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ABSTRACT This article proposes an active fault detection method for Unmanned Surface Vehicles (USVs)
with uncertain bounded disturbance to achieve the minor faults detection of USV. In practice, minor faults are
the early cases of normal faults with the characteristic of low amplitude and difficulty to detection. At first,
a set-membership estimation approach is used to describe the area topology of the nominal model of USVs
and the fault models. Then, an auxiliary input signal is designed to enhance the character of minor faults, and
theminor faults can be separated from the considered USVs in spite of uncertain bounded disturbances. Next,
the considered problem is transformed into a nonconvex optimization problem, and the optimal auxiliary
signal is obtained via solving the mixed integer quadratic programming (MIQP). Finally, a case study of the
USVs is used to show the effectiveness of the proposed method.

INDEX TERMS Unmanned surface vehicles, active fault detection, set membership estimation, minor faults.

I. INTRODUCTION
In recent years, with the rapid development of technologies
such as automatic control, the Internet of things, and big
data, the level of unmanned equipment has been continuously
improved. The research on unmanned ships has become an
active field due to the large space for exploration and the
effective practical use of unmanned ships. Unmanned surface
vehicle (USV) has significant advantages because it is easy
to deploy and operate in a variety of environments, so it is
widely used in civil andmilitary fields [1]. An overview of the
application of USV by [2], describes that USV can be used
for military mine clearance, anti-terrorism, anti-submarine,
sea investigation, civil surveying and mapping, hydrology,
environmental protection, and other tasks. In the process of
the closed-loop system’s execution, if there is a fault exist-
ing in some parts of USV, which will lead to the dynamic
characteristics of the considered system may be reduced,
even the abnormal operation of the whole system and huge
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economic losses when it stops running. Therefore, the timely
fault detection of USV can ensure the stability of the whole
system and is of great significance to prevent the occurrence
of major accidents.

Fault detection plays a vital role in the industrial process.
In the past few decades, many authors have analyzed fault
detection [3], [4], [5]. Fault detection methods can gener-
ally be divided into two categories: active fault detection
[6], [7] and passive fault detection [8]. Most of the existing
fault detection methods are carried out under the ‘‘passive’’
framework. By detecting the input and output signals of
the system, without applying additional input signals to the
system, the monitored behavior is compared with the normal
behavior to confirm whether a malfunction occurs. Passive
fault detection can be classified into two categories, one is
based on qualitative analysis methods, such as expert sys-
tems, graph theory, etc [9]; The other is based on quantitative
analysis methods, such as state estimation under redundant
models [10], [11], parameter estimation [12], data-driven
machine learning [13], [14], multiple statistical analysis [15]
and information fusion. Passive fault detection methods like

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119767

https://orcid.org/0000-0003-4062-1947
https://orcid.org/0000-0003-3845-4692
https://orcid.org/0000-0002-3382-8213


Z.-H. Liu et al.: Active Fault Detection for Unmanned Surface Vehicles With Minor Fault

this do not impose additional input signals on the system so
that they do not affect the evolution of the system, but at
the same time, there is a lot of redundancy, which limits the
ability to detect faults. Therefore, most of the existing fault
detection applications in the USV direction are significant
faults, but the significant faults in USV are all converted from
minor faults. The so-called minor fault refers to a type of
fault or anomaly that has a small amplitude, changes in an
early stage, and changes slowly. Since a minor fault has a
minimal impact on the operation of the system and is not easy
to be detected, if the minor fault can be monitored in time,
it can effective avoid the adverse effect on the system after
the increase of the fault, and ensure the stability of the system.
This is also one of the research purposes of this article.

Compared with the significant fault detection based on
a large number of researches, the detection of minor faults
has only attracted attention in recent years. When a minor
fault occurs, the characterization of the system is almost the
same as that of the normal system; Therefore, in order to
be more to ensure the safety of the system to a large extent,
researchers have proposedmany fault detection methods with
minor faults as the detection target. In [16], for the early
detection of minor faults in linear systems with unknown dis-
turbances, a comprehensive adaptive sliding mode observer
methodwas proposed, so that the observer can estimateminor
faults and has strong robustness to unknown disturbances.
In recent years, scholars have proposed an active fault detec-
tion method. Its working principle is as follows: under the
condition of not affecting the normal operation of the system,
minor fault detection is performed by injecting auxiliary
signals, which is a new type of fault detection method with
higher accuracy. For sensor faults in closed-loop systems,
literature [17] proposed an online detection and estimation
method for minor faults based on Kullback-Leibler (KL)
distance. For the detection of small changes in the parameters
of linear uncertain systems, a method to construct an optimal
input signal to ensure a given detection accuracy is proposed
by [12]. However, the active fault detection of the USV, which
requires high safety, is almost blank. This is also the second
motivation of this article.

