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ABSTRACT Automatic text summarization is one of the most challenging and interesting problems in
natural language processing (NLP). Text summarization is the process of extracting the most important
information from the text and presenting it concisely in fewer sentences. Call transcript involves textual
description of a phone conversation between a customer (caller) and agent(s) (customer representatives).
Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic
text summarizers, which are developed to summarize continuous texts such as articles and stories. This
paper presents an indigenously developed method that combines topic modeling and sentence selection
with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more
readable summaries. This unique combination is what distinguishes the proposed summarizer from other
text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art
extractive summarizer using three different pre-trained language models, have demonstrated the efficacy
of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer
are shown to be more compelling and useful based on multiple criteria.

INDEX TERMS Extractive summarization, topic models, transformers, embedding, punctuation restoration.

I. INTRODUCTION
In recent years, there is an abundance of multi-sourced
information available for public consumption, fueled by the
growth of the Internet. In many cases, this volume of readily
available text requires effective summarization for different
purposes. It is very difficult for humans to manually summa-
rize large quantities of text. Hence, automatic text summa-
rization has become a desirable tool in today’s information
age. It produces concise, fluent and readable summaries from
larger bodies of text, while preserving the original infor-
mation content and meaning. Such summarization can be
very useful when applied to various domains such as news
articles, emails, call transcripts, medical history, and mobile
text messages. Many such summarizers are available online
on the Internet, including Microsoft News2 and Google1
for news articles [1], MEAD and SWESUM for biomedical
information [2], and WikiSummarizer for Wikipedia articles.
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Numerous approaches have been developed for automatic
text summarization, which can be broadly classified into two
groups: extractive and abstractive summarization. Extractive
summarization extracts important sentences from the original
text and reproduces them verbatim in the summary, whereas
abstractive summarization generates new sentences.

Call transcripts are written texts originally presented in a
different medium; thus, call transcription is defined as the
process of converting a voice or video call audio track into
written words through speech-to-text conversion, to be stored
as plain text in a conversational language. In this paper,
however, we will confine ourselves to textual descriptions
of audio recordings of voice calls between the customer
(caller) and agent(s) (customer representatives) of a phone
company. Automatic summarization of call transcripts, in our
consideration, pose certain unique challenges, as follows:
1) they are not continuous texts but include conversation
between customers and agents, 2) they are often very long
and are embedded with ‘‘small talks’’ and can include a large
number of sentences that are irrelevant and evenmeaningless,
3) they include several ill-formed, grammatically incorrect
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sentences, 4) they are either un-punctuated or are improperly
punctuated based on pauses in the conversation as perceived
by annotators and so are often unreadable, and 5) existing
open-source summarization tools don’t perform too well with
call transcripts. Hence, a new domain-specific text summa-
rizer is required.
In this paper, we present a novel extractive summariza-

tion technique that combines channel separation (separation
into customer and agent transcripts), topic modeling, and
sentence selection with punctuation restoration to produce
properly punctuated, fixed-length and readable customer and
agent summaries from the original call transcripts, which
can adequately summarize customer concerns and agent
resolutions.

II. RELATED WORK
Related research can be broadly grouped into two categories:
1) extractive summarization and 2) abstractive summariza-
tion. Research in the first category is most relevant to our
work.

Radef et al. [3] defined summary as ‘‘a text that is produced
from one or more texts, that conveys important information
in the original text(s), and that is no longer than half of
the original text(s) and usually, significantly less than that.’’
Automatic text summarization gained attention as early as the
1950s. Different methods and extensive surveys of automatic
text summarization have been provided in [1], [4], [5], [6],
[7], [8], [9], [10], [11], [12], and [13].

Luhn et al. [14] introduced a method for extracting salient
sentences from text using features such as word and phrase
frequencies. They proposed weighting the sentences of a
document as a function of high-frequency words, ignoring
very high-frequency common words. Edmundson et al. [15]
described a paradigm based on key phrases where they used
four different methods to determine the sentence weight.
Kupiec et al. [16] developed the trainable document summa-
rizer, which performed the sentence-extracting task based on
a number of weighting heuristics. Bookstein et al. [17] built
clusters of index terms, phrases and other subparts of docu-
ments for extractive text summarization. Brandow et al. [18]
launched the ANES text extraction system that automati-
cally condensed domain-independent electronic news data.
Conroy et al. [19] and Mittendorf et al. [20] used hidden
Markov models for text summarization. Chen et al. [21]
discussed a sentence-selection-based approach to text sum-
marization, whereas Gong et al. [22] and Wang et al. [23]
described how multiple documents could be summarized
using topic models. Wu et al. [24] suggested a new text-
to-graph task for predicting summarized knowledge graphs
from long documents, whereas Franciscus et al. [25] used a
belief graph data model that aggregated words in a semantic
order to generate short texts. Zhong et al. [26] formulated the
extractive summarization task as a semantic text-matching
problem, in which a source document and candidate sum-
maries (extracted from the original text) were matched
in a semantic space. Neto et al. [27] introduced machine

learning approaches to automatic text summarization and
Kaikhah [28] discussed how neural networks could be useful
for summarizing news articles. Suanmali et al. [29] proposed
a fuzzy logic based extractive text summarization to improve
the quality of summaries created by the general statistical
method. Nallapati et al. [30] presented a recurrent neural
network (RNN) based sequence model for extractive sum-
marization of documents. Narayan et al. [31] conceptual-
ized extractive summarization as a sentence-ranking task
and proposed a novel training algorithm for optimizing the
recall-oriented understudy for gisting evaluation (ROUGE)
metric [32] using a reinforcement learning objective.
Xu et al. [33] constructed a neural model for single-document
summarization based on extraction and syntactic compres-
sion. Verma et al. [34] applied a restricted Boltzmann
machine to enhance the summaries of factual reports cre-
ated through extractive summarization. Miller [35] used bidi-
rectional encoder representations from transformer (BERT)
model [36] to summarize lecture notes. Liu [37] demonstrated
that BERTSUM, a simple variant of BERT for extractive
summarization, outperformed the previous best performance
on the CNN/Dailymail dataset on ROUGE-L scores. Subse-
quently, Liu et al. [38] demonstrated a general framework
for applying BERT to both extractive and abstractive sum-
marizations. Zhang et al. [39] proposed HIBERT for doc-
ument encoding, designed a method for pre-training it for
document modeling using unlabeled data and then applied
their pre-trained HIBERT to document summarization to
achieve state-of-the-art performance on both CNN/Dailymail
and NewYork Times datasets. Lemberger et al. [40] reviewed
several deep learning architectures for automatic text summa-
rization. Our approach is semantically similar to [18], [22]
and [23], but the differences lie in our contributions, as listed
in Section III. In addition, unlike in [14], [15] and [18], our
term and sentence selections are based on similarity analysis
using pre-trained embedding models.

