IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 27 September 2022, accepted 4 November 2022, date of publication 14 November 2022,
date of current version 17 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221733

==l RESEARCH ARTICLE

Improving I/0 Performance via Address
Remapping in NVMe Interface

DONG KYU SUNG !, YONGSEOK SON “2, HYEONSANG EOM', AND SUNGGON KIM "3

! Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
2Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
3Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Sunggon Kim (sunggonkim @seoultech.ac.kr)
This work was supported in part by the National Research Foundation of Korea (NRF) through the Korean Government under Grant
RS-2022-00166541, Grant NRF-2021R1C1C1010861, Grant NRF-2022R1A4A5034130, and Grant 2021R1F1A1106343812; and in part

by the BK21 FOUR Intelligence Computing (Department of Computer Science and Engineering, SNU) funded by NRF under Grant
4199990214639.

ABSTRACT Recently, flash-based solid-state drives (SSDs) are widely used in industry and academia due to
their higher bandwidth and lower latency compared with traditional hard disk drives (HDDs). Furthermore,
SSDs with the Non-Volatile Memory Express (NVMe) interface can provide higher performance and ultra-
low latency compared with the Serial AT Attachment (SATA) SSDs. Due to their high performance, NVMe
SSDs are adopted in many systems as fast storage devices. However, the performance of NVMe SSDs can
be negatively affected by I/O access patterns. For example, random write access patterns can have negative
impacts on performance due to the unique characteristics of SSDs such as out-of-place update and garbage
collection. In this paper, we propose an address remapping scheme to improve the I/O performance of NVMe
SSDs. Our proposed scheme transforms random access patterns into sequential access patterns in the NVMe
device driver. This allows our scheme to improve the I/O performance of NVMe SSDs while supporting
widely used file systems such as EXT4, XFS, BTRFS, and F2FS without any modification to the device.
Experimental results show that our proposed scheme can improve the performance of NVMe SSD by up to
64.1% compared with the existing scheme.

INDEX TERMS Flash-based SSDs, NVMe interface, device driver, I/O performance, garbage collection.

I. INTRODUCTION architecture with heterogeneous devices to improve the cost

As emerging big data and machine learning applications
produce and process a large amount of data, the storage
performance is becoming more and more important [1], [2],
[3]. To improve storage performance, flash-based solid-state
drives (SSDs) have been widely adopted in both industry and
academia as they provide higher bandwidth and lower latency
compared with the existing hard disk drives (HDDs) [4].
Especially, SSDs with the Non-Volatile Memory Express
(NVMe) interface can provide higher performance than SSDs
with the Serial AT Attachment (SATA) [5].

While NVMe SSDs provide high I/O performance, they
have a higher cost per GB compared with other storage
devices. As a result, many systems utilize tiered storage

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino

119722

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

efficiency of the systems [6], [7], [8]. In these systems, low-
performance storage devices such as hard disk drive (HDD)
and tape storage are used to store a large amount of less
frequently accessed data such as backup data and archives.
In contrast, high-performance storage devices such as NVMe
SSD are used to handle frequent random writes and a large
amount of data from I/O-intensive applications. For exam-
ple, database systems store frequently updated logs and data
entries using NVMe SSDs [9], [10]. In addition, NVMe
SSDs are employed to support I/O-intensive workloads and
checkpointing operations in HPC systems [11], [12]. Thus,
NVMe SSDs are widely used to handle I/O requests from
many applications which have various access patterns and
request sizes.

To efficiently store data with various patterns and sizes,
it is important to understand the unique characteristics of

VOLUME 10, 2022

https://orcid.org/0000-0003-3983-5585
https://orcid.org/0000-0003-4512-0121
https://orcid.org/0000-0002-2295-3385
https://orcid.org/0000-0001-8336-9150

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

IEEE Access

SSDs and their implication for performance. For example,
the performance of random writes can be lower than that of
sequential writes in SSDs [13]. Flash memory which is used
in SSDs has erase-before-write constraints that require mem-
ory cells to be free before writing data for the first time. Thus,
in case of update, SSDs perform out-of-place update which
writes updated data to a free page in the same or different
block. This creates blocks with a lot of invalidated pages with
old data which need to be cleaned through garbage collection
operation. When garbage collection is performed, it reads the
entire victim block, copies data to the empty block, and erases
the victim block. This incurs larger page copy overheads
when invalid pages are more dispersed throughout the blocks.
As sequential write workloads store data with a similar life-
time in a single block, more data in a single block can be
cleared with a single operation. This leads to higher garbage
collection efficiency and performance compared with random
write workloads [14], [15], [16]. Thus, the access patterns of
applications need to be carefully considered to fully exploit
the performance of SSDs.

Previous studies have attempted to improve the perfor-
mance of SSDs by addressing I/O access patterns. F2FS [17]
is a file system for flash-based storage devices that improves
the performance using append-only logging. SHRD [18]
transforms random writes into sequential writes and stores
the data in reserved log space. ReSSD [19] identifies small
random writes and changes them to sequential writes at the
virtual block device level. Our study is in line with these stud-
ies in terms of improving I/O performance by transforming
random writes into sequential writes. In contrast, we focus on
remapping addresses of random writes into those of sequen-
tial writes in the NVMe device driver layer. This allows our
proposed scheme to be applied in the various file systems and
storage devices without any modification in other layers.

In this paper, we propose an address remapping scheme
in the NVMe device driver to improve the I/O performance.
The proposed scheme transforms I/O requests from the appli-
cations into sequential requests. For example, our scheme
checks if the request is a write or read request in the device
driver. If the request is a write request, we transform the
block address of the request into a sequential address, record
the original and transformed address in a remapping table,
and perform the I/O operation using the transformed address.
If the request is a read request, we search the transformed
block address from the remapping table using the original
block address and perform a read operation using the trans-
formed address. This allows our scheme to improve the per-
formance by creating sequential write patterns and perform
correct read operation using the transformed address.

Especially, by transforming requests in the device driver
layer, our scheme has two main advantages: (1) the proposed
scheme can be easily adapted to many storage systems since
the modifications are limited to the device driver. (2) the
proposed scheme based on the device driver can be applied
to the individual device in heterogeneous tiered storage sys-
tems that have various devices with different characteristics.

VOLUME 10, 2022

Application
Random Random Seq ial Seq ial
High intensity Medium intensity Low intensity Low intensity
Small volume Small vol Medi lu High volume
i AL n ye

NVMe SSD

FIGURE 1. Overall architecture of a tiered storage system. Random and
high 1/0 intensive workloads are handled by NVMe SSD tier.

I

@ Sequential ® Random

3000
2000

1000

0 [
EXT4 XFS BTRFS F2FS

FIGURE 2. Sequential and random write performance of NVMe SSD on
various file systems.

Throughput (MB/s)

For evaluation, we used an enterprise-grade NVMe SSD
(Samsung NVMe SSD PM1725b) with widely used file
systems such as EXT4 [20], XFS [21], BTRFS [22], and
F2FS [17]. The experimental results show that our proposed
scheme can improve the I/O performance up to 64.1% com-
pared with the existing scheme.

