
Received 24 October 2022, accepted 3 November 2022, date of publication 11 November 2022,
date of current version 18 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221423

Improving IEEE 802.11ax UORA Performance:
Comparison of Reinforcement Learning and
Heuristic Approaches
KATARZYNA KOSEK-SZOTT 1, SZYMON SZOTT 1,
AND FALKO DRESSLER 2, (Fellow, IEEE)
1Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059 Kraków, Poland
2School of Electrical Engineering and Computer Science, Technical University of Berlin, 10623 Berlin, Germany

Corresponding author: Katarzyna Kosek-Szott (kks@agh.edu.pl)

This work was supported in part by the National Science Centre, Poland, under Grant DEC-2020/39/I/ST7/01457; and in part by the
German Research Foundation under Grant DFG DR 639/28-1.

ABSTRACT Machine learning (ML) has gained attention from the network research community because
it can help solve difficult problems and potentially lead to groundbreaking achievements. In the Wi-Fi
domain, ML is applied to solve challenges such as efficient channel access and fair coexistence with other
technologies in unlicensed bands. In this paper, we address the performance of uplink orthogonal frequency
division multiple random access (UORA) in IEEE 802.11ax networks. Optimization of UORA is a good
case for applying ML because of its inherent complexity and dependence on situation and time-dependent
parameters. In particular, we use deep reinforcement learning to tune UORA parameters. Our simulation
results show that even though the ML-based solution leads to close to optimal results, its operation is
comparable to a much simpler, non-ML heuristic. Therefore, we conclude that ML-based solutions to
improve IEEE 802.11 performance need not exceed well-designed heuristics.

INDEX TERMS deep Q-learning, IEEE 802.11ax, machine learning, OFDMA, reinforcement learning,
UORA, uplink orthogonal frequency division multiple random access.

I. INTRODUCTION
The IEEE 802.11ax amendment introduces uplink (UL)
multi-user (MU) orthogonal frequency-division multiple
access (OFDMA) to improve the efficiency of Wi-Fi net-
works. OFDMA-based channel access divides radio chan-
nel resources into subcarrier groups, called resource units
(RUs), which are then allocated to stations. Stations can
transmit simultaneously, which improves efficiency com-
pared to single-user transmissions. OFDMA has two modes
of operation: scheduled access (SA) [1] and random access
(RA) [2]. In the former, all decisions are made centrally
at the 802.11ax AP. Meanwhile, in the latter, decisions are
distributed and there is room for performance improvement.
Therefore, in this paper, we focus on the RA mode.

The associate editor coordinating the review of this manuscript and
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To provide RA OFDMA, 802.11ax defines uplink
OFDMA-based random channel access (UORA) [3], which
can be used in dense scenarios, e.g., in Internet of Things
(IoT) deployments or industrial wireless sensor networks [4],
[5]. SA is inappropriate for such scenarios due to the over-
head cost of polling all stations to determine their UL buffer
status. With RA, only stations that require UL transmission
opportunities compete for RUs using UORA rules. UORA is
based on two components: the OFDMA contention window
(OCW) andOFDMA random access backoff (OBO). Stations
select a random OBO counter from the range (0, OCW) and
then decrease it by the number of eligible RUs assigned
by the access point (AP) for uplink transmissions. OBO is
decremented during each UORA frame exchange (Figure 1).
Stations transmit when their OBO reaches 0. The OCW range
can be configured by the AP in the UORA parameter set
element, distributed through beacon frames. Unfortunately,
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FIGURE 1. Example of UORA operation in 802.11ax [2].

this basic operation (which we refer to as legacy UORA) is
highly inefficient under saturation [2].

Researchers have proposed to modify UORA in various
ways (cf. Table 1). The efficiency of UORA can be improved
by adaptive grouping [6], [7], spatial clustering [8], sub-
channel hopping [9], complementary probability instead of
backoff [10], additional carrier sensing [11], retransmission
awareness [12], OBOmodifications [2], [13], grouping-based
channel access [14], and considering adjacent channel inter-
ference [15].1 None of the above research uses ML methods,
although the application of reinforcement learning (RL) to
improve UORA operation is suggested as future work by
Kim et al. [13]. In fact, with the proliferation of the use of
ML solutions to improve Wi-Fi performance [17], extending
UORA with ML is the logical next step.

