVDR
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ABF inverts the ensemble covariance matrix (ECM) in the
computation of the array weights for the beamformer.

The ECM is not available in most practical situations as
it requires the knowledge of location and power of all the
interferers. A common practical solution for this impasse
is to perform a sample matrix inversion (SMI) with a sam-
ple covariance matrix (SCM) estimated from snapshots of
data [1]. This solution requires that the number of snapshots
exceeds the number of sensors in the array so the result-
ing sample covariance matrix (SCM) is invertible. Also, the
SMI MVDR may require twice as many snapshots as the
number of sensors to achieve half of the signal to noise
ratio performance of the ensemble MVDR [4]. Acquiring
enough snapshots for an invertible and accurate estimate of
the covariance matrix may be impractical for large arrays or
environments with moving interferers, so a reduced degrees
of freedom ABF may be necessary in those situations.
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The dominant mode rejection (DMR) ABF reduces the
degrees of freedom of the MVDR beamformer by constrain-
ing the smallest eigenvalues of the SCM to be equal, allowing
for an approximation of the ECM with fewer snapshots [5].
Each of the large eigenvalues of the SCM (and its respective
eigenvector) is generally associated with one loud interferer
to be attenuated. Together, these eigenvectors form a basis for
the interferer, or dominant, subspace. The remaining small
eigenvalues are replaced with an estimate of the background
noise power equal to their sample mean, as they are assumed
to belong to the noise subspace. Many other ABFs impose
constrains on the SCM to regularize the array weights [6], [7],
[8], [9], [10]. In this paper, we focus on the dominant mode
rejection ABF.

A correct choice of the dimension of the dominant sub-
space in the DMR beamformer is important to ensure
interferer and noise attenuation. Practical implementations
of the DMR often overestimate the number of interferers
[11], [12]. Overestimating the number of interferers is the
safely conservative choice, because this approach guarantees
that no loud interferer will pass unattenuated. The downside
of this approach is that it reduces the number of eigenvalues
averaged to estimate the noise power. The resulting estimator
is less precise and negatively biased. The noise estimate is
less precise in this case because averaging fewer eigenvalues
results in a larger variance for the estimate than the variance
when the subspace rank is correct. The noise estimate is nega-
tively biased because the eigenvalues removed from the aver-
age are always the largest eigenvalues of the noise subspace.
The negative bias estimating the noise power also degrades
the ability of the beamformer to attenuate background noise.

This paper proposes a modification to the DMR beam-
former to estimate the noise power as a function of themedian
of the nonzero eigenvalues of the SCM. The median was cho-
sen for its known robustness against outliers and truncation of
data [13], [14]. This robustness makes the estimator unbiased
if the actual number of interferers is less than half of the num-
ber of snapshots used in the computation of the SCM. The
relationship between the sample median of the eigenvalues
and the noise power was derived from a linear regression
on numerical evaluations over the Marchenko-Pastur (MP)
probability function [15]. The median estimator also has the
advantage of not being dependent on the estimated number of
interferers.

For the past 30 years, several researchers studied and
improved the DMR beamformer. Cox added mismatch pro-
tection to avoid the suppression of a desired signal slightly
off the steering direction [16]. Redheendran and Gramann
evaluated the performance of the DMR with real world array
data and demonstrated that the DMR achieves similar per-
formance to other ABFs but with a shorter integration time
[11], [12]. Wage and Buck investigated how the DMR beam-
former performance converges as a function of snapshots and
interferer power [2], [17], [18], [19]. Santos et al. proposed a
parametric estimation of the ECM that includes a noise power
estimate based on order statistics [20], which is comparable to

what this paper proposes, but does not exploit random matrix
theory results.