Our contributions are as follows:

o We analyze the I/O operation in NVMe SSDs.

o We design and implement an address remapping scheme
for NVMe SSDs in the device driver layer.

+ We demonstrate that the proposed scheme can improve
the performance of random writes compared with the
existing scheme on various file systems.

The rest of the paper is organized as follows: Section II
presents the background and motivation of the paper.
Section III presents the overall design of the proposed
scheme. Section IV shows the experimental results. Section V
discusses the related work. Section VI concludes the paper.

Il. BACKGROUND AND MOTIVATION

A. NVMe SSD

NVMe SSDs provide higher bandwidth and lower latency
compared with HDDs and SATA SSDs. However, they also
have a high cost per GB and low capacity. Thus, to fully
exploit the performance of NVMe SSDs, they are used as fast
storage layer in multi-tiered storage systems. Figure 1 shows
an overall architecture of a tiered storage system. As shown
in the figure, each of the storage tiers is constituted by a

119723

IEEE Access

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

different type of storage device and applications are sending
I/O requests with various characteristics to each storage tier.
For example, HDD and tape storage tiers that have high
capacity but low performance are used to store sequential
access and low I/O intensity requests such as backup and
archive data. On the other hand, SSD tiers are used to store
data that have random access patterns and high I/O intensity.

Especially, the NVMe SSD tier is adopted to handle ran-
dom and highly intensive I/O requests from applications with
different characteristics. For example, SpanDB [23] adopts
NVMe SSDs as a storage tier for processing parallel write-
ahead log and flush/compaction of top levels of LSM-tree,
both of which incur bottlenecks in the critical path of I/O
operations in KV stores. In addition, many burst buffer sys-
tems utilize NVMe SSDs to process bursty 1/O traffics [11],
[24]. Thus, NVMe SSDs can be utilized as a storage tier that
helps mitigate I/O bottlenecks from many applications and
systems. However, as applications have different I/O char-
acteristics, it is important to understand the effect of access
patterns on NVMe SSDs. Moreover, it is necessary to support
the patterns efficiently to improve the overall performance of
the storage system.

To show how the I/O access pattern impacts the perfor-
mance of NVMe SSDs, we performed a motivational eval-
uation. We ran FIO benchmark [25] with 8 threads, 8 GiB
file per thread, 4 KiB block size, /O queue depth of 16,
and buffered I/O mode. Figure 2 shows the performance of
sequential and random writes in NVMe SSD with various
file systems such as EXT4 [20], XFS [21], BTRFS [22], and
F2FS [17]. As shown in the figure, sequential write outper-
forms random write in all file systems and the performance of
random write can be degraded by up to 87.4% compared with
that of sequential write. BTRFS is a copy-on-write (CoW) file
system that does not directly overwrite data. Thus, random
writes in SSDs with BTRFS cause huge garbage collection
overhead compared with sequential writes. On the other hand,
F2FS is a log-structured file system that writes data in a
sequential manner by append-only logging. Thus, random
writes do not introduce significant overheads in SSDs with
F2FS. These results show that the performance of NVMe
SSDs can be affected by I/O access patterns and this can be
observed in many traditional file systems. Since NVMe SSDs
are adopted in many systems to handle workloads with var-
ious access patterns including random writes, it is important
to address I/O access patterns to minimize the performance
degradation of NVMe SSDs with many file systems.

B. CHARACTERISTICS OF SSDs

Flash-based SSDs have unique characteristics that need to
be considered for fully exploiting the performance. SSDs are
composed of flash memory cells. A page is the smallest unit
in SSDs and a group of pages is referred to as a block [26].
When write operations are executed, SSDs can store data in
the unit of page. However, SSDs can only erase data in the
unit of block. Therefore, in the case of overwriting data, SSDs
need to perform out-of-place update [27]. When overwrite

119724

operations are executed, a flash translation layer (FTL) of
SSD writes new data in free pages in other blocks and inval-
idates the original data. If the number of free pages is below
the threshold, a garbage collection operation is triggered
by FTL to reclaim the invalidated pages in SSDs. During
the garbage collection, all valid pages in the victim block
are copied to another block. Then, the entire victim block
is erased for future use. This internal mechanism of SSDs
causes write amplification which decreases the performance
and endurance of SSDs.

There have been many studies to investigate the overheads
of garbage collection in SSDs and improve the performance
of SSDs by reducing the overheads. Previous studies [28],
[29] evaluated the relationship between garbage collection
and write amplification when uniformly-distributed small
random writes are performed. Since random writes cause
more write amplification from garbage collection, many
works have tried to resolve issues of random I/O access
patterns to reduce garbage collection overheads in various
approaches. SWAN [30] is an All Flash Array (AFA) man-
agement scheme in the block I/O layer designed to alleviate
performance degradation from garbage collection in flash
memory. It partitions SSDs in the array into two groups
and handles bulk write and garbage collection separately.
SES [13] is a file system optimized for SSDs that trans-
forms random writes into sequential writes by a log-structure
scheme. Also, by dividing data blocks based on update likeli-
hood, SFS reduces segment cleaning overheads. LBA scram-
bler [31] is designed to fill up unused space in fragmented
pages with newly written data to reduce the number of valid
pages in the next erase block. With this approach, the scram-
bler can reduce the number of page copy operations and the
latency of garbage collection can be minimized.

As explained above, many studies improved the perfor-
mance of SSD by investigating the effects of garbage col-
lection operations and optimizing the I/O layers such as the
file system and block I/O layer. However, optimizations in
the file system and block layer can affect all storage devices
in the system. In a tiered storage system where multiple
storage devices are used in a single system, devices have
different characteristics. Thus, it is important to propose an
optimization for each of the storage tiers with unique char-
acteristics. In order to improve the performance of NVMe
SSDs in the tiered storage systems, the optimization needs
to be based on the system layer that is specific to the NVMe
SSD storage tier.

1Il. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
our proposed scheme that improves the I/O performance of
NVMe SSDs.

A. OVERALL ARCHITECTURE

To improve the I/O performance of NVMe SSDs, we propose
an address remapping scheme. The proposed scheme trans-
forms random access patterns into sequential access patterns

VOLUME 10, 2022

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

IEEE Access

Application
42
File System
Block Layer
NVMe Device Driver
/0 request
Write ‘ Read
Address Remapping Tables -, Address
Remapping H Remapping

Search Orig | Trans Search
& Insert

l

Submit
Write request

Submit
Read request

Cleaning Persist
Operation Tables

AR

Submiss&n Queue
—Jd

NVMe SSD

FIGURE 3. Overall architecture of the proposed scheme.

by modifying block addresses of I/O requests in the NVMe
device driver. This is because modifications on the file system
and block layer can affect the entire devices in the system
as all I/O operations are handled by these layers. However,
by applying our scheme in the NVMe device driver layer,
the proposed scheme can improve the performance of the
NVMe device without affecting other types of devices in
the multi-tiered storage system. In the existing scheme, the
I/O request issued from an application goes through the file
system and block layer and arrives at the NVMe device driver.
The request is then submitted to a submission queue of the
NVMe device driver with information such as logical block
address (LBA) and request size. After the request is submit-
ted, the NVMe controller in the device processes the requests
and notifies the host after the request is processed through
a completion queue. An entry of the completion queue con-
tains the submission queue and command identifiers of the
completed request to identify the request. Therefore, the host
can acknowledge that the request is successfully handled and
continue processing the data.