Thus inspired, in this paper, we present an RL-based OBO
procedure (RL-OBO) to adjust the UORA random access
backoff operation to the congestion level of the shared chan-
nel. After providing a brief description of legacy UORA
(Section II) and an existing non-ML heuristic (Section III),
our main contributions are:
• We design an RL-based OBO procedure (RL-OBO) for
UORA (Section IV), where, based on the observed prob-
ability of unsuccessful RUs, the AP learns the level of
network congestion and adjusts the OBO countdown to
achieve a higher success rate and, whenever possible,
avoid empty RUs. To the best of our knowledge, this has
not yet been done.

1Other UORA-related research areas include coexistence of RA and SA
modes; alternative MAC protocols (including deterministic channel access);
scheduler design; and adaptation to real-time, V2X, and healthcare IoT
applications [2], [16].

Algorithm 1 Legacy UORA (802.11ax)
1: OCWmin← 7
2: OCWmax← 31
3: if first transmission then
4: OCW ← OCWmin;

5: else if retransmission then
6: OCW ← 2× OCW + 1;
7: if OCW ≥ OCWmax then
8: OCW ← OCWmax;

9: end if
10: end if
11: OBO← random integer(0,OCW );
12: Station decrements OBO by nRU and selects a random

RU for transmission if OBO = 0.

• We evaluate RL-OBO using a simulation model to con-
firm the accuracy of the RL-based solution (Section V-
D). Unlike most of the literature [6], [7], [8], [9], [10],
[11], [12], [14], which considers only static scenarios,
we follow [13] and study dynamic network loads and
station churn.

• We compare the operation of RL-OBO with a previous
approach in Section V-F. This approach (E-OBO) is an
existing non-ML-based heuristic exhibiting good per-
formance (Section V-E). However, E-OBO requires the
static definition of certain parameters, which is its main
disadvantage (cf. Section III).

• We show that, even though RL-OBO can improve the
performance of legacy UORA, its behavior can some-
times be slightlyworse than that of E-OBO. In particular,
RL-OBO can produce suboptimal results and may lead
to throughput unfairness in dynamic environments.

We conclude the paper and outline future work in
Section VI. The notation and acronyms used are gathered in
Tables 2 and 3, respectively.

II. LEGACY UORA
UORA is summarized in Algorithm 1 while Figure 1 pro-
vides an example of its operation. First, a trigger frame (TF)
transmitted by the AP ensures the synchronization of partic-
ipating stations. Each TF can designate one or more RUs for
random access. The AP sets the association identifier (AID)
field in the transmitted TF to indicate the RA RUs assigned
to associated stations (AID = 0) and unassociated stations
(AID = 2045).
After the successful reception of a TF, stations contend

to access eligible RA RUs if they have pending data frames
destined to the AP. Each contending RA stationmaintains two
variables: OCW (initialized toOCWmin) and theOBOcounter
(initialized with an integer randomly selected from a uniform
distribution from 0 to OCW). If the OBO counter is smaller
than the number of available RA RUs, a station randomly
selects one of the RUs for data transmission. Otherwise,
it decrements the OBO counter by the number of eligible RUs
and waits for the next TF.
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TABLE 1. Literature review. Evaluation types: theoretical (T) and simulation (S).

TABLE 2. Notation used.

In the event of an unsuccessful transmission, the station
retransmits as follows. First, the station updates its OCW
counter to 2 × OCW + 1 every time OCW ≤ OCWmax.
Once OCW = OCWmax, the OCW value remains unchanged
for subsequent retransmissions. The station then randomly
selects a new OBO value in the range of 0 and OCW.

The AP can indicate the OFDMA contention window
(OCW) range (i.e., OCWmin and OCWmax) in the UORA
Parameter Set element, which is a part of management frames
(such as beacons and association frames). Alternatively, sta-
tions use the default OCW settings, i.e., OCWmin = 7 and
OCWmax = 31.