Lin et al. [41] surveyed the state-of-the-art in abstrac-
tive summarization, while Khan et al. [42] reviewed vari-
ous abstractive summarization methods. Nallapati et al. [43],
Paulus et al. [44], See et al. [45] and Liu et al. [46]
employed recurrent neural networks, deep reinforcement
learning, pointer-generators and generative adversarial
networks for abstractive summarization. More recently,
Savelieva et al. [47] used BERTSUM with transfer learning
to generate summaries of narrated instructional videos across
topics ranging from gardening and cooking to software con-
figuration and sports.

III. MAJOR CONTRIBUTIONS
Our main contributions and advantages are as follows:

1) We integrate topic modeling and embedding based
sentence selection with transformer based punctua-
tion restoration for extractive summarization through
a novel 10-step sequential method (procedure).

2) Our method splits the original call transcript into
customer and agent transcripts using the associated
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channel identifiers and then summarizes each transcript
separately for more coherent results.

3) Our method restores full punctuation to the summaries
of un-punctuated or ill-punctuated call transcripts.

4) We uniquely modify and retrain the BERT trans-
former model architecture for punctuation restoration
by adding a classification layer above the 12 layers of
BERT.

5) Our method creates, compares and evaluates the per-
formances of different types of topic models for the
transcripts, before selecting the most optimal one for
summarization. It also provides the option to specify
the topic model type to be used for extractive sum-
marization and allows the summarizer to use different
topic model types for customer and agent summaries.

6) We introduce a new metric for measuring the effec-
tiveness of punctuation restoration in the punctuated
summaries.

7) We demonstrate that the proposed summarizer can
outperform other open-source, popular, state-of-the-art
extractive summarizers in summarizing call transcripts.

IV. PRELIMINARIES – CONCEPTS AND TECHNOLOGIES
In this section, we clarify key concepts and terminologies and
explain certain technologies, which provide the foundation
for our work.

The automatic summarization of text is a well-defined task
in the field of natural language processing (NLP). Automatic
text summarization attempts to convert a larger document into
a shorter version while preserving its information content
and overall meaning. A good summary should reflect the
diverse topics of a document while maintaining minimum
redundancy [7]. Next, we look at two different approaches
to automatic text summarization: extractive and abstractive.
Extractive summarization methods identify the relevant

sections in the original text, select the most important
paragraphs, sentences, phrases, etc., and concatenate them
into shorter forms. By contrast, abstractive summarization
methods attempt to convey the most important informa-
tion from the original text by generating new sentences.
In other words, they interpret, examine and analyze the
original text using advanced natural language techniques
to obtain a better understanding of the content and then
describe it through shorter and more focused text, compris-
ing of new sentences. Purely extractive summaries often
yield better results than automatic abstractive summaries
[48]. This is because abstractive summarizationmethods cope
with problems such as semantic representation, inference
and natural language generation, which are relatively more
difficult than data-driven approaches such as sentence extrac-
tion [4]. Most abstractive summarization techniques, specif-
ically those using deep learning, also depend on extractive
summarization to extract the summaries for the training sam-
ples from which they train to generate new text. In this study,
we focus only on extractive summarization, as it is relevant
to our work.

A. EXTRACTIVE SUMMARIZATION
Extractive summarization techniques extract the most impor-
tant sentences, paragraphs, etc., from the original text. The
importance of the sentences is based on their statistical and
linguistic features. The input can be either single or mul-
tiple documents, or text sources. Extractive summarization
consists of three main steps: intermediate representation of
the input text, scoring of sentences based on the intermediate
representation, and selection of sentences for summary gen-
eration. There are two approaches, topic-based and indicator-
based, which are used for the intermediate representation
of the original text. Topic-representation-based approaches
transform input text into constituent topics. These are further
grouped into frequency-driven, topic word-based, cluster-
based, latent semantic analysis-dependent, and Bayesian
topic model-based methods. Indicator-representation-based
approaches characterize sentences in the input text through
features such as sentence length, position in the document,
having certain phrases, etc. These are further grouped into
graph-theoretic, fuzzy-logic driven, machine learning-based,
and neural network-based methods.

B. LATENT SEMANTIC ANALYSIS
Latent semantic analysis (LSA), also known as latent seman-
tic indexing (LSI), is an unsupervised method for extracting
a representation of text semantics based on observed words.
It attempts to bring out latent relationships within a collection
of documents on to a lower-dimensional space. LSA is based
on the principle that words that are close in meaning occur in
similar pieces of text (the distributional hypothesis). It uses a
mathematical technique called singular value decomposition
(SVD) to identify patterns in the relationships between terms
and concepts contained in unstructured texts. This method
was introduced by Deerwester et al. in [49]. It has been used
for multi-document summarization.

C. BAYESIAN TOPIC MODELS
Topic modeling can be described as a statistical method for
finding a group of words (i.e., topic), from a collection of doc-
uments, that best represents the information in the collection.
Bayesian topic models are unsupervised probabilistic models
that uncover and represent the topics of documents or source
texts [50]. They have gained immense popularity in the recent
years. Their advantage in describing and representing topics
in detail enables the development of summarizers, which
can use them to determine the similarities and differences
between documents to be summarized [10].

Many techniques have been used to obtain probabilistic
topic models. Latent dirichlet allocation (LDA) is a widely
used topic modeling technique that represents documents as
a random mixture of latent topics, where each topic is a
probability distribution of words [51]. It has recently been
used for multi-document summarization. The hierarchical
dirichlet process (HDP) is another topic modeling technique,
which is an extension of LDA. It is a nonparametric Bayesian
approach that uses a mixed-membership model for unsu-
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pervised analysis of grouped data. Unlike LDA (its finite
counterpart), HDP infers the number of topics from the data.