On the other hand, the proposed scheme performs the
address remapping operation of the I/O request before sub-
mitting the request to the submission queue of the NVMe
SSD. Figure 3 shows the overall architecture of the proposed
scheme. As shown in the figure, the proposed scheme first
identifies if the request is a write or read request. If the request
is a write request, the LBA of the request is transformed
into a sequential LBA by the address remapping operation.

VOLUME 10, 2022

To do this, we use the transformed LBA and the size of the
previous request to generate a new sequential LBA for the
request. Then, we search by the original LBA to check if
the data page already exists. If it exists, we invalidate old
data and insert a pair of original and transformed LBAs into
a remapping table. Otherwise, we continue to the next step
by simply inserting the new pair of LBAs. After the pair is
inserted into the remapping table, we submit the write request
with the sequential LBA to the submission queue. If the
request is a read request, the transformed LBA must be used
to access the data since our scheme stores the original dataina
different address by transforming the original LBA. To obtain
the transformed LBA, we search the remapping table and
find the transformed LBA which is paired with the original
LBA of the request. With the transformed LBA found in the
table, we submit the read request to the submission queue.
To submit the write or read request with transformed LBA,
we intercept struct nvme_rw_command which is used for
carrying information such as address and size of request in
the NVMe device driver and modify field s1ba to change
the original LBA to transformed LBA.

In addition to processing the I/O requests, the proposed
scheme performs the cleaning operation. The cleaning oper-
ation is necessary as the data are invalidated when overwrite
and delete operations are performed. Through the cleaning
operation, the proposed scheme cleans the invalidated data
and creates a large contiguous address space that can be used
for transformed write requests. Finally, the proposed scheme
persists the remapping tables in the memory to the persistent
device by using logs and transactions to ensure atomicity and
persistence of address remapping operations. This is to pro-
tect the remapping information and support crash consistency
and recovery in the case of unexpected power failure.

B. REMAPPING OPERATIONS

1) WRITE OPERATION

In the case of a write request, the proposed scheme performs
sequential access by transforming the LBA of the request
into a sequential LBA. This allows our scheme to improve
the write performance even if the applications have diverse
access patterns. To transform the request, we first search
remapping tables to check if the original data page is in the
storage. If there is no data page, we generate a new sequential
LBA that is consecutive to the sequential LBA generated by
the last remapping operation. Then, we assign a new trans-
formed LBA to s1ba in nvme_rw_command struct of the
request. To manage the original and transformed LBAs of the
request, we create an entry using remap_node struct which
consists of variables such as orig_lba, trans_1lba, and
invalid_flag. We store the original LBA and trans-
formed LBA in orig_1lba and trans_1lba of the entry
and insert the entry into the remapping table for other I/O
operations such as read and overwrite. This is because we
need to redirect read and overwrite requests to refer to the
transformed LBA associated with the original LBA in the
remapping table. After inserting the entry of the LBA pair,

119725

IEEE Access

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

Request 1 || Request 2 | | Request 3
LBA: 6544 || LBA: 7136 | | LBA: 5728 S
Size: 4KB || Size: SKB || Size: 4kB | @ L;:Ch

T T
@ Sequentialize LBA
v v v

A 4

Remapping Tables

Request 1 || Request 2 | | Request 3
LBA: 200 || LBA:208 LBA: 224 |€ Insert
Size: 4KB Size: 8KB Size: 4KB LBA pairs

I I
0 Submit write requests

Submission Queue

FIGURE 4. Remapping operations for write requests in the proposed
scheme (The unit of LBA is 512 bytes. Thus, 4KB request increases the
LBA by 8).

we submit the write request with the transformed LBA to the
submission queue. Thus, the proposed scheme can improve
the random write performance of NVMe SSD by issuing the
write request in a sequential pattern.

Figure 4 shows an example of performing write operations
in the proposed scheme. As shown in the figure, there are
three write requests (request 1, 2, and 3) from the appli-
cation. Since the original LBAs of the requests (i.e., 6544,
7136, and 5728) are not in sequential order, the requests
are random write requests. Before sequentializing LBA to
improve performance, we check if the data already exist by
searching the entry in the remapping table (@). If not found,
the proposed scheme sequentializes LBAs of the requests by
transforming them into sequential addresses (). To generate
a new sequential address, we use the transformed LBA and
size of the previous request. In this example, we transform
the LBA of request 1 into 200 which is consecutive to the
previous write request. We transform the LBA for the next
requests using the request size and the transformed LBA of
the previous request. Then, we assign a transformed LBA
(i.e., 208 and 216) to request 2 that is consecutive to the trans-
formed LBA of request 1. In the same way, request 3 obtains
a transformed LBA (i.e., 224). After transforming LBAs for
the requests, the original and transformed LBAs are inserted
into the remapping table (®). Note that the granularity of
table entry is 4KB data; therefore, request 2 requires two
entries with split original LBAs (i.e., 7136 and 7144) and
transformed LBAs (i.e., 208 and 216) to be inserted in the
table. Finally, the write requests with transformed LBAs will
be submitted to the submission queue in the NVMe device
driver (@®). Thus, by generating sequential access patterns
for write requests, our proposed scheme can improve the
performance of NVMe SSD.

2) READ OPERATION

In the case of a read request, the proposed scheme performs
the address remapping operation to remap the original LBA
of the read request to the transformed LBA. This is because
the data page to be read is written in a different address which

119726

Request 1 || Request 2 | | Request 3
LBA: 6544 LBA: 7136 LBA: 5728
Size: 4KB Size: 8KB Size: 4KB

T Remapping Tables
@ Search LBA pping
|

>

Request 1 || Request 2 | | Request 3
LBA: 200 LBA: 208 LBA: 224
Size: 4KB Size: 8KB Size: 4KB e Get LBA

I I
o Submit write requests

coe

Submission Queue

FIGURE 5. Remapping operations for read requests in the proposed
scheme.

is transformed by the proposed scheme when a write request
for the data was performed. Thus, it is necessary to find the
transformed LBA from the remapping table to read the correct
data. When the read request arrives at the NVMe device
driver, we first search for the entry of remap_node struct in
the remapping table. When the entry of remap_node con-
taining the original LBA (orig_1lba) is found, we change
slba of nvme_rw_command struct for the request to
the value of transformed LBA (trans_1lba) in the entry.
Finally, the read request is submitted to the submission queue.
Thus, the proposed scheme can perform correct read oper-
ation by managing and searching transformed LBA in the
remapping table.