III. UORA WITH EFFICIENT OBO
Recently, we proposed an UORA improvement called effi-
cient OBO (E-OBO), which exhibits good performance [2].
We briefly explain the operation of E-OBO in this section to
compare it later with RL-OBO in Section V-F.

TABLE 3. List of acronyms.

In E-OBO, the AP changes the rate of station OBO count-
down based on the RU states observed in previous UORA
frame exchanges. We classify the RU states as successful (the
frame in the RU is acknowledged by the AP), unsuccessful
(more than one station selected the RU that resulted in a col-
lision), and empty (no station selected the RU). By observing
these states, the AP can determine whether congestion (many
unsuccessful RUs and few empty RUs) or nonsaturation (few
unsuccessful RUs and many empty RUs) conditions occur.
Then, the AP reacts by increasing or decreasing the rate of
OBO countdown with the α parameter, which is later passed
to the stations.
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Algorithm 2 E-OBO Procedure
1: α← 1
2: Measuring interval: ζ contention rounds
3: if puRU ≥ 0.33 and peRU < 0.33 then α ← max(0.1, α −

0.1)
4: else if puRU ≤ 0.5 and peRU ≥ 0.5 then α ← min(3, α +

0.2)
5: else
6: α← α;
7: end if
8: AP sends α in the TF to inform stations of the level of

contention in the network.
9: Stations decrement their OBO counters by α × nRU and

select random RUs for transmission if OBO = 0.

E-OBO is formally defined in Algorithm 2. The AP mea-
sures the probability of unsuccessful RUs (puRU) and empty
RUs (peRU) within a ζ interval and uses α ∈ [0.1, 3] to modify
OBO:

OBO←− OBO− α × nRU. (1)

By default, α = 1. Then, if puRU ≥ 0.33 and peRU <

0.33 (i.e., under congestion), the AP decreases α by 0.1.
If puRU ≤ 0.5 and peRU ≥ 0.5 (i.e., under nonsaturation), the
AP increases α by 0.2. Otherwise, α remains unchanged. The
selected α is transmitted in TFs that initialize each UORA
frame exchange. Then, the stations decrement their OBO
counters using (1). The remainder of legacy UORA is left
unchanged.

IV. RL-BASED OBO MECHANISM
In this section, we explain how UORA can be improved
with an RL-based OBO (RL-OBO) mechanism. In particu-
lar, we apply deep Q-learning (DQL) [18] to support IEEE
802.11ax2 APs in adjusting the α parameter to the con-
gestion level of the shared channel. Similarly to E-OBO,
we implement a centralized operation. Therefore, stations do
not decide on the α value but obtain this information from the
TFs transmitted by the AP before each contention round.

The implemented DQL model consists of three densely
connected layers. The first two layers are composed of
32 nodes and they use the rectified linear unit (ReLU) acti-
vation functions. The output layer has three nodes (corre-
sponding to the size of the action space) and it uses the linear
activation function.

In RL-OBO, the agent is installed at the AP and learns
(in the offline training phase) how to update α to reduce
collisions under varying congestion levels. After training, the
agent can be used to adjust the α value in online operation.

In RL-OBO, at each training step, the agent observes the
probability of unsuccessful RUs in state st and selects an

2DQL has previously been successfully applied to improve IEEE
802.11 performance in various areas: rate selection [19], CW tuning [20],
[21], [22], multi-AP association [23], and RU selection in OFDMA [24].

FIGURE 2. UORA simulator elements for training and testing RL-OBO.

action based on previous observations. The agent has three
possible actions to choose from:
• Action 1 – increase α, i.e., set the α parameter as
min(3, α + 0.1),

• Action 2 – decrease α, i.e., set the α parameter as
max(0.1, α − 0.1),

• Action 3 – leave α unchanged.
After taking each action, the agent receives feedback in the
form of a reward rt and a new state st+1. Based on the above,
the state space is one-dimensional (it stores the probability
of unsuccessful transmission) and the action space is three-
dimensional (increase α, decrease α, or leave α unchanged).