D. TRANSFORMERS
Transformers in NLP provide general-purpose architectures
for natural language understanding (NLU) and natural lan-
guage generation (NLG) with over 32+ pre-trained mod-
els. These were first introduced in [52]. Transformers are
Seq2Seq deep learning models that transform sequential
inputs into sequential outputs. However, they are based
solely on attention mechanisms, dispensing entirely with the
recurrence and convolutions of earlier deep learning archi-
tectures. Transformers do not require sequential data to be
processed in order, which allows for more parallelization than
recurrent neural networks (RNNs), thereby reducing train-
ing times [52]. Since their introduction, transformers have
become the model of choice for tackling many problems in
NLP, replacing older recurrent neural network models such
as the long short-term memory (LSTM). Transformer models
can train onmuch larger datasets than before because they can
support more parallelization during training. This has resulted
in the development of pre-trained systems such as bidirec-
tional encoder representations from transformers (BERT)
[36]. BERT is a bidirectional transformer pre-trained, using
a combination of masked language modeling objective and
next sentence prediction, on a large corpus comprising the
Toronto Book Corpus and Wikipedia, by jointly conditioning
on both left and right contexts in all layers. Consequently,
a pre-trained BERT model can be fine-tuned with only one
additional output layer to create state-of-the-art models for a
wide range of NLP tasks [36]. GPT-2 [53] and XLNet [54]
are two other recently pre-trained NLP models. GPT-2 was
trained on 40 GB dataset called WebText and has approxi-
mately 1 billion parameters. It was trained to predict the next
word. XLNet is an improved version of BERT that imple-
ments permutation languagemodeling in its architecture and
randomly predicts the next tokens.

Transformers employ a 12-layered encoder-decoder
architecture comprising a stack of six encoding layers that
processes the input iteratively one layer after another and
another stack of six decoding layers that does the same thing
to the output of the encoder. The encoders are all identical
in structure. Each one is broken down into two sub-layers,
namely, self-attention and feed-forward neural network. The
decoder has one more layer between them, which is an
attention layer that helps it focus on relevant parts of the input
sentence (similar to what attention does in Seq2Seq models).
Therefore, when a sentence is passed into a transformer, it is
embedded and passed into a stack of encoders. The output
from the final encoder is passed to each decoder block in the
decoder stack, which then generates the output.

E. EMBEDDINGS
Embeddings are mathematical functions that map ‘‘entities’’
to a latent space with complex and meaningful dimensions.
Words, sentences or paragraphs can be mapped into a shared

latent space so that the meanings of words, sentences or para-
graphs can be represented geometrically. Machine learning
approaches towards NLP require words to be expressed in
vector forms. Word embedding, proposed in [55], is a feature
engineering technique in which words are mapped into a
vector of real numbers in a pre-defined vector space. It is a
learned representation for text in which words with the same
meaning have a similar representation. The idea of using
a dense-distributed representation for each word is key to
this approach.Word2Vec and GloVe provide pre-trained word
embedding models in a type of transfer learning. Embedding
techniques initially focused on words, but attention soon
shifted to other types of textual content, such as n-grams,
sentences, and documents. The universal sentence encoder
(USE) [56] encodes text into high dimensional vectors that
can be used for text classification, semantic similarity, clus-
tering, and other natural language tasks. The model is trained
and optimized for sentences, phrases, or short paragraphs
from a variety of data sources with the aim of dynamically
accommodating a wide variety of natural language under-
standing tasks. The model maps variable length input English
text into an output of a 512 dimensional vector.

V. EXTRACTIVE SUMMARIZATION OF CALL TRANSCRIPTS
This section provides a description of an extractive summa-
rization technique that we propose for summarizing call tran-
scripts. This extractive summarization technique uniquely
integrates channel (speaker) separation, topic modeling, and
similarity based sentence selection with punctuation restora-
tion through a 10-step sequential method (procedure). This
procedure is highly parameterized. The following are the ten
self-contained steps, each with a brief description.

1) Call Transcript Channel (Speaker) Separation:
Separate each call transcript into customer and agent
transcripts based on its channel (speaker) identifier,
by iterating through all transcripts.

2) Partial Punctuation Restoration: Preprocess tran-
scripts (customer and agent) to remove existing punc-
tuations and use a transformer-based model to restore
punctuations partially, that is, restore only periods as
delimiters, so that sentences can be separated in each;
by iterating through all transcripts.

3) Document Preparation: Preprocess transcripts and
generate documents from customer and agent tran-
scripts, by iterating through all transcripts, that is, one
document from each transcript, where the document is
a list of words obtained through NLP pipeline based
preprocessing.

4) Topic Modeling: Build and optimize different types
of topic models using the vocabularies, corpus and
documents from all customer and agent transcripts, and
then pick the best customer and agent topic models
based on their coherence scores.
a) Build different types of customer and agent topic

models, such as LDA, LSI, and HDP, by varying
their hyper-parameter (e.g., topic number) values
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within pre-specified ranges and evaluate the mod-
els using their coherence scores (c_v, u_mass,
etc.).

b) Select the optimal (or near) topic models for cus-
tomer and agent transcripts.

If the ‘‘topic model type’’ is provided during the invo-
cation of the procedure, then model optimization is
confined to only that topic model type in step 4-a for
the best model selection.

5) Dominant Topic Identification:Obtain themost dom-
inant topic(s) from the aforementioned topic models
with the associated keywords for each customer and
agent documents in every pair, by iterating through all
transcripts.

6) Significant Term Selection: Obtain the most relevant
keywords/terms from each pair of customer and agent
transcripts by performing a term-based similarity anal-
ysis between the keywords of the corresponding domi-
nant topics, using one of the following two approaches,
by iterating through all transcripts.

a) Global Extraction – Extract terms from the key-
words associated with each pair of dominant top-
ics, which need not necessarily be present in the
transcripts (customer and agent) themselves.

b) Local Extraction – Extract terms from (local to)
the customer and agent transcripts that are similar
to the corresponding dominant topic keywords
and are also similar to themselves.

The ‘‘term extraction method’’ can be chosen during
invocation of the procedure.

7) Summary Generation: Generate fixed-length (user-
specified length) customer and agent transcript sum-
maries, by iterating through all pairs of customer and
agent transcripts.

a) Identify the most unique sentences in each of
customer and agent transcripts in every pair,
to reduce the transcripts’ lengths if necessary,
based on similarity analysis among all sentences
of the corresponding transcript using sentence
embeddings.

b) Extract a fixed number (user-specified) of most
relevant sentences from each of the customer
and agent transcripts (reduced) through sentence-
based similarity analysis between every sen-
tence of the corresponding transcript and the
string/document constructed from the most sig-
nificant terms for that pair of transcripts (step 6),
using embeddings.

The ‘‘desired summary length’’ (number of sentences)
can be specified during the invocation of the procedure.

8) Punctuation Restoration: Remove existing peri-
ods from each pair of customer and agent sum-
maries, restore partial and full punctuation using a
transformer-based model and post-process to make
them more readable, by iterating through all of them.

