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ABSTRACT Underwater images suffer from various quality degradation problems such as color cast, low
contrast, and blurred details. To solve these issues, a novel underwater image enhancement method that
can implement color correction, detail sharpening, and contrast enhancement in stages. In particular, the
proposed method combines multi-channel color compensation with color correction. It solves detail blurring
and low contrast by the Gaussian differential pyramid and the local contrast enhancement of contrast limited
adaptive histogram equalization, respectively. The proposed method mainly includes color compensation,
color correction, detail sharpening, and contrast enhancement. Qualitative and quantitative comparisons
demonstrate that the proposed method can effectively remove the blur of the image, realize the color
correction, and significantly improve the clarity of the image.

INDEX TERMS Underwater image enhancement, color correction, detail sharpening, contrast enhancement.

I. INTRODUCTION
The ocean is bred with abundant resources. With the expan-
sion of population and the scarcity of land resources, the
demand for the development of marine resources is becom-
ing increasingly urgent. Collecting marine information is the
premise of developing and utilizing marine resources. Image
is an important means for a human to obtain information,
and underwater optical imaging has become the focus of
attention. It plays an important role in marine resource explo-
ration [1], marine ecological research [2], marine automatic
monitoring [3], underwater target tracking [4], and under-
water autonomous navigation [5]. However, the complex
and changeable underwater environment, make underwater
imaging generally suffer from very serious degradation phe-
nomena, including atomization color distortion, etc. These
problems have a serious impact on the acquisition of image
information. These problems have a serious impact on the
acquisition of image information. Therefore, how complete
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the restoration of underwater images by technical means,
so as to obtain unambiguous underwater images, plays an
important role in ocean exploration. An effective method that
can enhance underwater images with better clarity, higher
contrast, more detail, and full colors, which can provide the
necessary safeguards for a variety of complex underwater
applications [1], [2], [3], [4], [5].

In this paper, we propose a new underwater image enhance-
ment method that can obtain more realistic underwater
images. Firstly, color compensation is implemented for the
original image and then color corrected using multi-scale
Retinex. Secondly, the Gaussian differential pyramid is used
to reconstruct and fusion of detailed information. Finally, the
CLAHE is used to stretch the contrast of the detail-sharpened
image. In this way, a high-quality underwater image is an
output. Subjective and objective performance analysis, run-
times, and local feature point matching are used to evaluate
the method. The experimental results show that the enhanced
underwater images have higher contrast, brightness, andmore
detail and color than several methods. The main contributions
of this paper are summarized as follows:

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119193

https://orcid.org/0000-0001-5225-9899
https://orcid.org/0000-0002-8339-5081
https://orcid.org/0000-0003-2495-4469
https://orcid.org/0000-0002-0651-4278


S. Jin et al.: Color Correction and Local Contrast Enhancement for Underwater Image Enhancement

1) An underwater image enhancement method is proposed
based on color correction and local contrast enhancement.
Compared with the state-of-the-art underwater image restora-
tion or enhancement methods, the proposed method can
effectively improve the quality of underwater images and
reduce detail information loss without implementing color
space transformation.

2) Considering that the degradation of underwater images
is caused by the attenuation of light with different wave-
lengths, it is essential for color compensation for red and blue
channels. The Multi-Scale Retinex (MSR) method based on
auto-levels is implemented to effectively correct the compen-
sated underwater image’s color cast.

3) To highlight the details of the color-corrected image, the
detail feature map of the R, G, and B channels are recon-
structed using the Gaussian differential pyramid and fused
into the R, G, and B channels corresponding to the color-
corrected image.

4) To further improve the contrast of the underwater image,
the pixel values of the high, medium, and low intervals are
processed using CLAHE. Finally, the pixel values of the high
and low intervals are effectively suppressed, and the pixel
values of the middle interval are effectively stretched.

The specific arrangement of the remaining sections is as
follows: Section II introduces several image enhancement
methods. Section III presents the details of our proposed
method. Section IV compares and analyzes the experimental
results. Section V summarizes the work of this paper and
future research.

II. RELATED WORK
Collecting high-quality image information in a complex
underwater environment is challenging, so the image
enhancement technique has been extensively studied [6], [7]
to meet the needs of practical applications. Restoration
parameters are derived from physical models and prior
knowledge, restoring high-quality underwater images [8].
The non-physical model method obtains underwater images
with rich information and better visuals [9] by adjusting the
pixel values of the original image.

