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ABSTRACT In this study, we propose a countermeasure against a presentation attack on a photoplethys-
mogram (PPG)-based biometric authentication system. The countermeasure detects fake PPG signals by
identifying PPGmeasurement sites on the body based on the difference between PPGwaveforms recorded at
genuine measurement and non-genuine sites without adding other sensing components. In an experiment, we
computed the correlation coefficients as the similarity indices between PPG waveforms using two datasets,
i.e., PPG signals recorded at multiple measurement sites on participants and mapped signals to generate fake
signals for authentication. We then evaluated the proposed countermeasure using the feature values extracted
from the PPG signals to identify the measurement sites on the body. The experimental results indicated that
the identification of measurement sites as a countermeasure operated successfully for both PPG datasets,
regardless of the presence or absence of waveform mapping, and exhibited an identification accuracy of
more than 90 % regardless of the elapsed time.

INDEX TERMS Biometrics, measurement site, photoplethysmogram, and waveform mapping.

I. INTRODUCTION
Blood circulation through our bodies, driven by the heart,
contains several physiological pieces of information. For
example, the contraction and expansion of blood vessels
during circulation reflect cardiac activities such as heartbeat
and heart rate variability [1]. Electrocardiogram (ECG) mea-
surements are frequently used to observe these cardiac activi-
ties [2], while photoplethysmogram (PPG)measurements can
also be used based on blood circulation [3]. PPG measure-
ment is an optical technique that uses a sensor comprising
a light source such as a light emitting diodes (LED) and a
photodetector such as a phototransistor (PTr), or camera to
detect blood volume changes [3]. Themeasurement has fewer
restrictions than the ECG measurement because it requires
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only one sensor on various measurement sites on the body,
whereas ECG measurement requires multiple electrodes on
the body. Commercially available wearable devices, such as
smartwatches, provide PPGmeasurement functions by utiliz-
ing the characteristics of PPGmeasurements. These functions
can be used for healthcare applications such as the estimation
of heart rate [4]. In addition, several approaches have been
proposed to apply PPG signals to biometric authentication by
utilizing the personal distinctiveness of waveforms [5], [6].
PPG-based authentication is expected to seamlessly connect
applications and authentication functions using one PPG
sensor [7].

However, several studies have also been conducted on
identity spoofing in biometric systems using physiological
signals such as time-series PPG signals [8], [9], [10]. During
spoofing, an attacker impersonates a genuine person (victim)
by generating and presenting fake signals to the system.
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In general, a PPG waveform is recorded at various mea-
surement sites on the body [11], [12], and reconstructed by
using only a few frequency components [13], which may
contribute to the generation of fake PPG signals. In addi-
tion, artificial PPG signals can be generated using several
techniques, such as an optical approach to modulate the light
intensity and a physical approach to compress the upper
arm as the measurement site [14], [15]. Attackers can easily
generate fake PPG signals to break the PPG-based authentica-
tion based on waveform characteristics and signal-generation
techniques. Therefore, methods to detect fake PPG signals
and PPG-based authentication with countermeasures against
identity spoofing must be developed.

In this paper, we propose a countermeasure against identity
spoofing on PPG-based authentication. We focus on exist-
ing spoofing of PPG-based authentication derived from the
leakage of information required for authentication by PPG
recording at non-genuinemeasurement sites, and the variabil-
ity of PPG waveforms recorded at different sites on the body.
The proposed countermeasure identifies PPG measurement
sites by comparing the waveforms to detect fake PPG signals
without adding other sensing components. We evaluated the
countermeasures in an experiment using PPG signal datasets
recorded at multiple measurement sites on the body.