9) Summary Tabulation: Save summaries of all tran-
scripts in a table for future use.

10) Summarization Efficacy Determination: Evaluate
summaries on content (information) and readability
(punctuation restoration), by iterating through every
pair of transcripts and their corresponding summaries.
a) Summary Evaluation – Evaluate the goodness of

summarization by comparing customer and agent
summaries against original transcripts (or man-
ually generated summaries) to generate average
rouge and bleu scores.

b) Punctuation Restoration Evaluation – Evaluate
the correctness of punctuation restoration by
matching the number of punctuation symbols
(periods) between the extracted and their par-
tially punctuated summaries for both the cus-
tomer and agent, to generate the average accuracy
scores.

The full punctuation restored summaries from step 8 are
the outputs from this method (procedure). The full list
of parameters for the proposed procedure includes: Topic
Model Type (default: ‘‘None/False’’), Number of Topics
(default: 5), Number of Dominant Topics (default: 1),
Batch Size for Punctuation Restoration (default: 512), Term
Extraction Method (default: ‘‘global’’), Desired Summary
Length (default: 5), Summary Table Name (default: ‘‘sum-
mary_results’’), Word Similarity Threshold (default: 0.5),
and Uniqueness Threshold for Sentence Similarity (default:
0.5). Algorithm1 (Appendix) formalizes this procedure.

Next, we take a deeper look at some key steps of this pro-
cedure, discuss their implementations in detail, and provide
algorithms where necessary.

A. CHANNEL SEPARATION
Call transcripts include conversations/dialogs between cus-
tomers and one or more agents; thus the resultant summaries
can often get mixed up. The separation of a transcript into
customer and agent transcripts can make each summary more
coherent. Customer summaries can provide better ideas of
the problems, while the agent summaries can provide a better
understanding of the causes or solutions.

Call transcripts are generally available as json-formatted
objects. Hence, channel separation involves extraction of the
transcript string from the json-formatted object, channel iden-
tification, and decomposition of the transcript into customer
and agent transcripts using the associated channel identifiers.
If the channel identifiers do not clearly identify the speakers,
we can use a pre-trained BERT transformermodel [36] with a
linear classifier from the PyTorch nnmodule as an additional
layer, on top of BERT’s 12 layers, to classify each dialog of
the transcript into one of two classes, that is, customer and
agent and then combine each type of dialog to create customer
and agent transcripts.

B. DOCUMENT PREPARATION
A document is a list of keywords extracted from each tran-
script and used as an input to the topic model. For document
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preparation, we built a custom NLP preprocessing pipeline
comprising tokenization, punctuation, extended stop-words
and small words (length ≤ 4) removal, regular expression
matching, lowercasing, contraction mapping, bigrams and
trigrams creation, lemmatization, and part-of-speech tagging
(and allowable tag selection). This was implemented by com-
bining modules (functionalities) available from four Python
packages: re, spaCy, NLTK, and genism.

C. TOPIC MODEL OPTIMIZATION AND OPTIMAL MODEL
SELECTION
If the topic model type (t) is specified at the invocation of
the procedure, then we create multiple topic models (TM)
of the desired type, for both customer and agent, using
the documents (d), corpus (c) and vocabulary (v) from the
corresponding transcripts, by varying the hyper-parameter
(e.g., topic number or n) values within the pre-defined ranges
(e.g., 5-50) by the pre-defined steps; compute (ccs) their
coherence scores and identify the topic models (tmmax)
and associated hyper-parameter values that produce the best
scores. This can be expressed for both the customer and agent
using Equation (1).

tmmax = argmaxtm∈TM (ccs (tm (v, c, d, t, n)) : n

= NumberOfTopics, .., 50) (1)

Otherwise, by default, we perform the above-mentioned
activity for all three different topicmodel types, namely LDA,
LSI, and HDP, in parallel, and identify the topic models
and associated hyper-parameter values that produce the best
scores among the topic models of all three types. This can
be similarly expressed for both the customer and agent using
Equation (2).

tmmax = argmaxt∈{LDA,LSI,HDP}

(ccs(argmaxtm∈TM(ccs(tm(v, c, d, t, n)) : n

= NumberOfTopics, .., 50))) (2)

Figure 1 shows the steps involved in this algorithm. For
topic modeling, we used the Python based genism package
extensively.

D. PUNCTUATION RESTORATION
Here, we describe the punctuation restoration algorithm, used
in steps 2 and 8 of the aforesaid (proposed) procedure in
detail.

We used the BertForMaskedLM class of the PyTorch BERT
model (bert-base-uncased) [36], [57] for punctuation restora-
tion and added an additional linear layer (PyTorch nnmodule)
above the 12 BERT layers. The output of the original BERT
layers is a vector of the size of all vocabularies. The additional
linear layer takes this as input and gives as output one of
four classes, that is, ‘‘O’’ (Other), ‘‘Comma’’, ‘‘Period’’,
and ‘‘Question’’ for each encoded word. We retrained this
modified BERT model using TED transcripts, consisting
of two million words. Different variations of punctuation
restoration with the BERTmodel have been presented earlier;

FIGURE 1. Topic model optimization and selection.

however the retraining with the proposed architecture is a
unique approach for punctuation restoration. The steps of this
algorithm are as follows.

1) Preprocess either transcript to remove duplicate words,
phrases and expressions or punctuations inserted as
delimiters based on the annotator’s perceptions of the
pauses in the conversation or preprocess a summary to
remove periods. The output off this step is a continuous
string representing the cleaned and un-punctuated text
of the transcript/summary.

2) Instantiate the pre-trained BERT punctuation model
and initialize it on GPUs to classify each encoded
word in text to one of four classes, namely, ‘Other’: 0,
‘Comma’: 1, ‘Period’: 2 and ‘Question’: 3.

3) Tokenize the transcript/summary and encode tokens to
numeric format (token identifier/ID) using the BertTo-
kenizer (bert-base-uncased).

4) Create segments, of pre-specified sizes (32), of sur-
rounding token IDs for each encoded word (token ID)
from the text and insert ‘0’ as a placeholder halfway
through each segment and load tensor datasets (seg-
ments) of parameterized batch size (default: 512).

5) Use the placeholders from the above step to predict
punctuation class identifiers (class IDs) for all token
IDs in the segments using the modified BERT model
classifier.

6) Map class IDs to words/symbols and merge words
(if needed) to restore two sets of punctuated
transcripts/summaries, one with just periods (partial
punctuation restoration) and the other with all punctua-
tions (full punctuation restoration). Partial punctuation
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FIGURE 2. Punctuation restoration.

restoration is used in step 2, while both partial and full
punctuation restorations are used in step 8 of the main
procedure.

