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ABSTRACT Annually, a huge number of pilgrims visit Mecca to performAl Hajj ritual. Crowdmanagement
is critical in this occasion in order to avoid crowd disasters (e.g., stampede and suffocation). Recent studies
stated that various factors, such as the environment, fatigue level, health condition and emotional status
have a significant effect on crowded events. This calls for a need for an automated data analytics system
that feeds event organizers with information about those factors on real-time, at least from a generalizable
sample of crowd subjects, in which proactive crowd management decisions are made to reduce overall risks.
This paper develops a novel methodology that fuses mobile GPS and physiological data of Hajj pilgrims
collected through wearable sensors to train three classification models: (a) current performed Hajj activity,
(b) fatigue level, and (c) emotional level. In a pilot experiment conducted against two subjects, promising
results of a minimum of 75% accuracy levels were achieved for the activity recognition and fatigue level
classifiers, whereas the emotional level classifier still requires further refinements.

INDEX TERMS Hajj, crowd control, crowd management, physiological sensors, deep learning, machine
learning.

I. INTRODUCTION
Hajj is a sacred annual ritual that brings around 2.5 million
Muslims worldwide to visit Mecca, the holy ground in
Saudi Arabia [1]. With this large population, one of the
largest gatherings in the world [2], it is usually the respon-
sibility of the Saudi Arabian government to provide ser-
vices to all pilgrims, including health management [3]. The
Saudi government is making significant efforts to provide
services in the highest quality to manage crowds in Hajj,
and it seeks, according to its vision, in 2030 to host
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30million pilgrims. Research, however, shows that one out of
1000 pilgrims may die during these events [4], which proves
that the existing methods of managing crowds during Hajj
need more investigations and developments [2], [5]. Jihen
Fourati et. al. [6] discussed the major problems facing the
Saudi Authority in the management of the pilgrimage, which
include disasters like fire, suffocation, and stampede, which
have led to the loss of a good number of lives. Another author,
Abdullah Al Shimemeri [7], summarised that for pilgrims
who don’t suffer from any medical condition, there is no
medical need to worry about the pilgrimage or the associated
ceremonies. However, overcrowding is typically a contribut-
ing factor to traumas and diseases, including stampedes, mass
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panic, and communicable infections for pilgrims.Many of the
pilgrims are elderly and have chronic diseases and the stress
of Hajj can put them at higher risk of decompensation [8].
From a report that reviews the 2002 Hajj, age-related chronic
diseases such diabetes mellitus (31%), hypertension (27.5%),
and hypercholesterolemia (11.4%) were most prevalent in
pilgrims aged 65 to 74. More specifically, the study notes that
cardiovascular conditions accounted for more than 60% of
ICU hospitalizations [7]. In addition to these common prob-
lems, the prevalence of COVID-19 has introduced new type
of challenges for Saudi Authority when managing pilgrim.
Al-Shaery et. al. evaluated COVID-19 control measures that
can be adopted by policymakers which will help in curbing of
the spread of COVID-19 under the different crowd dynamics
induced by the constraints of each ritual [9], [10].

In order to improve crowd healthmanagement, the pre-Hajj
screening procedures were enforced. This means those
intending pilgrims who wish to perform Hajj in the King-
dom of Saudi Arabia would have to ascertain their medical
status in order to prove their mental and physical fitness
for the energy-sapping journey and exercise. Research shows
this enforcement resulted in a significant reduction in health
risks [7]. However, the study still shows that in 2013, out
of 87% of the Hajj pilgrims who were above 65 years old,
83% faced a high risk of health problems [11]. Deductively,
the measures taken to manage and monitor the health of
pilgrims during these events are not effective enough.