II. RELATED STUDIES
A. ATTACKS ON PHYSIOLOGICAL SIGNAL-BASED
BIOMETRIC AUTHENTICATION
Many studies have been conducted on identity spoofing in
physiological signal-based biometric authentication, while
many biometric authentication approaches are available.
Several studies have investigated presentation attacks (PA)
that present fake biometrics to a sensor in a biometric authen-
tication system [8], [9]. Many PAs are derived from infor-
mation leakage: the information required for authentication
is obtained by an attacker in non-genuine ways. Eberz et al.
investigated a PA on ECG-based authentication that was
conducted using a commercially available wearable authen-
tication device on a user’s wrist. The PA maps ECG signals
recorded at non-genuine measurement sites to generate fake
signals transmitted to a device [8]. Shukla et al. investi-
gated a PA on electroencephalogram (EEG)-based authen-
tication that was conducted using multiple electrodes on
the user’s head. The PA estimated the original EEG wave-
forms by utilizing the correlation between the EEG signals
recorded by the electrodes and the accelerometer data derived
from the victim’s movements during the EEG recording [9].
In addition, as shown in Fig. 1, several studies have warned
PAs may be performed on PPG-based biometric authen-
tication using various PPG measurement sites on a vic-
tim’s body and generating fake PPG signals to inject into
the smartwatch as the authentication device [10], [16].
Seepers et al. investigated a PA on PPG-based authentication
using heartbeats estimated based on PPG recorded at the face
using a camera [10]. Our previous study also investigated

FIGURE 1. Abstract of PPG measurement and PA against PPG-based
authentication.

a PA on PPG-based authentication utilizing PPG signals
recorded at non-genuine measurement sites on a body by
installing malicious PPG sensors [17]. We also investigated
a PPG waveform mapping method to generate fake sig-
nals based on frequency characteristics to improve PA [18].
In addition, Li et al. proposed a waveform mapping method
using PPG signals recorded at the face and a generative
adversarial network (GAN) for a PA on PPG-based authenti-
cation [16]. Therefore, countermeasures are required against
PAs by using waveform mapping techniques for PPG-based
authentication.

B. COUNTERMEASURES AGAINST PAS
Some of the most general countermeasures against PAs are
liveness detection methods [19], which ascertain that the
input is an actual measurement from the authorized, alive per-
son who is present at the time of measurement [20]. Liveness
detection methods are classified into static, dynamic, behav-
ioral, and biometric quality-based techniques [21]. Physio-
logical signals, such as PPG signals are often used for static
liveness detection in face recognition systems [22]. Mean-
while, PPG waveforms as biometric quality depend not only
on individuals but also on measurement sites [11], [23]. PAs
against PPG-based authentication are based on the leakage of
the information required for authentication derived from PPG
signals recorded at impostor measurement sites [16], [18].
Therefore, if liveness detection can be performed using one
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PPG signal as a biometric quality-based technique without
adding other sensing components, it may connect PPG-based
authentication and the countermeasure against the PA with
one PPG sensor [7].

Continuous authentication can also be used as a counter-
measure against identity spoofing, such as PAs on biomet-
ric authentication systems, which repeats the identification
of genuine or impostor after an initial authentication [24].
Generally, continuous authentication systems require soft
biometrics, which are non-intrusive, behavioral, or mate-
rial accessories such as face and clothing colors associated
with an individual [25], whereas hard biometrics include
unique and permanent personal characteristics such as fin-
gerprint and iris texture [26], [27]. However, soft biomet-
rics, such as face and clothing colors, cannot frequently be
used for individual authentication alone [24]. PPG signals
include biometric information that can be used as both hard
and soft biometrics [28]. Several studies used soft biomet-
rics extracted from PPG signals, such as their periodicity
recorded by a camera for continuous authentication against
PAs on face recognition systems [29]. Therefore, if wearable
devices can provide both initial and continuous authentication
using one PPG sensor, they may connect several applica-
tions, such as healthcare monitoring, with the initial authen-
tication, liveness detection and continuous authentication
seamlessly.

Meanwhile, in addition to liveness detection and continu-
ous authentication, several studies have focused on the rela-
tionships between physiological signal waveform quality and
measurement sites [11], [23]. For example, Hartmann et al.
conducted a quantitative comparison of PPG waveforms and
feature values extracted fromwaveforms atmultiplemeasure-
ment sites on a body [11]. To obtain high-quality PPG wave-
forms, Reddy et al. proposed a detection method for PPG
sensor disconnections from a specific measurement site on
a body, focusing on the saturation of signal waveforms [30].
However, research on the identification of PPG measure-
ment sites using PPGwaveforms as a countermeasure against
PAs without adding other components is lacking. The rela-
tionships between PPG waveforms and measurement sites
may contribute to countermeasures against PAs derived from
information leakages on non-genuine sites.