Figure 5 shows an example of performing read operations
in the proposed scheme. As shown in the figure, there are
three read requests (request 1, 2, and 3) and they have orig-
inal LBAs of 6544, 7136, and 5728. However, the data for
the requests are not stored in the original LBAs. Therefore,
we need to find the correct locations for the data. To do this,
we use the original LBAs of the requests to search for the
corresponding transformed LBAs in the remapping table (@).
After searching and finding each LBA pair in the remapping
table, the read requests obtain the transformed LBAs (i.e.,
200, 208, and 224) from the remapping table (). Note
that these transformed LBAs were generated when previous
write requests were performed. Then, with found transformed
LBAs, the read requests are submitted to the submission
queue (®). Thus, this read procedure of the proposed scheme
ensures correct read operation by forwarding the request to
the transformed LBA where the page of the original data is
located.

3) OVERWRITE OPERATION

In the case of an overwrite request, the proposed scheme
performs the address remapping operation to generate a new
sequential LBA for the request. This is because the type of the
overwrite request is identified as a write request. Therefore,
it is important to check if the entry for the request already
exists in the remapping table to distinguish the overwrite
request from normal write requests. When the overwrite

VOLUME 10, 2022

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

IEEE Access

Request 1 || Request 2 | | Request 3

LBA: 6544 || LBA: 7136 || LBA: 5728 0 h

Size: 4KB || Size: 8KB || Size: 4KB Searc
LBA

T T

© Sequentialize LBA
v

\ 4

Remapping Tables

v A
Request 1 || Request 2 | | Request 3
LBA: 800 || LBA: 808 LBA: 824 @ Insert
Size: 4KB Size: 8KB Size: 4KB LBA pairs

I I
© Submit write requests

o Invalidate
old LBA pairs

Submission Queue

FIGURE 6. Remapping operations for overwrite requests in the proposed
scheme (The unit of LBA is 512 bytes. Thus, 4KB request increases the
LBA by 8).

request arrives, we first search table entries using the original
LBA to find whether the data exist. If an entry with the
same original LBA of the request is found in the remapping
table, our scheme can notice that the request is not trying to
write new data but overwriting previously written data. Since
we overwrite previous data, we need to invalidate the previ-
ous data and write new data in the new transformed LBA.
Therefore, the old remap_node struct containing outdated
transformed LBA will be marked as invalid since it will be
no longer accessed. To indicate invalidation of data, we set
invalid_flag of the struct to true. When the invalidation
of the old data is finished, we can proceed with generating a
new table entry. To do this, we generate a new transformed
LBA and store the original and transformed LBAs of the
overwrite request in orig_lba and trans_1lba of newly
created remap_node struct. Then, we insert the entry into
the remapping table. After successfully inserting the new
entry, the overwrite request can be submitted with the new
transformed LBA. Thus, the proposed scheme can accurately
process the overwrite request by managing entries in the
remapping table and using the flag to indicate the validity of
data.

Figure 6 shows an example of performing overwrite oper-
ations in the proposed scheme. As shown in the figure, there
are three overwrite requests (request 1, 2, and 3). Before
generating a new LBA for the request, we check if the
table entries with the same original LBAs (i.e., 6544, 7136,
and 5728) already exist (@). If the old entries (with trans-
formed LBAs 200, 208, and 224) are found, we invalidate
the entries by modifying invalid_f1lag fields (®). Then,
we give new sequential LBAs (i.e., 800, 808, and 824) to the
requests (®). Note that, as explained in [1I-B1, the granularity
of the data unit is 4KB. Therefore, entries with transformed
LBAs 208 and 216 are invalidated and new entries with trans-
formed LBAs 808 and 816 for request 2 are generated. Before
submitting the requests, new entries with transformed LBAs
are inserted into the table (@). Finally, the overwrite requests
are submitted to the submission queue (®). Thus, by checking

VOLUME 10, 2022

the remapping tables and invalidating old data, our proposed
scheme can perform the correct overwrite operation.

C. REMAPPING TABLES

Since the proposed scheme transforms LBAs of write
requests, a list of transformed LBA needs to be maintained
for correct I/O operations. To do this, we create a remapping
table which is a table used to manage remapping information
such as original and transformed LBAs. When processing /O
requests, we search the remapping table and insert new entries
in the table. To enable searching the entries, we sort entries
of the remapping table by the original LBA.

A single table entry is generated for 4KB of data and it
requires approximately 3MB of memory for storing remap-
ping information of 1GB of data in the storage. If the write
operations are continuously executed, the number of entries
in the table increases gradually. This can cause large mem-
ory space of the host occupied by remapping tables and
the bottleneck in table operations. If the size of remapping
entries in memory gets larger and takes up a large portion
of memory capacity, we flush tables that are least recently
updated to reserved space in the storage device for memory
efficiency. Also, to reduce the remapping table management
overhead, we divide the block address space into multiple
partitions and create a remapping table for each partition
(default size is 4GB). This allows our scheme to reduce the
number of entries per remapping table. We note that partitions
are filled in order of transformed LBA; therefore, consecutive
partitions are filled up in order as write requests are sent.
For implementation, we used red-black tree [32] which has
the search time of O(logN). By partitioning a large address
space into multiple partitions and using a red-black tree that
supports fast tree operations, our scheme can manage the
remapping information efficiently.

D. CLEANING OPERATIONS

In the proposed scheme, the data are written in a contigu-
ous and sequential address space as it transforms the ran-
dom write requests into sequential requests. However, when
overwrite and delete operations are performed, the data and
their LBAs are invalidated and no longer accessed. This
creates holes of invalidated data in a contiguous address
space. To remove these holes and reclaim the invalid LBAs,
we perform the cleaning operation of the remapping table.
Through cleaning operations, the proposed scheme creates
a contiguous free space that can be used to store data from
transformed random writes.

When the cleaning operation is performed, our proposed
scheme first sorts table entries of consecutive partitions by
transformed LBA. To find an invalid LBA to be reclaimed
in sorted space, we traverse the remap_node entries from
the beginning of the remapping table and find an entry with
invalid_flag set to true. If the entry is found, we find
another entry with valid data of which invalid_flag
is set to false from the end of the remapping table. Then,
we move the valid data to the LBA of the invalid entry. After

119727

IEEE Access

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

‘ Request 1 ‘ eee ‘ Request N ‘ Remapping Tables

[[
‘ Address Remapping ‘

T
Submit write request
to perform write

Ori
Orig
2472

3240 [2000

*

0 Update remapping table

Submission Queue

Log Log
Begin Tx Begin Tx
Orig | Trans Orig | Trans
2472 1000 2472 1000
[3240 | 2000

Commit Tx

@ Begin transaction €) Commit transaction

FIGURE 7. Procedure of transaction processing for crash consistency.

moving the data, we set invalid_flag to false, indicating
that the valid data page has been copied into the LBA. Finally,
the transformed LBA of the previously valid data is cleaned
by removing the entry from the remapping table and deleting
the data. By repeating the process, the proposed scheme can
fill holes of invalid LBA with valid data. We note that we
directly move the valid data to the invalid address, we do not
need additional space for cleaning operations. In addition, the
valid data page is moved to the holes starting from the end of
the address space, creating a new contiguous address space
at the end of the remapping table. The reclaimed space can
be used for transforming future write requests into sequential
patterns.

