
Received 6 October 2022, accepted 6 November 2022, date of publication 10 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221400

Early Detection of Network Intrusions Using a
GAN-Based One-Class Classifier
TAEHOON KIM AND WOOGUIL PAK , (Member, IEEE)
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, South Korea

Corresponding author: Wooguil Pak (wooguilpak@yu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (Ministry of Science
and ICT) under Grant NRF-2022R1A2C1011774.

ABSTRACT Early detection of network intrusions is a very important factor in network security. However,
most studies of network intrusion detection systems utilize features for full sessions, making it difficult to
detect intrusions before a session ends. To solve this problem, the proposed method uses packet data for
features to determine if packets are malicious traffic. Such an approach inevitably increases the probability
of falsely detecting normal packets as an intrusion or an intrusion as normal traffic for the initial session. As a
solution, the proposed method learns the patterns of packets that are unhelpful in order to classify network
intrusions and benign sessions. To this end, a new training dataset for GenerativeAdversarial Network (GAN)
is created using misclassified data from an original training dataset by the LSTM-DNN model trained using
the original one. The GAN trained with this dataset has ability to determine whether the currently received
packet can be accurately classified in the LSTM-DNN. If the GAN determines that the packet cannot be
classified correctly, the detection process is canceled and will be tried again when the next packet is received.
Meticulously designed classification algorithm based on LSTM-DNN and validation model using GAN
enable the proposed algorithm to accurately perform network intrusion detection in real time without session
termination or delay time for collecting a certain number of packets. Various experiments confirm that the
proposed method can detect intrusions very early (before the end of the session) while maintaining detection
performance at a level similar to that of the existing methods.

INDEX TERMS Intrusion detection, generative adversarial network, early detection, real-time detection.

I. INTRODUCTION
Network intrusion detection and prevention systems utilize
machine learning for accuracy that exceeds the limits of
existing rule-based methods [1], [2], [3], [4], [5]. Elabo-
rate and sophisticated machine learning algorithms and pow-
erful hardware accelerators are among the most important
elements of today’s intrusion detection system—intrusion
prevention system (IDS/IPS) [6], [7]. As machine learn-
ing models evolve, they require higher processing power,
and accordingly, hardware accelerators with higher compu-
tational power are being released. In this way, it is possible
to classify high-capacity traffic in each session, and detect
network intrusions with high accuracy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiali Hei .

When a network intrusion occurs, it is important to detect
it without delay and block it to prevent further damage. Nev-
ertheless, a current machine-learning-based IDS/IPS deter-
mines whether an intrusion has occurred within each session
only after the session has terminated, and traffic is differen-
tiated with a 5-tuple, i.e. <source IP, destination IP, source
port, destination port, protocol>, which are key to identifying
one session. In traffic divided into sessions, the statistical
values of the traffic transmitted and received from the begin-
ning of the session until the end become the features of the
session. The machine learning model is trained using such
features, and maliciousness is determined on a per-session
basis. It means a network intrusion is detected after session
termination, which also means it is detected only after the
intrusion terminates. Therefore, this approach has limitations
in safely protecting the network.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119357

https://orcid.org/0000-0001-6087-8331
https://orcid.org/0000-0002-9551-7373
https://orcid.org/0000-0002-2438-5430


T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 1. GPU performance trends in FLOPS per watt.

There have been studies to overcome the limitations of a
method using session-based features, and directly using the
packets to determine features is one representative method.
However, since this method also needs to collect a fixed num-
ber of packets for each session to determine whether there is
an intrusion, it cannot immediately detect one although the
detection delay is shorter than that of NIDS using session-
based features.

In order to detect an intrusion as soon as it occurs, several
issues must be addressed technically. First of all, the IDS/IPS
must be able to inspect every packet received. As hardware
technology continues to advance, machine learning compu-
tation speed is increasing at an exponential rate, and packet
inspection can fully utilize the advantages of parallel pro-
cessing as shown in Figure 1 [8]. So, even if network traffic
volume is high, it is expected that intrusion investigation of
every packet will be possible.

Second, it is essential to know exactly when an intrusion
occurs within a session but to the best of our knowledge, there
are few studies on this. If the entire traffic for one session is
investigated simultaneously after the session ends, the charac-
teristics of the intrusion can be identified more accurately, but
in order to reduce detection delay, it is necessary to examine
the packets before the session ends. However, even for a
session with a network intrusion, it is difficult to detect the
intrusion accurately because its initial traffic tends not to
be significantly different from normal traffic in many cases.
Ultimately, to detect an intrusion immediately, the problem of
how to determine when accurate detection is possible must be
solved.

To solve such problems, this study proposes a new solution
combining a Generative Adversarial Network (GAN) with a
Long Short-term Memory (LSTM) classifier [9], [10]. The
GAN learns the characteristics of a given dataset, and can
numerically express how likely a data belongs to the class
with respect to the training dataset. Therefore, a GAN is
very useful when implementing a one-class classifier. In the
proposed study, a GAN-based one-class classifier is a deci-
sion maker determining the right time for intrusion detection.
The classifier learns all packets belonging to misclassified

sessions, so it can distinguish between undetectable-intrusion
and detectable-intrusion packets. Detectable-intrusion pack-
ets are forwarded while they are classified through a multi-
class classifier to detect the intrusion class.