III. PROPOSED COUNTERMEASURE
We propose a countermeasure against PAs for PPG-based
authentication using PPG waveforms that can be used for
continuous authentication and liveness detection to detect
fake PPG signals without adding other sensing compo-
nents. Figure 2 presents an overview of the countermeasure
(surrounded by dashed lines) in PPG-based authentication.
The countermeasure repeats the PPG recording, extracts fea-
ture values from the PPG signals, and identifies the measure-
ment sites after the initial authentication. The identification
rejects inputs derived from non-genuine measurement sites as
fake signals and accepts inputs from genuine sites as genuine
signals to repeat the procedure.

FIGURE 2. Scheme of the proposed countermeasure for PPG-based
biometric authentication.

FIGURE 3. Overview of the experimental scheme.

The repetition frequency of the proposed countermeasure
is important for continuous authentication in terms of the
tradeoff the relationship between the possibility of false rejec-
tion and false acceptance [24]. Hernandez-Ortega et al. set the
time length of frames for PPG signals recorded by a camera
to extract feature values, such as peaks in one period, for con-
tinuous authentication in a face recognition [29]. Following
the setting, we set the repetition frequency of identification as
the countermeasure for every period as a segment in the PPG
signals.

IV. EXPERIMENT
We conducted an experiment to evaluate the proposed
countermeasure against PAs on PPG-based authentication.
Figure 3 shows an overview of the experimental scheme.
Before the evaluation of the countermeasure, we evaluated
PPG waveforms by computing the similarity between PPG
signals recorded at multiple measurement sites on partici-
pants and mapping waveforms using the signals to estimate
the original signals. Subsequently, we evaluated the pro-
posed countermeasure by identifying the measurement site
by changing the selected feature values and investigating the
effect of elapsed time on the countermeasure.

A. DATASETS
In the experiment, we used two datasets of PPG signals
recorded at multiple measurement sites from a total of 34 par-
ticipants. Table 1 shows a comparison of the datasets.
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TABLE 1. Comparison of PPG signal datasets used for the experiment.

FIGURE 4. PPG measurement sites in P6MS dataset.

1) P6MS DATASET
Our PPG at six measurement sites (P6MS) dataset included
PPG signals recorded at six measurement sites (left and right
wrists, proximal parts, and fingertips) on 12 participants
(S1,S2, . . . ,S12) who did not have any cardiovascular dis-
eases using a developed PPG sensing system. PPG signals
were obtained from participants when they rested for 180 s.
The sensing system included six PPG sensors consisting
of an LED and a PTr (NJL5303R-TE1, New Japan Radio
Co., Ltd.). Each output of the PTr was filtered with a low-
frequency cutoff of 0.40 Hz and a high-frequency cutoff
of 5.0 Hz, amplified with a gain of 47 dB and a sampling
rate of 1 kHz with a resolution of 16 bits, and recorded
using an analog-digital (AD) converter (USB-6216, National
Instruments). The sensors were fastened using Velcro tape to
record the PPG signals on the fingertip, proximal part, and
wrist of each hand (Fig. 4). Although more candidates are
available for PPG measurement sites, we selected six sites
as our scope to evaluate the proposed countermeasure using
PPG signals recorded on relatively similar and close sites,
which might resemble each other in waveform based on the
symmetry of the body, blood vessel configuration, and blood
circulation. In addition, PPG signals are generally recorded
on fingertips in many clinical applications [31], whereas
smartwatches record PPG signals on wrists. Moreover, wear-
able ring-type devices on the proximal part are commer-
cially available [32]. The measurements were approved by
the Ethical Committee of the Information Technology R&D
Center (2020-B001), Mitsubishi Electric Corporation, Japan.

Informed consent was obtained from the participants before
the recording began.