E. CRASH CONSISTENCY AND RECOVERY

The remapping table which stores the original and trans-
formed LBAs resides in the memory to support fast table
operations. However, as they are stored in volatile memory,
the information can be lost in the case of a system shutdown.
In addition, the remapping tables can be in an inconsistent
state if the system crashes while remapping operations are
being performed. Therefore, the proposed scheme uses the
write-ahead logging (WAL) technique and transaction pro-
cessing to provide atomicity and durability of remapping
information in the case of system failure and restart.

To support crash consistency and recovery, we perform
address remapping operations on write requests in the unit
of transaction and record the operations on the remapping
table in a log before modifying the remapping table. If a
write request is transformed and successfully submitted to
the submission queue, we start a new transaction and record
the event by marking it at the beginning of the log. As more
write requests are processed, we record pairs of original and
transformed LBAs in the log. When a set of operations is
executed successfully, we commit the transaction and the
commit mark is written at the end of the log. After the commit
operation, the remapping information of the transaction is

119728

reflected on the remapping tables in the memory. The log is
saved in reserved log space inside persistent storage for later
use such as the reconstruction of remapping tables.

Figure 7 shows an example of transaction processing
for supporting crash consistency in the proposed scheme.
As shown in the figure, incoming write requests are trans-
formed by remapping operations, and the request is submitted
to the submission queue (@). As the write is performed which
modifies the remapping table, a transaction starts and we
record the original and transformed LBAs of the request in the
log (i.e., 2472 and 1000) (®). Note that the mark (Begin Tx) at
the beginning of the log indicates the start of the transaction.
After a set of remapping information is recorded in the log,
we commit the transaction by writing the commit mark at the
end of the log (®). Finally, the remapping tables are updated
by inserting pairs of original and transformed LBAs recorded
in the transaction (®). Thus, our scheme can successfully
guarantee the crash consistency and recovery of remapping
tables in the case of system failure and restart.

The transaction processing of log data requires managing
additional remapping information besides that in the remap-
ping table and persisting them in the reserved log. This
additional step can cause write amplification. For transaction
processing of I/O requests in our scheme, we use a similar
policy as transaction processing of EXT4. The transaction
can be processed and persisted based on predefined threshold
values such as transaction size and time interval between
transactions. By using the policies, our scheme persists 4KB
of transaction data per 2MB of data in the storage. Therefore,
the overheads by transaction processing can be reduced.

In the case of a system restart, the remapping table must be
reconstructed from log data to allow incoming I/O requests
to access previously written data. To recover the remapping
tables from the logs, we need to check if the remapping
table and the data are in a consistent state or not. That
is, transactions in the logs have been either committed or
ended unexpectedly by the system crash. Therefore, when
recovering remapping tables, we need to first determine if
the logs are valid by checking transaction start (Begin Tx)
and commit (Commit Tx) marks. If the successful commit of
a transaction before the crash is confirmed, we can rebuild
a remapping table by creating LBA pairs recorded in the
corresponding log and inserting them into the remapping
tables. On the other hand, if the log does not contain the
commit mark, we cannot use the log to rebuild the remapping
tables. This is because the transaction without a commit mark
is considered to be incomplete and some of the remapping
information might be inconsistent with actual data written
in the storage. Therefore, we collect and use only valid log
data to recover the remapping tables. After reconstructing the
remapping tables, we remove all the logs of transaction data
and store restored remapping tables in reserved log space.
The logs persisted in the future will be applied to previously
stored tables to restore remapping information in the next
system restart. In the case of an invalid transaction, there
can be data written in transformed LBAs but not recorded

VOLUME 10, 2022

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

IEEE Access

D Existing = Proposed

3000

2000

1000

Throughput (MB/s)

EXT4 XFS BTRFS F2FS

FIGURE 8. FIO benchmark performance of existing and proposed
schemes in case of sequential writes.

D Existing = Proposed
3000

2000

1000

. ul

EXT4 XFS BTRFS

FIGURE 9. FIO benchmark performance of existing and proposed
schemes in case of random writes.

Throughput (MB/s)

F2FS

in the transaction. Since we consider them to be invalid, the
transformed LBAs in such transactions can simply be reused
by future write requests. Thus, our scheme can successfully
recover remapping information while providing consistency
in the remapping operations.

IV. EVALUATION

A. EXPERIMENTAL SETUP

For the experiment setup, we used the system with Intel Core
19-9900K CPU (up to 5.00GHz) of 8 physical cores and
16GB of memory. For the storage devices, we used Samsung
PM1725b NVMe SSD (MZPLL3T2HAJQ-00005). We used
Ubuntu 20.04.4 LTS for the operating system. We imple-
mented our scheme in Linux kernel 5.16.12 and compared the
performance of the existing and proposed schemes. We used
EXT4 [20], XFS [21], BTRFS [22], and F2FS [17] as file
systems for evaluating performance. For the benchmarks,
we used FIO [25] as a micro benchmark and used Flexible
Filesystem Benchmark [33] as a macro benchmark. All exper-
imental results are an average of five runs.

B. MICRO BENCHMARK

For the micro benchmark, we ran FIO benchmark with
8 threads, 8 GiB file per thread, 4 KiB block size, I/O queue
depth of 16, and buffered I/O mode. We show the perfor-
mance of sequential and random write using FIO in order

VOLUME 10, 2022

@ Existing ®Proposed

2000000
1500000
1000000

500000

Transactions per second

EXT4 XFS BTRFS F2FS

FIGURE 10. FFSB benchmark transactions per second of existing and
proposed schemes in case of read operations.

@ Existing ®Proposed

600000

N W A W
[T — B —— B)
[T — B — R)
(=S R R
[— I — R R
[~ — N)

Transactions per second

=]

EXT4 XFS BTRFS F2FS

FIGURE 11. FFSB benchmark transactions per second of existing and
proposed schemes in case of write operations.

to show performance improvement by our proposed scheme
compared with the existing scheme.

Figure 8 shows the performance of the existing and pro-
posed schemes in the case of sequential writes. As shown in
the figure, our proposed scheme improves the performance
by 11.4%, 7.0%, 3.1%, and 7.3% for EXT4, XFS, BTRFS,
and F2FS, respectively. It shows small improvements even
in the sequential writes due to the increased opportunities
for storing disjoint, sequential data into consecutive block
addresses.

Figure 9 shows the performance of the existing and pro-
posed scheme in the case of random writes. The performance
differences between the existing and proposed schemes of
random writes are higher than those of sequential writes
because the proposed scheme transforms the random access
pattern into the sequential access pattern. As shown in the
figure, our proposed scheme improves the performance by
30.4%, 11.2%, 64.1%, and 7.1% for EXT4, XFS, BTRFS,
and F2FS, respectively. This shows that the address remap-
ping scheme achieves higher I/O performance of NVMe SSD
by transforming random writes into sequential writes.

C. MACRO BENCHMARK

For the macro benchmark, we used Flexible Filesystem
Benchmark (FFSB) to evaluate the performance of the exist-
ing and proposed schemes when file I/O operations are exe-
cuted. Using FFSB, we can simulate file operations such as

119729

IEEE Access

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

D Existing ®Proposed

400000
300000
200000

100000

Transactions per second

EXT4 XFS BTRFS F2FS

FIGURE 12. FFSB benchmark transactions per second of existing and
proposed schemes in case of mixed operations.

create, delete, read, write and append. We ran FFSB bench-
mark with the following configurations: 100 files/directories,
4GiB file size, 4GiB append size, 4KiB read/write size, and
4KiB read/write block size.