The methods based on the physical model mainly
include specialized hardware, multiple images, and prior
knowledge. Although these methods use specialized hard-
ware [10], [11], [12], [8], although the technology has par-
ticular effectiveness in enhancing and restoring underwa-
ter images, it still has some limitations. For instance, the
underwater optical imaging system is complex and expensive
because of using complex hardware acquisition devices (e.g.,
optical laser sensor) to capture turbid underwater images.

For the second class of methods using multiple
images [13], [14], [15] or approximate estimation of the
scene [16], [17]. Narasimhan et al. [13] and Schechner et al.
[14] employedmultiple images for underwater image restora-
tion, but it needs to use more than two images of the same
scene as a priori knowledge, which will limit the real-time
performance of video observations. Treibitz et al. [15] take

into account the partial polarization of object reflection and
backscattering from more than two images, but the process
of image acquisition is complicated. Kopf et al. [16] used the
existing geospatial information and the urban 3D models to
restore images, but some additional information needs to be
provided by user interaction. Tian et al. [17] used synthetic
aperture imaging and polarization imaging to restore images,
which could effectively increase the amount of information
obtained by a single imaging system. However, it requires
more complex hardware systems, thereby it isn’t suitable for
ordinary users.

For the third class of methods using prior knowl-
edge [18], [19], [20], [21], [22]. The dark channel prior (DCP)
proposed byHe et al. [18] is used for outdoor image dehazing.
Image degradation in foggy and underwater is caused by
scattering and absorption of media, thereby the method can
be used for image restoration [19], [20], [21], [22].

The non-physical models are mainly divided into five
categories: transform domain-based method, spatial domain-
based method, color constancy-based method, deep learning
method, and fusion method. For the first class of methods
mainly includes quaternion [23], homomorphic filter [24],
and wavelet transform [25]. This kind of method has a good
effect on noise removal, but it can’t achieve ideal results in
contrast and color of underwater images.

The spatial domain-based methods mainly include
grayscale transformation [26], histogram equalization
(HE) [27], and contrast limited adaptive histogram equal-
ization (CLAHE) [28]. The HE stretches the histogram
evenly globally to improve the image contrast [29]. However,
HE increases the sparsity of the gray distribution of the
image, which may lose part of the detailed information.
Adaptive histogram equalization (AHE) [30] improves the
local contrast of the image and enhances edge details by
redistributing the local gray level of the image multiple times,
but it also has the problem of amplifying noise. Based on the
AE, CLAHE imposes constraints on the local image contrast
to avoid excessively amplifying image noise in enhancing
image contrast. Hitam et al. [31] proposed a comprehensive
CLAHE color model and applied the CLAHE method to the
RGB and HSV color models, respectively.

For the third class of methods mainly includes White Bal-
ance [32], Gray World [33], Gray Edge [34], Weighted Grey
Edge [35], and Retinex [36]. White balance may cause color
distortion when there is insufficient light. Blurred edges of
underwater images due to the complexity of the underwater
environment, the results are not ideal when the assumed
conditions of Gray World, Gray Edge, and Weighted Grey
Edge are destroyed. Joshi et al. [37] applied Retinex to
weather degraded images, but its enhancement effect is lim-
ited. Based on the Retinex theory, Fu et al. [38] reposed
to use different methods to enhance the two components of
incident and reflection of underwater images. They achieved
a good enhancement effect in the case of color deviation in
underwater images. Alex et al. [39] converted the image to the
YCbCr color space and achieved good enhancement effects.
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Deep learning was gradually emerging and applied in var-
ious fields, and underwater image enhancement [40], [41],
[42], [43], [44], [45], [46] is no exception. Perez et al. [40]
used a convolutional neural network (CNN) for image
enhancement for the first time. This method uses the cor-
respondence between degraded underwater images and clear
images to train a model between image pairs to achieve the
purpose of underwater image enhancement. Zhang et al. [41]
proposed an enhancement method based on Retinex-inspired
color correction and detail-preserved fusion to accomplish
the color correction of underwater images and enhance image
edges and details. Zong et al. [42] proposed an enhancement
algorithm based on CycleGAN to enhance the robustness
and adaptability of the network. Zhang et al. [43] suggested
using color correction and Bi-interval contrast enhancement
to improve the quality of underwater images. Sun et al. [44]
proposed an enhancement method based on reinforcement
learning. This method uses a Markov decision process for
modeling to enhance the underwater image. Liu et al. [45]
proposed an object-guided twin adversarial contrastive learn-
ing to enhance the underwater image. Wang et al. [46] sug-
gested using the CA-GAN method for image enhancement.
First, underwater degraded images with different attenuation
coefficients and depths are synthesized according to the phys-
ical model, and then CA-GAN is used to create amany-to-one
mapping function, and an attention mechanism is also intro-
duced to improve the visual effect of the image. However,
deep learning relies heavily on training data and hardware.
Therefore, it is not available to all users.