2) MAUS DATASET
In addition to P6MS dataset, we used mental workload
assessment on n-back task using wearable sensor (MAUS)
dataset [33] in the experiment. It is the only open access
dataset that includes PPG signals recorded at two measure-
ment sites (non-dominant wrist and fingertip) on 22 healthy
participants. PPG signals were obtained from the participants
when they were resting for 300 s and performing n-back tasks
for six trials (Trials 1-6) for 300 s successively with intervals
of 120 s. In the n-back task, participants were required to
memorize the last n numbers of a series of rapidly flashing
numbers in succession (n = 0, 2, and 3). When a number
was identical to the n-th number preceding the stimulus
number, participants were required to respond by pressing a
button [34]. PPG signals at the fingertip were recorded using
a sensor comprising an infrared LED with a sampling rate
of 256 Hz with a resolution of 14 bits, and recorded using an
AD converter (ProComp Infiniti, Thought Technology) [35].
PPG signals at the wrist were recorded using a sensor com-
prising a green LED with a sampling rate of 100 Hz and
recorded using a smartwatch (PixArt PPG Watch) [34], [36].
Both PPG signals were up-sampled at 1 kHz by applying
linear interpolation and filtered with a low-frequency cutoff
of 0.40 Hz and a high-frequency cutoff of 5.0 Hz to conduct
the experiment using the P6MS and MAUS datasets in the
same condition. Because the units of PPG signals in the
MAUS dataset were not open to the public, before extracting
feature values from the signals, we computed the normalized
PPG segments as follows:

vi,norm[m] =
vi[m]− vi,min

vi,max − vi,min
, (1)

where i, vi[m],m, vi,max, and vi,min denote the number of PPG
segments, i-th PPG segment, discrete time, maximum value
of vi[m], and minimum value of vi[m], respectively.

B. EVALUATION OF WAVEFORMS
1) COMPUTATION OF SIMILARITY
To evaluate the similarity of the PPG waveforms that may
contribute to the capability of the PPG-based authentication,
PA, and proposed countermeasure, we computed the Pearson
correlation coefficients (CORR) between two PPG signals
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FIGURE 5. Overview of the PPG waveform mapping scheme. An example using the left PPGfi to estimate the left PPGwr is shown.

because CORR is the most robust metric for measuring simi-
larity in time-series physiological signals [37]. Additionally,
the CORR can be used as an evaluation metric to identify a
person as genuine in a PPG-based authentication [38]. In the
computation, we assumed that PPG signals recorded at the
left wrist (PPGwr) in the P6MS dataset were used as genuine
inputs to the authentication because they could be recorded by
commercially available smartwatches, whereas PPG signals
recorded at the fingertip (PPGfi) and proximal part (PPGpr)
were used as fake inputs for authentication. We also assumed
that the non-dominant left PPGwr were genuine inputs in
the P6MS dataset because all participants were right-handed.
CORR between the i-th PPGwr segment vwri [m] and PPGfi

segment vfii [m] is computed as follows:

CORRi=

M∑
m=1

(
vwri [m]−v̄wri

) (
vfii [m]−v̄

fi
i

)
M∑
m=1

√(
vwri [m]−v̄wri

)2 M∑
m=1

√(
vfii [m]−v̄

fi
i

)2 , (2)

whereM , v̄wri and v̄fii denote the length of a segment, mean of
vwri [m], and mean of vfii [m], respectively.

2) WAVEFORM MAPPING
We investigated a waveform mapping technique to estimate
the (left) PPGwr used for the PA in the experiment. There
are several approaches related to the estimation of time-
series physiological signal waveforms, such as arterial blood
pressure (ABP), ECG, EEG, and PPG, from other signals
[9], [39]. Some previous studies have proposed methods to
estimate signal waveforms such as ABP and ECG from other
signals such as PPG using transfer functions (TFs) based
on the similarity between the signals and frequency charac-
teristics computed by conventional signal processing tech-
niques such as discrete cosine transforms (DCT) [39], [40].
TFs can be computed using not only one person’s signals
but also signals gathered from multiple people, except for
a victim [9]. Our previous study also proposed a method of
estimating PPG waveforms using TF based on the similarity
between PPG signals recorded at different sites and frequency
characteristics [18].

TABLE 2. Feature values extracted from PPG signals in the experiment.
The selected five values for investigation of elapsed time effect based on
PIs are shown in bold.