To show the impact of our scheme on the read perfor-
mance, we ran FFSB with read only configuration. Figure 10
shows the performance of existing and proposed schemes
in the case of file read operations. As shown in the figure,
the proposed scheme performs 1.4%, 0.2%, 0.3%, and 1.1%
lower numbers of transactions per second for EXT4, XFS,
BTREFS, and F2FS, respectively. Our proposed scheme expe-
riences degraded read performance with all file systems. This
is because all read requests need to search for transformed
LBAs that are mapped with the original LBAs of the requests
in the remapping tables. Therefore, the proposed scheme
introduces extra overheads in the case of read operations.
However, performance loss by read operations is minimal.

To show the performance of file write operations, we ran
FFSB with a write-only configuration. In this experiment,
file write operations include write operations that overwrite
created file sets and append operations that write new data at
the end of files. Figure 11 shows the performance of existing
and proposed schemes in the case of file write operations.
As shown in the figure, our proposed scheme improves the
transactions per second by up to 19.4%, 16.7%, 21.0%, and
13.7% compared with an existing scheme for EXT4, XFS,
BTREFS, and F2FS file systems, respectively. This result
shows that our scheme can improve the performance of
NVMe SSD even though massive write operations are exe-
cuted. In our scheme, overwrite requires searching and modi-
fication of a table entry in the remapping tables while append
only needs inserting a new entry. The experimental results
indicate that file write operations can be performed without
noticeable latency and provides enhanced I/O performance.

To show the effectiveness of our scheme when file read and
write operations are executed simultaneously, we ran FFSB
with a 5:5 ratio of read and write. As shown in Figure 12,
our proposed scheme improves the transactions per second
by up to 16.9%, 15.7%, 18.2%, and 11.0% compared with an
existing scheme for EXT4, XFS, BTRFS, and F2FS file sys-
tems, respectively. This indicates that our proposed scheme

119730

@ Existing ®Proposed

250
200 .
150
100
50

Average latency (usec)

EXT4 XFS BTRFS F2FS

FIGURE 13. FIO benchmark average latency of existing and proposed
schemes in case of sequential writes.

@ Existing ®Proposed

—~ 1000 _
g

2 800

g

= 600

e

]

= 400

o0

[

28 N [N
<

EXT4 XFS BTREFS F2FS

FIGURE 14. FIO benchmark average latency of existing and proposed
schemes in case of random writes.

can successfully improve the I/O performance of NVMe SSD
in case of massive file operations including simultaneous read
and write requests.

D. OVERHEADS

To evaluate the overheads of the proposed scheme, we mea-
sured the latency and performance when the scheme performs
address remapping, cleaning operation, and system restart.

1) ADDRESS REMAPPING LATENCY

To evaluate the overhead of address remapping, we measured
the average latency of processing I/O, including I/O submis-
sion and completion. We ran FIO with the same configuration
as the section above.

Figure 13 shows the latency of the existing and proposed
schemes when sequential writes are performed. As shown
in the figure, our proposed scheme shows similar latency to
the existing scheme and the lowest latency of the proposed
scheme is lower by up to 5.83% in the case of BTRFS. This
demonstrates that the proposed scheme introduces minimal
overheads of managing remapping tables even when perform-
ing sequential writes.

Figure 14 shows the latency of existing and proposed
schemes when random writes are performed As shown in
the figure, our proposed scheme experiences 19.8%, 20.9%,
24.5%, and 7.5% lower latency for EXT4, XFS, BTRFS,
and F2FS, respectively. This indicates that no significant

VOLUME 10, 2022

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

IEEE Access

Total time (seconds)
S = N W A Ui &

16 32 64 128

4 256
Data Size (GB)
FIGURE 15. Reconstruction latency for various data sizes.
—Proposed Existing
2 2500
=)
= 1500
=
= 1000
2 500
£ 0
0 20 40 60 80 100 120 140

Time (s)
FIGURE 16. Cleaning overhead of the proposed scheme.

overhead occurs from remapping operations and overall I/O
processing benefits from performing sequential writes trans-
formed from random writes in our proposed scheme.

2) RECONSTRUCTION LATENCY

To evaluate the latency incurred when the system restarts,
we measured the reconstruction time with data of various
sizes.

Figure 15 shows the latency of the reconstruction required
for various sizes of data in the storage, up to 256GB.
As shown in the figure, our proposed scheme requires up
to 5.49s to reconstruct remapping tables. This demonstrates
that the proposed scheme introduces little overheads to reload
address remapping information when the system restarts.

3) CLEANING OVERHEADS

To show the overheads of the cleaning operation, we ran
FIO benchmark using the proposed scheme and EXT4 file
system. We used the same configuration as IV-B but different
data sizes. In this experiment, 256GB of data were previously
written in the storage and we used FIO to overwrite the data to
trigger the cleaning operation. In the process of overwriting,
old data pages become invalid and the cleaning operation is
performed.

Figure 16 shows the performance of the existing and
proposed schemes when overwriting the data on EXT4.
As shown in the figure, the cleaning operation causes the
performance of the proposed scheme degrades up to 22.1%.
However, the proposed scheme performs better compared to
the existing scheme even in the case of cleaning operations.
This demonstrates that our proposed scheme can suffer from

VOLUME 10, 2022

cleaning overheads but can improve performance in gen-
eral. We only included the experimental result with EXT4
since experimental results on other file systems show similar
trends.

V. RELATED WORKS

A. OPTIMIZING I/O PERFORMANCE OF NVMe SSDs

Many previous studies have proposed optimization of I/O
performance for NVMe SSDs. Kim et al. [34] provides a user-
level I/O framework that allows users to select I/O policies
such as allocating a dedicated queue and using a polling
mechanism. D2FQ [35] presents I/O scheduling with fair-
queueing that leverages the NVMe WRR feature. It sends
I/O requests to one of the three queues which process the
requests at different speeds while guaranteeing fairness. Lee
et al. [36] proposes a new design that asynchronously per-
forms operations in the I/O stack to overlap CPU operations
with device I/O. This design improves I/O performance by
reducing time spent in the block I/O layer. H-NVME [37]
is a hybrid framework for virtual machines that allow fully
utilizing the capabilities of NVMe SSDs. By providing two
different deployment modes, H-NVME allows users to use
lightweight parallel queues or directly access the NVMe
devices to improve performance based on priorities.

Our study is in line with these studies [34], [35], [36], [37]
in terms of improving the I/O performance of the systems
using NVMe SSDs. In contrast, our work focuses on improv-
ing the performance by sequentializing random writes in the
NVMe device driver.