We notice that a collision is less desirable than an empty
RU, since empty RUs may be the result of low congestion.
Obviously, a successful transmission is the most desirable
outcome. Therefore, the reward is decreased by rE = 1.5 in
the case of each empty RU, increased by rS = 3 in the case
of each successful RU, and decreased by rU = 2 in the case
of each unsuccessful RU. The motivation behind selecting
these particular values is given in Appendix A. Additionally,
Actions 1 and 2 result in decreasing the reward by 0.1 to
promote Action 3 whenever possible (i.e., leave α unchanged
if the performance is satisfactory).

The agent calculates the probability of unsuccessful RUs as
the fraction of the total number of unsuccessful RUs divided
by the sum of the number of successful, unsuccessful, and
empty RUs. Additionally, to limit the number of possible
states, the agent rounds the results to two decimal places.

At each step (composed of 10 contention rounds, as pre-
sented in Figure 2) in the training process, the agent
stores st , at , rt , st+1 and, after each action taken, updates
the Q-value:

Q′(st , at )←− Q(st , at )

+ω(rt+γ (max
a
Q(st+1, a))−Q(st , at )) (2)
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Algorithm 3 RL-OBO Procedure
1: Train agent:
2: (1) For state st agent selects action at .
3: (2) AP sends α in TF to inform stations of network

contention level.
4: (3) Stations decrement OBO counters by α × nRU and

transmit in a randomly selected RU if OBO = 0.
5: (4) For a period of ζ contention rounds, the agent cal-

culates the reward as the sum of the results for each RU
i:

6: if Ri is successful then rt ← rt + rS
7: else if Ri is unsuccessful then rt ← rt − rU
8: else rt ← rt − rE F Ri is empty
9: end if

10: (5) Agent calculates new state st+1 = puRU , stores
st , at , rt , st+1, and selects new action at+1.

11: (6) Update the reward after action selection
12: if at+1 ∈ {1, 2} then rt ← rt − 0.1
13: end if
14: Repeat steps 2-5 until training is finished, i.e., when the

reward stabilizes.
15: Use trained agent:
16: (1) AP sends α, selected by the trained agent, in the TF

to inform stations of the contention level in the network.
17: (2) Stations decrement their OBO counters by α × nRU

and transmit in a randomly selected RUs if OBO = 0.

where Q is the old and Q′ is the new Q-value. Furthermore,
we define the mean squared error as the loss function and use
the ε-greedy strategy to balance exploration and exploitation.

The exploration rate (ε) is set to 1 at the beginning of
the first episode. Then, with each time step, it anneals lin-
early from 1 to 0.1 (with a decay of 0.995) to increase the
probability of exploitation. Additionally, at each time step,
a random number is generated from a uniform distribution
over [0, 1). The sampled value is then checked with the
current ε value. If it is lower, a random action is taken. Other-
wise, the learned action is performed. Therefore, initially, the
agent starts exploring the environment, and then it steadily
increases exploitation.

Table 4 summarizes all the parameters and settings of
the proposed machine learning model. The values of the
hyperparameters of the model were selected empirically (cf.
Appendix A) to provide good performance results.

In summary, the described model allows the AP to map
congestion levels (reflected by the number of empty, success-
ful, or unsuccessful RUs) to optimalα settings, which are then
announced to the stations in the TFs. The rest of the legacy
UORA operation is left unchanged. RL-OBO operation is
summarized in Algorithm 3.

V. RESULTS
To evaluate the performance of the two OBO selection
schemes, we implement both E-OBO and RL-OBO in a

TABLE 4. ML parameters.

custom 802.11ax UORA simulator. First, we provide details
regarding the simulator design. Then, we describe the sim-
ulation scenario and define the performance metrics used.
Next, we explain the RL-OBO training process and show how
the trained agent performs in testing scenarios. Subsequently,
we show how E-OBO performs under similar network con-
ditions (such an analysis was not carried out previously [2]).
Finally, we compare the ML-based and heuristic solutions.