The paper is organized as follows. Section II presents a
brief theoretical background on array signal processing and
establishes the notation of this paper. Section III explains the
Marchenko-Pastur distribution of the eigenvalues of SCMs
and derives an estimator of the noise power based on the
sample median of those eigenvalues. Section IV evaluates the
performance of the median DMR compared to the standard
DMR, as well as the quality of the noise power estimators
for different number of snapshots and dominant subspace
dimension. Section V extends the comparison to the more
practical case where the array suffers from phase perturba-
tions due to array element location errors or sensor calibration
errors. Finally, Section VI discusses the results and draws
conclusions.

II. BACKGROUND
This section summarizes the necessary background on beam-
forming, including the performance metrics and the DMR
implementation used in this paper. Most of the theory pre-
sented in this section is summarized from [1] with notation
aligned with that in [2].

A. SIGNAL MODEL
A narrowband plane wave arrives at a uniform linear array
(ULA) with a constant time delay from sensor to sensor that
is a function of the angle of arrival θ . In the frequency domain,
this time delay translates to a complex phasor that multiplies
the complex magnitude of the plane wave. A plane wave with
angle of arrival θi is associated with a replica vector:

vi = v(ui) = [exp(jz1k0ui), . . . , exp(jzN k0ui)]T ,

ui = cos(θi),

k0 = 2π/λ, (1)

where λ is the wavelength and zn is the position of the n-th
sensor on the z-axis.

The phasors of the narrowband data vector (x) are the
Fourier transform of the sensor measurements evaluated at
the carrier frequency [1]. Thosemeasurements are assumed to
result from the sum of planewaves vi plus background white
noise n:

x =
Dtrue∑
i=1

viai + n

n ∼ CN (0, σ 2
n I)

ai ∼ CN (0, σ 2
i ), (2)

where Dtrue is number of waves arriving on the array; vi, ai,
and σ 2

i are respectively the replica vector, complex amplitude,
and power of the ith plane wave. The power of background
white noise is σ 2

n .
In the frequency domain, a beamformer is represented by

an inner product of the array weights w with the data vector
wHx. Each complex phasor in w represents the frequency
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response of a filter applied to the corresponding sensor mea-
surement before summing across the array.

The conventional beamformer (CBF) is the most straight-
forward beamformer. The CBF is a spatial matched filter
for planewaves arriving from the direction described by the
steering vector vs:

wCBF =
1
N vs. (3)

The CBF works well in scenarios with white background
noise and interferers not much louder than the desired signal.
However, the spatial filtering ability of the CBF may not
be enough to suppress loud interferers. An ABF may be
necessary in those situations to preventmasking of the desired
signal.

B. DMR BEAMFORMER
The dominant mode rejection (DMR) is an ABF that modifies
Capon’s minimum variance distortionless response beam-
former (MVDR) to work with fewer degrees of freedom and
thus with fewer snapshots of data [5]. The weights of the
DMR beamformer are a function of the sample covariance
matrix of the measured data, defined by:

S =
1
K

K∑
k=1

xkxHk . (4)

Assuming that the observed data contains D loud interferers,
the DMR decomposes the SCM into its eigenvalues and
eigenvectors and separates them into two subspaces:

S =

interferers︷ ︸︸ ︷
D∑
i=1

gieieHi +

noise︷ ︸︸ ︷
N∑

i=D+1

gieieHi , (5)

where gi are the eigenvalues, ei are the eigenvectors, and
g1 ≥ g2 ≥ · · · ≥ gN . The D largest eigenvalues are
associated with the loud interferers, while the smallest ones
belong to the noise subspace. If K < N , then the N − K
smallest eigenvalues gK+1, . . . , gN will be zero. The DMR
then replaces the sample eigenvalues of the noise subspace
with an estimate of the noise power s2n:

SDMR =

D∑
i=1

gieieHi + s
2
n

N∑
i=D+1

eieHi . (6)

The DMR inverts this modified SCM to calculate the array
weights just like MVDR:

wDMR =
S−1DMRvs

vHs S
−1
DMRvs

. (7)