This study makes the following contributions.
(1) Using a GAN, the one-class classifier identifies packets

that cannot be classified exactly
This is the first time a one-class classifier has been pro-

posed to determine whether intrusion detection is impossi-
ble/possible by using a GAN, as far as we know. A classifier
using a GAN can classify with high accuracy any packets
from which intrusion detection is impossible.

(2) The packet-based classifier supports immediate net-
work intrusion detection

Unlike an existing packet-based classifier, classification
time is accurately determined by the GAN-based one-class
classifier, and it does not require all (or even a fixed num-
ber of) packets belonging to the session. Therefore, when
an intrusion packet reaches the IDS/IPS, it is immediately
detected as an intrusion.

This paper has the following structure. Section II describes
the existing research. Section III introduces the structure of
the proposed method in detail. In Section IV, performance
comparison results are shown for the proposed method and
existing methods. Finally, Section V concludes this paper.

II. PREVIOUS WORK
In order to detect network intrusions through machine learn-
ing, network traffic must be expressed in a specific data for-
mat (called features that enable the machine learning model
understand the network traffic). Since the performance of
machine learning is determined by the features, research on
how to generate good features from network traffic is ongoing
[11], [12]. Currently, most of the machine-learning studies
of IDS/IPSs classify traffic into units called a session, and
they generate features from characteristic of overall session
behavior like statistical values for each session. For example,
the total number of packets or the total traffic size transmitted
until the end of one session belongs to the features. Such
features created for each session in this way are called ‘ses-
sion features’. A session is a logical grouping of traffic, and
5-tuple values<source IP, destination IP, source port, destina-
tion port, protocol> are used to distinguish each session. For
protocols such as UDP rather than TCP, the session concept
is not available, but traffic can be distinguished on a per-
session basis using the 5-tuple values. However, in protocols
other than TCP, it is difficult to clearly determine the end
of a session. Therefore, if a packet having a new 5-tuple
(different from those of the existing sessions) is received,
the IDS/IPS handles the traffic as a new session, and if a
packet belonging to the session is not received for a certain
period of time (i.e. a session times out), the session is treated
as terminated. This means that in creating a session feature
after the session ends, it is difficult to create it without delay
caused by time-out. Also, if an intrusion is attempted only for
a specific period within a session, the characteristics of the

119358 VOLUME 10, 2022



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

intrusion may be diluted by traffic outside of the intrusion
period. This characteristic becomes more pronounced with
longer sessions or higher traffic volumes, so exploiting the
characteristics of this approach can easily bypass a IDS/IPS
that uses the session feature [13], [14].

Nevertheless, the reason many IDS/IPSs still use the ses-
sion feature is that it always has a constant size, regardless
of the length of the session, the length of the packets, or the
amount of traffic. Such a fixed size of session features makes
designing machine learning models easy. Also, since it has
low spatial complexity, it is more advantageous for learning
larger-capacity traffic. However, in order to perform intrusion
detection, it is necessary to classify the received packets by
session, and analyze all packets in the session after the session
is terminated in order to create a session feature. Therefore,
it requires a lot of memory or a high amount of computational
power, which is a big obstacle in real-time detection [15],
[16], [17], [18], [19], [20], [21].

When session feature created from single session is used,
it becomes difficult to detect an intrusion that leverages mul-
tiple simultaneous sessions to increase damage. To solve this
problem, it is helpful to use features created from multiple
sessions rather than features created from one session. Good
examples of such features are the total number of sessions that
occurred during a specific time period, or the total amount
of traffic received by a specific server from multiple clients.
To distinguish this session feature from the existing single-
session feature, let us call it an inter-session feature. The
inter-session feature is a method that can compensate for
the shortcomings of the session feature. However, the inter-
session feature requires more complex processing and more
storage space than the existing session feature [22], [23].

Although the session feature is most commonly used,
research using packet data as a feature is also underway
to solve the shortcomings of the session feature [24], [25].
To directly use packet data as features, features are simply
created by applying one-hot encoding to each byte value of
the packet data [24]. Therefore, in this case, the total feature
size is larger than the packet size. To distinguish a feature
created in this way from a session feature, let us call it a
packet feature to discriminate it from a session feature. Time-
consuming calculations, such as statistical calculations for
creating session features, are unnecessary when generating
packet features.

When packet feature is used, it is difficult to determine a
normal session from an intrusive session using the first packet
alone. Since information stored in one packet is quite limited,
features built from packets in one session should be collected
and used for classification; however, such a procedure is simi-
lar to generating a session feature. Basically, a packet feature
can be created by collecting data of the same size from the
first N packets in a session, or it can be created by collecting
all packet data up to a predetermined size, L. Therefore, there
is no need to wait until the session ends unlike session feature,
but the packet feature also needs time to collect N packets
or L bytes for each session. In the end, intrusion detection

is delayed if not enough packets are collected, even when a
specific packet that attempts an intrusion is received.