A. SIMULATOR
Our custom 802.11ax UORA simulator is written in Python,
with the RL parts written using Keras. Unfortunately, to the
best knowledge of the authors, there are no real devices
available with an UORA implementation, which would make
an experimental evaluation possible.

The implemented simulator analyzes consecutive 802.11ax
UORA frame exchange sequences (Figure 1a) called con-
tention rounds. Decisions about future behavior are made
after each measurement interval, i.e., ζ contention rounds.
In accordance with the ML nomenclature, we refer to these
intervals as steps and to each simulation run – as episodes
(Figure 2). The simulator code is available to the research
community.3

B. SIMULATION SCENARIO
We study a scenario with a single AP without outside inter-
ference. We assume there are no channel errors, no hidden
nodes, and that stations always have data frames to send
(a full buffer model). There are two main input parameters
that we modify in the analysis: the number of stations ns
and the number of RUs nRU. We refer to the (ns, nRU) pair
as the current network configuration. The former parameter
denotes the number of stations transmitting to the AP. This
number fluctuates over time as stations join and leave the
network. We evaluate both fixed changes in the number of
stations as well as random ones. In the latter case, the number
of stations arriving or departing is randomly chosen from

3https://github.com/KatarzynaKosek/RL-UORA
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TABLE 5. Simulation parameters.

TABLE 6. RL-OBO training and testing parameters.

the ranges [1, 5], [1, 15], or [1, 30], which represents small,
moderate, and large network dynamicity, respectively. The
second network configuration parameter, the number of RUs,
is selected from the set {4, 8, 16, 32}. Since we are interested
in measuring upper-bound performance, we evaluate only
configurations in which the number of stations is greater than
the number of available RUs. Table 5 summarizes the general
simulation parameters.

C. PERFORMANCE METRICS
We consider the following performance metrics:

• throughput – measured as the sum of successfully trans-
mitted bytes divided by the simulation time (unless
otherwise indicated, throughput refers to the aggregate
network throughput),

• efficiency – measured at the AP as the number of suc-
cessful RUs divided by the total number of RUs,

• collision probability – measured by each station as the
ratio of successfully transmitted data frames and all
transmission attempts (we report the average probability
across all stations),

• fairness – measured using Jain’s fairness index calcu-
lated either over the throughput or collision probability
of each station.

We do not measure airtime since we evaluate only
AP-triggered frame exchanges, i.e., the channel contains
only consecutive UORA frame exchanges (Figure 1a). How

FIGURE 3. Reward for RL-OBO across 30 training episodes.

FIGURE 4. Evolution of RL-OBO’s α in the final training episode.

much data is contained in these exchanges is reflected in
the efficiency metric mentioned above. Furthermore, we are
interested in determining the upper bound of RL-OBO and
E-OBO performance, hence in some cases, the number of
stations varies up to a dense network of 90 stations.

D. RL-OBO PERFORMANCE
In this section, we first explain the RL-OBO training process,
which is performed in a scenario where the number of stations
increases by a fixed number over time. Then, we show how
the trained agent performs in dynamic scenarios, where the
number of stations increases randomly over time. Table 6
provides the training and testing parameters for RL-OBO.

1) TRAINING
In the training scenario, a fixed number of new transmitting
stations (five) arrive in the network every 100 steps. A single
step consists of ζ = 10 contention rounds, which gives the
agent time to estimate the congestion level in the network.
Additionally, every 500 steps we increase the number of RUs
(from 4 to 32) and the number of transmitting stations is then
set to 2×nRU. Therefore, there are 20 (ns, nRU) configurations
in each training episode.
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FIGURE 5. RL-OBO operation in the final training episode.

Simulations show that a training duration of 30 episodes
is sufficient; the reward stabilizes after about 10 episodes
(Figure 3). These results confirm the correct operation of the
implemented learning and its fast convergence.

The results for the final (30-th) training episode are shown
in Figures 4 and 5. RL-OBO allows UORA to adjust the α
parameter values to the number of contending stations and
the number of available RUs. This results in a moderately
high collision probability (pc), high network efficiency and
throughput, as well as high throughput fairness (ft ) and high
collision probability fairness (fpc ).