This paper studies the minor fault detection of USV. The
main contributions of this article are as follows:

a) To achieve the purpose of detecting the minor faults in
the USV system, an active fault detection method is provided
to design an auxiliary signal to strengthen the characterization
of the minor fault in the USV.

b) By using the principle of set membership estimation,
the modeling of USV is transformed into the zonotopic set,
and the auxiliary signal which can improve the performance
of minor fault detection is designed by the zonotopic active
fault detection method.

The rest of this article is as follows. First, in Section2,
some preliminary introductions to the problem model and
formula of USV are explained. Then in Section 3, the set of
fully symmetric multicellular bodies output by the system is
obtained through set membership estimation. Section 4 uses

the output set in the third section to get the optimal auxiliary
separation signal. Section 5 carries on the simulation of USV.
Finally, the summary of this article is introduced in Section 6.

II. MODEL DESCRIPTION AND PRELIMINARIES
A. MODEL DESCRIPTION
Generally, the motion of the USV in six degrees of freedom
includes sway, yaw, roll, surge, heave, and pitch as following

(m+ mx)u̇− (m+ my)vr = X
(m+ my)u̇+ (m+ mx)ur = Y
(m+ mz)ẇ = Z
(Ixx + Jxx)ṗ = K
(Iyy + Jyy)q̇ = M
(Izz + Jzz)ṙ = N

(1)

u, v andw are the velocities of the USV in the direction of x, y
and z. p, q and r are the angular velocities of the USV on the
x, y and z axes, respectively. X , Y , and Z represent the sum
of all forces in that direction. K , M and N represent the sum
of all the moments on the corresponding axis. m, mx , my and
mz represent ship mass and additional mass in their respective
directions, respectively. Ixx , Iyy, and Izz indicate the moment
of theUSV on the x, y and z axes. Jxx , Jyy, and Jzz represent the
additional torque on each axis. The equation of the coordinate
origin should be set in the center line of the ship. In addition,
the equations of speed and ship steering motion are based on
the following assumptions [18]:

a)Homogeneous mass distribution and xz-plane symmetry.
b)The heave and pitch motions can be neglected.
c)The speed of the ship is constant.
Based on the assumption that the value of surge motion

as velocity motion is constant, the additional torque of the
ship is defined as zero. The USV equations of motion can be
expressed as: 

my
d2y
dt2
= Y , sway

Izz
d2ψ
dt2
= N , yaw

Ixx
d2φ
dt2
= K , roll

(2)

x, y and z represent the vertical axis (backward and forward),
the horizontal axis (to the right) and the vertical axis (from
top to bottom); my respectively represent the effective mass
of the ship in the y direction; y,ψ and φ represents directional
distance, heading angle and roll angle.

The response model of USV maneuvering motion is
adopted in this paper. The rudder angle is taken as the input
of the system, the yaw angle, and the roll angle as the output
of the system, and the whole ship is regarded as a dynamic
system. The model used in this paper has been proved to
be feasible by [19] through experiments. The output and
the transfer function of the output are represented by the
Laplace transform. For the yaw motion, it can be expressed
by a first-order response model after simplification in the
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frequency domain, just like the Nomoto model [18], the
response equation is as follows:

ψ(s) =
K

s(1+ Ts)
δ(s) (3)

For the rolling motion equation, the disturbance in the
motion is modeled by the second-order transfer function
driven by white noise in the frequency domain [20]. After
simplification, we can get the following transfer function:

φ(s) =
ω2
n

s2 + 2ζωn + ω2
n
δ(s) (4)

In addition, combined with (3) and (4) and the USV coordi-
nate system is shown in Fig 1.The motion parameters of the
unmanned ship are described in the table 1.

FIGURE 1. Motion coordinate system for USV.

TABLE 1. Description of motion parameters of unmanned ship.

Due to the interaction of roll, sway, and yaw motion,
incorporate the influence of high-order disturbance. Ignoring
some hydrodyna+mic effects, we can obtain the following
motion transfer functions:

v(s) =
Kdv

1+ Tvs
δ(s)

ψ(s) =

[
Kdrδ(s) + Kvrv(s)+ ωψ (s)

]
(1+ Trs) s

φ(s) =
ω2
n
[
Kdpδ(s) + Kvpv(s)+ ωφ(s)

]
s2 + 2ζωns+ ω2

n

(5)

v, ψ , φ and δ represent the yaw speed, heading angle, roll
angle and rudder angle caused by rudder motion; ωψ and ωφ
represent the influence of the wave on ψ and φ respectively;
Tv and Tr represent the time constant of the transfer function,

Kvr , Kvp, Kdv, Kdr and Kdp represent the known parameters;
ζ and ωn represent the damping ratio without damping and
natural frequency. The specific meaning of the parameter is
expressed by [21].

