
Received 27 October 2022, accepted 9 November 2022, date of publication 14 November 2022, date of current version 17 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221742

Low-Latency Multi-Kernel Polar Decoders
HOSSEIN REZAEI , (Graduate Student Member, IEEE),
NANDANA RAJATHEVA , (Senior Member, IEEE),
AND MATTI LATVA-AHO, (Senior Member, IEEE)
Centre for Wireless Communications, University of Oulu, 90570 Oulu, Finland

Corresponding author: Hossein Rezaei (hossein.rezaei@oulu.fi)

This work was supported by the Academy of Finland through 6G Flagship Program under Grant 346208.

ABSTRACT Polar codes have been receiving increased attention for application in beyond 5G networks.
They offer low-complexity decoding algorithm and can achieve symmetric channel capacity. However, the
majority of research works have focused on the codes constructed by the binary kernel (2 × 2 polarization
matrix) which bounds the code length to an integer power of 2. Multi-kernel polar codes have been proposed
as a method that allows the construction of polar codes with sizes different from powers of 2 by mixing
multiple kernels of different dimensions. A hardware implementation based on the successive cancellation
(SC) algorithm found in the literature shows that it suffers from a long decoding latency. In this paper,
we design and implement a multi-kernel decoder based on the fast-simplified SC (fast-SSC) algorithm to
decrease the decoding latency. It can decode any code constructed by binary and ternary (3 × 3) kernels
featuring flexible code length, code rate, and kernel sequence. FPGA implementation results reveal that a
polar code of length N = 1536, rateR = 1/2 with Processing Element (Pe) value of Pe = 240, gains 84.6%
lower latency compared to the original algorithm. Also, the architecture supports polar codes constructed by
purely-binary and purely-ternary kernels. A polar code of length N = 1024, rate R = 1/2, and Pe =
120 achieves an information throughput of 432 Mbps.

INDEX TERMS FPGA, hardware implementation, low lateny, polar code, successive cancellation, URLLC.

I. INTRODUCTION
Polar codes, proposed by Arikan [1], can achieve the
symmetric channel capacity using the channel polariza-
tion phenomenon when the code length approaches infinity.
Thanks to their low-complexity implementation, it has gained
considerable attention under successive cancellation (SC)
decoding algorithm. Moreover, the 3GPP standardization
organization has considered polar codes as a coding scheme
in the fifth generation (5G) of mobile communication stan-
dards. The reliability of polar codes under the state-of-the-art
cyclic redundancy check (CRC) aided successive cancellation
list (SCL) decoding [2], [3], makes them an ideal choice for
ultra-reliable low-latency communication (URLLC) systems
using beyond 5G network.

However, polar codes suffer from high decoding latency
originated by the serial nature of the SC algorithm. Various

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

researchers have tried to reduce the latency of the SC decod-
ing. There are different algorithms such as simplified-SC
(SSC) [4], maximum-likelihood (ML) nodes [5] and fast-
SSC [6], which considerably decrease SC decoding latency.
New node patterns are proposed in [7] and [8] to further
reduce the decoding latency. Polar codes presented in [9]
lower the decoding latency at the cost of losing some
error-correction performance. The works in [10] and [11]
implemented sequence repetition fast-SSC (SRFSC) algo-
rithm to decrease the latency of polar codes. The authors
in [12] proposed pipelined combinational SC that effectively
decreases the latency of polar codes at the cost of significant
increase in hardware complexity. Finally, memory footprint
optimization and operation merging are capable of lowering
the latency of fast-SSC hardware architecture by consuming
less memory in the implementation phase [13], [14].

Another drawback tied to polar codes is that the code-
words are limited to those constructed by Kronecker product
expansion of binary (2× 2) kernel which results in bounding

119460 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4065-5998
https://orcid.org/0000-0002-7029-5583
https://orcid.org/0000-0001-9315-1788

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

the code length to powers of 2. However, practical appli-
cations demand various block lengths with different rates.
To increase the achievable code length, puncturing [15] and
shortening [16] methods have been proposed. However, these
methods cost additional optimization steps and decoding
complexity inconsistent with their block lengths.

Multi-kernel polar codes have been proposed to increase
the length and rate flexibility of polar codes [17]. They
can employ larger kernels in their code construction along
with binary kernel. Specifically, a ternary (3 × 3) kernel
offers desirable flexibility in constructing a multi-kernel code
supporting code lengths that are powers of 2, powers of 3,
or a product of both with a reasonable decoding complexity
overhead. In [18], the first architecture for a multi-kernel
successive cancellation polar decoder from binary and ternary
kernels is proposed. It supports any code length and code rate
up to the maximum supported code length. However, it uses
the SC algorithm which suffers from a very large decoding
latency. Also, it lacks the support for applications demanding
long block lengths since the maximum supported code length
is 4096.

In [19], we have implemented an algorithm optimized for
short packet communications to decode short polar codes
constructed by pure binary kernel. The contribution of this
paper is threefold. First, we optimize the algorithm in [19]
to further decrease the latency of polar codes with long
block lengths. Second, we extend the algorithm to support
multi-kernel polar codes constructed from binary-ternary
mixed kernels. We also introduce some new patterns to prune
multi-kernel polar tree. The algorithm we give, is rate-
flexible and decodes any code constructed by purely-binary,
purely-ternary, and binary-ternary mixed kernels. Finally,
based on the proposed architecture for the conventional
fast-SSC in [6], a hardware architecture will be presented.
The FPGA implementation results is compared to the state-
of-the-art schemes in terms of latency, throughput, and
implementation cost.

The remainder of the paper is organized as follows.
In Section II, the preliminaries of polar codes with variants
of the SC algorithm and code construction by binary-ternary
mixed kernels are given. Section III outlines the pro-
posed algorithm. In Section IV, the proposed hardware
architecture is detailed. The FPGA implementation of the
proposed architecture and performance analysis are sum-
marized in section V. Finally, section VI concludes this
work.

II. POLAR CODES
A. CODE CONSTRUCTION
A polar code of length N that carries K information bits is
denoted as P(N , k). The encoder usually sets the remaining
N -k bits to a determined value (mainly zero). The code rate
can be computed as R , k/N . Arikan proposed channel
polarization [1] as a code construction method under SC
decoding to reach the symmetric channel capacity (I (W)) of
the binary-input discrete memoryless channel (B-DMC) W .

FIGURE 1. (a) Binary and (b) ternary node message passing.

As the code length increases, the reliability of each individual
channel WN

i (1 ≤ i ≤ N) approaches to either one (per-
fectly reliable (I (WN

i) → 1)) or zero (perfectly unreliable
(I (WN

i)→ 0)). Determining the optimal location of informa-
tion and frozen bits may differ depending on the channel type
and method of code construction. In this work, for polar code
construction, we have used the method proposed in [1] using
a systematic encoding scheme.

The authors in [20] have proposed a generalized construc-
tion approach for polar codes. Along with the binary kernel,
larger kernels have also been explored in this work. This
construction method outperforms the puncturing [15] and
shortening [16] methods. This method offers error-correction
performance gains ranging from 0.1 dB to 1.1 dB at frame
error rate (FER) of almost 10−3 with reference to punctur-
ing [15] and shortening [16] methods.

The encoding process can be represented through linear
transformation x = uG, where u is a N-bit input vector to
the encoder, G is the generator matrix and x is the encoder
output.

