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ABSTRACT The absolute exponential stability problem for the continuous-time and discrete-time, respec-
tively, switching positive nonlinear time-delay system is investigated under the nonlinearity of systems
satisfying a certain sector condition in this paper. Twomultiple co-positive Lyapunov-Krasovskii functionals
(MCLKF) of such systems are constructed for the continuous-time and discrete-time contexts respectively.
By using the MCLKF and the 8-dependent average dwell time switching strategy, more general stability
conditions compatible with some existing works are established. Furthermore, the obtained results are
generalized to other types of systems. A numerical example, finally, implies the validity and significance
of the results proposed.

INDEX TERMS Switching positive systems, absolute exponential stability, average dwell time, Lyapunov-
Krasovskii functional.

I. INTRODUCTION
In the last few decades, switching positive systems, as one
special kind of switching systems, have attracted consider-
able attention from investigators due to their importance in
both control theory and engineering. Because of the positiv-
ity, there are some unusual features for switching positive
systems, for instance, the state trajectory is maintained in
the positive quadrant and its boundary whenever the initial
condition is nonnegative, it has a unique research method:
linear co-positive Lyapunov functions method. One can refer
to [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], and [11]
for more details about switching positive systems. Most of
these works are related to switching positive linear systems
(SPLSs) and those conditions of the system stability are based
on either the common or multiple co-positive Lyapunov func-
tions methods, which are tractable and resolvable in terms
of the linear matrix inequalities toolbox. Switching positive
nonlinear systems (SPNSs) also have a wide range of appli-
cations in chemistry, population dynamics, bioengineering,
and other fields [11], [12]. However, there are few results for
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the stability study of SPNSs, which makes sense to study the
stability of SPNSs. The investigation of such systems is full
of challenges, it is mainly manifested twofold. First, there is
no unified and effective method to deal with the nonlinearity
of systems. Second, it is hard to construct a suitable Lyapunov
function for SPNSs.

Time-delay phenomena are widespread in practice, and
there exist many results to study the stability of switching
time-delay systems [2], [8], [9], [10], [11]. What follows
is a list of a few. Stability conditions for nonnegative and
compartmental dynamical systems with constant delay are
obtained in [13]. Recently, in [14], the authors investigate
the absolute exponential stability problem of SPNSs with
time-delay based on the MCLKF method and ADT switch-
ing strategy, then obtain some stability results. At the same
time, the concept of absolute exponential stability is usually
utilized for some nonlinear systems, such as recurrent neural
networks [15], [16], and variable structure systems [17].

On the other hand, most of the stability results for switch-
ing systems are based on restricted switching strategies,
including ADT [6], [14], [18] switching, mode-dependent
ADT (MDADT) [3], [7], [19] switching, 8-dependent ADT
(8DADT) [5], [20], [21], [22], [23] switching and so on. And
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it is worth mentioning that the8DADT switching provides a
unified form of ADT and MDADT switchings [24]. So this
paper will investigate the absolute exponential stability of
switching positive nonlinear time-delay systems (SPNTSs)
under the 8DADT switching strategy.

Here, the main contributions can be listed as follows:
(i) A MCLKF is constructed for SPNTSs, where the

MCLKF is less conservative than the common co-positive
Lyapunov-Krasovskii functional;

(ii) The 8DADT switching strategy is used for the first
time to investigate the stability of SPNSs. Under the MCLKF
and new strategy, the absolute exponential stability of the
considered system is ensured, which is more general than
those based on ADT and MDADT ones;

(iii) The obtained results are not only applicable to positive
systems but also can be extended to non-positive cases.

The structure of the text is to make the following arrange-
ments. Section 2 provides system descriptions and some pre-
liminaries. In Section 3, some results of absolute exponential
stability for SPNTSs in both continuous-time and discrete-
time contexts are given, respectively, and they also are gener-
alized to non-positive systems. A typical example is presented
in Section 4, which shows the effectiveness of the obtained
results. Section 5 summarizes the whole paper.