Figure 2 shows the algorithm using block diagrams.
We found that the BERT model for punctuation restoration
provided 30% more accurate results than the LSTM based
model. We implemented the punctuation restoration algo-
rithm using BERT Transformer, BertPunc and nn modules,
available from PyTorch.

E. SUMMARY GENERATION THROUGH SENTENCE
SELECTION
Next, we present an algorithm for generating separate cus-
tomer and agent summaries from each pair of transcripts
through sentence selection, starting with their corresponding
topic models. In other words, the following algorithm imple-
ments steps 5–7 of the proposed main procedure. The inputs
to the algorithm are a pair of customer and agent transcripts
and the corresponding optimized topic models, corpus, and
documents from all transcripts.

1) Use selected topicmodels (customer and agent) to iden-
tify dominant topic(s) from each of the customer and
agent documents for every pair and produce two lists
of associated keywords, one for each of customer and
agent transcripts. The ‘‘number of dominant topics’’
to be identified per transcript is a parameter of the
procedure.

2) Use the keywords/terms associated with customer and
agent dominant topics to extract the most signifi-
cant inter-related terms for each pair of transcripts.
This is achieved using word-based similarity analy-
sis. As mentioned previously in the main procedure,

FIGURE 3. Summary generation through sentence selection.

we provide two alternatives to keyword/term extrac-
tion, where the choice is parameterized.
If a global extraction is desired, then use the two lists of
keywords associated with the corresponding customer
and agent dominant topics in every pair, and identify
terms that are most similar to each other, that is, where
the degree of similarity is above a certain parameterized
threshold (default: 0.5).
Otherwise, if a local extraction is desired, then first
find a set of terms from each of the customer and
agent documents in every pair that is most similar
(≥ pre-specified threshold of 0.9) to the keywords
associated with the corresponding dominant topic(s)
for that transcript; second, identify terms from these
two sets of terms extracted locally from customer and
agent documents that are most inter-related, that is,
where degree of similarity is above the parameterized
threshold (default: 0.5).

3) Construct a string (or document) with the extracted
significant terms for each pair of customer and agent
transcripts.

4) Identify the most unique sentences in each of the cus-
tomer and agent transcripts in every pair using embed-
dings and eliminate redundant sentences to condense
the original transcripts. This is achieved by gener-
ating a correlation matrix with the embeddings for
all sentences in the original transcript and removing
those sentences whose correlations are above a certain
parameterized threshold (default: 0.5) for uniqueness.

5) Select a certain specified number (parameter to the
procedure) of the most important sentences from each
of the condensed customer and agent transcripts in
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every pair that are most similar to the string (for that
pair) constructed in step 3 of the current procedure
using sentence-based embeddings; list and concatenate
them in order; subsequently present the results as the
summaries for the corresponding transcripts.

Figure 3 illustrates the crux of this algorithm for any given
pair of transcripts, using block diagrams. For term-based
similarity analysis, we calculated cosine similarity between
GloVe encoded word vectors (300 dimensions) using spaCy’s
en_core_web_lg; while for sentence-based similarity analy-
sis and summary generation, we used the Universal Sentence
Encoder (USE) from tensorflow-hub, along with the Python
based pandas and numpy packages. The similarity between
two sentences is computed as the inner product of the two
tensors.

F. SUMMARIZATION EVALUATION
We determine the effectiveness of the summarizer by mea-
suring both the goodness (quality) of the summarization and
the correctness (accuracy) of the punctuation restoration,
reflecting the readability of the summaries.

For the quality of the information content of the gen-
erated summaries, we can use the metric rouge or bleu
scores to measure their goodness. We compared the cus-
tomer and agent summaries against the corresponding tran-
scripts (or manually generated summaries if available) by
computing their individual rouge (different types) and bleu
scores using the Python packages rouge (Rouge) and NLTK
(nltk.translate.bleu_score).

For the correctness of the punctuation restoration,
we define the following metric named as punctuation-
restoration-accuracy score to measure the accuracy of the
punctuation restoration algorithm.
Definition 1: The punctuation-restoration-accuracy score

represents the number of matches of punctuation symbols (or
just periods) between the original extracted text (transcript or
summary) and the punctuated text (transcript or summary),
expressed as a percentage (%).

To implement this metric, we can use the accuracy_score
function from python’s sklearn.metrics package. We evaluate
the effectiveness of the punctuation restoration algorithm
using the following two steps.

1) Extract periods from both the extracted customer and
agent summaries (step 7 of the main procedure) as
well as the period-only punctuation restored summaries
(step 8 of the same procedure) and produce four lists,
one each for extracted and partially punctuated sum-
maries for each of the customer and agent.

2) Count the number of matches between the two
extracted lists of periods from the extracted and par-
tially punctuated summaries of both the customer and
agent, and compute the above-defined accuracy scores
for both. In each case the number reflects the % of
periods from the partially punctuated (periods-only)
summary (from step 8) found in the extracted summary
(from step 7).

We computed the customer and agent rouge, bleu and
punctuation-restoration-accuracy scores for every pair of
customer and agent summaries, by iterating through all tran-
scripts, and calculated their averages from their respective
individual scores.

VI. PERFORMANCE AND EVALUATION
User satisfaction, effectiveness (quality of summaries and
correctness of punctuation), efficiency (summarization time),
flexibility, and performance comparison with other open-
source, state-of-the-art extractive summarizers are some of
the considerations that helped us evaluate the performance of
our summarizer for call transcript summarization.

A. EXPERIMENTAL SETUP
We set up a Spark cluster, consisting of a driver node
and dynamically allocated multiple executor nodes for data
collection, preprocessing and summarization. The NVIDIA
CUDA deep neural network (cuDNN v7.6) accelerated our
training process for punctuation restoration. We retrained and
tested the modified BERT transformer model on NVIDIA
Tesla V100-SXM2-32GB GPU based nodes. The driver node
used anywhere between one to four GPUs. We tested our
extractive summarizer on four separate samples from four
different use cases, consisting of 47, 50, 60 and 983 call
transcripts respectively. The transcripts in these samples
covered a wide range of issues including billing, refunds,
upgrades, outages, and maintenance. The average lengths of
the customer and agent transcripts in the four samples were
(4433, 6246), (3722, 4773), (3724, 4866), (3048, 4131)words
respectively. Evaluation of the results was both manual and
automated.