In this study, we mapped the PPG signals to other PPG
signals using DCT based on previous studies including ours.
Figure 5 shows an overview of the mapping, which pro-
vides an example of using the left PPGfi to estimate the
left PPGwr. We assumed that an attacker can gather PPG
signals recorded at a genuine wrist and another measurement
site on multiple people, except a victim, and obtain only
the PPG signal recorded at another measurement site on
the victim. The attacker obtains DCT coefficients as Vfi

q =

(Vfi
q,1V

fi
q,2 . . .Vfi

q,N ) andV
wr
q = (Vwr

q,1V
wr
q,2 . . .Vwr

q,N ) by apply-
ing DCT to PPGfi and PPGwr on multiple people except for
one person as the victim p(6= q), where N denotes the total
number of segments. The attacker gathers them as Vfi

=

(Vfi
1V

fi
2 . . .Vfi

Q) except Vfi
p and Vwr

= (Vwr
1 Vwr

2 . . .Vwr
Q )

except Vwr
p , where Q denotes the number of participants.

Subsequently, the attacker computes the TF as a matrix F
using the least-squares method as follows (Train in Fig. 5):

F∗ = argmin
F

∥∥∥FVfi
−Vwr

∥∥∥2 , (3)

The attacker estimates the victim p’s DCT coefficientsVwr
p as

V̂wr
p using Vfi

p as follows:

V̂wr
p = F∗Vfi

p , (4)

Finally, the attacker computes p’s left PPGwr as the
left PPGwr

fi V̂wr
p by applying inverse DCT (IDCT) to V̂wr

p

118740 VOLUME 10, 2022



S. Hinatsu et al.: Identification of PPG Measurement Sites Toward Countermeasures Against Biometric PA

(Test in Fig. 5). V̂wr
p is used for the comparison of waveforms

and evaluation of the countermeasure.

C. EVALUATION OF COUNTERMEASURE
1) IDENTIFICATION OF MEASUREMENT SITES
We extracted feature values from PPG segments of recorded
signals at multiple measurement sites on participants and
mapped the signals using the recorded signals, as described
in the previous section. Table 2 shows a list of 40 feature
values extracted from the segments based on previous studies
[5], [6], [11], [41]. They included 24 Mel-frequency cepstral
coefficients (MFCC1, . . . ,MFCC24): that were often used
in audio signal-processing systems [41]. We did not use the
maximum and minimum values [6], [11] as the feature values
because we applied normalization to PPG segments inMAUS
dataset. We conducted k-fold cross-validation to evaluate and
select the feature values for the countermeasure. To use 30 s
duration signals for validation, we set k = 6 and 10 when
using the P6MS and MAUS datasets, respectively. In the
validation, we generated a support vector machine (SVM)
classifier, whichwas successfully applied to several biometric
systems including PPG-based authentication [42].

2) SELECTION OF FEATURE VALUES
During the evaluation, we changed the number and combi-
nation of feature values to investigate the optimal feature
values for the identification of PPG measurement sites as the
proposed countermeasure. It is desirable to use fewer feature
values in the proposed countermeasure than the values in the
initial PPG-based authentication in terms of soft biometrics
in continuous authentication. Therefore, we evaluated the
feature values by computing the permutation importance (PI)
and select them based on the PIs for the countermeasure. The
PI was computed by shuffling one column of a dataset of
feature values to generate a corrupted dataset and calculating
the classification performance using the corrupted dataset.
The PI for the feature value h is defined as follows [43]:

PIh = s−
1
R

R∑
r=1

sr,h, (5)

where s, h, R, and sr,h denote the accuracy, number of fea-
ture values, total number of repetitions, and accuracy using
the corrupted feature values, respectively. s is calculated as
follows:

s =
TP+ TN

TP+ FP+ TN+ FN
, (6)

where TP, TN, FP, and FN are defined as true positive, true
negative, false positive, and false negative, respectively [44].

3) INVESTIGATION OF ELAPSED TIME EFFECT
We investigated the effect of elapsed time on the counter-
measure as the time stability of the measurement site identi-
fication in terms of continuous authentication because PPG
waveforms gradually change, which may contribute to the
capability of the identification. We used the MAUS dataset in

TABLE 3. Comparison of CORRs between the left PPGwr and PPG signals
recorded at the other measurement sites using P6MS dataset.