Notations: R represents the set of real numbers. N (N+)
is the set of nonnegative (positive) integers.Rn×n (Rn resp.,)
is the space of real n×nmatrices (real n-dimensional vectors
resp.) ‖ · ‖ stands for the Euclidian norm. The transpose of
matrix A is marked as A>, and the element in the ith row and
the jth column of matrix A is denoted by aij. vi denotes the ith
component of v ∈ Rn and - v - , (|v1|, |v2|, · · · , |vn|)>.
v � 0 (v � 0 resp.) implies that every component of v
being nonnegative (positive resp.), i.e., vi ≥ 0 (vi > 0 resp.)
D+f (x) represents the right Dini derivatives of function f (x).
A � 0 denotes the matrix A is nonnegative (that is each
element is nonnegative), and a matrix is Metzler means that
all off-diagonal elements are non-negative.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES
Consider the switching positive nonlinear time-delay system
(SPNTS)

∧x(t) = A(%(t))f (x(t))+ B(%(t))f (x(t − h)), t ≥ 0, (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))> ∈ Rn is the system
state, and h denotes the time delay. %(t) represents the switch-
ing signal, it takes value from the set L = {1, 2, 3, · · · ,N},
N ∈ N+ and is right continuous for the given switching
sequence t0 < t1 < t2 < · · · . The symbol ∧x(t) means ẋ(t)
(x(t + 1) resp.) for the continuous-time (discrete-time resp.)
context. For the continuous-time SPNTS, we assume A(p) is
Metzler, B(p) � 0, p ∈ L, initial condition x(t0) = ϕ(t0), t0 ∈
[−h, 0], where ϕ(t0) ∈ Rn is continuous on [−h, 0]. For the
discrete-time SPNTS, we assume A(p) � 0 and B(p) � 0, p ∈
L, initial condition x(t0) = ϕ(t0), t0 = −h,−h + 1, · · · , 0.
The nonlinear term f (x(t)) = (f1(x1(t)), · · · , fn(xn(t)))> ∈
Rn satisfies xi(t)fi(xi(t)) > 0, at the same time, f (x(t)) also

meets, for given two positive γ, δ and γ < δ,

γϑ2
≤ ϑ fi(ϑ) ≤ δϑ2,∀ϑ ∈ R, fi(0) = 0, i = 1, 2, · · · , n,

(2)

where (2) is called the sector condition. It is assumed that
fi(xi(t)) satisfies some Lipschitz conditions to ensure the
existence and uniqueness of the system’s solution.

Next, two necessary definitions and a lemma are stated as
follows.

Let G = {1,2,· · · ,r} and a surjection operator 8: L→ G,
where r ∈ N+ and 1 ≤ r ≤ N. Denote 8j

= {q ∈ L|8(q) =
j, j ∈ G}.
Definition 1 [20]: For any interval [a, b), a > b ≥ t0, let

T8j (b, a) and N%8j (b, a) denote the total activated time and
switching numbers of subsystems 8j

⊆ L, if there are two
constants τa8j > 0 and N08j > 0 meeting

N%8j (b, a) ≤ N08j +
T8j (b, a)
τa8j

, (3)

then %(t) is saied to have the8-dependent average dwell time
(8DADT) τa8j .
Definition 2 [2], [14]: The continuous-time (discrete-time

resp.) system (1) with (2) is absolute exponential stable (AES)
under given switching signals if, for any admissible nonlin-
earity f (x(t)), there are two positive constants α, β (ν, ε < 1
resp.) satisfying the system’s trajectory has, for all t ≥ t0,

‖x(t)‖ ≤ αe−β(t−t0)‖ϕ(t0)‖sup
(‖x(t)‖ ≤ νεt−t0‖ϕ(t0)‖sup resp.)

where

‖ϕ(t0)‖sup = sup
−h≤t0≤0

‖x(t0)‖

(‖ϕ(t0)‖sup = sup
t0∈{−h,−h+1,··· ,0}

‖x(t0)‖ resp.)

The system (1-2) is called to be positive for all switching
signals if the state trajectory is nonnegative for any ϕ(t0) � 0.
Lemma 1 [25]: The continuous-time (discrete-time resp.)

system ẋ(t) = Ax(t)+ r(t) (x(t + 1) = Ax(t)+ r(t) resp.) is
positive if A is Metzler (A � 0 resp.) and r(t) � 0.

III. MAIN RESULTS
This section contains two subsections. One investigates the
stability problem of the continuous-time SPNSs and the
other studies the corresponding problem of the discrete-time
SPNSs.