B. MANUAL EVALUATION
The summaries generated by the proposed method (proce-
dure) were manually verified and validated for content and
readability by four different user groups for the four different
use cases spread across multiple business units. The goal was
to see if the summaries were deemed generally useful for
the purposes that the transcripts were used in the specific
use cases. The process was informal, and the evaluation was
subjective. We relied on user (our customer) feedback and
allowed the users to manage and control their own evaluation
processes and satisfaction levels. Four different user groups
(customers), three internal and one external, manually evalu-
ated over 50 pairs of customer and agent summaries for four
different use cases.

For user evaluations, we mainly looked for answers to
questions that were both generic and specific to the use cases.
The following are some examples of these two types. The
answers to the questions are summaries of the corresponding
feedbacks received from the different user groups.

Generic
• Q1: Did the customer and agent summaries in general
give a fair description of the main problems (concerns)
and resolutions, based on the original, unseparated call
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transcripts? If so, then what % of customer and agent
summaries accurately summarized the content?
A1: All four user groups felt that the customer and agent
summaries generally described customer concerns and
agent resolutions. If only one problem was discussed
between the customer and the agent(s), then ∼80% of
the call transcripts were adequately summarized and
the summaries helped in a better comprehension of the
information content.

• Q2: Did the summaries capture other secondary issues
(topics) in addition to the main issue? If so then what %?
A2: The user groups felt that only about ∼50% of the
summaries captured secondary topics, if multiple issues
(e.g., billing, upgrades, outage, etc.) were all discussed
in the same conversation. The quality of the summaries
in such cases also depended on the value assigned to
the ‘‘Number of Dominant Topics’’ parameter of the
procedure.

• Q3: Did the punctuations help in making the summaries
more readable for understanding the content of the tran-
scripts?
A3: All four user groups unanimously opined that punc-
tuations significantly improved the readability of the
generated summaries.

• Q4: Have the punctuations been restored correctly?
A4: All four user groups concluded that for partially
punctuated summaries, ∼90% of the periods, and for
fully punctuated summaries, ∼80% of all the punctua-
tions were restored correctly.

• Q5: How did our summaries compare with manually
generated summaries, if available? Note that a manually
generated summary would consist of a fixed number
(same as that for the automated summary) of ordered
sentences extracted manually from the period-only cus-
tomer and agent transcripts generated in step 2 of the
proposed procedure that the user would deem as most
important from those transcripts.
A5: The user groups indicated that they compared the
automated summaries, with ∼15 manual summaries,
and found the matches to be satisfactory. Furthermore,
one group observed that the accuracy was ∼80% for
such a comparison if the number of sentences picked
in the manual summary was approximately 8% of the
whole transcript (i.e., 8 sentences for a transcript that
included 100 sentences in total). However, the accuracy
from such a comparison decreased if more or fewer
sentences were selected for manual summaries.

Use Case Specific

• Q1: Would the summaries indicate the possibility of
churning for callers, classified as churners?
A1: In one use case, an external vendor used ∼1000
of our summaries to validate the results of their classi-
fication model that they had built for Verizon to clas-
sify potential churners. This vendor indicated that the
quality of our summaries was very good, the summaries

captured the negative snippets adequately and were
extremely helpful in validating their results.

• Q2: Would the user be able to send agent summaries as
short text messages to customers to prevent them from
making repeat calls?
A2: The relevant user group, for this specific use case,
felt that very short summaries from our method (pro-
cedure), consisting of just 1-2 sentences sometimes did
not capture enough of the most important information
content and so might not be very successful in prevent-
ing repeat calls in these cases. Therefore, the messages
either needed to be longer or the summaries (2-3 sen-
tences long) needed to be more focused.

• Q3: How did the summaries generated by the proposed
10-step approach compare with summaries generated
by several other open-source, off-the-shelf summarizers
from transcripts that were originally ill-punctuated (with
periods) and where these transcripts (for external sum-
marizers) didn’t go through an accurate period restora-
tion step (i.e., step 2) of the proposed procedure?
A3: Two of the user groups responded by indicating that
our summaries were more meaningful and readable than
the summaries generated by their existing methods, i.e.,
genism summarizer, pytextrank, pysummarization auto-
abstractor, T5 (Google), for their use cases. The other
two groups did not have existing methods as their uses
cases did not directly require text summarization.

We used the feedback from each use case to improve our
method and the results. We are happy to report that different
business units are now using our summaries for different
business purposes on an ongoing basis.

C. AUTOMATED EVALUATION
For the automated evaluation, we examined effectiveness and
efficiency. We compared the performances of our summarizer
with those from another very popular, open-source extrac-
tive summarizer, namely Bert Extractive Summarizer [58],
using three pre-trained Language Models: BERT [36], GPT-
2 [53], and XLNet [54]. To measure the effectiveness of our
summarization and to compare performances, we used the
metrics rouge-1, rouge-2, rouge-l and bleu scores. We deter-
mined the efficacy of our punctuation restoration algo-
rithm using our own punctuation-restoration-accuracy score
metric.

The efficiency of a summarizer is important in real world
applications. We measured the efficiency of our summarizer
by recording the time taken by each of the 10 steps of the
proposed method (procedure). We also compared the effi-
ciency (execution time) of our summary generation algorithm
(step 7 of the main procedure) with those of the open-source
extractive summarizers by recording the time taken by each
to summarize each of the four different samples.

1) RESULTS AND SUMMARIZER COMPARISONS
Table 1 and Table 2 show short (∼5 sentences) sum-
maries from two call transcripts, after channel separations,
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TABLE 1. Internet service disruption & confirmation of technician’s visit.

describing customer complaints about Internet and phone ser-
vice disruptions and agents’ confirmations about impending
technicians’ visits. Table 3 compares the effectiveness and
efficiency of the proposed summarizer for shorter summaries
with those from the open-source Bert Extractive Summarizer
[35], [58], using the four different samples, on five different
evaluation metrics. We used the Bert Extractive Summarizer
with three pre-trained models, namely bert-base-uncased
[57], gpt2-medium [59], and xlnet-base-cased [60] for sum-
marizing the same call transcripts. Each pre-trained model
was used with its own tokenizer, configuration, vocabulary
and checkpoints. The gpt2-medium has 345 million parame-
ters. Bert Extractive Summarizer generated summaries using
the period-restored customer and agent transcripts from
step 2 of the proposed procedure. Its ratio parameter was
automatically adjusted, using the number of words in the
transcript, to ensure that its summaries were of comparable
(shorter) lengths. This is important as we found that the
longer the summary, the more similar it was to the original
transcript and the higher the rouge/bleu score.