Due to the need of the algorithm in this paper, we convert
formula (5) into the state space expression in time domain
through Laplace inverse change. In order to deal with the
higher-order terms contained in the formula (4), we convert
the higher-order terms as follows.{

ψ̇(t) = p(t)
φ̇(t) = r(t)

(6)

Combined with formula (5) and formula (6), we can obtain
the state space expression of USV motion. The state-space
model of the USV’s sway, yaw, and roll motion states can be
obtained:  ẋ(t) = Ax(t)+ Bδ(t) + E1ω(t)

y(t) = Cx(t)+ De(t)
x(t0) = x0

(7)

x(t) =
[
v(t) r(t) ψ(t) p(t) φ(t)

]T with δ(t) ∈ Rm and x(t) ∈
Rn, p and r denote the roll velocity and yaw velocity, ω(t) =[
ωψ (t) ωφ(t)

]T means wave disturbance with ω(t) ∈ Rp,
e(t) ∈ Rv is measurement noise and x0 ∈ Rn denoting
the initial instant. Moreover C is the observation matrix of
appropriate dimension A,B and E are defined:

A =


−

1
Tv

0 0 0 0
Kvr
Tr
−

1
Tr

0 0 0
0 1 0 0 0

ω2
nKvp 0 0 −2ζωn −ω2

n
0 0 0 1 0



B =


Kdv
Tv
Kdr
Tr
0

ω2
nKdp
0

 , E =


0 0
1
Tr

0
0 0
0 ω2

n
0 0

 ,D = I

Specifically, using Euler’s approximation method. This
method will produce bounded approximation errors. Due
to the influence of set membership estimation theory and
unknown but bounded disturbance, we add the error of Euler
approximation directly to the bounded disturbance. Accord-
ing to the continuous formula (7). For a given sampling period
ts, a discrete model of the USV can be established:{

xi(k + 1) = A[i]xi(k)+ B[i]u(k)+ E [i]ω(k)
yi(k) = C [i]x(k)+ D[i]e(k)

(8)

i ∈ [1, 2, . . . n]. i = 1 represents the nominal system, i =
2, 3, 4.. is the model with different minor faults, xi(k + 1)
and yi(k) represent the state value and output value of the
system. A[i], B[i] andC [i] is state matrix, input matrix and out-
put matrix, respectively. D[i] and E [i] represent disturbance
coefficient matrix. shi is the active fault detection input signal
to be designed later.
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Theminor faults on the USV are difficult to be detected due
to disturbances and uncertain parameters, that is, the nominal
model and the fault model can not be distinguished without
the input of the designed auxiliary signal.

To increase the detectable range ofminor faults, active fault
detection methods are used for detection. By designing an
auxiliary input signal, a brief detection ismade in a simulation
model of an USV (the parameters are obtained from the actual
motion identification of the USV). The purpose of detection
is to completely distinguish the matrix of different states and
to judge whether the current USV state is in the fault state.
And return the detection results to the console of the USV.
The auxiliary separation signals are injected into the system
to strengthen the characterization of system faults. The active
fault detection method in this paper is based on the theory
of zonotopic set membership estimation in order to achieve
the purpose of separating the nominal system and the fault
systems, that is

ya ∩ yb = ∅, a 6= b, a, b ∈ {1, 2, 3, . . . , n}

where ya and yb are the output of different model.
In Fig 2, (a) represent the output set of the scenarios

without auxiliary signal. Blue, red and green respectively
represents the nominal state, fault 1 and fault 2, there is
an intersection between them, and fault detection cannot be
completely performed. (b) Represent the output set of the sce-
narios that input the auxiliary separation signal, in which the
set of fault-free state and fault state is completely separated,
and fault detection can be performed.

FIGURE 2. The process of fault detection.

B. PRELIMINARIES
This article uses the method of zonotopic set membership
estimation to calculate. A zonotope is defined as:

T = {Lξ + h : ξ ∈ Rng , ‖ ξ‖∞ ≤ 1
}
= Lξ ⊕ h (9)

h ∈ Rn is the center of T , L = [l1l2l3 . . . .lm] ∈ Rn×m

is the generator matrix of T . Below we use T = {L, h} to
express (9).

The operations of zonotopes is define:

T1 ⊕ T2 = {L1, h1} ⊕ {L2, h2}

= {(L1 + L2)ξ + (h1 + h2)}

= {[L1L2], h1 + h2}

MT = M{Lξ ⊕ h}

= {MLξ +Mh : ξ ∈ n, ‖ξ‖∞ < 1}

whichM is multiplying matrix, T1, T2 is zonotopes.