B. OPTIMIZATION BASED ON CHARACTERISTICS OF SSDs
There have been several studies on improving I/O perfor-
mance by mitigating overheads from the internal mechanism
of flash-based SSDs. LAST [38] identifies the locality of
write requests to improve I/O performance. It places data into
separate log buffers by distinguishing sequential and random
writes. By clustering data separately according to the tempo-
ral and sequential locality, LAST can reduce the merge cost.
Park et al. [39], [40] designs a hot data identification scheme
that helps place hot data in the same block. By classifying
hot and cold data with low memory usage, it can reduce
overheads from garbage collection. Sun et al. [31] presents
a scheme that writes data on fragmented pages of blocks in
SSDs. This reduces valid pages in the blocks to be erased and
thus, decreasing page copy latency.

Our study is in line with these studies [31], [38], [39], [40]
in terms of minimizing the negative impact of garbage collec-
tion and improving the I/O performance. However, we focus
on improving I/O performance by transforming the access
pattern of write operations from sequential to random writes.

C. LOG-STRUCTURED SCHEME ON SSDs

There have been several studies on sequentially writing data
blocks in order to reduce performance degradation from ran-
dom writes. Log-structured file system (LFS) [41] is a storage
management scheme to store data in a structure called a

119731

IEEE Access

D. K. Sung et al.: Improving 1/0 Performance via Address Remapping in NVMe Interface

log and write all modifications sequentially in the storage
device. Since it is originally designed for HDDs, it improves
write time by eliminating seeks. With the advance of SSDs,
many file systems are designed for flash memory [13], [17].
F2FS [17] is a file system that supports a flash-friendly
disk layout. It writes data in a sequential manner by adopt-
ing append-only logging and separates hot and cold data to
improve the performance of SSDs.

Other works have investigated approaches to perform-
ing sequential writes in levels other than the file system.
Z-MAP [42] is a space management scheme that main-
tains buffers in the granularity of zone which is a group
of multiple flash blocks. By buffering random writes in
the partition called a streaming buffer zone, it can log
random writes sequentially. SHRD [18] improves spatial
locality by logging random writes into reserved log space.
It sequentializes random writes from the SCSI device driver
and SHRD-supporting FTL manages mapping information.
ReSSD [19] exposes a virtual block device that identifies
small random writes and transforms them into sequential and
ordered-sequential writes. Kim et al [43] reshapes random
writes into sequential writes in distributed file systems.

Our study is in line with these studies [13], [17], [18],
[19], [41], [42] in terms of improving the performance by
sequentializing random writes. In contrast, we focus on the
performance improvement of NVMe SSD by implementation
in the NVMe device driver. In addition, since our scheme is
based on a device driver, our scheme can be applied to the
individual device without affecting other devices in a storage
system.

VI. CONCLUSION

In this paper, we propose an address remapping scheme for
NVMe SSDs to improve the I/O performance. To do this,
we design and implement the address remapping scheme
that intercepts I/O requests and transforms random writes
into sequential writes in the NVMe device driver. Also,
we provide methods to manage information on transformed
addresses, perform cleaning operations, and guarantee con-
sistency of address remapping operations. The experimental
results show that our proposed scheme can improve the I/O
performance by up to 64.1% compared with the existing
scheme.

In our future works, we plan to add more functionali-
ties such as caching hot data before accessing remapping
tables. In addition, we will evaluate the effect of on-demand
reconstruction of remapping tables to examine the trade-
off between reconstruction latency and interference with I/O
performance. The scheme can be applied to storage devices
that have a performance gap between sequential and random
writes. We also plan to consider applying the scheme to other
types of devices with a performance gap.

REFERENCES

[1] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data storage
systems in cloud computing: Perspectives and challenges,” IEEE Internet
Things J., vol. 4, no. 1, pp. 75-87, Jan. 2016.

119732

[2]

[3]

[4]

[5]

[6

—

[71

[8

—

[9

(10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]
[25]

(26]

W. Zhou, D. Feng, Z. Tan, and Y. Zheng, “Improving big data storage per-
formance in hybrid environment,” J. Comput. Sci., vol. 26, pp. 409-418,
May 2018.

S. W. D. Chien, A. Podobas, I. B. Peng, and S. Markidis, “tf-Darshan:
Understanding fine-grained 1/O performance in machine learning work-
loads,” in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2020,
pp. 359-370.

B. K. Debnath, S. Sengupta, and J. Li, “FlashStore: High through-
put persistent key-value store,” in Proc. PVLDB, 2010, vol. 3. no. 2,
pp. 1414-1425.

Y. Zou, A. Awad, and M. Lin, “DirectNVM: Hardware-accelerated NVMe
SSDs for high-performance embedded computing,” ACM Trans. Embed-
ded Comput. Syst., vol. 21, no. 1, pp. 1-24, Jan. 2022.

J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami, ““Cost
effective storage using extent based dynamic tiering,” in Proc. 9th USENIX
Conf. File Storage Technol. (FAST), 2011, p. 20.

K. R. Krish, A. Anwar, and A. R. Butt, “HatS: A heterogeneity-aware
tiered storage for Hadoop,” in Proc. 14th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., May 2014, pp. 502-511.

X. Zhao, Z. Li, X. Zhang, and L. Zeng, “Block-level data migration in
tiered storage system,” in Proc. 2nd Int. Conf. Comput. Netw. Technol.,
2010, pp. 181-185.

C. Li, H. Chen, C. Ruan, X. Ma, and Y. Xu, “Leveraging NVMe SSDs
for building a fast, cost-effective, LSM-tree-based KV store,” ACM Trans.
Storage, vol. 17, no. 4, pp. 1-29, Nov. 2021.

J. Chu, Y. Tu, Y. Zhang, and C. Weng, “LATTE: A native table engine
on NVMe storage,” in Proc. IEEE 36th Int. Conf. Data Eng. (ICDE),
Apr. 2020, pp. 1225-1236.

D. Shankar, X. Lu, and D. K. Panda, “Boldio: A hybrid and resilient burst-
buffer over lustre for accelerating big data 1/0,” in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2016, pp. 404—409.

A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, ‘“‘Harmonia:
An interference-aware dynamic 1/0 scheduler for shared non-volatile burst
buffers,” in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2018,
pp. 290-301.

C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: Random write
considered harmful in solid state drives,” in Proc. FAST, vol. 12, 2012,
pp. 1-16.

J. Guo, Y. Hu, B. Mao, and S. Wu, “Parallelism and garbage collection
aware 1/0 scheduler with improved SSD performance,” in Proc. IEEE Int.
Farallel Distrib. Process. Symp. (IPDPS), May 2017, pp. 1184-1193.

C. Matsui, A. Arakawa, C. Sun, and K. Takeuchi, ‘“Write order-based
garbage collection scheme for an LBA scrambler integrated SSD,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 510-519,
Feb. 2017.

K. Smith, “Garbage collection,” SandForce, Flash Memory Summit,
Santa Clara, CA, USA, 2011, pp. 1-9.

C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system for flash
storage,” in Proc. 13th USENIX Conf. File Storage Technol. (FAST), 2015,
pp. 273-286.

H. Kim, D. Shin, Y. H. Jeong, and K. H. Kim, “SHRD: Improving
spatial locality in flash storage accesses by sequentializing in host and
randomizing in device,” in Proc. 15th USENIX Conf. File Storage Technol.
(FAST), 2017, pp. 271-284.