The polarizationmatrices for binary and ternary (3×3) [20]
kernels are proposed as

T2 =
[
1 1
1 0

]
, T3 =

 1 1 1
1 0 1
0 1 1

 .
In multi-kernel codes of length N = n0 × n1 × . . .× ns with
nis not necessarily distinct prime numbers, G is constructed
as a series of Kronecker product between kernels of different
sizes in form of G , Tn0 ⊗ Tn1 ⊗ . . . ⊗ Tns where Tnis are
squared matrices.

B. SUCCESSIVE CANCELLATION DECODING
To decode a codeword under SC algorithm, the decoder needs
to traverse the polar binary tree which is composed of n +
1 levels with n = log2 N . Let λ ∈ [0, n] be the level of a
given node in the polar binary tree. The leaves and the root
are located at level 0 and n, respectively, and 2n−λ leaves
exists under each processing node. The log-likelihood ratios
(LLRs), defined as αn = {α0, α1, . . . αN−1}, enter from the
root and they need to visit all leaves to get decoded. The LLRs
need three functions to traverse the tree. For a given node ν
(Fig. 1 (a)), αvl is the function required to travel to the left
branch and it can be estimated as

αvl [i] = sgn(αv[i].αv[i+ 2(λ−1)])min(|αv[i]|,

|αv[i+ 2(λ−1)]|) (1)

VOLUME 10, 2022 119461

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

where i ∈ [0 : 2(λ−1) − 1]. The node ν can compute the LLR
vector and transfers them to the right branch when the hard
decision bits (βvl) are received from the left branch.

αvr [i] = αv[2i](1− 2βvl [i])

+αv[2i+ 1] for i ∈ [0 : 2(λ−1) − 1]. (2)

where αvr is the LLR of the right branch. The codeword βv
can be computed at node ν when the hard decision bits of the
right branch are ready.{

βv[i] = βvl [i]⊕ βvr [i],
βv[i+ 2(λ−1)] = βvr [i].

(3)

for i ∈ [0, 2λ−1−1]. DefiningA andAc as sets of information
and frozen bits, respectively, the hard decisions (βv) in a leaf
node can be estimated as

βv =

{
h(αv); if v ∈ A,
0; if v ∈ Ac (4)

where h(x) is a binary quantizer computed as

h(x) =

{
0; if x ≥ 0,
1; otherwise.

(5)

C. SSC AND FAST-SSC DECODING
The SSC [4] and fast-SSC [6] decoders are proposed to
address the latency issue associated with SC decoding. Two
Rate-0 (R0) and Rate-1 (R1) nodes are proposed in the SSC
algorithm to eliminate the need for traversing their child
nodes. R0 is the parent node to a set of all frozen bits. For
a R0 node located at level λ, it can be decoded by returning a
vector of 2λ zeros. R1, on the other hand, is the parent node to
a set of information bits and a given R1 node located at level
λ can get decoded by taking a hard decision on input LLRs.
In other words, it can be decoded as

βv[i] = h(αv[i]) for i ∈ [0, 2λ − 1]. (6)

In a fixed-point representation, the R1 node can simply get
decoded by returning the most significant bit of the soft
information.

In fast-SSC algorithm, two new node types are introduced
to further decrease the decoding latency. In what follows,
these two nodes called repetition (REP) and single-parity
check (SPC) nodes will be described.
• REP Nodes: This family contains only one information
bit on the rightmost position and the rest of nodes are
frozen. For a REP node located at level λ, the informa-
tion bit repeats 2λ times over the outputs and it can be
calculated by threshold detection as

βv[i] = h(
2λ−1∑
i=0

αv[i]) for i ∈ [0, 2λ − 1]. (7)

• SPC Nodes: This family contains only one frozen bit
located at the leftmost position. To decode a SPC node

placed at level λ, the hard decisions need to be computed
as h(αv). Now, the parity bit can be computed as

parity =
2λ−1⊕

h(αv[i])
i=0

. (8)

After calculating the parity bit, it needs to estimate the
bit index of the least reliable bit as

j = argmin
i
|αv[i]|. (9)

The final step is to calculate the output of the SPC node
as

βv[i] =

{
h(αv)⊕ parity when i = j
h(αv) otherwise

(10)

for i ∈ [0, 2λ − 1].
In addition to the previously introduced nodes, there are

some simplified node mergers that can further reduce the
latency. The most practical node mergers are as follows.
• REPSPCMerge: This node presented in [6] and is parent
to a REP and SPC node located on the left and right
branches, respectively.

• Generalised Repetition (G-REP) Merge: This family [8]
is a Rate-R node where 0 < R < 1 presented as a
scheme to integrate multiple nodes located at multiple
levels. Considering t and l0 as the depth and the lowest
level of constituent nodes, respectively, a G-REP node
located at level L contains a Rate-C (0 < C ≤ 1) node
on the rightmost branch at level l0 = L-t . The rest of
child nodes are R0.

• Generalized Parity Check (G-PC) Merge: Similar to
G-REP, this family [8] also is a Rate-R (0 < R < 1)
node and it integrates multiple nodes located at multiple
levels. AG-PC node located at level L contains only one
R0 node located on the leftmost branch at level l0 = L-t .
The rest of child nodes are R1.

It should be mentioned that in the cases of REPSPC , G-REP
and G-PC nodes, the decoded bits need to be propagated
backward to the root node.

D. CODE CONSTRUCTION BY BINARY-TERNARY
MIXED KERNELS
The method for constructing the generator matrix of
multi-kernel codes is explained in section II-A. The mes-
sage passing criterion for a ternary node ν is illustrated
in Fig. 1 (b). To pass the massages from a ternary kernel,
some new functions need to be defined. Defining (1) as f b,
(2) as gb, and (3) as Cb, for a ternary node located at level
λ in a pure-ternary polar code, the decoding functions for
i ∈ [0, 3λ-1-1] are:

αvl [i] = sgn(αv[i].αv[i+ 2(λ−1)].αv[i+ 2λ])

min(|αv[i]|, |αv[i+ 2(λ−1)]|, |αv[i+ 2λ]|). (11)

αvc [i] = (1-2β li)αi + f
b(αi+2(λ−1) + αi+2λ). (12)

119462 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

αvr [i] = (1-2β li)αi+2(λ−1) + (1-2β li ⊕ β
c
i)αi+2λ . (13)

[βi, βi+2(λ−1) , βi+2λ] = [β li ⊕ β
c
i , β

l
i ⊕ β

r
i , β

l
i ⊕ β

c
i ⊕ β

r
i].