Several authors have proposed leveraging smart technolo-
gies to serve as support systems to help organisers during Hajj
season. The use of video surveillance has been one of themost
suggested methods to track human congestion in large gath-
erings. Logesh Rajendran et. al. [12], in their work, suggested
an AI-based surveillance system that provides real-time anal-
ysis of crowd densities at different locations to the central
monitoring room. The accuracy of this method relies heavily
on iterating over thousands of images extracted from the
real-time videos, which could be slow for the 5000 video
surveillance points installed all around Mecca [13].
Shami et al. [14], used amodern convolutional neural network
to recognize sparse heads in a large crowd. They argue that
the head is the region of a human-body that is most noticeable
in a crowded area and may be utilized to count the number of
people there. However, a major drawback of their approach
is that it will not cover shorter people or children in very
dense places that are overshadowed by others, nor can it
detect the individual heads of people in dark corners or under
shades like trees. Despite how promising these image analysis
studies are, they are not scalable enough for very large events
like Hajj.

Another method proposed is the use of wireless tech-
nologies such as WiFi, Bluetooth, and radio frequency, for
monitoring people in a particular location. People interact
with different devices during Hajj, making this approach fea-
sible. According to E. A. Felemban et al. [3], the Internet of
Things (IoT) is an all-encompassing platform that enables
us to connect computer devices with mechanical and

digital equipment while enabling data transfer over the net-
work without direct physical contact. Marwa F. Mohamed’s
work [15] introduces the adoption of IoT for crowd data
acquisition and friendly communication between the admin-
istrators and pilgrims viamobile devices. It is advised to assist
pilgrims in learning about empty streets, unpopulated loca-
tions, and helping themfind their groups.Mohamed proposed
a novel technique - Near Field Communication (NFC), which
can be enabled on mobile devices. The pilgrim’s information
was included in the application (name, address, nationality,
group number, languages, health condition, etc.) and NFC
bracelets with all the information contained in them were
provided to individuals without NFC mobile phones. [3].

The research paper is organised as follows. Section II
reviews related work. Section III outlines the methodology
and the system development and framework. Section IV
describes our experiments and discusses the results. Finally,
section V concludes this work and highlights some future
work as well.

II. LITERATURE REVIEW
The study literature review presents previous studies on
how to handle Hajj crowds. It consists of two components:
automated crowd management and sensors that can detect
when individuals are fatigued. The automation of crowdman-
agement discusses the crowd management techniques that
the Hajj authorities would use to control the people during
Hajj activities. Recent research on monitoring and detecting
fatigue are reviewed based on the proposed methods and
technologies’ reliability for detect fatigue.

A. AUTOMATED CROWD MANAGEMENT
People who attend events rarely receive adequate instructions
or training on how to use the venue and perform other tasks
related to the event [16]. Therefore, it is recommended to
provide adequate education and training to those participating
in the event. If this does not occur, and the relevant author-
ities do not limit the number of participants, the situation
will be difficult to manage. In addition, when examining
stampedes that have occurred in the past 15 years, it is evi-
dent that some crowds could not be controlled or stopped
(See [6], [16]).Therefore, it would be extremely helpful to
reduce the likelihood of catastrophic events by providing
adequate facilities for the management of congested gath-
erings. Crowd management must be studied to get closer
to reality and to develop decision support systems, as the
vast majority of research has dealt with the problem in a
static context and employed exact or approximate resolution
methods [6], [17]. The organization of the pilgrimage was
assisted by researchers from a variety of disciplines. For
instance, computer scientists have utilized computer vision
and location-based techniques to aid in the administration of
the pilgrimage [18], [19].

Prior research has examined how big data tools [3] and
urban analytics [18] can be incorporated into decision support
systems, as well as how they can be used to manage and
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monitor crowds. Aldahawi [3], provides a framework for big
data that facilitates the adoption and use of big data applica-
tions for Hajj and Umra events, including the most important
use cases for these pilgrimages. Alabdulkarim et al. [18],
have proposed urban analytics with a focus on trends and
challenges in the Hajj using a variety of technologies, includ-
ing Unmanned Aerial Vehicles (UAVs) and Mobile Crowd
Sensing and Computing (MCSC). Additionally, studies have
proposed solutions to regulate crowd movement at specific
locations: Rami Al-Jamarat [20], Arafat to Muzdalifah [21]
and Tawaf [17].