Ancuti et al. [47] first proposed a fusion method in 2012.
In 2018, Ancuti et al. [48] improved the model and achieved
better enhancement effects. However, the fusion weight-
ing coefficient of this method is challenging to determine,
and the fusion image has local over-enhancement or under-
enhancement. Sethi et al. [49] attempted to fuse physical
and non-physical models and obtained an excellent enhance-
ment effect by Laplacian pyramid fusion after the underwater
images were processed via HE and DCP dehazing, respec-
tively. Liu et al. [50] proposed an enhanced model based on
CGAN, which fuses global and local features at each scale,
reducing unnecessary artifacts.

Although Ancuti et al. [48] enhance the quality of
images effectively, it introduces too many fusion images
and weights. In contrast, our method does not change the
color space without introducing too many fusion weights.
It processes degraded underwater images by color compen-
sation, color correction, detail sharpening, and local contrast
enhancement. Besides, our extensive experiments reveal that
our method has better subjective and objective evaluation.
To ensure high efficiency, it can also improve the accuracy
of the key point matching method.

III. PROPOSED METHOD
As shown in Fig. 1, our method consists of four main
parts: color compensation, color correction, detail sharpen-
ing, and local contrast enhancement. Details of the four vital

FIGURE 1. The framework of the proposed method.

FIGURE 2. Selective attenuation of light of different wavelengths
underwater.

operations are presented in subsequent sections. Where the
detailed flow of detail sharpening is shown in Fig. 5.

A. COLOR COMPENSATION
Light decays when propagating underwater [51], resulting in
poor-quality of images [52]. The attenuation of the underwa-
ter color is detailed as depicted in Fig. 2. It can observe that
the wavelength of red light has the longest attenuation and
the shortest transmission distance. In contrast, the wavelength
of blue (green) light has a shorter attenuation and a longer
transmission distance. These objective facts will result in
images captured underwater generally rendered green-bluish
appearance. It can be concluded that the value of the red chan-
nel is much smaller than the other two-color channels. Red
channels tend to be overcompensated when color correction
is performed directly.
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FIGURE 3. Comparison before and after color compensation: 1. The first row is original image; 2. The second row is color
compensated underwater images.

Thus, we first compensate the original image with the red
channel before performing color correction. Mathematically,
the compensation for the red channel is defined as follows:

Irc(x) = Ir (x)+ α.(Īg − Īr ). (1− Ir (x)) .Ig(x) (1)

where Ir (x) represent the red channel, Ig(x) represent the
green channel, Īr represent the average values of Ir (x), Īg rep-
resent the average values of Ig(x), and α represents constant
parameters. Considering the red channel attenuation is strong.
Finally, extensive experiments determine that the value of α
is set to 1.5 with a better compensating effect.

The blue channel may also show significant attenuation in
a water environment with more plankton or organic matter.
Then the compensation of the blue channel can be expressed
as:

Ibc(x) = Ib(x)+ α.(Īg − Īb). (1− Ib (x)) .Ig(x) (2)

where Ib(x) represent the blue channel, Ig(x) represent the
green channel, Īb represent the average values of Ib(x), Īg rep-
resent the average values of Ig(x), and α represents constant
parameters, the compensation factor α of the blue is set to 1.0.
Fig. 3 shows the underwater images before and after color

compensation. The overall visual effect of degraded under-
water images is improved, and green color is effectively sup-
pressed by color compensation. From left to right, the result
of color compensation is better when the green color of the
degraded image is more obvious. However, the compensated
images still suffer from blurred details and color distortion.
We will focus on the blur of detail in section B.