(14)

Hereby, we define (11) as f T , (12) as gT1 , (13) as g
T
2 , and (14)

as CT .
As discussed in [20] and [21], the Kronecker product is not

commutative, therefore different ordering of kernels result in
different transformationmatrices. In other words, the location
of information and frozen bits is changed using different
kernel orders which directly affects the error-correction per-
formance. Currently there is no theoretical way to identify
the order of kernel multiplication. Therefore, simulation with
different kernel orders is needed to find the sequence with the
best error-correction performance. Themethod in [21] is used
to obtain the kernel orders. As a guideline, we consider LDPC
WiMAX code lengths [22] which shows that using only a
few non-binary kernels, multi-kernel polar codes can achieve
the most desired block lengths. Although the latency value
of various multi-kernel codes will be reported in Section V,
throughout this work we only provide an in-depth analysis
of codes with one ternary kernel which results in kernel
sequences below.
• P(48, 24) with G = T3 ⊗ T2 ⊗ T2 ⊗ T2 ⊗ T2
• P(96, 48) with G = T2 ⊗ T2 ⊗ T2 ⊗ T3 ⊗ T2 ⊗ T2
• P(192, 96) with G = T3⊗T2⊗T2⊗T2⊗T2⊗T2⊗T2
• P(384, 192) with G = T3 ⊗ T2 ⊗ T2 ⊗ T2 ⊗ T2 ⊗ T2 ⊗
T2 ⊗ T2

• P(768, 384) with G = T2 ⊗ T2 ⊗ T3 ⊗ T2 ⊗ T2 ⊗ T2 ⊗
T2 ⊗ T2 ⊗ T2

• P(1536, 768) with G = T3⊗T2⊗T2⊗T2⊗T2⊗T2⊗
T2 ⊗ T2 ⊗ T2 ⊗ T2

E. MULTI-KERNEL VERSUS PUNCTURING AND
SHORTENING METHODS
Fig. 2 illustrates the error-correction performance of multi-
kernel [20], puncturing [15] and shortening [16]methods over
an additive white Gaussian noise (AWGN) channel using SC
and SCLwith a list size of L = 8. Two different block lengths
of N = 48 and N = 72 (G = T3 ⊗ T2 ⊗ T2 ⊗ T2 ⊗ T3) with
rate R = 1/2 are selected in the multi-kernel scenario. For
the punctured and shortend polar codes, themother polar code
of length N ′ = 64 (for the case of N = 48) and N ′ = 128
(for the case of N = 72) are used. Obviously, multi-kernel
decoding considerably outperforms punctured and shortened
methods.

In terms of complexity, multi-kernel decoding offers lower
decoding complexity with respect to puncturing and short-
ening methods since smaller Tanner graphs are used in their
code construction. The punctured and shortend polar codes
are constructed from a mother polar code of length N ′ =
2dlog2Ne and the mother code determines the code’s complex-
ity. A metric that can be used to evaluate the complexity
is the overall number of the LLRs need to be calculated
in decoding process of different schemes. With s being the

number of stages in the code’s Tanner graph (identical to
the number of kernels used in the code construction), N × s
and N ′log2N ′ LLRs need to be computed to decode an entire
codeword in cases of multi-kernel and puncturing/shortening
methods, respectively. Therefore, for a polar code of length
N = 48 (72), 240 (360) LLRs needs to be calculated in
case of multi-kernel codes. On the other hand, 384 (896)
LLRs computation is needed for punctured and shortened
polar codes. Obviously, 37.5% (59.8%) lower LLRs need
to be calculated using multi-kernel codes which shows a
substantial reduction in complexity.

F. FAST MULTI-KERNEL DECODING
Fast-SSC decoding ofmulti-kernel polar codes is investigated
in [23]. It is proved in [23] that R0, R1 and SPC (R =
N−1
N) nodes for ternary kernel can be computed using the

same method as for binary kernel. The mixed repetition node,
however, has a different decoding rule and it is categorized
into three groups for the ternary kernel. In this paper, we refer
to this group as REPT . More detail on decoding steps of each
node is available in [23].

III. MULTI-KERNEL DECODING ALGORITHM
In this section, the algorithm that supports multi-code decod-
ing of polar codes will be presented. The proposed algorithm
supports purely binary, purely ternary and binary-ternary
mixed decoding of polar codes. In the case of mixed kernel
polar codes, any order of the kernels can be considered and
there is no need for the decoder to have any prior knowl-
edge of the code structure. The goal of the algorithm is to
decrease the decoding latency of the polar codes. Therefore,
the prevailing patterns in short to long block lengths are
identified and corresponding specialized decoding algorithm
is presented. These patterns are given in five groups where
they eliminate the need for partial sequential decoding. The
hardware architecture and FPGA implementation of the algo-
rithm will be detailed in the following section.

In this section, the depth is calculated as t = L-l0 where L
and l0 are the location of the parent node and the lowest level
of the leaves, respectively. The five groups of high-level node
mergers for multi-kernel decoder are as follows.

• Group A Patterns: The R0SPC node is first identified
in [9] where it merges two R0 and SPC nodes located
at the same level. To generalize this idea, this group
integrates nodes from multiple levels of the binary tree
where t R0 nodes are located on the left branches of a
Rate-R (0 < R < 1) node. We categorize the subtrees
into three different Rate-R patterns. Two R0tSPC and
R0t-1REPSPC are proposed in [24] and another member
is introduced as R0tR1 in [19] shown as ‘‘Group A’’
in Fig. 3. Table 1 tabulates the count of appearances
of the proposed node mergers in the Tanner graph of
polar codes with various block lengths after pruning the
tree. A decoder for this group will be provided in the
following section.

VOLUME 10, 2022 119463

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 2. The error correction performance of multi-kernel polar codes with respect to puncturing and shortening methods.

FIGURE 3. Tree illustration of the most frequent node patterns.

• Group B Patterns: The REPR1 and REPSPC nodes
are primarily proposed in [8] and [6], respectively,
where they merge a REP node by either R1 or SPC
nodes. We generalize these nodes using t REP nodes
from multiple levels. Thus, this group categorizes them
into REPtR1 and REPtSPC , respectively, displayed as
‘‘Group B’’ in Fig. 3. A general decoding algorithm for
this group is available in [24]. The REPtSPC pattern
can be decoded faster by the following algorithm. It is
assumed that the information bit integrated at a REP
node at level l is ql . The first step for decoding is to

calculate the information bit at each REP node at level l
in parallel as

ql = h(
2l−1∑
i=0

2t−1∑
k=0

α2t i+k � α2t i+k+2t-1). (15)

After decoding t REP nodes in parallel, the decoded
information bits need to be encoded again before pro-
ceeding to the SPC node. The first group of information
bits to be encoded is a concatenation of t REP nodes
with a different number of leaves from 2t-1 to 1 where

119464 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

TABLE 1. Count of the proposed node mergers of groups A-C in polar
codes of different length with rate R = 1

2 .

the single leaf REP node corresponds to qL . The order
of nodes starts from the lowest level to the highest level
node and the last bit is set as 0. For example the sequence
to be encoded for t = 3 is

q = {0, 0, 0, ql0 , 0, ql0+1, ql0+2, 0}. (16)

This stream can be encoded by a polar code generator
matrix of size 2t-1 as

a = qG. (17)

Now the encoded SPC bits of the SPC node at l0 level
can be directly calculated as

βi = h(
2t−1∑
k=0

(1− 2ak)α2t i+k) for i ∈ {0, 2
l0 − 1}.

(18)

Since the output of the merged node is located at level
L, the encoded a bits are added to each βi as a⊕ βi for
i ∈ {0, 2l0 − 1}.
REPt -R1 can also get decoded using the same procedure
asREPtSPC by substituting the SPC nodewithR1 node.

• Group C Patterns: This group also integrates nodes
from multiple levels of the binary tree and general-
izes four different patterns (REPSPC , REPR1, R0SPC
and R0R1 [6]). Three mergers of this this group,
REPSPC t , REPSPCR1t-1 and REPR1t , are presented
in [24]. In [19], we added two R0SPC t and R0R1t

to this group as new members. This family is shown
under ‘‘Group C’’ in Fig. 3. The decoding procedure of
REPSPC t merger can bemade faster using the following
algorithm. First, the REP node can get decoded by

qL = h(
2l0−1∑
i=0

2t−1∑
j=0

�α2t i+j). (19)

Nowwe can directly calculate partial sum bits in parallel
at level L as below.