Traditional implementations of the DMR use a noise power
estimate based on the average of the eigenvalues of the
noise subspace [gD+1, . . . , gN ]. However, this paper eval-
uates snapshot deficient cases (i.e. K < N ), in which
the eigenvalues [gK+1, . . . , gN ] are zero and deterministic.
Henceforth, whenever this paper mentions standard DMR,

it refers to the DMR described by (6) and (7) with noise
power estimator based on the sample mean of the nonzero
eigenvalues only [gD+1, . . . , gK ]:

s2n =
K
N

(
1

K − D

) K∑
i=D+1

gi. (8)

The expectation of the nonzero eigenvalues is σ 2
nN/K [15],

hence the need to multiply their sample mean by K/N to
correct for this bias.

The performance of the DMR converges with fewer snap-
shots when compared to the SMI MVDR. Wage and Buck
demonstrated through simulations that the signal to interferer
and noise ratio (SINR) loss of the DMR is beta distributed
[19]. However, the distribution of the SINR of DMR doesn’t
depend on the number of sensors N . Rather it depends on K
and D. The DMR requires K ∼= 2D snapshots to achieve half
of the SINR of the ensemble MVDR [21].

In practice, the actual number of interferers Dtrue is
unknown and the dominant signal subspace dimension D is
an estimate from the observed data. Choosing the dominant
signal subspace dimension can be a challenging model-order
selection problem. Incorrectly choosing D biases the noise
power estimate s2n, as discussed in more detail in Section III.

C. PERFORMANCE METRICS
The beampattern is the complex gain of a specific array
weight vector to plane waves as a function of the angle of
arrival. The squared magnitude of the beampattern is the
power pattern:

|B(u)|2 = |wHv(u)|2. (9)

The notch depth (ND) is the power pattern in the direction
of strong interferers [2]:

NDi = |B(ui)|2 = |wHvi|2. (10)

Adaptive beamformers like DMR and MVDR are designed
to have a power pattern close to zero in the direction of loud
interferers. The ND decreases as a function of the interferer
to noise ratio INRi = σ 2

i /σ
2
n . For low INR, the ND will be

equal to the response of the CBF (NDi = |vHs vi|
2/N 2

=

cos2(vs, vi)). Once INRi � 1/N sin2(vs, vi) the notch depth
in dB is

10 log10 NDi = O(−20 log10 INRi), (11)

i.e., it decreases with slope −2 as a function of the INR
expressed in dB [17]. The squared generalized sine between
vectors sin2(vs, vi) is described in Section II.A of [22].
The output power (OP) of the interferers measures the abil-

ity of a beamformer to attenuate a particular set of interferers
and is directly related to the notch depth:

OPinterf =
Dtrue∑
i=1

σ 2
i |w

Hvi|2 =
Dtrue∑
i=1

σ 2
i NDi. (12)

From (11) one can say that, in an ideal scenario without
mismatch in the location of interferers, the notch depth of
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an ABF to a loud interferer is NDi = O((σ 2
i )
−2). Thus, the

output power due to an individual interferer is O((σ 2
i )
−1),

i.e., the interferer with the lowest input power among the
loud interferers tend to contribute the most power to the
beamformer output (12).

The white noise gain (WNG) is a measure of how much
the array improves the signal-to-noise ratio (SNR) [1], for a
single planewave in white noise. For an array weight vector
w with unity gain at steering direction, the WNG is:

WNG =
1

wHw
. (13)

The WNG is also inversely proportional to the sensitivity
of the beamformer to sensor location errors [23]. The CBF
achieves the optimal WNG N , which is equal to the number
of sensors in the array.

The output signal to interferer and noise ratio (SINR) is
a function of both the WNG and the output power of the
interferers. The SINR measures how well the filter attenuates
background noise and interferers in favor of the signal:

SINR = σ 2
s (w

H6w)−1

= σ 2
s

(
OPinterf + σ 2

n /WNG
)−1

, (14)

where σ 2
s is the power of the signal of interest, and 6 is the

ECM of noise plus interferers. Capon’s MVDR beamformer
with inversion of the ECM optimizes the output SINR [1].