Lemma 1 [22]: Let A = {LA, ca + da} and B = {LB, cb +
db}. then A∩B = ∅ if and only if ca−cb /∈ {La, da}⊕{Lb, db}.

III. REACHABLE SET OF OUTPUT USING ZONOTOPIC
SET-MEMBERSHIP
Define the auxiliary input signal ũ = (u0, . . . , uN−1) ∈
RNnu . For 0 ≤ l ≤ k < N , we defined ũ`:k = (u`, . . . , uk).
Similarly, ĩ = (i0, . . . , iN ) ∈ Ĩ indicates different fault mod-
els. x0 represents the initial state matrix. The reachable set of
state will be used to describe the separated input set below.
Sk
(
ũ, ĩ, x0, w̃, v

)
and Ok

(
ũ, ĩ, x0, w̃, v

)
represent the state

and output at time k . Let Sl:k
(
ũ, ĩ, x0, w̃, v

)
= (Sl, . . . ., Sk )

and Ol:k
(
ũ, ĩ, x0, w̃, v

)
= (Ol, . . . .,Ok ), then we can be

derived that (Sj,Oj) = (Sj,Oj)(ũ0:j−1, ĩ0:j, x0, w̃0:j−1, vj), l <
j < k.
Denote the matrices Ã and B̃, etc. Through the iteration

of (8), which depend on l to k , such that:

S[i](ũ, ĩ, x0, w̃) = Ã[i](ĩ)x0 + B̃[i](ĩ)ũ+ Ẽ [i](ĩ)w̃

O[i](ũ, ĩ, x0, w̃) = C̃ [i](ĩ)S(ũ, ĩ, x0, w̃)+ D̃[i]
v (̃i)ṽ (10)

where

S̃[i] =


S[i]0
S[i]2
...

S[i]N−1

 , Õ[i]
=


O[i]
0

O[i]
2
...

O[i]
N−1

 , w̃[i]
=


w[i]
0

w[i]
1
...

w[i]
N−1



ũ =


u0
u1
...

uN−1

 , Ã[i] =


A[i]

0

A[i]
1

· · ·

A[i]
N−1



B̃[i] =


0 0 . . . 0
B[i] 0 · · · 0
...

. . .
...

A[i]
N−1

B[i] A[i]
N−2

B[i] · · · B[i]



Ẽ [i]
=


0 0 · · · 0
E

[i]
0 · · · 0

A
[i]
E

[i]
E

[i] . . . 0

A
[i]N−1

E
[i]
A

[i]N−2

E
[i]
· · · E

[i]


C̃ [i]
=

C
[i] 0
. . .

0 C [i]



D̃[i]
v =

D
[i]
v 0
. . .

0 D[i]
v


Using the operations of zonotopes, we can get

S(ũ, ĩ) = Ã[i](ĩ)X0 ⊕ B̃[i](ĩ)ũ⊕ Ẽ [i](ĩ)W̃

O(ũ, ĩ) = C̃ [i](ĩ)S(ũ, ĩ, x0, w̃)⊕ D̃[i]
v (̃i)Ṽ (11)
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X0 = {L0, h0},W = {LW , hW } and V = {Lv, hv}, W̃ is a
zonetope that the center h̃w = (hw, . . . .hw) and the generator
matrix L̃W = diag(LW , . . .LW ). Ṽ is the same as W̃ . Let’s
replace (11) with another expression.

S(ũ, ĩ) =
{
LS(ĩ), S̄(ũ, ĩ)

}
O(ũ, ĩ) =

{
LO(ĩ), Ō(ũ, ĩ)

}
(12)

With the centers S̄(ũ, ĩ) = S̃(ũ, ĩ, h0, hW̃ , hṼ ) and
Ō(ũ, ĩ) = Õ(ũ, ĩ, h0, hW̃ , hṼ ). The generator matrixs LS(ĩ) =
[Ã[i]L0 Ẽ [i]LW̃ ] and LO(ĩ) = [C̃ [i](i)LS(ĩ) D̃[i]

v (i)Lv]. More-
over, spliting the expression of zonotope for subsequent solu-
tions S̄N (ũ, ĩ) = S̄N (0, ĩ)+BSN (ĩ)ũ and ŌN (ũ, ĩ) = ŌN (0, ĩ)+
BON (ĩ)ũ, where B

S
N (ĩ) and B

O
N (ĩ) are the element of the Nth

recursion.

BSk+1(ĩ) = [A(ik )BSk B(ik )], B
O
k (ĩ) = C(ik )BSk (13)

IV. DESIGN FOR OPTIMAL AUXILIARY SEPARATION
SIGNAL
This section, using the above output set to design the auxiliary
optimal separation signal, Assuming that the initial auxil-
iary separation signal injected is ũ = [u0, u1, u2 . . . uN−1],
and the output ỹ = [y0, y1, y2 . . . yN−1] is observed. And
defineJ (ũ) =

∑N−1
k=0 (uk )TR(uk ).