β2t i+k = h(α2t i+k +
2t−1∑
j=0/k

�α2t i+j) (20)

for i ∈ {0, 2l0 − 1} and k ∈ {0, 2t − 1}. As the final
step, it only needs to perform a parity check for each i as

2l0−1∑
k=0

β2t i+k + qL = 0. (21)

TABLE 2. Details of new functions supported by the proposed decoder.

Like the processing of the SPC node, the partial sum bit
with the least reliable LLR must be flipped in case the
parity check is not fulfilled.
The R0SPC t , REPSPCR1t-1, REPR1t and R0R1t can be
decoded using the same algorithm as REPSPC t . The
only difference is that in the cases ofREPR1t andR0R1t ,
there is no need for the final parity check step. It should
be noted that REPSPC t , R0SPC t and REPSPCR1t-1

mergers degrade the error correcting capability of the
decoder by a small margin. The effect of this algorithm
on error-correction performance will be investigated in
Section V-B.

• Group D Patterns: By introducing groups A-C, there is
an opportunity to merge other functions such as f b, gb,
and Cb. These types of functions have no effect on the
overall critical path since they introduce significantly
lower delays compared to leaf nodes. This group is
summarized in Table 2.
Let βvl and βvr be the codeword estimates coming from
the left and right branches of node v, respectively. The
Cb/Cb

0 operations combine βvl and βvr using (3) to
estimate the codeword of node v. In case ofCb

0 operation,
βvl is a vector of zeros. The C

b/Cb
0 operations constitute

a large portion of instructions in SC-based decoders.
For instance, it counts for 26% of overall instructions
in a P(1024, 512) under our proposed algorithm. The
simulation results reveal that 92% of combine operations
are consecutive. We generalize the consecutive combine
operation asCbt /Cb

0
t
where it merges t consecutive com-

bine operations. Similar consecutive node processing
is also possible for f b operation using (1). Based on
our simulations, f b counts for 23% of overall instruc-
tions under our proposed algorithm in a P(1024, 512) in
which 71% of f b operations are consecutive. We gener-
alized this operation as f bt .
There are three functions proposed in [13] that are added
to this group. gbf b functionwhich calculates gb followed
by f b, Cb/Cb

0 -g
b that calculates a Cb/Cb

0 operation fol-
lowed by a gb operation, and f bgb0 which calculates f b

followed by gb0. Finally, we generalized the last member
of this group as gb0

t
which calculate t consecutive gb0

operations using (2) with βvl equals zero.
• Group E Patterns: As mentioned in Section II-D, ternary
fast-SSC algorithm is investigated in [23]. However,
they have considered some constraints on each group

VOLUME 10, 2022 119465

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 4. Tree representation of the most frequent node patterns in
mixed kernel polar codes.

of REPT that limits the appearance of repetition nodes
in the polar tree. We implement a generalized form of
repetition nodes that can be computed instead of stored
which is the case in [23].
Here, we also introduce two node mergers called
R0R1R0 (Fig. 4 (a)) and R02R1R0 (Fig. 4 (b)), that
frequently appear in the polar codes including ternary
kernels in their kernel sequence. The decoding proce-
dure of R0R1R0 can be made faster by the following
algorithm. First, the R1 node will be decoded by

βvc[i] = h(αv[i]+ min(αv[2L−1 + i], αv[2L + i]))

for i ∈ {0, 2L−1 − 1}. (22)

Now partial sum bits can be calculated in parallel at level
L as given below.

βv[0 : 2L−1 − 1] = βvc,
βv[2L−1 : 2L − 1] = 0,
βv[2L : 2L + 2L−1 − 1] = βvc.

(23)

The R02R1R0 node can also be decoded faster using the
algorithm below. The R1 node can be decoded as

βR1 [i] = h(αv[i]+ αv[2L−2 + i]

+min(αv[2L−1 + i], αv[2L + i])

+min(αv[2L−1 + 2L−2 + i],

×αv[2L + 2L−2 + i]))

for i ∈ {0, 2L−2 − 1}. (24)

The partial sum bits at level L can be calculated as
βv[0 : 2L−1 − 1] = βR1 + βR1 ,
βv[2L−1 : 2L − 1] = 0,
βv[2L : 2L + 2L−1 − 1] = βR1 + βR1 .

(25)

IV. HARDWARE IMPLEMENTATION
This section summarizes the hardware implementation
aspects of the proposed algorithm. The overall architecture is
designed based on the conventional fast-SSC architecture for
polar codes presented in [6]. The datapath architecture and

TABLE 3. Details of functions supported by the proposed decoder.

efficient hardware architectures for each node merger are
detailed in this section.

To find the location of the node mergers in the polar
tree, the decoder first needs to calculate the position of the
information and frozen bits. Then the location of REP and
SPC nodes and on top of those the location of multi-level
node mergers need to be calculated. We have developed a
software program to calculate the location of these nodes
and it generated an output used to configure the implemented
decoder. In the following, the overall architecture, memory
requirement and the functional blocks will be presented.

A. DECODER ARCHITECTURE
The overall architecture for conventional fast-SSC is detailed
in [6]. Table 3 outlines the operations supported by the pro-
posed datapath. The calculation of the function assignment
list is offline and a new list of functions can be transferred to
the decoder upon requirement. Each instruction word is 6 bits
long. The instructions directly point to the functions, and size
of the functions can be calculated by the depth where the node
is located at.

Different memory units are used for channel LLR val-
ues, intrinsic LLR values α, the partial sum β, decoding
instructions, and final codeword. First, the instructions are
loaded into the instruction RAM to be read and fetched by the
controller (instruction decoder). The controller then triggers
the channel loader and the processing unit (ALU) to store
the channel LLRs into the channel RAM and perform the
correct function, respectively. The ALU, where the functions
listed in Table 3 are performed, can read/write data from/to
the α-RAM and β-RAM. The data stored into β-RAM is
the estimated codeword and is accessible from outside the
decoder.

119466 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 5. Proposed datapath architecture supporting all proposed
nodes.

1) DATAPATH ARCHITECTURE
The core part of decoder is the datapath, depicted in Fig. 5,
where all functions presented in Table 3 are implemented.
Resource-sharing plus multiplexing is used to decrease the
complexity of the circuit. For instance, all members of each
Group B and C in Fig. 3 are implemented by a single
specified decoder. The datapath includes four inputs α, β0,
β1 and β2 which generate four corresponding outputs α′,
β ′0, β

′

1 and β ′2. The m0 multiplexer selects either a vector of
zeros or the decoded stream coming from the left branch.
A multiplexer (m1) chooses among the output of the func-
tions that generate soft outputs as the output of the current
stage (α′). The m2 multiplexer picks the correct function that
generates β ′0. Eventually, m3 and m4 select the correct inputs
to the combine blocks which is responsible to combine βl
and βr in binary nodes and βl , βc and βr in ternary nodes.
The original critical path goes through gT2 -SPC-Combine
path.

We define the execution of an instruction as an step which
may consume one or several clock cycles. It directly depends
on the allocation of the physical processing elements (Pe =
2P) to execute the task. The choice of appropriate Pe for the
decoder is critical since too small and too large Pe values
cause high decoding latency and inefficient resource utiliza-
tion, respectively.