Researchers [20], [22] propose a crowd management sys-
tem that employs image classification and an alarm system.
A Convolutional neural network (CNN) model was trained
with geo-referenced images to determine whether a given
crowd was overcrowded, crowded, semi-crowded, or normal.
This study’s findings are useful for keeping track of the
pilgrims. An agent-based modelling simulation platform is
presented to demonstrate the efficacy of this solution. More-
over, [16] has developed a disaster management and health
management system with separate but complementary sub-
systems. There is evidence and a simulation of the proposed
system’s operation, as well as an algorithm for detecting
early-stage stampedes. Four mobile applications for disaster
relief, blood donation, patient complaints, and emergency
alerts have been developed using smartphones as sensors as
part of a larger healthcare management subsystem.

B. RELIABILITY OF SENSORS FOR DETECTING FATIGUE
Health-related fatigue, insomnia, and circadian rhythm dis-
ruptions may all affect a person’s ability to execute at their
best. As a result, decision-making abilities, memory sharp-
ness, the capacity to make judgments, reaction speed, and
situational understanding may be significantly impaired. For
instance, fatigue may arise if a significant mental workload is
maintained for an extended period. Multiple factors, includ-
ing neurophysiological, perceptual, and cognitive systems,
contribute to mental stress [23]. This is the amount of a sys-
tem’s information-processing power that is allocated to a cer-
tain activity. The amount of work a person must do depends
on their age, health, past work experience, motivation to
perform the job, the techniques they use to execute the task,
and their own physical and mental condition. Considering
this, understanding the fatigue of a pilgrim and how it impacts
their role performance in a range of settings should aid in
the management of the environment, therefore enhancing the
performance and well-being of the pilgrim.

Several natural or pathological abnormalities in the body’s
physiological systems may result in fatigue. Fatigue can be
linked to abnormalities with the central nervous system, the
peripheral nervous system, or the neuromuscular system.
It may be either physical or mental depending on the kind
of stress. Physical and mental fatigue are the result of activ-
ity and stress, respectively, and both lead to a decline in
physiological and behavioural performance [24], [25]. For
online monitoring, existing non-invasive technologies are

generally based on the following five principles: subjective
assessments, performance-related methods, biomathemati-
cal models, behavioural-based methods, and physiological
signal-based methods [26], [27].

Electronic sensors are the most effective method for
detecting physiological signs [28]; nevertheless, there are
certain drawbacks, including electrical safety problems, elec-
tromagnetic interference, and a remarkably short linear time
response period. In contrast, the plastic optical fibre sensor
can be used to monitor the subject’s heart rate and breathing
rate as well as analyze the subject’s dynamic posture in a
variety of positions, such as while running, walking, standing,
crouching, or laying [29].

Fatigue may be detected by physiological signal-based
methods such as electroencephalograms (EEG), heart rates
(HR), and electromyograms (EMG). As an example, elec-
troencephalograms (EEG) have long been accepted glob-
ally for monitoring driver alertness and sleepiness on the
road [30], [31], [32], [33], [34].

Using smartwatches, a support vector machine with pri-
mary distinguishing factors is utilized to detect fatigued
driving [35], [36]. Utilizing principal component analysis,
these 13 features were determined. The suggested method
is 83.29 percent accurate in identifying driver fatigue or a
normal condition. Non-pathological fatigue (self-reported)
and multimodal sensor data is linked using supervised
and unsupervised machine learning techniques following
imputed missing time series data using a recurrent neu-
ral network-based algorithm [37]. During this research,
27 healthy participants and 405 days of data were collected.
Daily surveys on fatigue and other physiological markers
are obtained in addition to multimodal detector panel data
on physical activity and vitals. The most important results
came from unsupervised representation learning of multi-
modal sensor data with causal convolutional neural networks
and random forest as a classifier that was trained on physical
tiredness labels. The random forest was made better by using
information about physical activity and vital signs, such as
the amount of energy used and the number of steps, the
pulse and how it changes, and the rate of breathing. Thus,
multimodal sensor data can be used to teach, measure, and
improve subjectively observed measures of non-pathological
fatigue.