The mean squared error (MSE) measures the performance
of the noise power estimator. The MSE equals the bias
squared plus the variance of the estimator [24]:

mse
(
s2n
)
=

(
E
{
s2n
}
− σ 2

n

)2
+ Var

[
s2n
]
. (15)

Maintaining a small MSE while overestimating the domi-
nant subspace dimension and suffering from array element
perturbations indicates robust performance for the DMR
beamformer.

D. EXPECTED POWER PATTERN OF ARRAYS WITH
PHASE PERTURBATIONS
Array phase perturbations can be especially degrading to the
interferer attenuation of ABFs, but have negative effects on
the performance of any beamformer. Phase perturbations are
a result of mismatch between the actual position of the sen-
sors and the nominal position (used to calculate the steering
vector). These perturbations can also be caused by variations
in the phase response of amplifiers and filters in the physical
array.

The phase perturbation is represented by a random phase
shift applied to the measurements of each sensor:

xpert = x� [ej1φ1 , ej1φ2 . . . , ej1φN ]T

1φn ∼ N (0, σ 2
φ ). (16)

where � is the Hadamard (element-wise) product. Note that
the phase perturbation is assumed to be uncorrelated in both
space (sensor to sensor) and time (snapshot to snapshot).

In principle, random phase perturbations may wrap around
periodically every 2π , requiring the use of the Von Mises
distribution, or wrapped normal [25], [26]. In practice, this
paper focuses on cases with relatively small perturbations
(σφ ≤ π/5). Phase errors large enough to ‘‘wrap around’’
are very improbable.

The phase perturbation affects the expected power pattern
in two ways: slightly attenuating the desired beampattern
and, more importantly when nulling interferers, filling in
the notches. Gilbert and Morgan derived the expected power
pattern of arrays with element perturbations [1], [23]:

Eφ{|B(u)|2} = |B(n)(u)|2 exp[−σ 2
φ ]+ ‖w‖

2σ 2
φ , (17)

where B(n)(u) is the beampattern of nominal (unperturbed)
weights. The Eφ with subscript φ means that the expec-
tation is integrated over the possible sets of perturbations
[1φ1, . . . ,1φN ]. In addition, the expectation in (17) pre-
sumes a deterministic array of weights w. However, the
weights of the DMR are random, since they depend on
the set of random snapshots of data. Therefore, the actual
expected beampattern of perturbed arrays is the result of a
nested expectation that integrates over both snapshots and
perturbations:

Eφ,w{|B(u)|2} = Ew
{
Eφ{|B(u)|2|w}

}
. (18)

In the asymptotic region of sufficiently loud interferers,
the perturbed notch depth depends only on the variance of
the perturbation and the white noise gain, not on the nomi-
nal notch depth [23]. For sufficiently large INRi, the notch
depth of the DMR power pattern |B(n)(u)|2 will be below
|wDMR|

2σ 2
φ , so the second term will dominate (17). The

resulting notch depth for the ABF on the perturbed array is:

10 log10 ND = 10 log10 σ
2
φ + 10 log10 ‖w‖

2

= 10 log10 σ
2
φ − 10 log10(WNG). (19)

This result contrasts with the inferences developed in
Section II-C regarding notch depth and output power of
interferers. From (19) we see that the perturbed ND will be
about the same for all interferers given that nominal ND is
low enough. As a result, the output power from interferers
increases during mismatch, with loud interferers contributing
with the most power, in contrast to the ensemble case dis-
cussed earlier where the weaker interferers contribute with
the most power.

ABFs with higher WNG will have deeper notches in their
beampatterns for perturbed arrays, thus are less sensitive to
array phase perturbations. Improving the SCM estimation
increases WNG while preserving the deep notches of an
ABF [21], [27].