IV. COLOR CORRECTION
This section uses a multi-scale Retinex [38], [53] to complete
the color correction. In the visual perception of human eyes,
the application of color constancy theory enables human
eyes to adapt to different lighting conditions. In recent
years, multi-scale Retinex with color restoration (MSRCR)
has introduced color correction for each channel to effec-
tively suppress the problems associated with MSR-enhanced
images [54].

The visible light image consists of two parts: illumination
and reflection, so it can be defined as:

log (S (x, y)) = log (L (x, y))+ log (R (x, y)) (3)

where S (x, y) represents the visible light image, and L (x, y)
represents the illumination, R (x, y) represents reflection.

In order to obtain more accurate reflection components of
S (x, y), we convolve S (x, y) with Gaussian kernel func-
tions. Therefore, the reflection component can be defined
(4), as shown at the bottom of the next page, where
c ∈ {R,G,B} corresponds to three color channels of R,
G and B, MSRc (x, y) represents the output image corre-
sponding to the cth channel, N represents the number of
Gaussian functions corresponding to different standard devi-
ations,wn represents the weight for each output image, where
w1 + w2 + · · · + wn = 1, and σ is the standard deviation.
Typically, σ ∈ {σ1, σ2, σ3, σ4, σ5, σ6} is the vector of Gaus-
sian fuzzy coefficients, 0 ≤ σ1 < σ2 < 50 are two small
scales, 50 ≤ σ3 < σ4 < 100 are two medium scales, and
100 ≤ σ5 < σ6 are two large scales.
We have already given the validity of MSRCR application

to some images with thick fog for color correction in [55].
We applied MSRCR to the underwater image in the third
row of Fig. 4, and we find that although MSRCR improved
color and contrast, it brought about the phenomenon of detail
loss and reddishness. By observing the tricolor histogram and
the MSRCR corrected images and comparing the probability
of their corresponding 0-pixel value, the probability of the
0-pixel value of G and B channels increased significantly
after MSRCR correction, while the probability of the 0-pixel
value of the R channel decreased significantly. Therefore,
the probability increases of the 0-pixel value of MSRCR-
corrected images is the leading cause of the blurring of
details. In addition, we found that the tricolor histograms of
most enhanced images are distributed in the middle region,
and a few images are distributed in the right area.

In summary, we propose an auto-level-based MSR color
correction method to address the blurring of details and color
distortion of images.

Firstly, the gray histogram of R, G, and B channels is calcu-
lated using auto-levels. Then, the highlight value and shadow
value of R, G, and B channels are determined by clipping
proportion and used as clipping boundary. Finally, the same
linear stretch is applied to themiddle part of each channel, and
each gray value is ensured to be in the interval [0, 255]. There-
fore, the expression of linear stretch is (5), as shown at the
bottom of the next page, whereMSRCRc (x, y) represents the
gray value after color correction,Min = I_Sort (m ∗ n ∗ per)
and Max = I_Sort (m ∗ n ∗ (1− per)) represent the lower
and upper limits of clipping boundary, m represent the rows,
n represent the columns, I_Sort represents the matrix of the
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sorted grayscale values and I_Sort = Sort (MSRc), and per
is the proportion of clipping and is set to 0.5% by extensive
experiments.

Fig. 4 shows that red artifacts and color distortion still
appear in local areas of the image with the MSRCR-based
color correction method. Therefore, we propose reconstruct-
ing the detail and edge information using the Gaussian dif-
ference pyramid and fuse it into the color-corrected image to
highlight the details of the image in section C.

A. DETAIL SHARPENING
The finer the scale, the more image detail increases, and the
course the scale, the more image detail is lost. On this basis,
the multi-scale space is built to describe the image feature
information changing with the scale. More multi-scale spatial
representation sequences are obtained by introducing the con-
tinuous variation parameters of the scale. The scale spaces are
extracted from these sequences to realize the feature extrac-
tion at different resolutions. Pyramid transformation has been
gradually applied to image defogging [56], image classifi-
cation [57], and underwater image enhancement [47], [48]
due to its good performance in feature extracting and edge-
preserving.

An enhanced underwater image with blurred details in
section C, thereby this section main considers the reconstruc-
tion of detailed information.We firs get the Retinex enhanced
image I1, and then the details of the R, G, and B channels are
taken by three steps of decomposition, differential, and recon-
struction of the Gaussian pyramid. Finally, the reconstructed
details and image I1 are fused to get image I2, as shown in
Fig. 5.