A. CONTINUOUS-TIME CASE
Theorem 1: Consider the continuous-time SPNTS (1-2) with
the nonnegative initial condition. If there are scalars ψ(i) >

0, ξ(i) ≥ 1 and nonnegative vectors v(p) and ς(p) ∈ Rn

meeting ∀p ∈ L,8(p) = i ∈ G,

A>(p)v(p) +
1
γ
ψ(i)v(p) � −ς(p), (4)

B>(p)v(p) � e−ψ(i)hς(p), (5)
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v(p) � ξ(i)v(q), (6)

ς(p) � ξ(i)ς(q), (7)

for ∀p 6= q, and p, q ∈ L. Then the system (1-2) is AES under
the 8DADT

τa8i > τ ∗a8i =
ln ξ(i)
ψ(i)

. (8)

Proof:We select the MCLKF:

V(%(t))(x)

= x>v(%(t)) +
∫ t

t−h
eψ(8(%(t)))(−t+s)f >(x(s))ς(%(t))ds, (9)

where ψ(8(%(t))) > 0, v(%(t)) � 0, ς(%(t)) � 0. Here, x(t) is
abbreviated to x.

Suppose the switching points in order are as follows
t1, t2, · · · , tl, tl+1, · · · tN%(T ,0) on [0,T ) with T > 0. N%(T , 0)
denotes the total switching numbers on [0,T ).
For t ∈ [tl, tl+1), the time derivative of V(%(t))(x) with

system (1-2) can be expressed as follows.

V̇(%(t))(x)

= −ψ(8(%(t)))V(%(t))(x)+ ψ(8(%(t)))x>v(%(t))
+ f >(x(t − h))(B>(%(t))v(%(t)) − e

−ψ(8(%(t)))hς(%(t)))

+ f >(x)(A>(%(t))v(%(t)) + ς(%(t))).

By x � 0 and inequality (2), it yields that

1
δ
fi(xi) ≤ xi ≤

1
γ
fi(xi).

Then,

1
δ
f >(x) � x> �

1
γ
f >(x).

Thus, we can get

V̇(%(t))(x)

≤ f >(x)(
1
γ
ψ(8(%(t)))v(%(t)) + A>(%(t))v(%(t)) + ς(%(t)))

+ f >(x(t − h))(B>(%(t))v(%(t)) − e
−ψ(8(%(t)))hς(%(t)))

−ψ(8(%(t)))V(%(t))(x).

Using (4) and (5),

V̇(%(t))(x) ≤ −ψ(8(%(t)))V(%(t))(x), t ∈ [tl, tl+1), (10)

i.e.

V(%(t))(x) ≤ e−ψ(8(%(t)))(t−tl )V(%(tl ))(x(tl)). (11)

By (6) and (7),

V(%(tl ))(x(tl)) ≤ ξ(8(%(tl )))V(%(t−l ))(x(t
−

l )). (12)

Combining (11) and (12),

V(%(t))(x) ≤ e−ψ(8(%(t)))(t−tl )ξ(8(%(tl )))V(%(t−l ))(x(t
−

l )). (13)

Repeating (11-13),

V(%(tN% ))(x(T ))

≤ ξ(8(%(tN% )))e
−ψ(8(%(tN% )))

(T−tN% )V(%(t−N% ))
(x(t−N% ))

≤ ξ(8(%(tN% )))ξ(8(%(tN%−1)))e
−ψ(8(%(tN% )))

(T−tN% )

× e
−ψ(8(%(tN%−1)))

(tN%−tN%−1)V(%(t−N%−1))
(x(t−N%−1))

≤ · · · ≤ ξ(8(%(tN% )))ξ(8(%(tN%−1))) · · · ξ(8(%(t1)))

× e
−ψ(8(%(tN% )))

(T−tN% )e
−ψ(8(%(tN%−1)))

(tN%−tN%−1)
· · ·

× e−ψ(8(%(0)))(t1−0)V(%(0))(x(0))

=

r∏
i=1

ξ
Ni
(i) e
−ψ(8(%(tN% )))

(T−tN% )e−
∑N%−1

m=1 ψ(8(%(tm)))(tm+1−tm)

× e−ψ(8(%(0)))(t1−0)V(%(0))(x(0))

= e
−
∑r

i=1 ψ(i)(
∑
%(tj)∈8

i (tj+1−tj))
r∏
i=1

ξ
Ni
(i) V(%(0))(x(0))

=

r∏
i=1

(ξNi(i) e
−ψ(i)Ti )V(%(0))(x(0)), (14)

where N% , N%(T , 0),Ni , N%8i (T , 0),Ti , T8i (T , 0), i ∈
G, clearly,

∑r
i=1 Ni = N%, and

∑r
i=1 Ti = T .