Wearable smart electrocardiogram (ECG) devices are con-
sidered as a feasible approach for determining the mental
fatigue level of a person by [38]. The research recruited
a total of 35 healthy students from a public university in
China. A wearable device was attached to each participant’s
body and transmitted data to their smartphone via Bluetooth.
Each participant was required to complete an 80-minute test.
Throughout the experiment, eight measures of heart rate vari-
ability (HRV) were recorded every five minutes; after feature
selection, six measurements remained. Four approaches are
used to identify fatigue: logistic regression, naive Bayes, sup-
port vector machines, and k-nearest neighbors (KNN). The
KNN algorithm is better than the others. The most important
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indicators of heart rate variability for detecting mental fatigue
are the mean of NNs (the time between two normal heart
rates), the proportion of consecutive NNs that vary by more
than 50milliseconds divided by the total number of NNs, total
spectral power, and low frequency.

Real-time determination of mental fatigue needs a deep
convolutional auto-encoding network trained on biometric
data acquired from smart bands (galvanic skin response, heart
rate, changes in the time intervals between consecutive heart
beats, skin temperature) [39].The suggested method is veri-
fied by analyzing biometric data obtained from six volunteers
over a period of six weeks. The accuracy of fatigue detection
was found to be 82.9% based on experimental data. To sum
up, in addition to laws, rules, and regulations designed to aid
in ensuring workplace safety, fatigue detection and prediction
technologies will be crucial in future [27], [39].

As was already indicated, a complete solution has not yet
been implemented despite major research efforts to find cre-
ative methods to automate the information and data collecting
needed for crowd control. A comprehensive and capable
solution that addresses the two biggest problems in this field,
namely the heterogeneity of Hajj rituals and activities, and the
intricacy of the variables that affecting pilgrims physical and
psychological status. No prior research study that the authors
are aware of has explored the use of physiological sensors
to train Hajj rituals activity recognition classifiers, as means
of complementing an automatic and real-time data analytics
system for crowd management.

III. METHODOLOGY
The research methodology consists of the following steps to
design and develop an end-to-end framework for pilgrims
tracking:

1) Data collection framework building
a) Physiological signals and wearable sensors

selection
b) Data acquisition and fusion using smartphone
c) Real-time data collection and storage

2) Data pre-processing and feature extraction
3) Machine learning model development and validation
The following subsections describe how each step was

carried out during a pilot study intended to validate this
framework. The prototype was evaluated on a group of sub-
jects who engaged in a variety of rituals and activities such
Tawaf, Saai, prayer, and Doaa. The steps taken to build the
data collection framework is depicted in Figure 1.

A. PHYSIOLOGICAL SIGNALS AND WEARABLE SENSORS
SELECTION
Various wearable sensors for acquiring physiological signals
were compared, evaluated and considered for this system
(refer to Table 1). Although, there is a huge number of
physiological signals monitoring kits available in the market,
we limited our hardware evaluation to the kits depicted in
Table 1. This decision was made due to two reasons. First,
those tool kits have Android APIs which will facilitate the

FIGURE 1. Data collection framework.

TABLE 1. Physiological signals measuring wearables toolkit.

integration between the data generated by the kit and the
developed app. Second, those kits support the continuous
and real-time monitoring of a broad range (e.g., BVP −500
to 500, skin temperature −40 to 115◦C) of physiological
signals. After considering tradeoffs between conveniences to
wear, cost and number of physiological signals monitored,
a decision was made to use both Zephyr belt-type BioHarness
sensor and Empatica’s E4.

Zephyr belt-type BioHarness provides respiration rate sig-
nal but the user is required to wear it on a bare chest to get
an accurate reading. This might not be convenient for many
studies. However, the setting of the current study makes it a
convenient measurement instrument since pilgrims perform
Hajj activities with a bare-chest (see Figure 2).

B. DATA ACQUISITION AND FUSION USING SMARTPHONE
A mobile application was designed and downloaded onto
the subjects’ phones. The app was developed for Android
supported mobile devices. The app was written in the native
Android development language, Java. The app was designed
to record and fuse location data, raw physiological signal
data, user input corresponding to Hajj Rituals, and their emo-
tional and physical status.