The utilization rate for a semi-parallel decoder (αsp) is
shown in [25] to be calculated as

αsp =
log2N

4Pe + log2(N
4Pe

)
. (26)

Using (26) in [25], it is shown that even for a small value
of Pe, the maximum throughput can be achieved for long
block lengths. Our simulations show that Pe = 120 and Pe =
240 are acceptable choices for a decoder with maximum code
length of N = 32768.

2) MEMORY
In the proposed decoder architecture, the required input/output
buffers including those buffers consumed for storing internal
values are taken into account. To attain the highest achievable
throughput, the decoder needs to load the next α values from
the channel while decoding the one previously stored in the
memory. To this end, two separate memories are used to
store the channel and internal α values. The memory that
stores β values also benefits from the same architecture.
In what follows, more details will be presented regarding
these memories and data routing.
• Channel α Values: The stored values in the chan-
nel RAM are transferred to the decoder in groups
of 32 LLRs. Thus, for the largest code supported by the
decoder in this paper (N = 32768), 1024 clock cycles
are required to transfer a frame. In order to prevent the
throughput loss by the channel α memory, it is vital
to transmit a new frame to the α memory while the
decoder is decoding another frame. Therefore, α mem-
ory is divided into two separate banks each Pe LLRs
wide. This way, the decoder’s input bus width can be
selected to 32 × Qc bits where Qc is the number of
channel quantization bits. The decoder needs Pe = 2P
channel LLRs at a given clock cycle to operate; thus,
it needs to access a bus with 2P × Qc bits wide.
To keep the width of read and write buses equal, multiple
RAM banks (Pe/32) are used, each of which has the
depth of dNmaxPe

e and width of 32 × Qc bits. It should
be noted that data is written only to one bank at a
time; however, it is read from all banks at the same
time.

• Internal α Values: The f and g functions and their vari-
ants generate α values. Each function accepts two (in
case of binary nodes) or three (in case of ternary nodes)
α values to operate and generates an α value at a given
clock cycle. After calculating β values at a given stage,
the corresponding α values are no longer needed and
they can be overwritten to save RAM. The parallelism
level is limited to 2P α inputs. Two separate ports are
used for read and write operations. Similar to [18], four
banks with two different widths are used depending on
the stage being binary or ternary.

• Internal β Values: This memory is composed of three
dual-port RAMs with 2P width that stores internal β
values. Each RAM has the duty of storing the decoded
stream of left, middle or right children in ternary nodes.
In case of binary nodes, the internal left and right β val-
ues are stored in the left and middle banks, respectively.

• Estimated Codeword: This memory is used to transfer
the estimated codeword to the output environment, and
it is separated from β-RAM to support full speed decod-
ing. In order to keep the codeword bus narrower than
2P, the estimated codeword is stored into this memory
when 2P bits are generated. This way, the decoder is
able to start new decoding right after the previous one
is decoded.

VOLUME 10, 2022 119467

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

• α Router: This router is proposed in [18] and it is used
to choose the part of the memorized word that needs to
be overwritten during a write operation.

• β Router: This router reads/writes data from/to the inter-
nal β-RAM. Reading operation involves P or Pb/t bits
per bank in the binary or ternary cases, respectively,
while each word contains 2P = 3Pb/t bits. When writ-
ing, the input data is either selected from the combine
block or the hard decision coming from the leaves.

B. IMPLEMENTED FUNCTIONS
In this section, a specified architecture for crucial functional
blocks used in hardware implementation of the multi-kernel
polar codes will be described.

1) R1 FUNCTION
Up to P R1 functions can get decoded at the same time by
taking a hard decision on LLRs (returning the sign of LLRs
in two’s complement format) with no latency overhead.

2) SPC FUNCTION
The SPC block is the most complex block in this group. The
core part of SPC is a compare-select (CS) block which is
responsible for finding the index of the least reliable input
bit. It is shown in [6] that we can decode SPC block of
length NνSPC ≤ 8 in only one clock cycle. However, for
SPC blocks with NνSPC > 8 pipeline stages with optimized
depth is required. The maximum length of constituent nodes
for SPC blocks embedded in all node mergers is selected
to NνSPC = 8 in order to calculate the result in the same
clock cycle the inputs are fed. However, in other branches
where the SPC nodes appear in the tree, the maximum length
is selected to the maximum possible (NνSPC = P), and
optimized pipeline stages are inserted in order to increase the
performance.We use the notation of SPCb and SPCT in cases
of binary and ternary kernels.

3) REP FUNCTION
In the binary case, the REPb block with length NνREPb can
be decoded by accumulating all input LLRs and concatenat-
ing the sign of this summation NνREPb times. In this paper,
we assumed that the maximum length of constituent nodes
for REPb block is NνREPb = P. In the ternary case, the
repetition node with rate R = 1

N can be decoded by taking
a hard decision on the accumulation of all the LLRs whose
indices appear in the repetition pattern of the parent node. The
patterns proposed in [23] are used as REPT group. The rep-
etition blocks are implemented using purely combinational
logic, and they can provide their output in the same clock
cycle as inputs arrive.

4) REPSPC FUNCTION
This block implements the REPSPC [6] function and its
architecture is depicted in Fig. 6. The length of REP and SPC

FIGURE 6. Architecture of REPSPC decoder [6].

FIGURE 7. Architecture of R03R1 decoder.

blocks is limited toNνREP = NνSPC = 8. Therefore, the overall
length of this block is Nν = 16. A REP and two SPC blocks
are needed in this architecture. First, an f b function calculates
the vector of αREP in order to feed it to the REP block. Then,
two gb blocks calculate the αSPC0 and αSPC1 , one assuming
that the output of the REP block is all zero and the other all
ones. These values will be fed into SPC0 and SPC1 blocks.

A multiplexer selects the correct output out of two possible
SPC outputs, i.e βSPC0 and βSPC1 in Fig. 6. The output of
the REP block (βREP) selects the correct SPC output. Finally,
a combine block calculates the overall output (βν) using βREP
and either βSPC0 or βSPC1 . It is worth noting that this block
is also implemented as a purely combinational block, and it
generates an output in the same clock cycle as the inputs are
fed.

5) R0t R1 FUNCTION
This block implementsR0tR1 function. The depth and overall
length of this function are selected as t = 3 and Nν = 16,
respectively. Thus, the R1 node is composed of two child
nodes ({β1β0}) at the rightmost position resulting in repeating
these two bits Nν/2 times at level L. The bit positions at
level L will be {β1, β0, β1, β0, . . . , β1, β0, β1, β0}. Assum-
ing that the input LLR indexes stand as {α0, α1, . . . α15},
β0 and β1 can be calculated by returning the sign of separate
summation of all odd and even indexed input LLRs. The
block diagram of R03R1 is illustrated in Fig. 7. Two adders
accumulate all odd and even indexed LLRs separately, and a
sign detector blocks follow the adders to generate the decoded
output. It should be noted that there is no need for a saturation
check after addition in this function since only the sign of
the addition is needed. As it can be seen from the figure,
this block is implemented using purely combinational logic
resulting in the capability of providing an output in one clock
cycle.

6) R0t SPC AND R0t -1REPSPC FUNCTIONS
These blocks decode R0tSPC and R0t-1REPSPC functions.
In R0tSPC , the depth is selected as t = 2 limiting the

119468 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 8. Architecture of R02SPC decoder.