In Table 3, for each sample, the rouge (rouge-1, rouge-2,
and rouge-l) and bleu scores that are given for each type
of transcript (customer/agent) represent the average of the
rouge and bleu scores of all summaries generated from the
corresponding type of transcripts contained in the sample.
Likewise, for each sample, the summarization time represents
the total time taken by the specific summarizer to generate
all customer and agent summaries from the transcripts of
that sample. Table 3 shows that for each of the four samples
of call transcripts, 1) the proposed summarizer generated
customer and agent summaries that had higher average rouge
(all three types) and average bleu scores, that is, overall better
quality than the summaries generated by the Bert Extractive

TABLE 2. Phone and internet service disruption and confirmation of
technician’s visit.

Summarizer using the three different pre-trained models;
2) the proposed summarizer mostly took≤ half the time com-
pared to the Bert Extractive Summarizer, employing the three
different NLP models, in summarizing all of the transcripts
for that sample. Hence, the results in Table 3 establish that the
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TABLE 3. Summarizer comparisons.

proposed summarizer was more effective and efficient than
Bert Extractive Summarizer for call transcripts. However,
this is expected for the following reasons: 1) the proposed
summarizer combined topic model optimization with a more
granular similarity analysis-based sentence selection, both
designed specifically for call transcripts, and 2) it employed
a faster, embedding-based summary generation step (step
7) that reduced the search space for sentence selection by
removing redundant (similar) sentences from the call tran-
scripts. Table 3 also illustrates that the BERT-based Bert
Extractive Summarizer performed better than the GPT2- and
XLNet-based summarizers on the average rouge score and
the summarization time across all samples of call transcripts.
However, on the average bleu score, there was no clear-cut
winner amongst the three different language-model-driven
BERTExtractive Summarizers. The punctuation-restoration-
accuracy scores for customer and agent summaries varied
between 90-100% in all cases.

It may also be noted that the proposed summarizer
is highly parameterized and provides more options than
the Bert Extractive Summarizer. However, its one limi-
tation is that it does not repair grammatical errors but
only reduces their numbers with fewer sentences and some
post-processing.

2) LIMITATIONS OF THE RESULTS
One limitation was associated with the evaluation procedure
of the proposedmethod. It originated from not having enough
manually crafted reference summaries for the larger samples
of call transcripts under consideration. In the absence of a
full set of reference summaries for larger samples, we com-
pared the generated summaries with the period-restored and
longer original transcripts (from step 2 of our procedure) to
compute their corresponding rouge and bleu scores. Thus,
the scores were slightly lower. However, this was done for
the summaries from both the proposed method (procedure)
and the Bert Extractive Summarizer to ensure consistency
and similarity in the comparisons, with the objective of
determining the extent of overlap between the generated
summaries and the original transcripts among the compared
summarizers.

VII. CONCLUSION
In this paper, we presented an extractive summarization
technique to address some of the challenges associated in
general with call transcript summarization. We combined
channel separation, topic modeling and sentence selection
with punctuation restoration to generate more readable call
transcript summaries to provide a better understanding of
customer concerns and agent recommended solutions. This
was perhaps the first summarizer to create and evaluate mul-
tiple types of topic models before selecting the most optimal
one for summarization. We provided a fine-grained similarity
analysis using both term-based similarities for significant
term extraction and sentence-based similarities for extrac-
tive summarization. This similarity analysis leveraged both
GloVe- and USE-based embeddings to exploit the semantic
content of words and sentences to determine their signif-
icance, uniqueness and relevance. The proposed extractive
summarizer was the only one that restored full punctuation
to the summaries generated from either ill-punctuated or
un-punctuated original call transcripts using a novel BERT
transformer-based model. We introduced a new metric to
evaluate the accuracy of punctuation restoration in the result-
ing summaries. Finally, we established the efficacy of the
proposed summarizer through extensive evaluations and per-
formance comparisons.

APPENDIX

Algorithm 1 Extractive Summarization Of Call Transcripts

Input: List of Call Transcripts, TopicModelType,
NumberOfTopics, NumberOfDominantTopics,
TermExtractionMethod, DesiredSummaryLength,
WordSimilarityThreshold, UniquenessThreshold,
SummaryTableName
Output:Lists of fully punctuated Customer and Agent
Transcript summaries
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Get the number of transcripts in the List of Call Tran-
scripts (TL), i.e., N ← length (TL)

Initialization of Customer & Agent Transcript and Doc-
ument Lists, i.e., CTL ← [];ATL ← [];CDOCL ←
[];ADOCL← []
Initialization of Keyword & Significant Terms lists, i.e.,
CKL← [];AKL← [];STL← []
Initialization of Customer & Agent summary lists, i.e.,
CSL← [];ASL← []
Initialization of partially punctuated Customer & Agent
summary lists, i.e.,
CSPL← [];ASPL← []
Initialization of fully punctuated Customer & Agent
summary lists, i.e., CSFL← [];ASFL← []

For j = 1 to N Do

Read each call transcript, i.e.,
T ← TL[j]

1. Separate call transcript into Customer and Agent tran-
scripts using channel identifier (channel separation),
i.e.,
CT,AT← splitChannel(T )
2. Preprocess transcripts (Customer & Agent) from
above to remove existing punctuations and use a trans-
former based model to restore only ‘‘periods’’ as delim-
iters between sentences (partial punctuation restoration
- ppr), i.e.,
CT← ppr(CT);AT← ppr(AT)

3. Generate documents (list of words) from each of Cus-
tomer and Agent transcripts using NLP pipeline based
preprocessing (document generation), i.e.,
CDOC← preprocess(CT);ADOC← preprocess(CT)
Append Customer and Agent transcripts to CTL and
ATL andCustomer andAgent documents to CDOCL and
ADOCL, i.e.,
CTL← add(CTL,CT));ATL← add(ATL,AT));
CDOCL← add (CDOCL,CDOC);
ADOCL← add(ADOCL,ADOC)

Create separate word lists (vocabulary) and corpus (bag
of words), i.e., words1, words2, corpus1 and corpus2,
from each of CDOCL and ADOCL, i.e.,
words1 = dictionary (CDOCL);
words2← dictionary (ADOCL);
corpus1←

[
corpus (d) fordinCDOCL

]
;

corpus2← [corpus (d) fordinADOCL]