Decomposition process of Gaussian pyramid transforma-
tion: first define Gaussian kernel wk with k different scales
and different window sizes, and then use wk to implement
convolution operation with the original image I1 to get k
image of same size G0, and G0 as the 0th layer of the k th

Gaussian pyramid. Similarly, the construction method of the
image Gkl in the l th layer of the k th Gaussian pyramid: the
image Gkl−1 of the (l − 1)th layer and the Gaussian kernel
wk are convolved, and the convolution result is subjected to
binary extraction in the row and column directions. Gkl is

expressed as follows:
Gkl (i, j) =

2∑
mk=−2

2∑
nk=−2

wk (mk , nk , σk)Gkl−1

(2x + mk , 2y+ nk)

(1 ≤ l ≤ N , 0 ≤ i ≤ Rl, 0 ≤ j ≤ Cl)

(6)

where N is the maximum number of layers, Rl denotes the
number of rows of the lth layer image, Cl denotes the number
of columns of the lth layer image. The size of the image Gkl
of the l th layer of the Gaussian pyramid is four times smaller
compared to Gkl−1. We construct two Gaussian pyramids G1

l
and G2

l when k = 2, w1 is a Gaussian kernel with a scale
and radius of 3, and w2 is a Gaussian kernel with a scale and
radius is 5.

Two Gaussian pyramids G1
l and G

2
l with the same number

of layers are obtained by Eq. (6). The small-scale image
obtained by the decomposition contains rich image details.
The detail of large-scale image is significantly reduced,
which mainly including contour information and with bet-
ter noise immunity. The analysis found that combining the
advantages of both is beneficial to the preservation of details
and contour information. The Gaussian differential pyramid
can be obtained by the differential of adjacent images of each
layer of the Gaussian pyramid. The construction method of
Dl as:

Dl (i, j) = G1
l (i, j)− G

2
l (i, j) (7)

Based on Eq. (7), double up-sampling is performed from
the lth layer to the first layer, and then the images up sampled
on this layer are accumulated to the upper layer, and this
operation is repeated until it is accumulated to the 0th layer.
Finally, the reconstructed expression of detail information
can be defined as:

Id (i, j) =
∑
l−1

{Dl−1 (i, j)+ U (Dl (i, j))} (8)

where Id is the reconstructed detail image and U (Dl (i, j))
is the double up-sampling operation on the image of the l th

layer. In summary, the reconstructed detail information Id


MSRc (x, y) =

N∑
n=1

wn {log(Sc (x, y))− log(Gn (x, y) ∗ Sc (x, y))}

Gn (x, y) =
1

2πσ 2
n
exp
−
(
(x − x_centerw)2 + (y− y_centerw)2

)
2σ 2

n

(4)

MSRCRc (x, y) =


0 MSRc (x, y) ≤ min
(MSRc (x, y)−min)

(max−min)
∗ 255 min < MSRc (x, y) < max

255 MSRc (x, y) ≥ max

(5)
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FIGURE 4. Comparison of different color correction methods: 1. The first row is original image; 2. The third row is color-corrected image of MSRCR; 3. The
fifth row is color-corrected image of auto-levels-based MSR; 4. The remaining rows are tricolor histogram.

FIGURE 5. Flowchart of detail sharpening.

and image I1 are fused to obtain the sharpened image I2 as
follows:

I2 (i, j) = Id (i, j)+ I1 (i, j) (9)

The second and third rows of Fig. 6 show that the more
the area detail with higher contrast, and the more blurred the
details of the area with lower contrast. The operation high-
lights the details better, but the effect is poor and limited color
improvement for low-contrast areas. Therefore, we suggest
further processing of the images using the CHALE method
in the D section.

FIGURE 6. Comparison before and after sharpening details: 1. The first
row is original image; 2. The second row is color-corrected images; 3. The
third row is detail sharpened images.

B. LOCAL CONTRAST ENHANCEMENT
Based on color correction and detail sharpening, the final
enhanced image has richer color information and a more
extensive dynamic range to improve the image further.
Therefore, it is necessary to carry out pixel balance on the
three-color channels of the image. AHE [58] is an improved
method of traditional histogram equalization, but the method
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has low robustness and high complexity. CLAHE [59] is an
improved method of AHE, which limits the enhancement
amplitude of local contrast by the height of CLAHE to sup-
press image noise and better preserve image details.