TABLE 4. Comparison of CORRs between the PPGwr and PPGfi for each
trial using MAUS dataset.

FIGURE 6. Examples of PPG mapping result using the P6MS dataset.
(a) Comparison of left PPGwr and left PPGwr

fi (participant ID: S12).
(b) Comparison of left PPGwr and right PPGwr

wr (participant ID: S06). The
true waveforms (solid lines) and estimated waveforms (dashed lines) by
mapping are compared.

FIGURE 7. Example of PPG mapping result using the MAUS dataset
(participant ID: 012, recording state: resting). The true waveforms (solid
lines) and estimated waveforms (dashed lines) by mapping are compared.

the evaluation because it included PPG signals recorded for a
total of 47 min (one resting for 300 s and six n-back trials for
300 s with six intervals for 120 s), which had a longer duration
than the P6MS dataset (one resting for 180 s). We generated
an SVM classifier using the top five feature values in the
resting data and tested the classifier using the values from
trials (Trials 1-6) to compute accuracy in each Trial. The
feature values were selected for evaluation by computing
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FIGURE 8. Comparison of ROC curves by changing the number of feature values when using the P6MS dataset. (a) Original PPG signals.
(b) Mapped PPG signals.

FIGURE 9. Comparison of ROC curves by changing the number of feature values when using the MAUS dataset. (a) Original PPG signals.
(b) Mapped PPG signals.

the PI of each feature value in the previous evaluation of
identification using all feature values.

V. RESULTS AND DISCUSSION
A. EVALUATION OF WAVEFORMS
Tables 3 and 4 list the CORRs between the original PPG
signals using the P6MS and MAUS datasets, respectively.
All CORRs under the ‘‘Original PPG’’ in Table 3 were
larger than 0.800. All CORRs under ‘‘Original PPG’’ in
Table 4 were larger than 0.700 except for resting condi-
tion. Generally, if 0.700 < |CORR| < 0.900 and 0.900 <

|CORR| < 1.000, the CORRs indicate high correlation and
very high correlation, respectively [45]. In addition, if PPG
signals are recorded for a long time at the same measurement
sites on the same person, CORRs between the PPG signals
satisfy CORR > 0.800 in many conditions [38]. There-
fore, the CORRs suggested that the PPG signals recorded
at the other measurement sites might be used as fake inputs
for PPG-based authentication because of their similarity.
To compare the CORRs under ‘‘Original PPG’’ in each

dataset, as shown in Tables 3 and 4, we conducted an analysis
of variance (ANOVA) after establishing the homogeneity of
variance among the CORRs. The ANOVA results indicated
no significant differences between the CORRs in the mea-
surement sites in the P6MS or in the trials in the MAUS
dataset.

Tables 3 and 4 also show the CORRs between the PPGwr

and mapped signals to estimate PPGwr using the P6MS and
MAUS datasets, respectively. All CORRs under ‘‘Mapped
PPG’’ in Table 3 were larger than 0.800 and CORRs under
‘‘Original PPG.’’ All CORRs under ‘‘Original PPG’’ in
Table 4 were larger than 0.900 and CORRs under ‘‘Original
PPG.’’ Figure 6(a) and (b) show an example of the PPGwave-
formmapping results using the P6MS dataset. Figure 7 shows
an example of the PPG waveform mapping results obtained
using the MAUS dataset. Therefore, the results suggested
that our PPG mapping method could estimate PPGwr using
PPGfi or PPGpr in both datasets with high accuracy, which
might contribute to the PA. To compare the CORRs of
‘‘Mapped PPG’’ in each dataset, as shown in Tables 3 and 4,
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FIGURE 10. Relationship between AUC and number of feature values when using the P6MS dataset. (a) Original PPG signals. (b) Mapped PPG
signals.

FIGURE 11. Relationship between AUC and number of feature values when using the MAUS dataset. (a) Original PPG signals. (b) Mapped PPG signals.

we conducted ANOVA using the same procedure as in the
previous paragraph, and the results indicated no significant
differences between CORRs in the measurement sites in the
P6MS dataset or in the trials in the MAUS dataset.