1) LOCATION DATA
Table 2 summarizes the location data collected using the
mobile. We used Android ACCESS_FINE_LOCATION
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FIGURE 2. Subject wearing Zephyr belt-type and E4 watch and carrying
the mobile with the custom built application.

TABLE 2. Location data collected using the application.

permission since it enables the location API to ascertain an
exact position as feasible using the location providers that are
accessible, such as WiFi and mobile cell data as well as the
Global Positioning System (GPS). GPS latency is the interval
between when the time when the location data is measured
andwhen it is recorded or transmitted. GPS readings are taken
from amobile device and recorded immediately by themobile
app in the samemobile; therefore GPS latency in this case can
be negligible.

2) PHYSIOLOGICAL DATA
To collect the subjects’ physiological signals, two commer-
cially available sensors were used: Zephyr belt-type Biohar-
ness and E4 wristband. Figure 2 shows a subject wearing the
two sensors.

Table 3, summarizes the subjects’ physiological data col-
lected using Zephyr Bioharness and E4. Some of the physio-
logical signals were available from the two sensors such as the
Temperature, whereas other physiological signals were only
recorded by one sensor, such as respiration rate which was
available only from Zephyr. E4 watch use an infrared ther-
mopile sensor to measure skin temperature with an accuracy
(sensitivity) of ±0.2◦C within the range of 36-39◦C.

FIGURE 3. Demographic information UI Arabic and English interface.

3) DEMOGRAPHIC AND ANNOTATION DATA
The smartphone app also acted as an annotation logging tool,
pairing with the two sensors via Bluetooth to continually
collect the physiological information. The mobile application
consists of two main user interfaces: (a) Demographic User
Interface (UI) used to collected demographic data from the
subject (See Figure 3), and (b) Annotation User Interface
(UI) used to collect information about the Hajj activities they
are currently performing, their emotional status and their
physical status.

The demographic data included subject’s name, gender and
nationality. Also the answer to the following questions were
recorded.

1) Have you performed Hajj or Umra before?
2) Do you suffer from any of the following chronic dis-

eases (cancer, high blood pressure, diabetes, Asma,
depression or heart disease)?

3) How often do you exercise per week?
Using the annotation UI (refer to Figure 4), subjects were able
to record 4 different types of Hajj activities: Tawaf (7 rounds),
Saai(7 rounds), Prayer (Sunna, Fard) andDoaa. Also, the sub-
ject can record fatigue level in visual discrete scale of 5 where
1 means ‘‘not tired’’ and 5 means ‘‘Extremely tired’’. The
emotional status on visual continuous scale (0-100) where
0 means ‘‘Extremely negative’’ emotion and 100 means
‘‘Extremely positive’’ emotion.

C. REAL-TIME DATA COLLECTION AND STORAGE
The gathered information was stored in the phone exter-
nal storage as a comma separated value (CSV) file. It was
also saved in Room MySQL database in the mobile
internal storage. Whenever there is internet connectivity,
a copy of the collected data was sent to Firebase a cloud
storage.
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FIGURE 4. Annotation UI (before and after usability and acceptance
testing).

TABLE 3. Physiological data collected using the mobile application.

D. DATA PRE-PROCESSING AND FEATURE EXTRACTION
Table 4 presents a statistical summary of physiological data
collected from two subjects using an Empatica E4 wrist-
band. Both subjects’ BVP, GSR, and IBI results are dis-
tributed throughout a range. The mean BVP for subject 1
is −0.42 with a standard deviation of 3.72, whereas the
mean BVP for subject 2 is 8.47 with a standard deviation
of 23.51. Likewise, the means for GSR (0.81 vs. 5.62) and
IBI (0.47 vs. 0.64) are comparable. Temperature readings
have a similar set of data. Acceleration data for x, y, and z
are shownwith varyingmeans, standard deviations, minimum
and maximum values for the two subjects. It is well-known
that sensor data is noisy and some data points might be
missing due to several reasons. For example, every sensor
makes use of a unique Bluetooth device with a varied Blue-
tooth transmission range. Some might be more reliable and
can send data to the mobile from a longer distance while
others might not be as reliable. In addition, we are integrating
data from multiple sensor types. Those sensors log data at
varying frequency. For example, the E4 wristband has 4 sen-
sors each logs data at a different frequency:
• Blood Volume Plus (BVP) sensor at 64Hz
• Temperature sensor at 4Hz
• Accelerometer at 32Hz
• Electrodermal activity sensor (EDA) at 4Hz