FIGURE 9. Architecture of R02REPSPC decoder.

overall length to Nν = 16. The rightmost SPC node is
replicated Nν/NSPC times at level L where NSPC = 4. The
core part of this decoder is a SPC block where it can be
fed by accumulation of the LLR indices modulo-4. Fig. 8
illustrates the architecture of R02SPC . It requires NSPC =
4 adders to perform the summation of LLR indices modulo-4
followed by saturation check blocks to carry out satura-
tion check afterwards. A pipeline stage is needed to avoid
long critical path. The registers store the output of the sat-
uration blocks and they feed the SPC block to calculate
the final output. The output codeword can be computed
by repeating the output codeword of the SPC block four
times. The pipeline stage adds an extra step to the overall
latency.

The R0t-1REPSPC can also be decoded by following the
same steps as R0tSPC . The depth of this block is selected
as t = 3 limiting the overall length to Nν = 32. The
rightmost nodeREPSPC is replicatedNν/NREPSPC = 4 times
at level L where NREPSPC = 8. The key part of this block
is a REPSPC block where it can be fed by accumulation
of LLR indices modulo-8. Fig. 9 depicts the architecture
of R02REPSPC where it demands NREPSPC = 8 adders to
perform the summation of the LLR indices modulo-8 fol-
lowed by saturation check blocks. A pipeline stage is also
employed to avoid long datapath latency by storing the output
of the saturation blocks. Finally, the register outputs are fed
into REPSPC block to generate the final output. The output
codeword can be calculated by repeating the output codeword
of the REPSPC block four times. Since a pipeline stage
is used, this block adds an additional step to the overall
latency.

7) REP t -R1/SPC FUNCTION
This block decodes node mergers represented as ‘‘Group
B’’ in Fig. 3. A generic algorithm for decoding this block
is presented in the previous section. However, our simula-
tions reveal that it demands a noticeable amount of hard-
ware resources. In what follows, we use a more reliable
and resource-efficient architecture. By deploying resource
sharing, all patterns of ‘‘Group B’’ can be decoded by the
same block.

Assume that a REPtR1 or a REPtSPC node is located at
level L with depth t = 2. The architecture of the decoder
is illustrated in Fig. 10 where it needs three REP and four
SPC /Sign blocks to be implemented. The length of REPL−1
block located at level L − 1 is limited to NνREPL−1 = 8, and
that of REPL−2 and SPC /Sign blocks located at level L−2 is
selected toNν = 4. This limits the overall length of this block
to Nν = 16.
To decode this block, first f b block calculates the vector

of LLRs (αREPL−1) to feed it to the REPL−1 block. Second,
two gb blocks compute the αν0 and αν1 , one assuming the
output of the REPL−1 block is all zeros and the other all ones.
Now, for each upper and lower parts of the circuit, an f b

block calculates the vector of αREPL−2 in order to feed it to
the REP0L−2 and REP1L−2 blocks. In the upper half of the
architecture, two gb blocks calculate the αν00 and αν01 , one
assuming that the output of the REP0L−2 block is all zeros and
the other all ones. αν10 and αν11 will be generated by following
exactly the same procedure in the lower half. A control flag
will select the type of the leaf node in SPC /Sign block. This
block will decode SPC or R1 blocks when the control flag is
0 or 1, respectively.

A multiplexer chooses the correct output out of two pos-
sible inputs for SPC /Sign blocks for each upper and lower
parts of the circuit. The output of theREPL−2 block (β ′REPL−2)
selects the correct SPC /Sign output of each part. Now, a com-
bine block can calculate the overall output of each part, i.e.
βν0 and βν1 . βν0 can be calculated using β

′

REP0L−2
as the control

signal and either βν00 or βν01 as the data. Similarly, βν1 can
be calculated using β ′

REP1L−2
as the control signal and either

βν10 or βν11 as the data. Finally, another multiplexer chooses
the final output out of two possible inputs, i.e. βν0 and βν1 .
The output of the REPL−1 block (βREPL−1) selects the correct
output. The final block combines βREPL−1 with either βν0 or
βν1 to calculate the overall output (βν). This block adds no
extra decoding step to the overall latency.

The proposed architecture is scalable with the capability of
extending to nodes with higher depths at the cost of resource
consumption. It also does not affect the overall error correc-
tion performance of the decoder.

8) REP/R0− R1t /SPCT FUNCTION
This block implements a decoder for all patterns of
‘‘Group C’’ in Fig. 3. The advantage of this decoder is
that it is able to decode five different node patterns of

VOLUME 10, 2022 119469

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 10. Architecture of the REP2-R1/SPC decoder.

FIGURE 11. Architecture of REP/R0− R12/SPC2 decoder.

‘‘Group C’’ using some control signals. The depth of this
block is selected as t = 2 which limits the block length
to Nν = 16.

The proposed algorithm in [19] is directly implemented
to decode this function. The architecture of the decoder
is illustrated in Fig. 11. Depending on the leftmost node,
the multiplexer chooses either a vector of zeros or the
output coming from the REP decoder which implements
equation (19). The REP decoder is implemented by a
Min-Sum block followed by an accumulation-hard decision
block (ACC-HD in Fig. 11). The REP flag determines if the
leftmost node is a R0 or a REP node. The HD-XOR block
computes the hard decision of αν mod 4 and XORs them by
a vector generated by replication of the multiplexer’s output
four times. The HD block computes the hard decision of the
rest of the soft inputs.

Now, four parity check bits can be computed over the
bit indices modulo-4. The partial sum bit with least LLR
value will be flipped in case the parity check is not passed.
The Min-Sum block calculates the indices and transfers them
to Partial-Sum block. The Partial-Sum block computes the
final output using the LLR indices, hard decisions and par-
ity check (PC) flag which determines if a parity check is
required. This function adds no additional steps to the overall
latency.

V. FPGA IMPLEMENTATION AND
PERFORMANCE ANALYSIS
A. VERIFICATION METHODOLOGY
All polar codes of this section are constructed to be opti-
mal for Eb/No = 2.5 dB similar to [13]. VHDL coding
in Xilinx Vivado 2019.1 environment is used to validate
the constructed codes and Logic synthesis, technology map-
ping, and place and route are conducted targeting a Xilinx
FPGA. A software program generates random codewords
using binary phase-shift keying (BPSK) modulation over
an AWGN channel. As mentioned previously, to protect
the decoder from stalling, a new frame is transmitted to
the decoder while it decodes another one. The test setup is
designed carefully to avoid slowing the decoder down by the
interface.

B. EFFECT OF QUANTIZATION ON PERFORMANCE
In order to implement the algorithm on hardware, we need
to quantize the LLRs. The quantization scheme is selected
as Q(Qi,Qc,Qf) where Qi, Qc, and Qf are the number of
LLR quantization bits for internal, channel and fraction bit
sizes, respectively. Fig. 12 (a) illustrates that using (5, 4)
quantization paradigm for a polar code of P(1024, 512) with
R = 1/2, the performance is very close to that of the floating-
point scheme.

We consider two lossy and lossless implementations.
As mentioned in section III, the only group that affects
error-correction performance is Group C which will be
excluded in lossless implementation. Fig. 12 (b) illustrates
the error-correction performance of fast-SSC versus lossy and
lossless versions of the algorithm for the same polar code as
Fig. 12 (a). It can be observed that compared to fast-SSC,
the lossless algorithm adds no error-correction loss to the
performance. The lossy algorithm, on the other hand, has
some error-correction performance overhead, as shown in the
figure. Depending on the application, the lossless or lossy
versions can be employed.