Y. Lee, J.-S. Kim, and S. Maeng, ‘“‘ReSSD: A software layer for improving
the small random write performance of SSDs,” J. Inf. Sci. Eng., vol. 28,
no. 6, pp. 999-1018, 2012.

A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: Current status and future plans,” in Proc. Linux
Symp., vol. 2, 2007, pp. 21-33.

R. Y. Wang and T. E. Anderson, “XFS: A wide area mass storage file sys-
tem,” in Proc. IEEE 4th Workshop Workstation Operating Syst. (WWOS-
1), 1993, pp. 71-78.

0O.Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,”
ACM Trans. Storage, vol. 9, no. 3, pp. 1-32, Aug. 2013.

H. Chen, C. Ruan, C. Li, X. Ma, and Y. Xu, “SpanDB: A fast, cost-effective
LSM-tree based KV store on hybrid storage,” in Proc. 19th USENIX Conf.
File Storage Technol. (FAST), 2021, pp. 17-32.

J. Hines, “Stepping up to summit,” Comput. Sci. Eng., vol. 20, no. 2,
pp. 78-82, Mar. 2018.

FIO Benchmark. Accessed: Sep. 27, 2022.
http://freecode.com/projects/fio

K. Eshghi and R. Micheloni, “SSD architecture and PCI express inter-
face,” in Inside Solid State Drives (SSDs). Cham, Switzerland: Springer,
2013, pp. 19-45.

[Online]. Available:

VOLUME 10, 2022

D. K. Sung et al.: Improving I/O Performance via Address Remapping in NVMe Interface IEEEACC@SS

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

K. Takeuchi, “Novel co-design of NAND flash memory and NAND
flash controller circuits for sub-30 nm low-power high-speed solid-state
drives (SSD),” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1227-1234,
Apr. 2009.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, ‘“Write amplifi-
cation analysis in flash-based solid state drives,” in Proc. Israeli Experim.
Syst. Conf. (SYSTOR), 2009, pp. 1-9.

W. Bux and I. Iliadis, “Performance of greedy garbage collection in flash-
based solid-state drives,” Perform. Eval., vol. 67, no. 11, pp. 1172-1186,
Nov. 2010.

J. Kim, K. Lim, Y. Jung, S. Lee, C. Min, and S. H. Noh, “Allevi-
ating garbage collection interference through spatial separation in all
flash arrays,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2019,
pp. 799-812.

C. Sun, A. Soga, C. Matsui, A. Arakawa, and K. Takeuchi, “LBA scram-
bler: A NAND flash aware data management scheme for high-performance
solid-state drives,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 24, no. 1, pp. 115-128, Jan. 2015.

C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun, “Fairness
and interactive performance of O(1) and CFS Linux kernel schedulers,” in
Proc. Int. Symp. Inf. Technol., 2008, pp. 1-8.

The Flexible Filesystem Benchmark. Accessed: Sep. 27, 2022. [Online].
Available: https://github.com/FFSB-Prime/ffsb

H.-J. Kim and J.-S. Kim, “A user-space storage I/O framework for NVMe
SSDs in mobile smart devices,” IEEE Trans. Consum. Electron., vol. 63,
no. 1, pp. 28-35, Feb. 2017.

J. Woo, M. Ahn, G. Lee, and J. Jeong, “D2FQ: Device-direct fair queueing
for NVMe SSDs,” in Proc. 19th USENIX Conf. File Storage Technol.
(FAST), 2021, pp. 403-415.

G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong, “Asyn-
chronous I/O stack: A low-latency kernel I/O stack for ultra-low latency
SSDs,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2019,
pp. 603-616.

Z. Yang, M. Hoseinzadeh, P. Wong, J. Artoux, C. Mayers, D. T. Evans,
R. T. Bolt, J. Bhimani, N. Mi, and S. Swanson, “H-NVMe: A hybrid
framework of NVMe-based storage system in cloud computing envi-
ronment,” in Proc. IEEE 36th Int. Perform. Comput. Commun. Conf.
(IPCCC), Dec. 2017, pp. 1-8.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware sec-
tor translation for NAND flash memory-based storage systems,” ACM
SIGOPS Operat. Syst. Rev., vol. 42, no. 6, pp. 36-42, Oct. 2008.

D. Park and D. H. C. Du, “Hot data identification for flash-based storage
systems using multiple bloom filters,” in Proc. IEEE 27th Symp. Mass
Storage Syst. Technol. (MSST), May 2011, pp. 1-11.

D. Park, B. Debnath, Y. Nam, D. H. C. Du, Y. Kim, and Y. Kim, “HotData-
Trap: A sampling-based hot data identification scheme for flash memory,”
in Proc. 27th Annu. ACM Symp. Appl. Comput., 2012, pp. 1610-1617.

M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26-52, 1992.

Q. Wei, C. Chen, M. Xue, and J. Yang, “Z-MAP: A zone-based flash
translation layer with workload classification for solid-state drive,” ACM
Trans. Storage, vol. 11, no. 1, pp. 1-33, Feb. 2015.

S. Kim, J. Han, H. Eom, and Y. Son, “Improving I/O performance in
distributed file systems for flash-based SSDs by access pattern reshaping,”
Future Gener. Comput. Syst., vol. 115, pp. 365-373, Feb. 2021.

VOLUME 10, 2022

DONG KYU SUNG received the B.S. degree in
computer science from the University of Min-
nesota Twin Cities, Minneapolis, USA, in 2018.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with Seoul National
University. His research interests include dis-
tributed file systems, key-value stores, burst buffer,
and operating systems.

YONGSEOK SON received the B.S. degree from
Ajou University, in 2010, and the M.S. and
Ph.D. degrees from Seoul National University,
in 2012 and 2018, respectively. He was a Post-
doctoral Research Associate at the University of
Illinois at Urbana-Champaign. He is currently an
Assistant Professor with the Department of Com-
puter Science and Engineering, Chung-Ang Uni-
versity. His research interests include operating,
distributed, and database systems.

HYEONSANG EOM received the B.S. degree
in computer science and statistics from Seoul
National University (SNU), Seoul, South Korea,
in 1992, and the M.S. and Ph.D. degrees in
computer science from the University of Mary-
land, College Park, MD, USA, in 1996 and 2003,
respectively. He is currently a Professor with the
Department of Computer Science and Engineer-
ing, SNU, where he has been a Faculty Member,
since 2005. His research interests include high
performance storage systems, operating systems, distributed systems, cloud
computing, energy efficient systems, fault-tolerant systems, security, and
information dynamics.

SUNGGON KIM received the B.S. degree
in computer science from the University of
Wisconsin—-Madison, Madison, USA, in 2015, and
the Ph.D. degree in computer science and engi-
neering from Seoul National University, in 2021.
He was an Intern at the Lawrence Berkeley
National Laboratory, CA, USA, in 2018, 2019, and
2020. He was a Postdoctoral Research Associate
at Seoul National University. Currently, he is an
Assistant Professor with the Department of Com-
puter Science and Engineering, Seoul National University of Science and
Technology. His research interests include file systems, cloud computing,
big data, distributed systems, and operating systems.

119733