Definition 1 [22]: For different scenarios i ∈ I, there are
different ỹ corresponding to i.

ỹ ∈ Õ(ũ, ĩ) (14)

Our purpose is to ensure that for each ỹ only represents one
type of i, scenario I includes different faults already nominal
system.
Definition 2 [23]: ũ ∈ RNnu is a separate auxiliary signal,

if and only if

Õ(ũ, ĩ) ∩ Õ(ũ, j̃) = ∅ (15)

Analogously, ũ is a separating input which can separates I
in [0,N ], if it separates every i, j ∈ I, and i 6= j.
Theorem 1: For system (8), the set of separated auxiliary

signals ũ is

�̃ = {ũ : 1Z̃ [i,j]ũ /∈ Ñ (ĩ, j̃)} (16)

where,∀i, j ∈ I , i 6= j,Ñ (ĩ, j̃) = {[LON (ĩ)L
O
N (j̃),ON (0,

ĩ)− ON (0, j̃)]} and 1Z̃ [i,j]
= (C̃(i)B̃(i)− C̃(j)B̃(j)).

Proof: Through (13), we can describe the expres-
sion (15){
LO(ĩ), ŌN (0, ĩ)+ B

O
N (ĩ)ũ

}
∩

{
LO(j̃), ŌN (0, j̃)+ B

O
N (j̃)ũ

}
Using Lemma1, we can get Theorem 1.
In this paper, by applying the auxiliary input signal to

the actual simulation model of USV, the final fault detection
effect is obtained and returned to the console of USV. The
performance index of the auxiliary input signal is mainly the
size of the signal input, and the larger signal will lead to an
increase in detection time, so on the premise that minor faults

can be detected, the size of the auxiliary signal can be reduced
as much as possible. So we transform the signal design prob-
lem into the Mixed Integer Quadratic Programming (MIQP)
problem. This kind of method is used to solve the MIP model
with quadratic objectives but no quadratic constraints.

We can describe the MIQP problem as follows:

min
ũk
(ũk)

TRũk

s.t.O[i]
N ∩O

[i]
N = ∅, i 6= j, i, j ∈ {0, 1, 2, 3 . . . p} (17)

In order to facilitate the calculation below, we make some
simplifications1Z̃ [i,j]

= 1Z̃ [p], Ñ (ĩ, j̃) = Ñ [p]
= {L[p], h[p]}

which p ∈ {1, . . . . . . I} express different scenarios andmatrix
L is row full rank.
Theorem 2: For each ũ and p ∈ {1, . . . . . . I}

inf ũT
ũ∈U

Rũ

δ̂[p](ũ) ≡ min δ[p]

s.t.Z [p]ũ = L[p]ξ [p] + h[p], ξ [p]∞ ≤ 1+ δ[p]

Z̃ [p]ũ /∈ Ñ [p] if and only if δ̂[p](ũ) > 0 (18)

Proof: L[p] is full rank, (18) is reasonable. If Z̃ [p]ũ /∈

Ñ [p], then @ζ [p] makes
∥∥ζ [p]∥∥

∞
≤ 1 and Z [p]ũ = L[p]ξ [p] +

h[p]. Therefore, δ[p] ≤ 0 has no feasible solution, which
means δ̂[p](ũ) > 0. On the contrary, if δ̂[p](ũ) > 0, then (15)
has no reasonable point when δ[p] ≤ 0 is satisfied. This means
that @ζ [p] makes

∥∥ζ [p]∥∥
∞
≤ 1 and Z [p]ũ = L[p]ξ [p] + h[p],

so Z̃ [p]ũ /∈ Ñ [p]. Then we can get Theorem2.
The design of the optimal auxiliary separation signal can

be solved by MIQP problem. then we will give condiction as
follow.
Theorem 3: For ∀ũ ∈ Ũ where Ũ = U ×U . . . . . .×U as

the auxiliary separation signal sets can write (18) as

inf ũT
ũ∈U

Rũ

s.t.ε ≤ δ̂[p](ũ) ≤ δ̂[p]m ,∀p ∈ {1, · · · , I} (19)

A single-level plan can be obtained by replacing the linear
internal plan in (18), using the necessary and sufficient con-
ditions for optimality, and the conditions are as follows:

inf ũT Rũ (20)

min
{
J (ũ) : ũ ∈ Ũ , ε ≤ δ̂[p](ũ) ≤ δ̂[p]m , p = 1, . . . , I

}
(21)

Z̃ [p]ũ = L[p]ξ [p] + h[p] (22)

ξ [p]∞ ≤ 1+ δ[p] (23)(
L[p]