The error-correction performance of binary-ternary mixed
polar codes is simulated through a binary-input AWGN

119470 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

FIGURE 12. Error-correction performance of (a) lossless floating-point
versus quantized and, (b) Lossy versus lossless nodes for a polar code of
length N = 1024 and rate R = 1

2 under the proposed algorithm.

FIGURE 13. Error-correction performance of binary-ternary mixed polar
codes.

channel using BPSK modulation. Fig. 13 depicts the
error-correction performance of multi-kernel codes under the
proposed algorithm using fixed-point format.

C. EFFECT OF BLOCKLENGTH AND CODE RATE
ON THE LATENCY
In this section, the latency behavior using all functions
described in section III for both binary and mixed-kernel
cases will be presented. Table 4 tabulates the effect of code
length on decoding latency of fast-SSC versus the proposed
algorithm in the binary case. The code rate is considered as
R = 1/2 for all block lengths under two different Pe values
of size 120 and 240. It can be seen that comparing [19] to
fast-SSC, the latency improvement lowers with block length
growth. For instance, withPe = 128 the latency improvement

is 37.4% and 13.8% for block lengths of 512 and 32768,
respectively. This is due to the fact that [19] targeted short
packet polar codes. For higher code lengths, a larger part of
the latency stems from propagating the LLRs to the leaves,
meaning that f , g and C functions play a dominant role
in the overall latency as the block length increases. Since
the goal of this paper is to optimize the algorithm for long
block lengths, it reduces considerable decoding steps with
the block length growth. For instance, with reference to [19]
with Pe value of 128, the proposed algorithm offers 8.3% and
37.8% latency decrement for block lengths of 512 and 32768,
respectively. The effect of code rate in the binary case is
summarized in Table 5. Obviously, the latency is independent
from the code rate since it only relies on the location of frozen
and information bits. From the table, it can be observed that
under the proposed algorithm with Pe = 120, the latency
of the code rate R = 6/8 is less than that of the code rate
R = 2/8 where it is comparable to the latency of code
rate R = 4/8. Under two different Pe values, the minimum
latency belongs to code rates R = 1/8 and R = 7/8 which
mainly stems from frequent appearance of R0 and R1 nodes.
It can be seen that the proposed algorithm has the lowest
latency with respect to fast-SSC and [19] in all different
rates. With regard to fast-SSC, it achieves up to 52.3% and
50.3% latency decrement for Pe values of 120 and 240,
respectively.

The latency values for various mixed-kernel polar codes
under the algorithm presented in [18] versus the proposed
algorithm is summarized in Table 6. To have a fair compari-
son, the Pe values are considered identical to that of [18] for
each code length. Obviously, the block lengths with only one
binary kernel in their kernel sequences achieve the highest
performance improvement since the algorithm extensively
prunes the section of tree composed of consecutive binary
kernels. It is shown that up to 84.6% latency improvement
is achieved.

By considering a sufficiently large processor, each node
of the polar tree can be considered as a single operation.
Therefore, the complexity of the decoder can be referred to as
the number of nodes that appear in the polar tree. Comparing
the nodes appearing in [23] to that of the proposed algorithm
(Table 7) for two code lengths of N = 96 and N = 768, the
complexity is decreased up to 60.5%. This improvement is
directly affected by the position of the frozen and information
nodes appearing in the polar tree.

D. COST AND PERFORMANCE ANALYSIS
The FPGA utilization and performance evaluation of
fast-SSC [6], [9], and [13], combinational SC [12] and the
proposed algorithms in [19] and this paper, for a polar code
of length N = 1024 and rate R = 1/2 is tabulated in
Table 8. We consider latency as the number of clock cycles
(CCs) required for decoding a code stream and returning the
corresponding codeword.

With reference to the fastest variant of fast-SSC, the
proposed algorithm gains up to 66.8% higher information

VOLUME 10, 2022 119471

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

TABLE 4. Latency comparison of fast-SSC versus the proposed algorithm for polar codes of different lengths with rate R = 1
2 .

TABLE 5. Latency comparison of fast-SSC versus the proposed algorithm for polar codes of N = 1024 and different code rates.

TABLE 6. Latency comparison of conventional multi-kernel multi-code
decoder versus the proposed algorithm for polar codes of different length
with rate R = 1

2 .

throughput. Taking advantage of larger Pe values, [6] and [9]
offer considerably higher operating frequency respect-
ing [13]. The latter work however, offers considerably lower
latency. Comparing to [6] and [9], the maximum achieved
clock frequency is slightly decreased under our proposed
algorithm. This generally originates from additional routing
and logic selection that increases the latency of the critical
path.

In terms of resource consumption, [6], [9] and the
proposed multi-kernel algorithm consume almost identi-
cal number of LUTs which mainly stems from larger Pe

TABLE 7. Comparing the number of leaf nodes appear in polar tree under
fast-SSC [23] versus the proposed decoder.

values in [6] and [9]. Our scheme saves 22.5% LUTs
regarding [13] since the latter design employs a more
complex instruction set and also needs more functions to
implement the decoder. A moderate number of registers is
used in all mentioned designs so far, where the difference
comes from register duplication to address the target clock
frequency.

Although designing multi-kernel architecture increases the
consumed RAM, our scheme saves 6% and 8.2% RAM com-
paring to [6] and [9], respectively. This is due to the fact that
pruning a through level of a polar tree can be interpreted
as consuming N × Qi lower bits of RAM. Also, different
quantization scheme is used in our implementation. It worth
noting that Pe value has no direct effect on the the amount
of occupied memory. Our implementation consumes 1.2×
higher RAM comparing to [13]. This is because the main goal
of [13] is memory optimization.

A combinational SC decoder is implemented in [12]
which offers 1.87× throughput achievement and 2.02×
lower RAM consumption comparing to our multi-kernel
decoder. However, area overhead is significant since 8×
higher LUTs and 4.04× higher registers are employed

119472 VOLUME 10, 2022

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

TABLE 8. FPGA utilization and performance comparison of polar codes of P(1024, 512) and rate R = 1
2 .

with reference to the proposed algorithm. Finally, com-
paring the proposed multi-kernel algorithm to [19], 19.6%
LUTs and 25.6% registers are consumed which is mainly
due to adding new functions, additional routing and logic
selection. Also, 6.2% extra RAM is used due to overhead
caused by multi-kernel architecture. The critical path is also
increased by 8.7%. However, due to significantly decreas-
ing the latency, the information throughput is increased
by 9.9%.

VI. CONCLUSION AND FUTURE WORK
In this work, an efficient algorithm for decoding multi-kernel
polar codes is presented. The proposed algorithm supports
any code length with any rate constructed by binary-ternary
mixed kernels with code length N ≤ Nmax . It offers fast
decoding for a wide variety of code patterns in polar codes.
An in-depth analysis along with a hardware architecture and
FPGA implementation of the algorithm is provided. Decod-
ing a polar code of length N = 1024 and rate R = 1/2 with
the maximum clock frequency and Pe = 120, an information
throughput of 432 Mbps is obtained. The proposed algorithm
improved the decoding latency by 52.3% in reference to the
fast-SSC algorithm.

Future work foresees a hardware implementation of a
CRC-concatenated SCL algorithm. The proposed node merg-
ers under the SCL algorithm can substantially improve the
reliability of polar codes respecting the original algorithm.

REFERENCES
[1] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2019.