B. EVALUATION OF COUNTERMEASURE
1) EVALUATION OF MEASUREMENT SITE IDENTIFICATION
Figures 8 and 9 show the receiver operating characteristic
(ROC) curves of PPG measurement site identification as
the proposed countermeasure against the PA in one vali-
dation using 5, 10, and 20 feature values extracted from
PPG signals in the P6MS and MAUS datasets, respectively.
Figures 10 and 11 show the area under the curve (AUC) using
1-20 values for validation in the P6MS and MAUS datasets,
respectively. As shown in Figs. 8-11, the AUC converged
when more than five values were used. Zhu et al. defined a
good classifier as one classifier that had an ROC curve with
an AUC ≥ 0.800 [44]. Therefore, the result suggested that
the identification as the countermeasure operated success-
fully using at most five feature values for the two datasets,

TABLE 5. Identification accuracy of PPGwr and PPGfi for the investigation
of elapsed time effect on the countermeasure.

regardless of the presence or absence of waveform mapping.
When five feature values were used in the P6MS dataset, the
identification accuracies were 0.827 and 0.845 for the origi-
nal and mapped PPG signals, respectively. When using five
values in the MAUS dataset, the accuracies were 0.946 and
0.956 for the original and mapped PPG signals, respectively.
The countermeasures required fewer feature values than typ-
ical PPG-based authentication with 15-24 values [41], [42].
In addition, the number of values satisfied the condition in the
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previous study, which used only nine PPG feature values for
continuous authentication in a face-recognition system [29].
The results suggested that at most, five PPG feature values are
not sufficient as hard biometrics for typical authentication;
however, they can be used as soft biometrics for continuous
authentication.

Table 2 shows the top five feature values selected by
computing and comparing the PIs for the proposed counter-
measures in bold. They did not include any MFCCs com-
puted through multiple signal processing methods, such as
the Fourier transform, which reflected the personal distinc-
tiveness of PPG frequency characteristics. Meanwhile, our
previous study evaluated the feature values that contributed
to the initial PPG-based authentication and PA by computing
and comparing PIs, which demonstrated the effectiveness
of MFCCs in the initial authentication against the PA [46].
Therefore, the result suggested that the feature values as
soft biometrics contributing to the proposed countermeasure
might be different from the values as the personal distinctive-
ness contributing to the initial authentication.

2) EVALUATION OF ELAPSED TIME EFFECT
Table 5 shows all identification accuracies using five feature
values shown in bold in Table 2 from PPG signals at rest
for the SVM classifier, and the values from PPG signals in
performing n-back tasks for inputs to the classifier using the
MAUS dataset to evaluate the time stability of the PPG mea-
surement site identification. As shown under ‘‘Original PPG’’
in Table 5, the identification accuracy for PPGwr and PGfi

had a decreasing tendency as the recording progressed, which
might be because PPG waveforms gradually changed over
time. Although the identification accuracy for PPGwr and
mapped signals (under ‘‘Mapped PPG’’) were smaller than
PPGwr and PPGfi (under ‘‘Original PPG’’) except for Trial 5;
the accuracies in all trials were higher than 0.900 regardless of
the elapsed time. The result indicated that the identification
of PPG measurement sites as the proposed countermeasure
against the PA operated successfully with or without n-back
tasks during PPG measurement. It also suggested that the
countermeasure might operate successfully in a practical sce-
nario such as wearing a smartwatch during other tasks at a
desk than n-back tasks for the same duration as the MAUS
dataset (47 min).

C. COMPARISON OF DATASETS
By comparing the capability of the countermeasures,
as shown in Figs. 8-11, the identification of PPG mea-
surement sites was more successful for the MAUS dataset
than for the P6MS dataset. The difference might be derived
from the number of measurement sites and the PPG sensors
used for each dataset. PPG signals in the P6MS dataset
were recorded using the same specification sensors for
six measurement sites, whereas PPG signals in the MAUS
dataset were recorded using different specification sensors
for the fingertip and wrist. Generally, longer-wavelength light
from infrared LED penetrates deeply into the skin, whereas

shorter-wavelength light from the green LED does not,
which contributes to the difference in PPG waveforms [23].
As shown under ‘‘Original PPG’’ in Tables 3 and 4, CORRs as
the similarity between PPGwr and PPGfi in theMAUS dataset
were smaller than those between PPGwr and other original
PPG signals. Therefore, the identification of PPG measure-
ment sites as a countermeasure might be more effective for
the MAUS dataset than for the P6MS dataset.