Based on CLAHE, the detailed steps of local contrast
enhancement are as follows:

Step 1: The original image was divided into k non-
overlapping sub-blocks ofM × N size.

Step 2: Calculate the histogram of k subblocks, and the
gray level of each histogram is r , the gray level is NumGray,
then the histogram function corresponding to k subblocks is
Tm,n (r), 0 ≤ r ≤ NumGray− 1.
Step 3: To determine the clip limit value, the pixel number

in the sub-region is distributed to the average value of each
gray level AvgPixels can be expressed as follows:

AvgPixels =
M × N
NumGray

(10)

Limiting the number of pixels contained each grayscale level
not exceeding the NClip of AvgPixels, thereby the actual
clipping limit value CLimit is:

CLimit = AvgPixels× α (0 < α ≤ 1) (11)

where α is clip coefficient, which represents the maximum
percentage of pixels allowed for each gray level. The local
contrast enhancement effect is not obvious when the clip
value is too large, and the local contrast enhancement is
oversaturated when the clip value is too small. The effect
of local contrast enhancement is more ideal when the clip
coefficient α = 5% is determined by extensive experiments.

Step 4: Clipping the gray histogram of each subblock, and
the number of clip pixels is reassigned to each grayscale of
each histogram. Assuming that the total number of clipped
pixels is AllClipPixels, the clipped pixel number of each gray
level AvgClipPixels can be expressed as:

AvgClipPixels =
AllClipPixels
NumGray

(12)

Then the redistribution process is expressed as:
Num (i)=CLimit CLimit < Num (i)
Num (i)=CLimit CLimit ≤ Num (i)+ AvgClipPixels
Num (i)=Num (i)+ AvgClipPixels CLimit > Num (i)

(13)

where Num (i) represents the number of pixels in the ith

grayscale in the original area. For the remaining pixels, a new
histogram is obtained by looping Eq. (13) from the small
grayscale level until the remaining pixels are 0.

Step 5: Each clipped histogram is enhanced by Rayleigh
distribution and converted into cumulative probability. The
expression of Rayleigh transformation can be expressed as:

Ray (i) = Raymin +

√
2α2 ln

(
1

1− Pinput (i)

)
(14)

FIGURE 7. Comparison before and after local contrast enhancement: 1.
The first row is original image; 2. The second row is detail sharpened
images; 3. The third row is contrast stretched images.

whereRaymin represents the lower limit of the pixel value, and
α represents the scale parameter. Then the output probability
of each intensity value can be defined as:

P (Ray (i)) =
(Ray (i)− Raymin)

α2
·

exp

(
−
(Ray (i)− Raymin)

2

2α2

)
for Ray (i) ≥ Raymin (15)

When α value is large, it is easy to cause the image to be
over-contrasted, while amplifying the noise and increasing
the saturation value.

Step 6: To reduce the mutation effect, the output of the
transformation function (15) is adjusted according to equa-
tion (16) by linear local contrast enhancement. Where the
input values of transformation function O(i), Omax and Omin
are the values of the transformation function.

Pout (i) =
O(i)− Omin

Omax − Omin
(16)

Step 7: In order to remove the boundary artifacts, and the
bilinear interpolation is performed for each pixel to obtain
a new gray value. Suppose that the four sample points are
(x−, y−), (x+, y−), (x−, y+), and (x+, y+), and the corre-
sponding gray values are G−− (i), G+− (i), G−+ (i), and
G++ (i) respectively. The interpolation formula is defined as:

G (i) = a [bG−− (i)+ (1− b)G+− (i)]

+ (1− a) [bG−+ (i)+ (1− b)G++ (i)] (17)

where a = (y− y−)
/
(y+ − y−) and

b = (x − x−)
/
(x+ − x−).

Comparing the second and third rows of Fig. 7, the
stretched underwater image has high contrast, rich color, and
the dark area of the sea floor is better enhanced due to the
effective stretching of contrast.

V. EXPERIMENTAL RESULTS AND ANALYSIS
We first carried out a comprehensive evaluation of color
accuracy. Then, we qualitatively and quantitatively compare
existing methods based on various underwater image data
captured from complex scenes. Finally, we provide an appli-
cation on key feature point matching.
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FIGURE 8. Comparison the color accuracy of different sharpening methods. From left to right: 1. Original image, 2. EUIV [47], 3. UDER [20], 4.
MILHD [60], 5. GDCP [61], 6. UICR [62], 7. Our results.