[2] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[3] K. Niu and K. Chen, ‘‘CRC-aided decoding of polar codes,’’ IEEE Com-
mun. Lett., vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[4] A. Alamdar-Yazdi and F. R. Kschischang, ‘‘A simplified successive-
cancellation decoder for polar codes,’’ IEEECommun. Lett., vol. 15, no. 12,
pp. 1378–1380, Dec. 2011.

[5] G. Sarkis and W. J. Gross, ‘‘Increasing the throughput of polar decoders,’’
IEEE Commun. Lett., vol. 17, no. 4, pp. 725–728, Apr. 2013.

[6] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, ‘‘Fast polar
decoders: Algorithm and implementation,’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[7] M. Hanif and M. Ardakani, ‘‘Fast successive-cancellation decoding of
polar codes: Identification and decoding of new nodes,’’ IEEE Commun.
Lett., vol. 21, no. 11, pp. 2360–2363, Nov. 2017.

[8] C. Condo, V. Bioglio, and I. Land, ‘‘Generalized fast decoding of polar
codes,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018,
pp. 1–6.

[9] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and
W. J. Gross, ‘‘Fast low-complexity decoders for low-rate polar
codes,’’ J. Signal Process. Syst., vol. 90, no. 5, pp. 675–685,
May 2018.

[10] H. Zheng, S. A. Hashemi, A. Balatsoukas-Stimming, Z. Cao,
T. Koonen, J. M. Cioffi, and A. Goldsmith, ‘‘Threshold-based fast
successive-cancellation decoding of polar codes,’’ IEEE Trans. Commun.,
vol. 69, no. 6, pp. 3541–3555, Jun. 2021.

[11] H. Zheng, A. Balatsoukas-Stimming, Z. Cao, and T. Koonen, ‘‘Imple-
mentation of a high-throughput fast-SSC polar decoder with sequence
repetition node,’’ in Proc. IEEE Workshop Signal Process. Syst. (SiPS),
Oct. 2020, pp. 1–6.

[12] O. Dizdar and E. Arikan, ‘‘A high-throughput energy-efficient implemen-
tation of successive cancellation decoder for polar codes using combina-
tional logic,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 3,
pp. 436–447, Mar. 2016.

[13] F. Ercan, C. Condo, and W. J. Gross, ‘‘Reduced-memory high-throughput
fast-SSC polar code decoder architecture,’’ in Proc. IEEEWorkshop Signal
Process. Syst. (SiPS), Oct. 2017, pp. 1–6.

[14] F. Ercan, T. Tonnellier, C. Condo, and W. J. Gross, ‘‘Operation
merging for hardware implementations of fast polar decoders,’’
J. Signal Process. Syst., vol. 91, no. 9, pp. 995–1007,
Nov. 2019.

[15] K. Niu, K. Chen, and J.-R. Lin, ‘‘Beyond turbo codes: Rate-compatible
punctured polar codes,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2013, pp. 3423–3427.

[16] R. Wang and R. Liu, ‘‘A novel puncturing scheme for polar
codes,’’ IEEE Commun. Lett., vol. 18, no. 12, pp. 2081–2084,
Dec. 2014.

[17] M. Benammar, V. Bioglio, F. Gabry, and I. Land, ‘‘Multi-kernel
polar codes: Proof of polarization and error exponents,’’
in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2017,
pp. 101–105.

[18] G. Coppolino, C. Condo, G. Masera, and W. J. Gross, ‘‘A multi-
kernel multi-code polar decoder architecture,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4413–4422,
Dec. 2018.

[19] H. Rezaei, V. Ranasinghe, N. Rajatheva, M. Latva-aho, G. Park, and
O.-S. Park, ‘‘Implementation of ultra-fast polar decoders,’’ in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2022,
pp. 235–241. [Online]. Available: https://ieeexplore.ieee.org/document/
9814456/

[20] F. Gabry, V. Bioglio, I. Land, and J. C. Belfiore, ‘‘Multi-kernel construction
of polar codes,’’ in Proc. IEEE Int. Conf. Commun. Workshops, (ICC
Workshops), May 2017, pp. 761–765.

[21] V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, ‘‘Minimum-distance based
construction of multi-kernel polar codes,’’ in IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2017, pp. 1–6.

[22] K.-W. Shin and H.-J. Kim, ‘‘A multi-mode LDPC decoder for IEEE
802.16e mobile Wimax,’’ J. Semiconductor Technol. Sci., vol. 12, no. 1,
pp. 24–33, Mar. 2012.

[23] A. Cavatassi, T. Tonnellier, andW. J. Gross, ‘‘Fast decoding ofmulti-kernel
polar codes,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2019, pp. 1–6.

[24] H. Gamage, V. Ranasinghe, N. Rajatheva, andM. Latva-aho, ‘‘Low latency
decoder for short blocklength polar codes,’’ in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2020, pp. 305–310.

[25] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, ‘‘A semi-parallel
successive-cancellation decoder for polar codes,’’ IEEE Trans. Signal Pro-
cess., vol. 61, no. 2, pp. 289–299, Jan. 2013.

VOLUME 10, 2022 119473

H. Rezaei et al.: Low-Latency Multi-Kernel Polar Decoders

HOSSEIN REZAEI (Graduate Student Member,
IEEE) received the M.Sc. degree in digital elec-
tronics from the Iran University of Science and
Technology, Tehran, Iran, in 2016. He is currently
pursuing the Ph.D. degree with the University of
Oulu, Oulu, Finland. His current research interests
include channel coding algorithm design with a
focus on polar codes, digital predistortion (DPD)
design, and implementation of communication
systems on embedded platform.

NANDANA RAJATHEVA (SeniorMember, IEEE)
received the B.Sc. degree (Hons.) in electronics
and telecommunication engineering from the Uni-
versity of Moratuwa, Sri Lanka, in 1987, and the
M.Sc. and Ph.D. degrees from the University of
Manitoba, Winnipeg, MB, Canada, in 1991 and
1995, respectively. He is currently a Professor with
the Centre for Wireless Communications, Univer-
sity of Oulu, Finland. During his graduate stud-
ies, he was a Canadian Commonwealth Scholar in

Manitoba. From 1995 to 2010, he was a Professor/an Associate Professor
with the University of Moratuwa and the Asian Institute of Technology,
Thailand. He is currently leading the AI-driven air interface design task
in Hexa-X EU Project. He has coauthored more than 200 refereed papers
published in journals and in conference proceedings. His research interests
include physical layer in beyond 5G, machine learning for PHY and MAC,
integrated sensing and communications, and channel coding.

MATTI LATVA-AHO (Senior Member, IEEE)
received the M.Sc., Lic.Tech., and Dr.Tech.
(Hons.) degrees in electrical engineering from the
University of Oulu, Finland, in 1992, 1996, and
1998, respectively. From 1992 to 1993, he was a
Research Engineer at Nokia Mobile Phones, Oulu,
Finland, after that he joined the Centre forWireless
Communications (CWC), University of Oulu.
He was the Director of CWC, from 1998 to 2006,
and the Head of the Department for Communica-

tion Engineering, until August 2014. Currently, he serves as an Academy
of Finland Professor and is the Director for National 6G Flagship Program.
He is also a Global Fellow with Tokyo University. His research interests
include mobile broadband communication systems and currently his group
focuses on 6G systems research. He has published over 500 journals or con-
ference papers in the field of wireless communications. In 2015, he received
theNokia FoundationAward for his achievements inmobile communications
research.

119474 VOLUME 10, 2022