However, by comparing the CORRs in ‘‘Mapped PPG’’ in
Tables 3 and 4, the results indicate that the mapping achieved
a better capability for the MAUS than the P6MS dataset.
We applied linear interpolation and a band-pass filter to the
signals in the MAUS dataset to conduct the experiment under
the same conditions for both datasets, which might have
resulted in a decrease in the personal distinctiveness of the
signals in the MAUS dataset to generate all similar signals.

D. LIMITATIONS
Under limited experimental conditions, we evaluated the
identification of PPG measurement sites as the proposed
countermeasure against the PA on PPG-based authentication.
We must address the following two limitations of the study:

1) MEASUREMENT CONDITIONS
In our future studies, we must conduct an experiment using
PPG signals recorded at various measurement sites on more
participants in various age ranges and health conditions in
other recording states. In the evaluation, we used PPG signals
recorded at only two or six measurement sites on 20-30 years
old healthy participants in the two datasets, whereas other
several sites could be utilized, such as the face, earlobe, and
toe. The differences in PPGwaveforms derived from ages and
cardiovascular diseases and the difficulty in extracting seg-
ments and feature values from the waveforms may affect the
performance of the measurement site identification. In addi-
tion, other recording states such as walking may add motion
artifacts to the PPG waveforms and decrease the accuracy of
identification. However, we expect that the identificationmay
be successful for PPG signals recorded at distant sites from
the wrist because PPG waveforms recorded at closer sites
tend to be more similar to each other. For example, the finger
and wrist, and the earlobe and forehead provide more similar
PPG waveforms based on the blood vessel configuration and
blood circulation [11]. In addition, Li et al. evaluated the
feasibility of PA using PPG at the face using a camera, and
concluded that the difficulty of PA is due to the camera speci-
fication such as frame rate when generating fake signals [16].
Therefore, the proposed countermeasure may identify PPG
signals on the face using a camera with a low frame rate and
mapped signals using the PPG signals on the face.

2) WAVEFORM MAPPING TECHNIQUE
Other waveform mapping techniques should be applied to
PPG signals to evaluate the proposed countermeasure in our
future studies. We applied only one technique using the TF
computed using PPG signals from participants based on the
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frequency characteristics, although the result exhibited the
effectiveness of estimating PPGwr. Techniques for mapping
based on deep learning techniques, such as GAN [16], are
available, which might generate fake signals that are more
similar to genuine PPG signals compared with our technique.

VI. CONCLUSION
In this paper, we proposed a countermeasure against PAs
on PPG-based biometric authentication. The countermeasure
detects fake PPG signals by identifying PPG measurement
sites on the body based on the difference between PPG wave-
forms recorded at genuine measurement and non-genuine
sites without adding other sensing components. We evalu-
ated the countermeasure using two datasets, including PPG
signals recorded at multiple measurement sites for 34 par-
ticipants. We compared PPGwr and PPG signals recorded at
other measurement sites and mapped signals based on the
frequency characteristics to estimate PPGwr used for authen-
tication by computing CORRs as the similarity index between
the signals. The result indicated the similarity between the
PPG signals PPGwr and other PPG signals as the CORRs
between them satisfied CORR> 0.700 in most of the trials in
both datasets. Subsequently, we extracted the feature values
from the PPG signals and generated an SVM classifier to
identify the measurement sites against the PA. The results
indicated the effectiveness of PPG measurement site identifi-
cation for both datasets, regardless of the presence or absence
of waveform mapping with AUC > 0.800. In addition, the
investigation results of the elapsed time effect on the coun-
termeasure indicated the time stability of the identification
with an accuracy of more than 90 %. Our future research
will include evaluation using PPG signals recorded on more
diverse participants in other recording states and other wave-
form mapping techniques.
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