If TopicModelType Then

Build Customer and Agent topic models of ‘‘TopicMod-
elType’’ using words1, corpus1, CDOCL and words2,
corpus2 and ADOCL, by varying the ‘‘num_topics’’
hyperparameter from ‘‘NumberOfTopics’’ to 50 and
compute coherence scores (c_v, etc.) for each model
and output lists of topic model (tm) & score pairs (topic
model creation), i.e.,
CTML←
[tm (words1, corpus1,CDOCL,TopicModelType, n)
for n = NumberOfTopics, .., 50];
ATML←
[tm (words2, corpus2,ADOCL,TopicModelType, n)
for n = NumberOfTopics, .., 50]

Else

Build Customer and Agent topic models of types
LDA, LSI and HDP using words1, corpus1, CDOCL
and words2, corpus2 and ADOCL, by varying the
‘‘num_topics’’ from ‘‘NumberOfTopics’’ to 50 and com-
pute coherence scores (c_v, etc.) for each model and
generate (lms) list of topic model (tm) & score pairs
(topic model creation), i.e.,
CTML←

∑
TopicModelTypeε{LDA,LSI,HDP}

[tm(words1, corpus1,CDOCL,TopicModelType, n)
for n = NumberOfTopics, ..,50];
ATML←

∑
TopicModelTypeε{LDA,LSI ,HDP}

[tm(words2, corpus2,ADOCL,TopicModelType, n)
for n = NumberOfTopics, ..,50]

4. Select the Customer and Agent topic models with
the highest coherence scores, where ‘‘num_topics’’ is
preferably close to ‘‘NumberOfTopics’’ (optimal topic
model selection), i.e.,
CTM, s1←max (CTML, key = lambda item : item[1]);
ATM, s2←max(ATML, key = lambda item : item[1])

For j = 1 to N Do

Read each document from CDOCL and ADOCL, i.e.,
CDOC← CDOCL [j] ;ADOC← ADOCL[j]
5. Identify the top ‘‘NumberOfDominantTopics’’ impor-
tant topics from the corresponding topic model and cre-
ate a combined list of associated keywords for each of
Customer and Agent documents (dominant topic identi-
fication), i.e.,
CDT,CDK← dominantTopic(CTM, corpus1,CDOC,
NumberOfDominantTopics)
ADT,ADK← dominantTopic(ATM, corpus1,ADOC,
NumberOfDominantTopics)
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If TermExtractionMethod is ‘‘global’’ Then
Extract significant terms from the two lists of keywords,
by comparing all pairs of keywords taking one from each
list, and selecting those whose similarity ≥ ‘‘WordSim-
ilarityThreshold’’ (global significant term extraction),
i.e.,
ST← flatten({(k1, k2) : (k1, k2) ε CDK× ADK,
similarity (k1, k2) ≥WordSimilarityThreshold})

Else

Select terms only from (local to) the Customer and
Agent documents that are similar to the corresponding
dominant topic keywords, where the similarity ≥ 0.9,
and create two lists, one for Customer and the other for
Agent, i.e.,
CK← flatten({(k1, k2) : (k1, k2) ε CDOC× CDK,

similarity (k1, k2) ≥ 0.9});
AK← flatten({ (k1, k2) : (k1, k2) ε ADOC× ADK,

similarity (k1, k2) ≥0.9})

Extract significant terms from the above two selected
lists, by comparing all pairs of keywords taking one
from each list, and selecting those whose similarity
≥ ‘‘WordSimilarityThreshold’’ (local significant term
extraction), i.e.,
ST ← flatten({(k1, k2) : (k1, k2) ε CK × AK,
similarity (k1, k2) ≥WordSimilarityThreshold })

6. Construct a document (string) of the significant terms
extracted in the previous step (string/document con-
struction), i.e.,
ST←

′

,′ .join(list(set(ST)))

Append Customer andAgent keywords to CKL andAKL
and extracted significant similar terms to STL, i.e.,
CKL← add (CKL,CK) ;AKL← add (AKL,AK);
STL← add(STL,ST)

Read each Customer and Agent transcript from CTL and
ATL, i.e., CT← CTL [j] ;AT← ATL[j]

7a. Identify and select unique sentences in each of Cus-
tomer and Agent transcripts, by removing all sentences
from the corresponding transcript, whose similarity to
the unique sentences ≥ ‘‘UniquenessThreshold’’ (tran-
script reduction), i.e.,
RCT←getUniqueSentences(CT,UniquenessThreshold);
RAT← getUniqueSentences(AT,UniquenessThreshold)

7b. Select top ‘‘DesiredSummaryLength’’ most impor-
tant sentences from each reduced Customer and Agent
transcripts, based on similarity scores obtained from a
sentence based similarity analysis between every sen-
tence in the corresponding transcript with the document
(string) of significant terms, to generate the correspond-
ing Customer and Agent summaries, (summary genera-
tion), i.e.,
CS←extractSummary(RCT,ST,

DesiredSummaryLength);
AS←extractSummary(RAT,ST,

DesiredSummaryLength)

8.Restore partial (only ‘‘periods’’ - ppr) and full punctu-
ations (fpr) to the generated summaries to create partially
and fully punctuated Customer and Agent summaries
(punctuation restoration), i.e.,
CSP← ppr (CS) ;ASP← ppr (AS);
CSF← fpr (CS) ;ASF← fpr(AS)

Append Customer and Agent summaries to CSL
& ASL, partially punctuated Customer and Agent
transcript-summaries to CSPL and ASPL and fully
punctuated Customer and Agent transcript-summaries to
CSFL and ASFL, i.e.,
CSL← add (CSL,CS) ;ASL← add (ASL,AS);
CSPL←add (CSPL,CSP);ASPL←add (ASPL,ASP);
CSFL←add (CSFL,CSF) ;ASFL←add(ASFL,ASF)

9. Save all call transcripts (TL), Customer & Agent
transcripts (CTL&ATL), Customer &Agent summaries
(CSL & ASL) and the corresponding partially and fully
punctuated Customer and Agent transcript-summaries
(CSPL, ASPL, CSFL, ASFL) in table ‘‘SummaryTable-
Name’’ (STN), i.e.,
STN← createTable(TL,CTL,ATL,CSL,ASL,CSPL,
ASPL,CSFL,ASFL)

10. Compute and print average rouge & bleu
(rb) and punctuation-restoration-accuracy (pra)
scores for Customer and Agent summaries from
CSPL and ASPL (summarization evaluation),
i.e.,
crs, cbs← rb(SummaryTableName [CSPL],
SummaryTableName [CTL]);
ars, abs← rb(SummaryTableName [ASPL],
SummaryTableName [ATL]);
cas← pra(SummaryTableName [CSPL],
SummaryTableName [CSL]);
aas← pra(SummaryTableName[ASPL],
SummaryTableName[ASL])
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