TABLE 4. Statistical summary of physiological data collected using
Empatica E4 wristband.

Zephyr Bioharness belt was logging data at 1Hz. The loca-
tion data was recorded at a frequency of 0.1 Hz. Therefore,
a protocol for missing values replacement was formulated for
this study. Since our data is time-series data, we used the last
observation carried forward (LOCF) method. When a value
is absent, the most recent value that was seen is used in its
stead. Despite being straightforward, this approach strongly
presupposes that the value of the result is unaffected by the
missing data, which is quite plausible in our present envi-
ronments. We utilized Next Observation Carried Backward
(NOCB) to fill initial missing values after using LOCF to fill
inner missing values. Similar to LOCF, NOCB operates in the
other direction by carrying the initial observation backward
from the missing value. To prepare the data for deep learning,
a sliding window strategy was used on each sensor output.
We applied a sliding window and created a set of successive
fixed-size windows with a fixed degree of overlap. Let us
denote the 7-sensors inputs as sequences of length T, namely,

Temp = (Temp1, . . . ,Tempt , . . . ,TempT ) (1)

BVP = (BVP1, . . . ,BVPt , . . . ,BVPT ) (2)

IBI = (IBI1, . . . , IBIt , . . . , IBIT ) (3)

GSR = (GSR1, . . . ,GSRt , . . . ,GSRT ) (4)

AccX = (AccX1, . . . ,AccXt , . . . ,AccXT ) (5)

AccY = (AccY1, . . . ,AccYt , . . . ,AccYT ) (6)

AccZ = (AccZ1, . . . ,AccZt , . . . ,AccZT ) (7)

where Tempt , . . . , IBIt and BVPt denote the window of Temp,
. . ., IBI and BVP at time slice t. All of the generated windows
are considered to be the new training data examples.We then
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FIGURE 5. The pipeline of the deep learning model based on bidirectional LSTM. The inputs to this system are the IBI, GSR, Temperature (Temp),
Acceleration (three channels) and BVP signals. The inputs are segmented into successive fixed-size windows with some degree of overlap (25%
overlap). The output of this model depends on the classification task. The created window at time t from each of the 7 signals are concatenated
to build the joint representation. The created joint representation at time slice t is then fed into the two layers of LSTM followed by a dense layer
and a soft-max layer depending on the classification task.

segmented each channel into consecutive windows with win-
dow sizes (0.3 sec) and 25% overlap. The label (category) is
chosen based on the mode of all sequence categories. In other
words, given a sequence of length time steps, this category
was determined to be the most prevalent. The labels are then
encoded using a one-hot encoder method.

E. MACHINE LEARNING MODEL DEVELOPMENT
In this stage, we developed and validated Machine Learning
(ML) models. For the purpose of this study, we used deep
learning to build three different classification models:

1) Classification model for predicting the Hajj related
activity currently performed by the pilgrim.

2) Classification model for predicting pilgrim’s fatigue
level (physical status)

3) Classification model for predicting pilgrim’s emotional
status (psychological status)

Specifically, we used recurrent neural networks (RNN).
Deep learning approaches proved to provide similar, and
in some cases, superior results to classical classification
approaches. RNN succeed in dealing with time-sequential
data that embody correlations between close data points in
a sequence [40]. Recent studies proposed to use Long-Short
Term Memory (LSTM) [41], an RNN approach, which is
useful for the classification of time series data. Therefore,
we decided to build LSTM classifiers given that all our data
are time series data. More specifically, we built Bidirectional
LSTMmodels and evaluated their performance. Bidirectional
RNNs improve the accuracy of their predictions of the current
state by incorporating future information that is unavailable
to unidirectional RNNs.