If one-hot encoding is applied to each byte to generate
packet features, the number of features increases signifi-
cantly, which is a major obstacle for a machine learning
model trying to learn or classify at a high speed. In order
to solve this problem, even if accuracy is low, a method
of using packet data directly as a feature without one-hot
encoding is also being tried. In this case, it helps to speed
up the classification, but in order to collect a certain amount
of packet data, it is still inevitable that intrusion detection will
be delayed.

Session features and packet features represent character-
istics about traffic in different ways. Therefore, a method of
combining the session feature and the packet feature to create
synergy has also been proposed. In this case, it requires a lot
of resources to create both features simultaneously, so even
with high-performance hardware, it can be too difficult to
handle large-capacity traffic. In some studies exploiting two
types of features, the overhead from simultaneously creating
and maintaining both features can be avoided by using only
the packet feature at the beginning of the session and the ses-
sion feature thereafter separately, instead of using the packet
feature and the session feature at the same time. However,
real-time intrusion detection cannot be supported, because
this method also has to wait until the end of the session to
create the session feature if it fails to classify the session only
using the packet feature.

So far, existing studies of IDS/IPSs in which machine
learning is applied have been reviewed according to the char-
acteristics of features. In order to detect a network intrusion
in real time without delay, the existing session-feature-based
or packet-feature-based approaches cannot be the solution.
For real-time network intrusion detection, an innovative
approach is required to eliminate weaknesses in the existing
approaches.

III. THE PROPOSED APPROACH
To achieve real-time detection, it is important to use packet
data directly as a feature in order to eliminate waiting for the
end of the session and shorten the time required to generate
feature of the session. At the same time, it is necessary to find
a packet that can accurately discriminate whether an intrusion
has occurred, and to detect the network intrusion based on it.
Existing research does not provide this capability. Therefore,
in this study, the following new method is proposed to solve
the problem.

A. SYSTEM ARCHITECTURE
The proposed method is implemented based on LSTM so
that intrusions can be detected on a per-session basis while
directly using packet data as features. The received packets
are determined to be an intrusion or not through the proposed
classifier. If there is no intrusion, the classification result is
temporarily stored and used as a feature together with packet
data when the next packet belonging to the same session is

VOLUME 10, 2022 119359



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 2. Procedures in the proposed algorithm.

received. When network intrusions are detected using only
packet data, there is a high probability that detection will fail
due to fragmented information for the entire session.

In this way, the classification performance from a single
packet can be greatly improved, but the remaining unresolved
problem is which packet classification in the session will be
selected as the final result. In general, determining whether
an intrusion has occurred using a packet from the beginning
of the session increases the possibility of misclassification.
On the other hand, if intrusion detection is performed using
a packet close to the end of the session, detection is too late,
as mentioned above. Ultimately, it is necessary to determine
the packet that can make the fastest determination most accu-
rately. The proposed method attempts to solve this problem
by using a GAN. The GAN discriminator is trained using
only the packets misclassified by the LSTM classifier for the
training dataset, so the characteristics of the packets that are
highly likely to be misclassified are accurately learned by the
GAN generator.

Whenever a packet is received by NIDS/NIPS, the LSTM
classifier is used to determine whether the session including
the packet is malicious or not, and the result is verified using
GAN. If it is determined through the GAN that the reliability
of the classification result is low, the classification result is
ignored. If it is determined that the reliability is high, the
session is processed according to the classification result. The
overall flow and structure are as seen in Figures 2 and 3. Each
part of the entire system is described in detail below.

FIGURE 3. The partial structure of the proposed classifier for t-th packet.

TABLE 1. F1-score according to L from the preliminary experiment result
using ISCX2012 training dataset. L is set to each value satisfying
constraint of image transformation.

B. ACTIVE SESSION CACHE
The active session cache is used to determine whether a
received packet is an existing-session packet or a new ses-
sion packet. Also, packets from the existing session are used
to find the total number of received packets in the session
and the classification results for previous packets. Here, the
classification result is the output of the LSTM cell or the
final intrusion-detection result. For example, if the result is
intrusion, the all consecutive packets belonging to the session
is immediately dropped when it is received. This can greatly
improve the performance of the classifier by avoiding unnec-
essary packet classification.

C. FEATURE GENERATION
The first L bytes of the IP packet are used to create a feature
for classification from the packet data. A typical value for L in
the experiment is 98 bytes. As L is increasing, classifier tends
to achieve higher detection rate since it can leverage more
meaningful features but it will suffer from larger overhead in
terms ofmemory consumption and classification speed. From
the preliminary experiment, the detection rate was measured
according to L as shown in Table 1. By considering detection
rate and classification overhead simultaneously, 98 is chosen
for the value of L.
In order to remove dependency on a specific session, the

source IP, destination IP, source port, and IP identification
(a total of 12 bytes) are excluded from the packet feature.
Thus, if the packet size is smaller than L + 12 bytes, zeros
pad the values at the end of the data. In general, packet data
create features through one-hot encoding, but there are fields
(e.g. length) where it is advantageous for values in the packet

119360 VOLUME 10, 2022



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 4. The LSTM-DNN-based classifier using packet features.

data to be processed as numbers. Therefore, one-hot encoding
is not applied in this proposed method.