)T
λ[p] =

(
µ
[p]
1 − µ

[p]
2

)
(24)

1 =
(
µ
[p]
1 + µ

[p]
2

)T
1 (25)

0 ≤ µ[p]
1 , µ

[p]
2 (26)

0 = µ[p]
1,k

(
ξ
[p]
k − 1− δ[p]

)
, ∀k = 1, . . . , n[p]g (27)

0 = µ[p]
2,k

(
ξ
[p]
k + 1+ δ[p]

)
, ∀k = 1, . . . , n[p]g (28)
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where λ[p], µ[p]
1 and µ[p]

2 are lagrange multiplier, 1 is a unit

vector, q[p]1 , q
[p]
2 are binary variables. The feasible set repre-

sented by δ̂[p](ũ) > 0 may not be a union, and there may
be no lower bound to satisfy it, so constraint ε ≤ δ̂[p](ũ) is
used.Where ε > 0 is the minimum threshold that satisfies the
separation condition. And assume that δ̂[p]m > 1. the feasible
set in (19) is not closed For each p, ε ≤ δ̂[p](ũ) ≤ δ̂[p]m , p =
1, . . . , I (22) to (28)can be used instead. µ1,k andµ2,k satisfy.

µ
[ij]
1 =

[
µ
[ij]
1,1 µ

[ij]
1,2 . . . µ

[ij]
1,2sy

]T
∈ R2sy

µ
[ij]
2 =

[
µ
[i]
2,1 µ

[ij]
2,2 · · · µ

[ij]
2,2s

]T
∈ R2sy (29)

Proof: The feasible set represented by (18) may not be
a closed set, there may be no lower bound to satisfy. So the
constraint δ̂[p](ũ) > ε is used, where ε > 0 represents the
minimum threshold required to satisfy the separation condi-

tion, such as δ̂[p]ũ < δ
[p]
m . Besides, the lagrangian equation

for optimal problem (19) is:

L = δ[p] + λ[p]
(
L[p]ξ [p] + h[p] − Z̃ [p]ũ

)
+µ

[p]
1,1

(
−ξ

[p]
1 − 1− δ[p]

)
+ µ

[p]
1,2

(
−ξ

[p]
2 − 1− δ[p]

)
+ . . .+ µ

[p]
2,2sy

(
−ξ

[p]
2sy
− 1− δ[p]

)
+µ

[p]
1,1

(
ξ
[p]
1 − 1− δ[p]

)
+ µ

[p]
2,2

(
ξ
[p]
2 − 1− δ[p]

)
+ . . .+ µ

[p]
2,2sy

(
ξ
[p]
2sy
− 1− δ[p]

)
= δ[p] + λ[p]

(
L[p]ξ [p] + h[p] − Z̃ [p]ũ

)
−

(
µ
[p]
1

)T
ξ [p] −

(
µ
[p]
1

)T
1−

(
µ
[p]
1

)T
1δ[p]

+

(
µ
[p]
2

)T
ξ [p] −

(
µ
[p]
2

)T
1−

(
µ
[p]
2

)T
1δ[p] (30)

We can get the first-order optimal condition through the
derivation of (29).

∂L
∂δ[q]

= 1−
(
µ
[q]
1 + µ

[q]
2

)T
1 = 0

∂L
∂δ[ij]

=

(
L[q]

)T
− µ

[q]
1 + µ

[q]
2 = 0

µ
[q]
1,l

(
ξ
[q]
l − 1− δ[q]

)
= 0

µ
[q]
2,l

(
ξ
[q]
1 + 1+ δ[q]

)
= 0 (31)

Complementarity constraints (27) and (28) are non-
convex, we use binary variables p1[q], p2[q] instead of expres-
sion and get the following formula:

q[p]1,k = 1µ[p]
1,k free,

(
ξ
[p]
k − 1− δ[p]

)
= 0

q[p]1,k = 0µ[p]
1,k = 0,

(
ξ
[p]
k − 1− δ[p]

)
free

q[p]2,k = 1µ[p]
2,k free,

(
ξ
[p]
k + 1+ δ[p]

)
= 0

q[p]2,k = 0µ[p]
2,k = 0

(
ξ
[p]
k + 1+ δ[p]

)
free (32)

Replace the formula (31) by the formula (23) (25) (26) to
get:

µ
[p]
1,k ≤ q

[p]
1,k , µ

[p]
2,k ≤ q

[p]
2,k(

ξ
[p]
k − 1− δ[p]

)
∈

[
−2

(
1+ δ̂[p]m

) (
1− q[p]1,k

)
, 0
]

(
ξ
[p]
k + 1+ δ[p]

)
∈

[
0, 2

(
1+ δ̂[p]m

) (
1− q[p]2,k

)]
(33)

Therefore, the signal solution process can be rewritten as

min
ũ,δ

[p], ξ [p], λ[p], µ[p]
1 , µ

[p]
2 , q

[p]
1 , q

[p]
2 J (ũ)

s.t. ũ ∈ Ũ{
ε ≤ δ[p] ≤ δ

[p]
m , (22)− (28)

q[p]1 , q
[p]
2 ∈ {0, 1}

n[p]g , (33)

}
∀p ∈ {1, . . . , I}

(34)

Then Theorem 3 is obtained by proof. This is a MIQP
problem that can be solved using the tool CPLEX in matlab.