2) TESTING
After training in fixed-increase scenarios, we test the oper-
ation of RL-OBO in three scenarios with varying network
dynamics. We select the number of new station arrivals ran-
domly from the ranges [1, 5], [1, 15], and [1, 30] to reflect
small, moderate, and high network dynamicity, respectively.
Additionally, starting from step 1100, stations start leaving
the network. The number of stations leaving the network is
again randomly selected from the ranges [1, 5], [1, 15], and
[1, 30], respectively. We also set the minimum number of
stations as ns = nRU, because if the number of stations is
less than the number of available RUs, the resources would
be underutilized, leading to low observed efficiency. All other
aspects are similar to the training phase.

For each of the three network dynamicity scenarios,
we perform five independent runs (episodes), each composed
of 1500 testing steps in total (i.e., for each episode 15 different
network configurations are tested). These settings amount to
45 different network configurations per episode (3 network
dynamics × 15 configurations). The following metrics are
measured: network efficiency, throughput, throughput fair-
ness (ft ), and collision probability fairness (fpc )
In Figure 6, we present the average results of the five

testing episodes. Each point represents the results obtained
for a different configuration. The performance of RL-OBO is
highly satisfactory. For all measuredmetrics, the observations
are similar to those for the training scenario.

FIGURE 6. RL-OBO performance (the average of five testing episodes) for
three dynamic test scenarios (small, moderate, and large network
dynamicity). Results are gathered at the end of the measuring interval ζ .
The number of stations arriving or departing (since step 1100) is
randomly chosen from the ranges [1,5], [1,15], and [1,30], for the three
scenarios respectively.

TABLE 7. Simulation parameters for E-OBO.

FIGURE 7. E-OBO performance in fixed scenarios.

E. E-OBO PERFORMANCE
To measure E-OBO performance,4 which serves as a non-
ML benchmark, we use the parameters in Tables 5 and 7.
First, we test E-OBO under constant changes to the number
of transmitting stations, i.e., every 100 steps five new stations
appear in the network, similarly to the RL-OBO training
scenario. E-OBO allows UORA to adjust its operation to the

4In [2], E-OBO was shown to outperform OBO-CTRL [13]. However,
E-OBO was not previously analyzed for such dynamic scenarios; the results
presented in this section are novel and are provided for completeness.
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FIGURE 8. E-OBO performance in dynamic scenarios (small, moderate,
and large network dynamicity). Results are gathered at the end of the
measuring interval ζ .

FIGURE 9. Performance for dynamic change of the number of
transmitting stations at the end of a multiple of 100 steps: (a) E-OBO,
(b) RL-OBO (the average of five testing episodes).

number of competing stations, resulting in high values of the
five measured metrics (Figure 7).

Next, we test E-OBO under more varying conditions,
with low, moderate, and high network dynamicity. To ensure
a fair comparison, we use a configuration similar to the
RL-OBO dynamic case: the number of active stations in the

FIGURE 10. Comparison of E-OBO and RL-OBO performance in (a) fixed
increase and (b) dynamic increase scenarios.

network changes every 100 steps, while the analysis of each
of the three network dynamics lasts 1500 steps (after which
the number of stations and RUs is reset to four). Finally,
we change the number of RUs every 500 steps to check the
performance under different contention levels.5 The results
are shown in Figure 8. Once again, E-OBO allows UORA
to quickly adjust to the number of competing stations and
maintain high throughput, efficiency, throughput fairness,
and collision probability fairness.