D. LSTM-BASED CLASSIFIER
The t(≤ N )-th cells of LSTM classify the t-th packets.
The value for k is obtained from the active session cache,
as described above. Figure 4 shows the structure of the LSTM
classifier when N = 6 and L = 98. The output of each
LSTM cell has a 512 × 2 dimension as input to the DNN
to determine whether a network intrusion occurs. In addition,
the output of the cell is stored in the active session cache and
serves as a session feature when classifying the next packet.
Figure 4 shows the detailed structure of the packet-feature-
based classifier.

The (t-1)-th cell of the LSTM needs xt-1, ht-1, and Ct-1 as
an input for the cell, and outputs ht and Ct , which are used as
input to the next cell. In order to classify the current packet
xt , only ht and Ct are required instead of the previous packet,
xt-1. Noting that xt-1 has a variable size, it is possible to
classify xt by storing the fixed sizes of ht-1 and Ct-1 from the
previous classification. This approach has two advantages.
First, the classifier can guarantee that it consumes only a fixed
size of memory for classification so it can support a high
scalability in terms of the concurrent session number. Second,
the fixed number of features makes the classifier design easy.

E. THE GAN-BASED ONE-CLASS CLASSIFIER
Since the result of the LSTM-based classifier determines
whether to allow or discard all packets belonging to the
session, it is important to verify the reliability of that result.
In order to identify and classify packets with a high proba-
bility of being false positives, the proposed method uses a
GAN. In the GAN for the proposed method with the given
training data, the generator creates several sets of fake data
similar to the training data, and the discriminator is trained to
distinguish real data from the fake data generated. Therefore,
the discriminator can be used as a one-class classifier that
distinguishes real data. Using these characteristics, a dataset
is constructed with data misclassified by a packet-based clas-
sifier, and the GAN learns by using it; then, the received
packet is classified with a discriminator.

For example, Figure 5 shows the entire training dataset (in
red) and misclassified data (in green) in the classifier on a
two-dimensional plane through principal component analy-
sis (PCA) [26] for each dataset, ISCX2012, CIC2017, and
CSE2018. As shown in each sub-figure, themisclassified data
are concentrated in a specific area, and in other cases, they
are spread out regardless of the dataset type. In this case, the
general GAN is prone to fail during training. Therefore, the
proposed method uses the Wasserstein GAN with a gradient
penalty (shortly, WGAN-GP) in which the gradient penalty
is applied to effectively prevent training failure [27].

Figures 6 and 7 show the model structures of the generator
and the discriminator of the WGAN-GP used in the proposed
method. All convolution layers in both models use a Leaky
ReLU with an alpha value of 0.3 as an activation function
and L2 regulation with parameters of 2.5 × 10−5 applied
[28]. The last convolution transpose layer of the constructor
uses a sigmoid activation function, and the dropout of the
discriminator is set to 0.3.

F. IMAGE FEATURE GENERATION
The proposed method uses packet data as features of the
LSTM classifier (as described previously). However, if each
byte of the packet data is mapped to one feature and applied
to the GAN, the GAN does not work properly. This can be
explained from three aspects. First, the dimensional size of
packet-based features is smaller than images used in deep
learning in general. Second, in the image, the correlation
between the pixel group composed of adjacent pixels and

VOLUME 10, 2022 119361



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 5. The training dataset (in red) and misclassified data (in green)
in the classifier projected on a two-dimensional plane by PCA for each
dataset.

the class is higher than the correlation between the value of
each pixel and the class. On the other hand, in the packet-
based feature, the value of a specific feature (for example,
the destination port or the total length of the packet) has a
very high correlation with a specific class. Finally, the effect
of noise on packet-based features is significantly greater than
the effect of noise on specific features (i.e. pixel values) of
the image. For example, even if the protocol field is changed

FIGURE 6. The WGAN-GP generator structure.

by 1, the session is treated as a completely different pro-
tocol. In order to solve this problem, one-hot encoding can
be applied, but this not only makes the number of features
too large, but also burdens it by being able to determine
whether the packet data features are numerical or categorical.
Therefore, in the proposed method, an image is generated
by converting existing packet-based features so they have
image characteristics by applying a method similar to that of
a PAC-GAN [29].

The procedure for creating an image is as follows: 98 bytes
of packet data used for learning about each packet are first
stored in a 7 × 14–byte array. Now, the byte value of each
array is divided into the upper four bits and the lower four
bits, and each four-bit value, b, is converted into 16 × b+8
(that is, back to an eight-bit value). The transformed values
are mapped to 2 × 2 pixels in the image. Finally, the 7 × 14
black-and-white image is expanded to a 28 × 28 × 1 image
and is used as training data for the WGAN-GP. For a detailed
explanation, see Figure 8.