III. THE MEDIAN-BASED ESTIMATOR OF THE
NOISE POWER
Practical ABFs estimate the ECM by averaging the outer
products of K snapshots of noisy data, as described in (4).
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The eigenvalues gi of the SCM are random variables them-
selves. When the snapshots only contain background noise,
the SCM is a Wishart matrix and the eigenvalues behavior is
well-modeled by by the Marchenko-Pastur (MP) distribution
[15], [28], [29]. When the snapshots contain a few strong
interferers plus background noise, the MP distribution still
accurately models the distribution of the eigenvalues in the
noise subspace. This distribution has two parameters: the
noise power, which is also the expectation of the eigenvalues,
σ 2
n = E{gi}; and the sensors per snapshot ratio C = N/K .

The distribution also has a limited region of support σ 2
n (1 −√

C)2 < gi < σ 2
n (1 +

√
C)2, which becomes wider when

either C or σ 2
n increases.

When there are loud interferers in the environment, the
eigenvalues of the interferer subspace have a positive bias and
should be disregarded when estimating the noise power. This
is why the standard DMR uses the average of the eigenvalues
of the noise subspace of the SCM as the estimator of the
noise power [16]. The parameter D of the DMR defines how
many interferers need suppression and which eigenvalues
will be averaged in the computation of s2n. DMR eliminates
the first D eigenvalues from the noise power estimate to
avoid bias and ensure suppression of the loud interferers.
When the actual number of interferers Dtrue is unknown,
D is often conservatively, and deliberately, overestimated
[11], [12]. Overestimation is chosen because underestimating
the dominant subspace dimension causes leaking of interfer-
ers and bias to the noise power estimate that harm the SINR
and WNG of the DMR. On the other hand, overestimating
the dominant subspace dimension introduces a negative bias
in the noise power estimate and reduces its precision, since
the estimate is the average of fewer and smaller eigenvalues.
On balance, the small decrease in SINR caused by overesti-
mating D and reducing the WNG is safer than the risk of a
large SINR decrease that results when D underestimates the
number of interferers.

Median filtering and order statistics are more robust than
the sample mean against impulsive noise and outliers in data
[13], [14]. To develop the median-based estimator of the
noise power in snapshot deficient scenarios, we analyzed the
cumulative density function (CDF) of the nonzero eigenval-
ues of the standard (σ 2

n = 1) Marchenko-Pastur distribution
to find a relationship between the ensemble median and the
parameter C . Figure 1 plots contours of this CDF for rank
deficient sample covariance matrices (C > 1) against the
random variable g and the parameter C [15]. The median
nonzero eigenvalue median[g] for each C is the value of g
satisfying F(g;C) = 0.5. The F(g;C) = 0.5 contour is very
closely approximated by a linear regression g = (C−0.345),
as shown in Figure 1. The contour plot in Figure 1 shows
that the ensemble median can be approximated by a linear
regression as a function of C . Scaling properties of eigenval-
ues, moments and order statistics extends this regression for
nonstandard (σ 2

n 6= 1) MP distributions, yielding

median[g] = σ 2
n (C − 0.345). (20)

FIGURE 1. Contour plot of the standard (σ2
n = 1) CDF of the nonzero

eigenvalues of Wishart SCM versus the random variable g and
parameter C for the rank deficient (C > 1) case. The relationship between
the median of the nonzero eigenvalues and C is accurately approximated
by the linear regression (dashed cyan line).

Rearranging those terms derives the median-based estimator
of the noise power

s2n = median[g1, . . . , gK ]/(C − 0.345), (21)

where median[g1, . . . , gK ] is the sample median of the
nonzero eigenvalues of the low-rank SCM obtained by aver-
aging the outer products of K snapshots.
A power estimate based on the mean of the K −D smallest

nonzero eigenvalues will be biased if there is any error in D.
If D is too small, ‘‘interferer’’ eigenvalues will be included in
the average, creating a positive bias in s2n. If D is too large,
then the larger ‘‘noise’’ eigenvalues will be omitted from the
average, creating a negative bias in s2n.