TABLE 5. Distribution of Hajj activity classes, physical status classes and
emotional status classes.

IV. RESULTS
The classifiers were built using two subjects’ data. The
complete data-set models and results will be published in
a separate paper. Before building the classifiers, we visu-
ally examined the data (see Table 5). From Table 5, it can
be clearly observed that the two subjects log more data at
Tawaf’s first lap (denoted Tawaf One in Table 5) and the
number of logged data by the pilgrim decreases over time.
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TABLE 6. Training and testing accuracy of the classification models*.

We assigned the data into training and testing sets, allo-
cating 80% of the data to training and 20% to testing. Then,
while training the model, 10-fold cross validation was used.
The data samples of n-dimensional patterns created by con-
catenating the BVP, GSR, IBI, and temperature values with
the three acceleration values (x, y, z) collected along each
Cartesian direction. It is essential to utilize a loss function
to characterize the precision of a classification model while
solving a classification problem. The loss function specifies
how much the results deviate from the actual data. The more
precise the findings, the less the loss. As a cost function,
we opted for the cross-entropy loss (log loss function). In our
experiments, we used a dropout rate of 0.5, a batch size
of 32, and the Adam optimizer with 0.001 learning rate.
We determined the classification’s quality based on how well
it performed throughout both training and testing. The accu-
racy of training was determined by applying the model to the
training set. The performance of the model on the test data
was evaluated by applying it to that set of data.

The experiments were conducted using Google Collab
Notebook. The code is developed in Python 3 using Keras
version 2.8.0 and TensorFlow version 2.8.2. The CPU is
an Intel(R) Xeon(R) running at 2.20 GHz, and the system
memory is 13.29858 GB.

Emotions are said to have two dimensions: arousal and
valence, with arousal referring to the intensity of the emo-
tion and valence relating to the distinct emotional state,
which is separated into positive, negative, and neutral
feelings [42]. In the experiment, only the valence dimension
was considered. Table 6 displays the three models’ perfor-
mance on datasets from Subject 1, Subject 2, and the com-
bined dataset including data from both subjects. The accuracy
(10-fold cross-validation accuracy of 0.83) of theHajj activity
classification model is shown in Table 6. In addition, the
physical status detection model performs very well (10-fold
cross validation accuracy of 0.98) but the emotion detec-
tion classifier unperformed (10-fold cross validation accuracy
of 0.64). This low performance of the emotional state clas-
sifier might be attributable to the wide variety of variables
that pilgrims can use to describe their emotional condition
(0-100, where 0 represents ‘‘extremely negative’’ emotion
and 100 represents ‘‘extremely positive’’ emotion). We will
no longer use a continuous visual scale, but rather ordinal data
classes in the near future. Additionally, we propose capping
the total number of such classes to five.

No prior research study -the authors are aware of- has
explored the use of physiological sensors to train Hajj rituals

TABLE 7. The comparison of the performance of our proposed model
with other state-of-the-art methods for emotional classification from
physiological signals and fatigue detection.

activity recognition classifiers. In the near future, more data
will be collected using this framework to build a comprehen-
sive model that can be used to classify and recognize Hajj
rituals and activities. Yet,Table 7 was included to compare our
results to previous work on fatigue and emotional recognition
using physiological signals.

V. CONCLUSION
This research study is proposing a innovative framework for
information collection that would help in crowdmanagement.
This framework utilize the data captured by mobile GPS and
physiological wearable sensors to automate crowd manage-
ment. Our approach is based on machine learning classifi-
cation that identify the Hajj and Umra activities. We built
machine learning classifiers to identify Hajj’s activity, pil-
grim’s fatigue level and emotional status and reported the
resulting accuracy. In future, a more comprehensive set of
sensors could be used to build the classification models. Fur-
thermore, feature reduction (dimensionality reduction) could
be employed to reduce the number of features, as this simpli-
fies and accelerates the training and classification processes.
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