A. COLOR ACCURACY TEST
To verify the accuracy of our method for color restoration,
we chose ColorChecker Chart 24 as a reference for color
accuracy. We compared the following methods: EUIV [47],
UDER [20], MILHD [60], GDCP [61], and UICR [62]. The
comparison results are shown in Fig. 8.

As shown in Fig. 8, in terms of global color restoration,
UDER [20] and GDCP [61] can’t completely remove the
color cast. EUIV [47], MILHD [60] and UICR [62] obtained
good results, but MILHD [60] and UICR [62] presented red-
dish and dark appearance respectively. However, our method
has better visual effects and higher color accuracy. In terms
of local color restoration, the color accuracy of UDER [20],
GDCP [61], and UICR [62] are not ideal. EUIV [47] and
MILHD [60] show better results, but our method has high
robustness for different camera-captured underwater images
regarding color fidelity.

B. UNDERWATER ENHANCING EVALUATION
We first evaluate our method using the dataset of UICR [62].
Which mainly includes the color charts and the 3D structure
of the scene [62], [63]. The configuration details of this
underwater image and acquisition camera set are in [62]. We

compared the following methods: UDER [20], MILHD [60],
IBLA [6], Tstep [64], GDCP [61], and UICR [62]. The
comparison results are shown in Fig. 9. Table 1 and Table 2
provide the five-evaluation metrics the five metrics are infor-
mation entropy (IE) [55], average gradient (AG) [55], patch-
based contrast quality index (PCQI) [65], underwater image
colorfulness measure (UIQM) [66], and underwater color
image quality evaluation (UCIQE) [67]. Where IE, AG, and
PCQI are normal metrics for natural image enhancement
methods, UIQM and UCIQE are special metrics for underwa-
ter image enhancement methods. IE is employed to evaluate
the color information of the image. AG is employed to evalu-
ate the clarity of the image. PCQI is used for the human eye’s
perception of image contrast. UIQM evaluates the quality of
underwater images by the colorfulness, sharpness, and con-
trast of underwater images. UNIQUE evaluates the quality
of underwater images by the linear combination of chroma,
saturation, and contrast of underwater images.

Fig. 9 shows that the methods of IBLA [6] and GDCP [61]
are not ideal for color correction and contrast enhancement of
underwater scenes. UDER [20] and MILHD [60] are better
than IBLA [6] and GDCP [61] in restoring the contrast of
the scene. However, UDER [20] and MILHD [60] still have
significant color bias. For instance, the restoration results of
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TABLE 1. Quantitative results based on IE, AG and UIQM metrics for each method in Fig. 9.

TABLE 2. Quantitative results based on IE, PCQI, UIQM and UCIQE metrics for each method in Fig. 10.

FIGURE 9. Comparison the results of different methods. From left to right: 1. Original image, 2. UDER [20], 3. MILHD [60], 4. IBLA [6], 5.
Tstep [64], 6. GDCP [61], 7. UICR [62], 8. Our results. The result of the correspond to these images is shown in Table 1.

R3008 and R3204 obtained by UDER [20] are significantly
reddish in appearance, while the restoration results of other
images are slightly blue and dark. This set of underwater
images is enhanced by MILHD [60] with an obvious reddish

appearance. Tstep [64] has higher robustness in restoring the
scene’s contrast, but there is some color bias, such as the
enhanced images of the R3008 and R3204 with a reddish
appearance. UICR [62] has higher robustness in restoring
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FIGURE 10. Comparison the results of different methods. From left to right: 1. Original image, 2. EUIV [47], 3. UDER [20], 4. IBLA [6], 5.
Tstep [64], 6. GDCP [61], 7. UICR [62], 8. Our results. The result of the correspond to these images is shown in Table 2.

scene contrast and color, but the recovered image with the
problem of blurring the details. Our methods are superior to
comparison methods in color correction, contrast, and detail
enhancement and have similar or usually higher values of IE,
AG, and UIQM metrics in Table 1.

As shown in Fig. 10, as can be observed that UDER [20],
IBLA [6], and GDCP [61] didn’t perform well. EUIV [47]
and Tstep [64] have higher robustness in restoring the contrast
of the scene, but they also have some color bias. For example,
the enhanced image of Diver2 with reddish was obtained
by EUIV [47], and the restored images of Diver4 and Coral
reef1 with reddish were obtained by Tstep [64]. In spite of
UICR [62] performing well for underwater scenes, details of
the restored images are lost. For instance, the restored images
of Fish2 with overexposure and detail loss were obtained by
UICR [62]. As shown in Table 2, our method is significantly
better than other methods.