IV. PERFORMANCE EVALUATION
In order to accurately evaluate the performance of the pro-
posed method, various existing IDS algorithms were selected
and compared. The selected algorithms are listed in Table 2.

To compare accurate performance by the classifiers, detec-
tion accuracy and detection speed should be measured. In this

119362 VOLUME 10, 2022



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 7. The WGAN-GP discriminator structure.

FIGURE 8. Image expansion from the original 7 × 14-dimensional data
for the WGAN-GP; ‘�’ and ‘&’ are bitwise right-shift operator and bitwise
AND operator, respectively.

TABLE 2. IDS algorithms used for performance evaluation.

study, accuracy was measured for various metrics, includ-
ing precision, recall, and F1-score, and speed was measured
based on the number of packets needed to finally determine if

TABLE 3. The datasets used in the performance evaluation.

FIGURE 9. Average number of packets required for detection by the
algorithms with each dataset.

an intrusion was made for each session. The detection speed
shows how fast the proposed algorithm detects intrusion com-
pared to existing approaches. Therefore, the detection speed
is proportional to the detection time. Various datasets also
should be used to analyze performance independent of the
dataset and network intrusion type. The selected datasets are
listed in Table 3.

A. DETECTION SPEED
The detection speed was compared with session-based clas-
sification algorithms, HAST-IDS, and the proposed method.
The Gradient boosting, the AdaBoost decision tree, the
TSE-IDS, the DNN, the Tree-CNN, and the 1D-CNN under
session-based classification methods detect intrusions after
the session terminates. Thus, we used the average session
length, regardless of the classification algorithm, as the detec-
tion speed of the session-based classifiers, and therefore,
a lower length means a higher speed.

Figure 9 shows the result from comparing the average
detection rate (that is, the average value of packet counts upon
detection) for the entire test dataset created from each full
dataset. As shown in the figure, the proposed method had
the fastest intrusion detection speed compared to the exist-
ing session-based classification algorithm and HAST-IDS.
In particular, it was 12 times faster with ISCX2012 com-
pared with session-based algorithms. In addition, it detected
intrusions even faster than HAST-IDS. Since HAST-IDS only
sees a fixed number of packets (N ), it has an almost constant
detection speed regardless of the type of dataset. On the other

VOLUME 10, 2022 119363



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 10. Average number of packets required for detection of each
class by the algorithms with the ISCX2012 dataset.

FIGURE 11. Average number of packets required to detect each class by
the algorithms with the CIC2017 dataset.

FIGURE 12. Average number of packets required for detection by each
class according to detection algorithm in CSE2018 dataset.

hand, the proposed method detects an intrusion using up to N
packets, detecting it more quickly. Above all, considering that
the proposed method has similar or higher intrusion detection
accuracy than HAST-IDS, it was confirmed that the method
of determining which packet is adequate for the intrusion
detection using a GAN is quite effective in improving detec-
tion accuracy and speed simultaneously.

Now, to compare detection speed in more detail, let us
compare the average number of packets for each class in
the dataset. Figure 10 shows the results for five classes from
the ISCX2012 dataset. The detection speed of the proposed
method was the fastest, regardless of the class. In particular,
although the session lengths for each class were significantly
different, we can see that the proposed method only required
approximately the same number of packets, on average, for
all classes.

Figure 11 shows the network intrusion detection rates
for 11 classes from the CIC2017 dataset. This also shows

FIGURE 13. Average number of packets required for detection based on
average session length with the ISCX2012 dataset.

FIGURE 14. Average number of packets required for detection based on
average session length with the CIC2017 dataset.

FIGURE 15. Average number of packets required for detection based on
average session length with the CSE2018 dataset.

characteristics similar to the ISCX2012 dataset. For the
PortScan class, all three methods showed the same result
because (for most sessions) PortScan consisted of only two
packets. On the other hand, for other classes with various
session lengths, only the proposed method showed almost
constant detection speed. When the average session length
was greater than 7, the intrusion could be detected with the
almost first four packets, regardless of session length.

119364 VOLUME 10, 2022



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

FIGURE 16. Detection performance by the algorithms with the ISCX2012
dataset.

FIGURE 17. Detection performance by the algorithms with the CIC2017
dataset.

FIGURE 18. Detection performance by the algorithms with the CSE2018
dataset.

FIGURE 19. Average detection performance by the algorithms.

Figure 12 shows the results for the CSE2018 dataset. Most
sessions belonging to DoS-SlowHTTPTest and BruteForce-
FTP consisted of two packets, so even using the proposed

FIGURE 20. ROC for each class in each dataset.

method, the detection speed cannot be improved. How-
ever, for other classes, such as DDoS-LOIC-HTTP and
BruteForce-SSH, even if the average session length exceeded
16, intrusion could be determined with only the first three
packets. In addition, it was confirmed that performance
by the proposed method was higher than HAST-IDS or
the existing session-based method for any class in all the
datasets.