From (14), it follows

V(%(tN% ))(x(T )) ≤
r∏
i=1

(ξNi(i) e
−ψ(i)Ti )V(%(0))(x(0))

=

r∏
i=1

eNi ln ξ(i)−ψ(i)TiV(%(0))(x(0)).

By the 8DADT definition,

V(%(tN% ))(x(T )) ≤
r∏
i=1

e
N08i ln ξ(i)+(

ln ξ(i)
τ
a8i
−ψ(i))Ti

V(%(0))(x(0))

≤ ce
maxi∈G(

ln ξ(i)
τ
a8i
−ψ(i))T

V(%(0))(x(0)),

where c =
∏r

i=1 e
N08i ln ξ(i) . Let k1 = minp∈L{(v(p))i, i =

1, 2, · · · , n}, k2 = maxp∈L{(v(p))i, i = 1, 2, · · · , n}, k3 =
maxp∈L{(ς(p))i, i = 1, 2, · · · , n}, from the selection of
MCLKF, it is easy to know

V(%(tN% ))(x(T )) ≥ k1
n∑
i=1

xi(T ),

V(%(0))(x(0)) ≤ k2
n∑
i=1

xi(0)+ k3δ
∫ 0

−h

n∑
i=1

xi(s)ds.

Therefore,

n∑
i=1

xi(T ) ≤
c
k1
e
maxi∈G(

ln ξ(i)
τ
a8i
−ψ(i))T

×

(
k2

n∑
i=1

xi(0)+ k3δ
∫ 0

−h

n∑
i=1

xi(s)ds

)
.
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By ‖x(T )‖ ≤
∑n

i=1 xi(T ) ≤
√
n‖x(T )‖, it can be obtained

that

‖x(T )‖ ≤
c
k1
e
maxi∈G(

ln ξ(i)
τ
a8i
−ψ(i))T

×

(
k2
√
n‖x(0)‖ + k3

√
nδ
∫ 0

−h
‖x(s)‖ds

)
.

Let α = c
k1
(k2+k3δh)

√
n, β = maxi∈G(

ln ξ(i)
τa8i
−ψ(i)). Thus,

‖x(T )‖ ≤ αeβT ‖ϕ‖sup,

where ‖ϕ‖sup = sup−h≤t≤0 ‖x(t)‖.
By β < 0 and α > 0, the system (1-2) is AES for the

8DADT (8). �
Remark 1: One can get Theorem 1 in [14] by taking G =
{1} in the above theorem. When G = L and 8(i) = i (∀i ∈
L) in Theorem 1, the stability results based on the MDADT
strategy can be obtained.
Remark 2: The above theorem is about the stability of

positive systems, i.e., system matrices A(p) are Metzler and
B(p) � 0. While the above approach is general, i.e., it is also
valid for non-positive systems. The fact can be seen from the
following theorem.

Consider the continuous-time system

ẋ(t) = A(%(t))f (x(t))+ B(%(t))f (x(t − h)), t ≥ 0,

x(t0) = ϕ(t0), t0 ∈ [−h, 0]. (15)

Here A(p) ∈ Rn×n and B(p) ∈ Rn×n. Other parameters
and conditions are the same as the system (1-2). Let A(p) =
[(a(p))ij],B(p) = [(b(p))ij], A(p) = [(a(p))ij], B(p) = [(b(p))ij]
with

(a(p))ij =
{
(a(p))ij, i = j;
|(a(p))ij|, i 6= j;

(b(p))ij = |(b(p))ij|.

Theorem 2: Consider the system (15) with (2). If there
exist constants ψ(i) > 0, ξ(i) ≥ 1 and nonnegative vectors
v(p), ς(p) ∈ Rn, meeting ∀p ∈ L,8(p) = i ∈ G,

A
>

(p)v(p) +
1
γ
ψ(i)v(p) � −ς(p), (16)

B
>

(p)v(p) � e−ψ(i)hς(p), (17)

v(p) � ξ(i)v(q), (18)

ς(p) � ξ(i)ς(q), (19)

for ∀p 6= q, and p, q ∈ L. Then the system (15) with (2) is
AES for the 8DADT (8).
Proof: We slightly modify the MCLKF (9):