F. RL-OBO VS. E-OBO
We now compare the performance of RL-OBO with E-OBO.
Figure 9 shows the final performance metrics for each con-
figuration (i.e., the converged results at the end of a multiple
of 100 steps). In general, both mechanisms perform compa-
rably under low, moderate, and high dynamicity. Analyzing
the performance in detail reveals the following. Although
both methods have high throughput and collision probability
fairness, E-OBO has more stable results. For RL-OBO, espe-
cially throughput fairness shows temporary decreases when

5Congestion decreases with the same number of stations and an increasing
number of available RUs.
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FIGURE 11. Training results for various combinations of rS , rU , and rE values. The combination used in the simulation results presented in
the paper is highlighted on the X-axis in red. The horizontal dashed lines indicate arbitrary performance thresholds: efficiency should be
larger than 0.3, throughput fairness – larger than 0.98, collision probability fairness – larger than 0.995, and delay – lower than 0.2 s.

the trend in the number of stations changes from increasing
to decreasing. However, fairness remains high (above 0.9).
Meanwhile, RL-OBO usually has a slightly lower collision
probability. This translates to efficiency – lower (if there are
too many empty RUs, i.e., the RL-OBO mechanism is too
conservative) or higher (if the prediction of current network
conditions is correct). However, the throughput values of both
mechanisms are comparable as both adapt to changing net-
work conditions quite well. To better highlight the similarities
between the measured metric values, we compare the E-OBO
and RL-OBO throughput results in fixed and dynamic sce-
narios in Figure 10. Clearly, regardless of supply (number of
RUs) and demand (number of stations), both methods lead to
comparable results.

VI. CONCLUSION
In this paper, we addressed the problem of low UORA
efficiency in dense 802.11ax deployments with high station

contention. We have shown that ML can be used to improve
the performance of the OBO mechanism, an important part
of UORA. Furthermore, we compared the performance of
the new RL-OBO mechanism with the E-OBO heuristic,
which does not implement ML. The simulation results con-
firm that the proposed approach gives satisfactory results
in various dynamic settings; however, when compared to
E-OBO, RL-OBO does not provide meaningful advantages.
Both mechanisms provide similar outcomes (i.e., through-
put, channel access fairness, efficiency) and, therefore, the
need for RL-OBO training and appropriate configuration of
ML-related hyperparameters becomes a disadvantage. The
selection of hyperparameters needs to be done carefully
(e.g., empirically with a grid search approach), since dif-
ferent values may lead to completely different (and often
worse) results. In contrast, E-OBO adjusts the α parame-
ter on the fly using predefined thresholds. In summary, the
result of the assessment of whether the ML-based solution
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TABLE 8. Network configurations used to compare the performance of
various reward parameter values.

(RL-OBO) outperforms a heuristic (E-OBO) can be inter-
preted as negative.

We conclude that ML should be used with care to resolve
existing network problems. Although ML may provide sat-
isfactory results, its application in a given area should be
well thought out. As we have shown, in the case of UORA,
the non-ML-based solution is already efficient, and the use
of ML does not bring important advantages. At the same
time, ML may be useful in distinguishing between colli-
sions and channel errors [25] to improve the efficiency of
E-OBO in more complex scenarios, e.g., with time-sensitive
services [26]. However, this requires further validation. Fur-
thermore, as future work, we envision the analysis of UORA
in a full-protocol stack simulator such as ns-3.

APPENDIX A
REWARD PARAMETER CALCULATION
In this appendix, we provide the rationale for selecting the
constant values used by the proposed RL-OBO procedure
when updating the reward. First, recall that in lines 6-8 of
Algorithm 3, the agent’s reward at step t (rt ) is increased by
rS , decreased by rU , or decreased by rE in case of successful,
unsuccessful, and empty RUs, respectively.

To find good parameter settings, we simulate different
congestion levels with the network configurations listed in
Table 8. Then we perform model training (each training
consisting of 15 episodes), in which rS = 3 while rU and
rE are changed linearly from 1 to 3 with a step of 0.5.

The results are presented in Figure 11 in the form of
boxplots of the performance metrics achieved in the final
training round. In this figure, we also define thresholds for
each metric to better visualize the performance of each set of
parameters.

We conclude that the chosen set (rS , rU , rE ) = (3, 2, 1.5)
exhibits the best performance, i.e., the first (third) quar-
tiles are above (below) the defined thresholds. In addition,

(3, 1.5, 1.5) and (3, 1.5, 1) exhibit similar good performance
but have slightly larger delay.
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