VOLUME 10, 2022 119365



T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

The results from measuring the detection speed of the
proposed method and HAST-IDS based on session length
are shown in Figures 13 to 15. When the session length
was less than N , the number of packets required for detec-
tion increased according to the session length, but when the
session length was greater than N , HAST-IDS always used
N packets. Interestingly, the proposed method showed that
when the session length was greater than N , a constant num-
ber of packets less than N was always required, regardless of
the session length. This proves that the proposed method has
high scalability for session lengths.

B. DETECTION RATE
To measure the detection accuracy of each algorithm,
we compared performance for accuracy, precision, recall, and
F1-scoremetrics. Figures 16 to 18 show the performance with
the three datasets. For each dataset, the proposed algorithm
shows very high F1-scores regardless of the dataset type but
session-based algorithms and HAST-IDS show fluctuating
results according to the dataset type. For example, Adaboost
decision tree, one of the best session-based classifiers show-
ing the highest F1-score, achieves 0.74% lower but 0.13%
higher F1-scores with ISCX2012 and CIC2017 compared
to the proposed algorithm. HAST-IDS shows 0.37% higher
but 8.9% lower F1-scores with ISCX2012 and CSE2018,
respectively.

To compare overall performance, let us show average
detection rate for each dataset in Figure 19. As confirmed
by this figure, the proposed algorithm showed the highest
accuracy, precision, and F1-score. Only exception is recall
and it achieved the second highest value after Adaboost deci-
sion tree. From Figures 16 to 19, it proves that the proposed
algorithm has an ability to guarantee that high classification
accuracy regardless of dataset type. It is a strong and crucial
merit that NIDS algorithm should support. As mentioned
above, compared to the session-based method or HAST-IDS,
the proposed method can detect a network intrusion as soon
as possible, and the intrusion detection rate showed higher
results compared to the other two methods, which is a big
advantage. This means it can reliably provide a high detection
rate and fast detection speeds in various environments.

Figure 20 shows the ROC for each class with each dataset.
This also confirmed a high detection rate for almost all classes
without significant deviations.

V. CONCLUSION
Unlike the existing methods, the proposed NIDS has the
advantage of being able to stop malicious users before they
cause damage to the network, because it can determine
whether an intrusion is occurring before the session termi-
nates. In addition, using the packet feature to reduce unnec-
essary time and memory to statistically analyze and calculate
packet data to generate the session feature is a great advan-
tage. This is important considering that network intrusions
are becoming more diverse while, at the same time, the
number and quantity of sessions are increasing significantly.

Basically, machine learning models require a lot of memory
and computational power, so powerful and expensive hard-
ware is absolutely necessary. Therefore, it is important in
practical terms for the requirements in hardware to be lower
than with the existing methods. An ML-based IDS should
ultimately evolve into a real-time IPS that can detect and
defend network intrusions without delay. Since the hardware
requirements of an IPS are much higher than those of an IDS,
the proposed method suggests a useful direction for real-time
IPS development in terms of a lightweight design.

Although the detection speed of the proposed approach is
fast, accuracy needs to be further improved, compared to the
conventional approaches. Since the proposed structure does
not depend on a specific classifier, any higher accuracy ML
model can be used, and it can improve detection performance
easily without sacrificing the advantages of the proposed
method. Through this, it is expected that more secure and
faster network services can be provided to users.

REFERENCES
[1] C. Seelammal and K. V. Devi, ‘‘Computational intelligence in intru-

sion detection system for snort log using Hadoop,’’ in Proc. Int. Conf.
Control, Instrum., Commun. Comput. Technol. (ICCICCT), Dec. 2016,
pp. 642–647, doi: 10.1109/ICCICCT.2016.7988029.

[2] L. Bilge and T. Dumitras, ‘‘Before we knew it: An empirical study
of zero-day attacks in the real world,’’ in Proc. ACM Conf. Comput.
Commun. Secur. (CCS), T. Yu, G. Danezis, and V. D. Gligor, Eds.,
Raleigh, NC, USA, Oct. 2012, pp. 833–844, doi: 10.1145/2382196.
2382284.

[3] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, ‘‘Deep learn-
ing approach combining sparse autoencoder with SVM for network
intrusion detection,’’ IEEE Access, vol. 6, pp. 52843–52856, 2018, doi:
10.1109/ACCESS.2018.2869577.

[4] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Raheem, ‘‘Performance com-
parison of support vector machine, random forest, and extreme learning
machine for intrusion detection,’’ IEEE Access, vol. 6, pp. 33789–33795,
2018, doi: 10.1109/ACCESS.2018.2841987.

[5] M. Belouch and S. E. Hadaj, ‘‘Comparison of ensemble learning meth-
ods applied to network intrusion detection,’’ in Proc. 2nd Int. Conf.
Internet Things, Data Cloud Comput. New York, NY, USA: Association
for Computing Machinery, Mar. 2017, pp. 1–4, doi: 10.1145/3018896.
3065830.