In contrast with the mean estimator, the median based
estimator is insensitive to the choice ofD. The sample median
is computed from all K nonzero sample eigenvalues without
regards to D. Therefore, the sample median power estimator
is only impacted in the extreme scenario that the true number
of interferers Dtrue exceeds half of the number of snapshots
K . In this scenario, the noise power estimate will be biased
since the median will be an interferer eigenvalue. Despite the
median estimator being insensitive toD, the chosen dominant
subspace dimension still determines which eigenvalues will
be replaced in the modified covariance matrix in (6).

IV. PERFORMANCE OF THE MEDIAN DMR
This section compares the performance of the median DMR
with the standard DMR while varying the assumed dominant
subspace dimension D and the number of snapshots K . The
simulated ULA has N = 51 sensors with half-wavelength
spacing. All results are based on 1000 Monte Carlo sim-
ulations. The metrics used to evaluate the performance of
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FIGURE 2. Scenario describing the powers and locations of the signal and
interferers as well as the noise floor. Although the domain of u contains
all real values from −1 to 1, the horizontal axis is truncated to better
show the signals of interest.

the beamformers were the output SINR, the WNG, and the
estimated input noise power s2n.
Figure 2 illustrates the simulated scenario, which included

two loud interferers (13 dB and 16 dB INR) located in
the direction of the highest side lobes of the conventional
beamformer (u = ±3/N ). Both the noise and interferers are
louder than the desired signal located at broadside (u = 0)
with signal-to-noise ratio of −6 dB. The CBF does not have
enough interferer attenuation for this scenario, hence an ABF
like the MVDR is necessary to find the desired signal.

Despite having a higher variance, the median-based esti-
mator of the noise power retains a lower bias than the mean-
based estimator when the interferer subspace dimension is
overestimated. Figure 3 compares the accuracy and preci-
sion of both estimators of noise power as a function of the
number of snapshots and interferer subspace dimension D.
The value of D ranges from correct D = Dtrue = 2 to
highly overestimated D = 11 and D = 23, while the
number of snapshots ranges from highly deficient K = 6 to
almost full rank K = 48. As expected, the bias of the
mean estimator (plotted in red circles) increases rapidly as the
dominant subspace dimension is overestimated, increasing
the mean squared error (MSE) even though the variance
is lower. Overestimating the dominant subspace dimension
necessarily eliminates the highest noise eigenvalues from
the sample mean computation, increasing the bias squared.
On the other hand, the bias of the median-based estimator
(blue stars) is not affected by the increase in D, showing that
the median estimator itself does not depend on the chosen
dominant subspace dimension. Also, the bias of the median-
based estimator approaches zero as K increases, suggesting
that the estimator is asymptotically unbiased.

Figure 4 compares the performance metrics of both the
standard DMR and median DMR. The plots on the first
row show the output SINR, the plots on the second row
show WNG, and the plots on the third row show the total
output power contributed by the interferers. Each column is
associated with a value of D indicated on top of each plot.
For all plots, the number of snapshots is on the horizontal
axis, while the performance metric is on the vertical axis. The
red symbols indicate the performance metric of the standard

FIGURE 3. Bias, variance and mean of squared error (MSE) of the
median-based estimator of the noise power compared to the
mean-based estimator as a function of number of snapshots and
estimated interferer subspace dimension. Each point is an average
over 1000 Monte Carlo trials of Wishart matrix of the scenario presented
in Figure 2 Despite having a higher variance, the median-based estimator
has a lower bias than the mean-based estimator when the number of
interferers is overestimated. Note that the figure plots the variance in a
different scale than that of the bias squared and MSE.

DMR averaged over 1000 Monte Carlo trials, while the blue
symbols do the same for the median DMR. The vertical
intervals contain 90% of the results. The green line shows
the performance for the optimal adaptive beamformer, which
is the MVDR with ensemble covariance matrix.