Finally, algorithm 1 is obtained to solve the problem of
minor fault detection in USV, such as Algorithm 1.

Algorithm 1 Active Minor Fault Detection for USV
1: Get the zonotope state expression of USV.
2: Given A[i],B[i],C [i],E [i] and D[i], i = 1, 2, ..I.
3: Calculate L and Ō without auxiliary input signal
4: for k = 1 to end do
5: Obtain ũk−1 by Theorem 3, than inject it in system;
6: Calculate L and Ō according to (11);
7: end for
8: Describe the health output zonotope set O[1] and the

faulty output zonotope set O[i];
9: if yk ∈ O[1] then
10: Fault detection result is 0, the system is health;
11: else if yk ∈ O[i], i = 1.2 . . . ..I then
12: Fault detection result is 1,the system exist fault;
13: else if yk /∈ O[i], i = 0.1.2 . . . ..I then
14: Fault detection result is -1, can’t judge whether the

system is faulty.
15: end if

V. SIMULATION
To verify the effectiveness of the optimal auxiliary signal
design method, this chapter conducts simulation experiments
for USV without auxiliary signal and auxiliary signal.

First of all, through [20], we get the nominal model of the
USV and the state parameters of the USV under different
faults as shown in Table 2, set Sampling time ts = 0.1s
Describe and calculate each fault mode.

The model 1 represents health system with matrices
A1,B1,E1 and C1 in formula (8), choose the parameter as

A[1] =


−1.9000 0 0 0 0
−1.0925 −2.3750 0 0 0

0 1.0000 0 0 0
2.1202 0 0 −6.7839 −2.4679

0 0 0 1.0000 0


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TABLE 2. Parameters of USV.

B[1] =


0.0722
−0.0244

0
−0.0537

0

E [1]
=


0 0

2.3750 0
0 0
0 2.6569
0 0


C [1]
=
[
1 0.8 1 − 1 0.6

]
Model 2 represents a minor fault in the potentiometer of

the steering gear. This fault will lead to a rudder impact.
Make the rudder angle rotate too fast. This fault will make
the state parameter Kdv larger. Over time, the steering gear
may be damaged and the steering gear may fail. The specific
parameters of the fault model can be seen from Table 2.

A[2] =


−2.3750 0 0 0 0
−1.1400 −2.2353 0 0 0

0 1.0000 0 0 0
2.1202 0 0 −6.6738 −2.6569

0 0 0 1.0000 0



B[2] =


0.4513
−0.0340

0
−0.5750

0

E [2]
=


0 0

2.2353 0
0 0
0 2.2569
0 0


C [2]
=
[
1 0.8 1 − 1 0.6

]
Model 3 indicates the minor fault of the anti-rolling rud-

der in the rudder-rolling stabilization system so that the
anti-rolling rudder does not achieve the desired effect. Param-
eter Kvp decreases, and the specific parameters are shown in
Table 2. With time, the rudder anti-rolling may have a signif-
icant fault of aggravated rolling, which needs to be detected
in time. The state expression of the fault is as follows:

A[3] =


−1.6522 0 0 0 0
−0.7000 −2.000 0 0 0

0 1.0000 0 0 0
1.0096 0 0 −6.7638 −2.3759

0 0 0 1.0000 0



B[3] =


0.0634
−0.213

0
−0.0537

0

E [3]
=


0 0

2.3750 0
0 0
0 2.3759
0 0


C [3]
=
[
1 0.8 1 − 1 0.6

]
Model 4 represents theminor fault of the voltage instability

of the steering gear, which hinders the rotation of the rudder

blade. This reduces the parameters Kdr and Kdp. The param-
eters of the fault model are shown in Table 2, and the state
expression of the fault is as follows:

A[4] =


−1.6522 0 0 0 0
−1.1847 −2.2353 0 0 0

0 1.0000 0 0 0
2.1202 0 0 −6.7938 −2.6569

0 0 0 1.0000 0



B[4] =


0.0377
−0.0042

0
−0.0153

0

E [4]
=


0 0

2.2353 0
0 0
0 2.6569
0 0


C [4]
=
[
1 0.8 1 − 1 0.6

]
Model 5 shows that there is a slight wear on the rudder

blade of the steering gear, so that the USV can not reach the
expected first angle. It results in the increase of parameters
Kvr and Kvp, as shown in Table 2. With the passage of time,
the rudder blade will break and need to be detected in time.
The state expression of the fault is as follows:

A[5] =


−2.1111 0 0 0 0
−1.7733 −2.5333 0 0 0

0 1.0000 0 0 0
3.2308 0 0 −6.7938 −2.6569

0 0 0 1.0000 0



B[5] =


0.0802
−0.0270

0
−0.0537

0

E [5]
=


0 0

2.5333 0
0 0
0 2.6569
0 0


C [5]
=
[
1 0.8 1 − 1 0.6

]
Through Algorithm 1, we get the zonotopes’ L and Ō

without auxiliary separation signal in different situations.
Finally we denote it as Figure 3.
In generator notation, define X0 = {0.2I , (−3,−3)},W =
{0.5I , 0} and V = {0.2, 0}.
Fig 3 shows the nominal and faulty output groups without

using auxiliary separation signals. In this figure, zonotopes
with different colors are the output sets of the nominal model
and different faulty models.When the auxiliary input signal is
not injected into the system, the output set is the intersection
of the output set of the nominal model and the faulty model.
When the output set crosses, it is unable to determine whether
the system is currently malfunctioning or distinguish the type
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FIGURE 3. The output set for scenarios without auxiliary separation signal.

FIGURE 4. The output set for scenarios with auxiliary separation signal.

of faults. For example, fault model 2 and fault model 5
are the factors that affect the stability of the ship. It can
not be well distinguished when there is no auxiliary signal
input. Therefore, to diagnose minor faults in the system, and
separate different types of faults, we need to inject excitation
signals into the system to strengthen system characterization
for detection.

Then we will get the optimal auxiliary separation signal
according to Theorem 3, we can get the optimal auxiliary
separation signal. Inject the signal into the detection system.
The injection of the auxiliary signal will not affect the gener-
ation matrix of zonotope, so we get the Ō of zonotope below.
Finally we can get Fig 3.

In Fig 4, we design the auxiliary signal input through algo-
rithm 1 of this paper and inject the signal into the detection
system. We get that the five zonopotes sets in Fig 3 have no
intersection, achieve complete separation, and get the result

we expected. Among the minor faults we define, there are
fault states that are difficult to distinguish. The existence of
these faults may affect the safety of the USV in the future.
By injecting auxiliary signals, first, we can completely dis-
tinguish different fault states and find the exact fault point.
Second, we can completely distinguish between the healthy
state and the minor fault state and detect the existence of the
minor fault in time to prevent the minor fault from turning
into a significant fault. Achieved the purpose of active fault
detection of USV.

The simulated system experiment will be carried out, and
the operating conditions of the system as follow:

Actual system
{
Health status 0 < k< 3
Fault model 5 4 <k< 6

(35)

Through formula 8 and algorithm, we can get the final
output and auxiliary signal.
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FIGURE 5. The amplitude of auxiliary input signal for zonotope framwork.

FIGURE 6. Output Yk of unmanned ship under set conditions.

FIGURE 7. The simulation result of output zonotope at k ∈ [1, 2].

The simulation results of output zonotopes in areb with k ∈
[5, 6] shown in Fig 7. As can be seen from the figure, the
output of the actual system is in a normal state.

As shown in Fig 8, when k ∈ [5, 6], the output of the
system is included in the set of fault 5, so it is judged to be
fault 5.

Combining Fig 3, Fig 4 and simulation experiments. First
of all, we apply the set membership estimation to the fault
detection method of the USV. Through Fig 4, we can know
that there is an intersection between the different minor fault
models and the health model. this makes it difficult for us

FIGURE 8. The simulation result of output zonotope at k ∈ [5, 6].

to judge whether there is a minor fault and the location of the
fault in a short time. In this case, we inject the auxiliary signal
obtained by Algorithm 1 into the system and we can get Fig 4.
In Fig 4, we make a complete distinction between health
models and different micro models. We can diagnose minor
faults and determine the location of faults, thus reflecting the
superiority of active fault detection.

VI. CONCLUSION
Aiming at variousminor fault detection problems ofUSV, this
paper designs a zonotope active fault detection method and
considers the uncertainty of the USV system. The zonotope
model of USV is obtained through the equation of motion of
USV, and each matrix is derived. The problem of active fault
detection and optimization separation is further transformed
into a MIQP problem to solve. A suitable auxiliary signal is
injected into the system to amplify the fault characteristics
of the system without affecting the stability of the system,
to achieve the purpose of fault detection. Finally, the sim-
ulation experiment of USV shows the rationality of the
method.
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