[6] Xilinx. (2020). Accolade Technology, IPS/IDS Offload. Accessed:
Jul. 20, 2022. [Online]. Available: https://www.xilinx.com/products/
acceleration-solutions/1-1bkvll1.html

[7] NVIDIA. (2022). NVIDIA Bluefield Data Processing Units. Accessed:
Jul. 20, 2022. [Online]. Available: https://www.nvidia.com/en-us/
networking/products/data-processing-unit

[8] Y. Sun. (2019). Summarizing CPU and GPU Design Trends
With Product Data. Accessed: Jul. 20, 2022. [Online]. Available:
https://deepai.org/publication/summarizing-cpu-and-gpu-design-trends-
with-product-data

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2014, pp. 2672–2680.

[10] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi:
10.1162/neco.1997.9.8.1735.

[11] N. Almusallam, Z. Tari, J. Chan, A. Fahad, A. Alabdulatif, and
M. Al-Naeem, ‘‘Towards an unsupervised feature selection method for
effective dynamic features,’’ IEEE Access, vol. 9, pp. 77149–77163, 2021,
doi: 10.1109/ACCESS.2021.3082755.

[12] A. Nugroho, A. Z. Fanani, and G. F. Shidik, ‘‘Evaluation of feature selec-
tion using wrapper for numeric dataset with random forest algorithm,’’ in
Proc. Int. Seminar Appl. Technol. Inf. Commun. (iSemantic), Sep. 2021,
pp. 179–183, doi: 10.1109/iSemantic52711.2021.9573249.

119366 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICCICCT.2016.7988029
http://dx.doi.org/10.1145/2382196.2382284
http://dx.doi.org/10.1145/2382196.2382284
http://dx.doi.org/10.1109/ACCESS.2018.2869577
http://dx.doi.org/10.1109/ACCESS.2018.2841987
http://dx.doi.org/10.1145/3018896.3065830
http://dx.doi.org/10.1145/3018896.3065830
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ACCESS.2021.3082755
http://dx.doi.org/10.1109/iSemantic52711.2021.9573249


T. Kim, W. Pak: Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier

[13] X. Peng, W. Huang, and Z. Shi, ‘‘Adversarial attack against DoS intrusion
detection: An improved boundary-based method,’’ in Proc. IEEE 31st
Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2019, pp. 1288–1295, doi:
10.1109/ICTAI.2019.00179.

[14] Z. Wang, ‘‘Deep learning-based intrusion detection with
adversaries,’’ IEEE Access, vol. 6, pp. 38367–38384, 2018, doi:
10.1109/ACCESS.2018.2854599.

[15] M.A. Ferrag, L.Maglaras, S.Moschoyiannis, andH. Janicke, ‘‘Deep learn-
ing for cyber security intrusion detection: Approaches, datasets, and com-
parative study,’’ J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102419,
doi: 10.1016/j.jisa.2019.102419.

[16] R. V.Mendonça, A. A.M. Teodoro, R. L. Rosa, M. Saadi, D. C. Melgarejo,
P. H. J. Nardelli, and D. Z. Rodríguez, ‘‘Intrusion detection system
based on fast hierarchical deep convolutional neural network,’’ IEEE
Access, vol. 9, pp. 61024–61034, 2021, doi: 10.1109/ACCESS.2021.
3074664.

[17] C. Liu, Z. Gu, and J. Wang, ‘‘A hybrid intrusion detection system based on
scalableK -means+random forest and deep learning,’’ IEEE Access, vol. 9,
pp. 75729–75740, 2021, doi: 10.1109/ACCESS.2021.3082147.

[18] P.-F. Marteau, ‘‘Random partitioning forest for point-wise and collec-
tive anomaly detection—Application to network intrusion detection,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2157–2172, 2021, doi:
10.1109/TIFS.2021.3050605.

[19] J. Kevric, S. Jukic, and A. Subasi, ‘‘An effective combining classifier
approach using tree algorithms for network intrusion detection,’’ Neu-
ral Comput. Appl., vol. 28, no. S1, pp. 1051–1058, Dec. 2017, doi:
10.1007/s00521-016-2418-1.

[20] H. Jia, J. Liu, M. Zhang, X. He, and W. Sun, ‘‘Network intrusion detection
based on IE-DBN model,’’ Comput. Commun., vol. 178, pp. 131–140,
Oct. 2021, doi: 10.1016/j.comcom.2021.07.016.

[21] K. N. Rao, K. V. Rao, and P. V. G. D. P. Reddy, ‘‘A hybrid intru-
sion detection system based on sparse autoencoder and deep neural
network,’’ Comput. Commun., vol. 180, pp. 77–88, Dec. 2021, doi:
10.1016/j.comcom.2021.08.026.

[22] N. Kunhare and R. Tiwari, ‘‘Study of the attributes using four class labels
on KDD99 and NSL-KDD datasets with machine learning techniques,’’
in Proc. 8th Int. Conf. Commun. Syst. Netw. Technol. (CSNT), Nov. 2018,
pp. 127–131, doi: 10.1109/CSNT.2018.8820244.