V(%(t))(x) =
n∑
i=1

{
|xi(t)|(v(%(t)))i

+

∫ t

t−h
eψ(8(%(t)))(−t+s)|fi(xi(s))|(ς(%(t)))ids

}
, (20)

where v(%(t)) = ((v(%(t)))1, · · · (v(%(t)))n)> � 0, ς(%(t)) =
((ς(%(t)))1, · · · , (ς(%(t)))n)> � 0, ψ(8(%(t))) > 0. The switch-
ing points are given in Theorem 1. For t ∈ [tl, tl+1), the right

Dini derivative of (20) is obtained as follows:

D+V(%(t))(x)

=

n∑
i=1

{( n∑
j=1

(
(a(%(t)))ijfj(xj(t))+ (b(%(t)))ijfj(xj(t − h))

))
× sign((D+xi(t))(v(%(t)))i
− e−ψ(8(%(t)))h|fi(xi(t − h))|(ς(%(t)))i

−ψ(8(%(t)))

∫ t

t−h
eψ(8(%(t)))(−t+s)|fi(xi(s))|(ς(%(t)))ids

+ |fi(xi(t))|(ς(%(t)))i

}
≤ −ψ(8(%(t)))V(%(t))(x)+

n∑
i=1

{
ψ(8(%(t)))|xi(t)|(v(%(t)))i

+

n∑
j=1

(
(a(%(t)))ij|fj(xj(t))|(v(%(t)))i

)
+ |fi(xi(t))|(ς(%(t)))i

+

n∑
j=1

(
(b(%(t)))ij|fj(xj(t − h))|(v(%(t)))i

)
− e−ψ(8(%(t)))h|fi(xi(t − h))|(ς(%(t)))i

}
.

By the inequality (2), it follows that

1
δ
|fi(xi)| ≤ |xi| ≤

1
γ
|fi(xi)|.

Then,

D+V(%(t))(x)

≤ - f >(x) -
{
A
>

(%(t))v(%(t)) +
1
γ
ψ(8(%(t)))v(%(t)) + ς(%(t))

}
+ - f >(x(t − h)) -

{
B
>

(%(t))v(%(t)) − e
−ψ(8(%(t)))hς(%(t))

}
−ψ(8(%(t)))V(%(t))(x(t)).

Using(16) and (17), one has

D+V(%(t))(x) ≤ −ψ(8(%(t)))V(%(t))(x).

The rest is similar to that in Theorem 1, so it is omitted. �

B. DISCRETE-TIME CASE
Theorem 3: Consider the discrete-time SPNTS (1-2) with the
nonnegative initial condition. If there exist constants 0 <

ψ(i) < 1, ξ(i) ≥ 1 and vectors v(p) � 0, v(p) ∈ Rn, ς(p) �

0, ς(p) ∈ Rn such that ∀p ∈ L,8(p) = i ∈ G,

A>(p)v(p) −
ψ(i)

δ
v(p) � −ψ(i)ς(p), (21)

B>(p)v(p) � ψ
1+h
(i) ς(p), (22)

v(p) − ξ(i)v(q) � 0, (23)

ς(p) − ξ(i)ς(q) � 0, (24)

for ∀p 6= q, p, q ∈ L. Then the system (1-2) is AES for the
8DADT

τa8i > τ ∗a8i = −
ln ξ(i)
lnψ(i)

. (25)
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Proof: We select the following MCLKF:

V(%(k))(x(k))

= x>(k)v(%(k)) +
k−1∑
s=k−h

ψk−s
(8(%(k)))f

>(x(s))ς(%(k)), (26)

where 0 < ψ(8(%(k))) < 1, v(%(k)) � 0, ς(%(k)) � 0.
Denote the switching instances in the interval [0,K ) are

k1, k2, · · · , kt , kt+1, · · · , kN%(K ,0), and 0 < k1 < k2 < · · · <
kN%(K ,0) < K , where N%(K , 0) denotes the total switching
numbers in [0,K ).

For k ∈ [kt , kt+1],

V(%(k))(x(k + 1))− ψ(8(%(k)))V(%(k))(x(k))

= f >(x(k))A>(%(k))v(%(k)) + f
>(x(k − h))B>(%(k))v(%(k))

+ψ(8(%(k)))f >(x(k))ς(%(k)) − ψ
1+h
(8(%(k)))f

>(x(k − h))ς(%(k))

−ψ(8(%(k)))x>(k)v(%(k)).

Combining (2) and x(k) � 0, we have

−xi(k) ≤ −
1
δ
fi(xi(k)).

Then

−x(k) ≤ −
1
δ
f (x(k)).