As shown in Fig. 10, as can be observed that UDER [20],
IBLA [6], and GDCP [61] didn’t perform well. EUIV [47]
and Tstep [64] have higher robustness in restoring the contrast
of the scene, but they also have some color bias. For example,
the enhanced image of Diver2 with reddish was obtained by
EUIV [47], and the restored images of Diver4 and Coral
reef1 with reddish were obtained by Tstep [64]. Despite
UICR [62] performing well for underwater scenes, details of

TABLE 3. Running time with IBLA [6], UDER [20], GDCP [61], UICR [62],
MILHD [60], Tstep [64], EUIV [47], and our method.

the restored images are lost. For instance, the restored images
of Fish2 with overexposure and detail loss were obtained by
UICR [62]. As shown in Table 2, our method is significantly
better than other methods.

To compare the running time, on the basis of the same
hardware configuration, system, and Matlab R2019b, the
average time of each method running ten times is shown
in Table 3. It can be seen that our method outperforms
other comparison methods. The advantage becomes more
pronouncedwith an increase in image resolution. UDER [20],
IBLA [6], GDCP [61], and UICR [62] are based on the
methods of solving complex physical models and therefore
run longer. MILHD [60] increased the complexity of the
method. EUIV [47] is slightly more complicated than our
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FIGURE 11. Comparison results in extreme scenes with the nonuniform illumination condition. from left to right: 1. DCP [18], 2. EUIV [47], 3. UDER [20],4.
IBLA [6], 5. Tstep [64], 6. GDCP [61],7. UICR [62], 8. Our results.

FIGURE 12. Comparison results on underwater transmission estimation. from left to right: 1. EUIV [47], 2. UDER [20], 3. MILHD [60], 4. IBLA [6], 5. Tstep
[64], 6. GDCP [61], 7. UICR [62], Our results.

FIGURE 13. Applying standard SIFT significantly improves the accuracy of
point matching on our enhanced image (bottom) compared to the
original underwater image (top).

method because of the use of too many fusion images and
weight maps. Tstep [64] doesn’t require too many complex
operations and therefore is superior to our method. The run-
ning time of IBLA [6], UDER [20], GDCP [61], UICR [62],
and MILHD [60] is significantly increasing with the rapid
increase in image resolution, while Tstep [64], EUIV [43] and
our method are slowly growing.

Besides, Fig. 11 further considers that captured underwa-
ter images usually appear yellowish and have low contrast.
For such images, we need to perform color compensation,
which can effectively correct the image’s color. It can be
seen from Fig. 11 that our method outperforms the other
methods. Fig. 12 shows that the proposed method has signif-
icantly improved the estimation of transmission maps based
on DCP [18]. It can be seen that UDER [20], Tstep [64], and
GDCP [61] estimate that the effectiveness of the transmission
map is poor. In contrast, EUIV [47], IBLA [6], and UICR [62]
are superior to them in the estimation of transmission maps.
Furthermore, MILHD [60] method has a good transmittance
estimation performance, but some details are lost. However,
our method significantly improves transmission map estima-
tion and highlights the details.

C. APPLICATION
The purpose of enhancing the underwater image is to benefit
autonomous underwater navigation [68], underwater target
tracking [69], and key feature point matching [48]. To verify
the application effect of our method after image enhancement
using the key feature point matching as an example.

Fig. 13 shows feature matching results using SIFT on
the original and enhanced images. It is not difficult to see
that more feature matching points can be obtained under the
same threshold condition by using our method to enhance the
image.

VI. CONCLUSION
We propose an underwater image enhancement method,
which mainly includes four parts: color compensation, color
correction, detail sharpening, and contrast enhancement.
Our proposed method realizes the color compensation from
multi-channel to color correction. It solves the detail blurring
and low contrast by the detail sharpening of the Gaussian
differential pyramid and the local contrast enhancement
of CLAHE. Experimental results show that our method
improves contrast, detail information, and color correction by
multi-scale Retinex (MSR) based on auto-levels. In particu-
lar, our method maintains the advantages of both qualitative
and quantitative metrics and has fast and highly efficient
performance.
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