The difference in performance between median DMR and
standard DMR increases with overestimation of dominant
subspace dimension D, with the median DMR preserving
better and more consistent performance. The metrics with
D = 5, shown in the leftmost column of Figure 4, show
that the difference in performance between the standard and
median DMR is very small when D is closer to the real
number of loud interferers Dtrue = 2. For D = 11, shown
in the middle column, the performance for both standard and
median DMR decreases when compared to the D = 5 case.
However, the decrease in the performance of standard DMR
is greater, increasing the difference between standard and
median DMR. The rightmost column of Figure 4 shows the
performance of DMR when the dominant subspace dimen-
sion D = 23 is highly overestimated. This case yields the
largest difference in performance between the standard DMR
and the median DMR. For the D = 23 case, the larger values
of the blue symbols in the SINR and WNG plots, and the
smaller confidence intervals for those values, indicate that
median DMR is more robust against overestimation of the
dominant subspace dimension.

The output power of interferers, shown in the third row
of Figure 4, decreases more with increasing snapshots K
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FIGURE 4. Average performance metrics of the standard DMR (red
circles) and the median DMR (blue stars) over 1000 Monte Carlo
simulations as a function of the number of snapshots K and the
estimated number of interferers D. The vertical lines cover the 90%
confidence intervals. The green line plots the performance of the MVDR
with ensemble covariance matrix, which is the optimal ABF. All the
metrics are impacted by the overestimation of D, but the median DMR
preserves a higher WNG and SINR, and a lower interferer contribution to
output power as the dominant subspace dimension D increases.

than it grows with increasing subspace dimension D for both
standard DMR and median DMR. For median DMR, the out-
put power contributed by interferers is essentially unchanged
as D increases, demonstrating the anticipated robustness.
In contrast, the standard DMR output power contributed by
interferers increases by about 1.1 dB relative to the median
DMR for theD = 23K = 48 case. However, since the output
power of interferers is very small relative to the white noise
contribution to the output noise power in both cases, the small
improvement has little impact in the overall SINR.

V. PERFORMANCE OF THE MEDIAN DMR AGAINST
PHASE PERTURBATION IN ARRAYS
This section tests the median DMR against array element
perturbations throughMonte Carlo simulations and compares
its performance to Gilbert and Morgan’s analytic expres-
sion presented in Section II-D. The results in the previous
section show that the median DMR has some performance
improvement when the beamformers highly overestimated
the dominant subspace dimension D. Most of this gain in
SINR of the median DMR is due to the improvement in
WNG. Recall that WNG is inversely proportional to the norm
squared of the array weight vector ‖w‖2 (13), while the
sensitivity of the notch depths are directly proportional to this
quantity (17). Since the WNG of the median DMR is about
1 dB higher than that of the standard DMR, equation (19)
predicts that in arrays with phase perturbations, the nulls of
the beampattern of the median DMRwill be 1 dB deeper than

TABLE 1. Average notch depth of both DMR beamformers at the angles
of the interferer.

FIGURE 5. Average power pattern of perturbed standard DMR, perturbed
median DMR, nominal median DMR, and expected (analytic) perturbed
median DMR, as a function of u, at the region of the loud interferers. The
phase perturbation raises the notches of both standard DMR and median
DMR, but the median DMR preserves deeper notches than the standard
DMR. The black dashed line follows the blue line very closely, meaning
that the analytic expression by Gilbert and Morgan accurately predicts
the simulation results.

those of the standard DMR. The deeper notch reduces the
interferer contribution to output power, which improves the
SINR.

The simulated scenario is the same of Section IV with
respect to number of sensors, interferers, background noise,
and signal. The phase perturbation has a standard deviation
of σφ =

√
0.1 radians. This perturbation is comparable to a

standard deviation of about λ/20 of random error in the array
sensor positions.