Therefore,

V(%(k))(x(k + 1))− ψ(8(%(k)))V(%(k))(x(k))

≤ f >(x(k − h))(B>(%(k))v(%(k)) − ψ
1+h
(8(%(k)))ς(%(k)))

+ f >(x(k))(−
ψ(8(%(k)))

δ
v(%(k)) + A>(%(k))v(%(k))

+ψ(8(%(k)))ς(%(k))). (27)

By (21), (22), and (27),

V(%(k))(x(k + 1)) ≤ ψ(8(%(k)))V(%(k))(x(k)),

i.e.,

V(%(kN% ))(x(K )) ≤ ψ(8(%(kN% )))V(%(kN% ))(x(K − 1)) ≤ · · ·

≤ ψ
K−kN%
(8(%(kN% )))

V(%(kN% ))(x(kN% )).

By (23) and (24), we obtain

V(%(kN% ))(x(K )) ≤ ξ(8(%(kN% )))ψ
K−kN%
(8(%(kN% )))

V(%(k−N% ))
(x(k−N% )).

By repeating the process, we can get

V(%(kN% ))(x(K ))

≤ ξ(8(%(kN% )))ψ
K−kN%
(8(%(kN% )))

ψ
kN%−kN%−1
(8(%(kN%−1)))

ξ(8(%(kN%−1)))

×V(%(k−N%−1))
(x(k−N%−1))

≤ · · · ≤ ξ(8(%(kN% )))ξ(8(%(kN%−1))) · · · ξ(8(%(k1)))

×ψ
K−kN%
(8(%(kN% )))

ψ
kN%−kN%−1
(8(%(kN%−1)))

· · ·ψ
k1−0
(8(%(0)))V(%(0))(x(0))

=

r∏
i=1

ξ
Ni
(i)ψ

∑
%(kj)∈8

i (kj+1−kj)

(i) V(%(0))(x(0))

=

r∏
i=1

(ξNi(i)ψ
Ti
(i) )V(%(0))(x(0))

=

r∏
i=1

eNi ln ξ(i)+Ti lnψ(i)V(%(0))(x(0)),

where N% , N%(K , 0),Ni , N%8i (K , 0),Ti ,
T8i (K , 0), i ∈ G, clearly,

∑r
i=1 Ni = N%, and

∑r
i=1 Ti = K .

By Definition 1,

V(%(kN% ))(x(K ))

≤

r∏
i=1

e
N08i ln ξ(i)+(

ln ξ(i)
τ
a8i
+lnψ(i))Ti

V(%(0))(x(0))

≤ ce
maxi∈G(

ln ξ(i)
τ
a8i
+lnψ(i))K

V(%(0))(x(0)),

where c =
∏r

i=1 e
N08i ln ξ(i) .

By (25), ln ξ(i)
τa8i
+ lnψ(i) < 0. The rest of the proof can be

obtained by using a similar method in Theorem 1, so it is
omitted. �

Similar to the continuous-time one, we also generalize our
approach to non-positive systems of the discrete-time one.
Now, we aim to address the AES problem of such systems.

Consider the system

x(k + 1) = A(%(k))f (x(k))+ B(%(k))f (x(k − h)), k ≥ 0,

x(k0) = ϕ(k0), k0 = −h,−h+ 1, · · · , 0. (28)

Here A(p) ∈ Rn×n and B(p) ∈ Rn×n. Other parameters
and conditions are the same as the system (1-2). Let Â(p) =
[(â(p))ij], B̂(p) = [(b̂(p))ij], where{

(â(p))ij = |(a(p))ij|;
(b̂(p))ij = |(b(p))ij|.

Theorem 4: Consider the system (28) with (2). If there are
scalars 0 < ψ(i) < 1, ξ(i) ≥ 1 and nonnegative vectors
v(p), ς(p) ∈ Rn meeting ∀p ∈ L,8(p) = i ∈ G,

Â>(p)v(p) −
ψ(i)

δ
v(p) + ψ(i)ς(p) � 0, (29)

B̂>(p)v(p) − ψ
1+h
(i) ς(p) � 0, (30)

v(p) − ξ(i)v(q) � 0, (31)

ς(p) − ξ(i)ς(q) � 0, (32)

for p 6= q,∀p, q ∈ L. Then the system (28) with (2) is AES
for the 8DADT (25).