[23] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao,
‘‘Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation,’’ in Proc. 1st Workshop Building Anal.
Datasets Gathering Exp. Returns Secur. (BADGERS), vol. 11. New York,
NY, USA: Association for Computing Machinery, 2011, pp. 29–36, doi:
10.1145/1978672.1978676.

[24] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial–temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018, doi: 10.1109/ACCESS.2017.2780250.

[25] V. S. M. Srinivasavarma, S. R. Pydi, and S. N. Mahammad, ‘‘Hardware-
based multi-match packet classification in NIDS: An overview and novel
extensions for improving the energy efficiency of TCAM-based classi-
fiers,’’ J. Supercomput., vol. 78, no. 11, pp. 13086–13121, Jul. 2022, doi:
10.1007/s11227-022-04377-8.

[26] K. Pearson, ‘‘LIII. On lines and planes of closest fit to systems of points
in space,’’ London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 2, no. 11,
pp. 559–572, 1901, doi: 10.1080/14786440109462720.

[27] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. 31st Int. Conf. Neural
Inf. Process. Syst. (NIPS). Red Hook, NY, USA: Curran Associates, 2017,
pp. 5769–5779.

[28] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. 30th ICML, Jun. 2013, vol. 30,
no. 1.

[29] A. Cheng, ‘‘PAC-GAN: Packet generation of network traffic using gen-
erative adversarial networks,’’ in Proc. IEEE 10th Annu. Inf. Technol.,
Electron. Mobile Commun. Conf. (IEMCON), Oct. 2019, pp. 728–734, doi:
10.1109/IEMCON.2019.8936224.

[30] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[31] J. Zhu, H. Zou, S. Rosset, and T. Hastie, ‘‘Multi-class AdaBoost,’’ Statist.
Interface, vol. 2, no. 3, pp. 349–360, 2009.

[32] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009, doi: 10.1561/2200000006.

[33] D. Roy, P. Panda, and K. Roy, ‘‘Tree-CNN: A hierarchical deep convolu-
tional neural network for incremental learning,’’ Neural Netw., vol. 121,
pp. 148–160, Jan. 2020, doi: 10.1016/j.neunet.2019.09.010.

[34] M. V. Valueva, N. N. Nagornov, P. A. Lyakhov, G. V. Valuev, and
N. I. Chervyakov, ‘‘Application of the residue number system to
reduce hardware costs of the convolutional neural network implemen-
tation,’’ Math. Comput. Simul., vol. 177, pp. 232–243, Nov. 2020, doi:
10.1016/j.matcom.2020.04.031.

[35] S. Soheily-Khah, P.-F. Marteau, and N. Bechet, ‘‘Intrusion detection in
network systems through hybrid supervised and unsupervised machine
learning process: A case study on the ISCX dataset,’’ in Proc. 1st Int. Conf.
Data Intell. Secur. (ICDIS), Apr. 2018, pp. 219–226.

[36] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion
detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012, doi:
10.1016/j.cose.2011.12.012.

[37] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy Setúbal, Portugal: SciTePress,
2018, pp. 108–116, doi: 10.5220/0006639801080116.

TAEHOON KIM received the B.S. degree in
information and communication engineering from
Yeungnam University, in 2018, where he is
currently pursuing the M.S. degree. His cur-
rent research interests include high-speed net-
work intrusion detection and prevention based on
machine-learning.

WOOGUIL PAK (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
and the Ph.D. degree in electrical engineering
and computer science from Seoul National Uni-
versity, in 1999, 2001, and 2009, respectively.
In 2010, he joined the Jangwee Research Insti-
tute for National Defence as a Research Professor
and Keimyung University, Daegu, South Korea,
in 2013. He is currently an Associate Pro-
fessor at Yeungnam University, Gyeongsan-si,

South Korea. His current research interests include network and system
security, user behavior analytics based on machine learning, and network
security for high speed networks.

VOLUME 10, 2022 119367

http://dx.doi.org/10.1109/ICTAI.2019.00179
http://dx.doi.org/10.1109/ACCESS.2018.2854599
http://dx.doi.org/10.1016/j.jisa.2019.102419
http://dx.doi.org/10.1109/ACCESS.2021.3074664
http://dx.doi.org/10.1109/ACCESS.2021.3074664
http://dx.doi.org/10.1109/ACCESS.2021.3082147
http://dx.doi.org/10.1109/TIFS.2021.3050605
http://dx.doi.org/10.1007/s00521-016-2418-1
http://dx.doi.org/10.1016/j.comcom.2021.07.016
http://dx.doi.org/10.1016/j.comcom.2021.08.026
http://dx.doi.org/10.1109/CSNT.2018.8820244
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.1109/ACCESS.2017.2780250
http://dx.doi.org/10.1007/s11227-022-04377-8
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1109/IEMCON.2019.8936224
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1016/j.neunet.2019.09.010
http://dx.doi.org/10.1016/j.matcom.2020.04.031
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.5220/0006639801080116