As discussed in Section II-D, Gilbert and Morgan’s
expected beampattern of perturbed arrays in (17) assumes
deterministic weights and nominal beampattern, which is
not the case for the DMR. Consequently, this work uses
nested Monte Carlo trials in order to implement the nested
expectation in (18). A total of 1800 simulations were run
for both perturbed and unperturbed arrays. These simulations
contained 30 independent realizations of K snapshots with
an unperturbed array to estimate the expected nominal beam-
pattern for both standard and median DMR. This nominal
beampattern and weight were passed as arguments to (17) to
obtain the analytic result for the perturbed beampattern. Each
of the 30 realizations of snapshots was then perturbed with
60 independent realizations of the array phase errors, result-
ing in 1800 samples of the perturbed DMR array weights.
As shown in (18), the combined effect should converge to
the same result as randomizing both phase errors and snap-
shots simultaneously. Structuring the Monte Carlos as nested
loops implementing the conditional expectations permits us
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FIGURE 6. Average interferer contribution to output power and SINR on
perturbed arrays for the standard DMR beamformer (red symbols) and
median DMR beamformer (blue symbols) when D = 23. The lighter
symbols in the leftmost plots show the DMR performance on unperturbed
arrays for comparison. The perturbations harm the interferer attenuation
of both DMR beamformers increasing the interferer contribution to
output power and decreasing the SINR as shown in the left column of
plots. However, the median DMR is more robust to array perturbations,
consistently attenuating the interferers more and improving SINR.

to leverage Gilbert and Morgan’s analytic results for per-
turbed power patterns as well.

Figure 5 compares the notches of standard DMR and
median DMR in the direction of the two loud interferers
for the case with D = 23 and K = 48, which is the one
that showed the most improvement in WNG in the unper-
turbed case. The red lines plot the average power pattern
of the perturbed standard DMR beamformer. The blue lines
plot the average power pattern of the perturbed median DMR.
The dashed magenta line is the mean power pattern of
the nominal median DMR without perturbations. The black
dashed line shows the expected power pattern of the perturbed
median DMR predicted by evaluating the nominal power
pattern in (17). The power pattern of the median DMR has
slightly deeper notches in the direction of strong interferers.
Table 1 displays the average value of those notches. The
notches of median DMR are on average about 1.1 dB deeper
than those of the standard DMR. The proximity between the
black dashed line and the blue solid line in Figure 5 confirms
that the result in (17) accurately predicts the notch depth of
the DMR beamformer for the perturbed array.

Figure 6 compares the SINR and the interferer contribution
to output power of the phase perturbed median DMR and
standard DMR for the large subspace dimension (D = 23).
The left column of plots compares the performance of the
unperturbed array (lighter symbols) with the perturbed array
(darker symbols). The phase perturbations impaired the inter-
ferer attenuation of the DMR causing a higher interferer

contribution to output power and lower SINR. The right
column of plots zooms in on the perturbed array performance.
Although the phase perturbations affected the performances
of both DMRs, the median DMR, shown by the blue symbols,
preserved lower output power due to interferers and higher
SINR than the standard DMR.

VI. CONCLUSION
This paper proposes and evaluates the median DMR beam-
former, a modification to the DMR ABF that estimates the
power in the noise subspace as a function of the median rather
than the mean of specific sample eigenvalues.

The median-based estimator makes the DMR ABF more
robust to errors in estimating interferer subspace dimension
in a typical passive sonar scenario. Simulations demonstrate
that the median-based estimator has lower MSE than the
mean-based estimator for DMR with highly overestimated
interferer subspace dimension. The reduced MSE of the
median-based estimator is mainly due to reduced bias, even
though the sample median has higher variance when com-
pared to the sample mean estimator.

Median DMR’s improved performance is primarily due
to higher WNG. The improved WNG also results in better
performance for median DMRwhen challenged by perturbed
arrays, consistent with the predictions of Gilbert & Morgan’s
model.
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