Proof: We select the following MCLKF:

V(%(k))(x(k))

= - x>(k) - v(%(k)) +
k−1∑
s=k−h

ψk−s
(8(%(k))) - f

>(x(s)) - ς(%(k)),

(33)

where ψ(8(%(k))), v(%(k)), ς(%(k)), and the switching instances
are the same as Theorem 3.

For k ∈ [kt , kt+1],

V(%(k))(x(k + 1))− ψ(8(%(k)))V(%(k))(x(k))
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TABLE 1. The different switching designs under (8,G).

FIGURE 1. The state response of the system under σ1(k).

= −ψ(8(%(k))) - x>(k) - v(%(k))+ - f >(x(k)) - Â>(%(k))v(%(k))
+ - f >(x(k − d)) - B̂>(%(k))v(%(k)) − ψ

1+h
(i) - f >(x(k − d)) -

× ς(%(k)) + ψ(8(%(k))) - f >(x(k)) - ς(%(k)).

By (2), it yields that

− - xi - ≤ −
1
δ
- fi(xi) -,

i.e.,

− - x - ≤ −
1
δ
- f (x) - .

Therefore,

V(%(k))(x(k + 1))− ψ(8(%(k)))V(%(k))(x(k))

≤ - f >(x(k − d)) - (B̂>(%(k))v(%(k)) − ψ
1+d
(8(%(k)))ς(%(k)))

+ - f >(x(k)) - (−
ψ(i)

δ
v(%(k)) + Â>(%(k))v(%(k))

+ψ(8(%(k)))ς(%(k))). (34)

By (29), (30), and (34),

V(%(k))(x(k + 1)) ≤ ψ(8(%(k)))V(%(k))(x(k)).

The rest of the proof is omitted since it is similar to that in
Theorem 3. �
Remark 3: After we proposed 8DADT strategy [20], the

works [21] and [22] further applied it to switched T-S fuzzy

FIGURE 2. The state response of the system under σ2(k).

systems and switched singular systems respectively. Differ-
ent from them, this paper combines this strategy with the
MCLKF approach for the first time to deal with switched
positive time-delay systems.

IV. A NUMERICAL EXAMPLE
This section gives a numerical example to show the validity
of the proposed approach.
Example 1: Consider the discrete-time SPNTS (1) with

three modes whose relevant parameters are presented as
follows:

A1 =
[
0.7 0.15
0.8 0.47

]
,B1 =

[
0.2 0.1
0.2 0.3

]
,

A2 =
[
0.2 0.05
0.26 0.18

]
,B2 =

[
0.1 0.3
0.8 0.1

]
,

A3 =
[
0.1 0.2
0.08 0.15

]
,B3 =

[
0.3 0.2
0.4 0.2

]
,

and h = 1, fi(xi(t)) = 0.3xi(t) +
0.1xi(t)
x2i (t)+1

, then γ = 0.2 and

δ = 0.3.
For L = {1, 2, 3}, there are five possibilities of 8i based

on the different G (see Table 1 for details). Wherein 81
=

{1, 2, 3}, and 8i
= {i}, i = 1, 2, 3 correspond those results

of the classical ADT and MDADT ones respectively.
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Wepresent the different designs based on (8,G) to demon-
strate their strengths by selecting parameters appropriately in
Table 1 (where τi means the ith subsystem’s ADT).

From the table, one can also get these facts as follows.
When G = {1, 2}, we can draw some conclusions for

SPNTSs that have not been paid attention to before. Choose
a switching signal %1(k) with τ1 = 2, τ2 = 1, τ3 = 1, the
system’s stability under %1(k) can be got based on 81

=

{1},82
= {2, 3} but not for the ADT strategy. Similarly,

given the signal %2(k) with τ1 = 1, τ2 = 1, τ3 = 3,
we can obtain the system’s stability under %2(k) by 81

=

{1, 2},82
= {3} but not for the MDADT one. It can be seen

in Figures 1 and 2 with x(0) = (2, 3)>.

V. CONCLUSION
This paper investigates the AES problem of SPNTSs based on
the 8DADT switching strategy. By combining the MCLKF
with the 8DADT switching strategy, some less conserva-
tive stability conditions of SPNTSs are obtained in both
continuous-time and discrete-time cases. Furthermore, the
obtained results are developed into non-positive systems.
These sufficient AES criteria are compatible with classic
ADT and MDADT ones. An illustrated example is presented
to show themerits and features of our results. In future works,
we will apply the 8DADT switching strategy to switching
systems with time-varying and multi-delay cases.
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