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ABSTRACT During clinical consultations and case training, doctors analyze numerous images and sounds.
A high-pressure consultation environment can increase the probability of a doctor making incorrect infer-
ences regarding vocal cord (VC) disease. Therefore, this study applied deep learning to design an edge-based
VC disease detection system (EVC-DD) for common VC conditions (e.g., nodules, polyps, and cancer) to
assist doctors in conducting consultations and case studies and in verifying the consistency of their disease
inferences. Through deep learning, the model extracted and recorded clinically confirmed information in
its disease inference model. The experiment data set comprised videos of nodules, polyps, and cancer that
were used to evaluate the performance of the proposed model. From 13 cases confirmed by two doctors,
1740 images were extracted from 13 case videos and used in the experiment. In total, 1044 (60%), 348 (20%),
and 348 (20%) images were randomly obtained through five-fold cross-validation for training, validation,
and testing, respectively. During the model training process, the EVC-DD model achieved 100% accuracy
in detecting the three conditions required for optimal experiment results. For the results in the analysis of the
independent test data with optimized configuration. the EVC-DDmodel achieved 99.42%, 99.42%, 99.42%,
99.42%, 98.91%, and 0.9957 for averaged F1 score, averaged recall rate, averaged precision, accuracy,
Matthews correlation coefficient, and area under the curve, respectively. The EVC-DD model required only
400 s to complete its training using 1740 images. The results indicate that the inferences of the EVC-DD
model were highly consistent with the results of the clinical examination by doctors and that its training was
data- and time-efficient, thereby allowing the model to learn new cases quickly. Thus, the EVC-DD model
can assist doctors in consultations and case analyses by providing reliable disease inferences and real-time
input regarding new case knowledge.

INDEX TERMS Convolutional neural networks, vocal cords, disease recognition, nodules, polyp, cancer.

I. INTRODUCTION
Vocal cords (VC) are essential tissues that enable humans
to make sounds, and changes to the VC tissue of an indi-
vidual directly affect their voice. For example, nodules [25],
[26], [27] and polyps [28], [29], [30] are common VC dis-
eases that affect an individual’s voice. Although nodules and
polyps share similar features, doctors may encounter diffi-
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culty detecting them during a clinical examination, especially
when these diseases are still in their early stages.

During a clinical examination, a doctor uses a stroboscope
to access the glottis and examine VC tissue. Stroboscopes
are widely used in various domains to observe real tissue
images [8]. Figs. 1 and 2 display captured stroboscopy images
of nodules and polyps, respectively. The areas marked by
white rectangles are key features that can be used in disease
inference. The small, hard, and white collagen fiber deposi-
tions on the VCs are the key features of nodules, which are
masses that form mostly because of VC overuse. Polyps are
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FIGURE 1. Vocal cords with nodules.

FIGURE 2. Vocal cord with polyp.

diagnosed by the presence of large, soft, red, nonfibrotic, and
mucoid tissue.

Nodules and polyps cause protrusions to appear on the
edges of VCs. A normal VC curve should be flat; therefore,
nodules can be identified by analyzing the flatness of a VC
curve. In the present study, nodules and polyps are referred to
as edge-based VC diseases (EVCDs). Nodules and polyps are
not distinguished by the tissue protrusions at the edge of VCs
but by their degree of protrusion, color, and hardness. During
a clinical examination, a doctor first determines whether
the VC curve is flat; when an abnormality is detected in a
patient’s VC tissue, it is then classified as a nodule or polyp on
the basis of its tissue characteristics. In a clinical observation,
straight VC edges indicate healthy VCs, whereas nonstraight
ones indicate unhealthy VCs.

Deep learning (DL) techniques provide highly accurate
object and feature detection [9], [22], [23], [24], [40], [41],
[51], [52], [53]. In DL models, object properties are learned
from a set of labeled samples, and the presence or absence of
target features in a set of input data is assessed and reported.
ADLmodel extracts key features from target data and applies
them in an inference process. Because DL is a general method
for distinguishing target objects, we designed a DL-based
solution for detecting EVCDs.

The present study applied DL techniques to design an
EVCD detector (EVC-DD) that doctors can use as a dis-
ease inference tool during clinical examinations. This detec-

FIGURE 3. Vocal cords with cancer.

tor provides flexibility for constructing low-data models.
In addition to nodules and polyps, VC cancer [9], [22], [23],
[24], [40], [41] was considered as a target EVCD in the
present study. The prevalence of VC cancer has increased,
and the abnormal growth of VC cancer cells causes irregular
shapes to form in VC curves. Therefore, VC cancer is also
a type of EVCD. Fig. 3 displays the stroboscopy image of
cancer. In the image, atypical hyperplasia (marked by a white
rectangle) can be seen on one side of the VCs. During their
early stages, VC cancer, polyps, and nodules differ slightly
in terms of their symptoms; however, in stage two or three
of VC cancer, hyperplasia becomes noticeably larger relative
to polyps and nodules. Because VC curves account for only
0.3%–7% of an image, small-area feature recognition is the
main detection feature applied in the proposed detector. The
proposed EVC-DD model uses two sets of convolution lay-
ers and max pooling to obtain small-area features, thereby
achieving a high recognition rate with respect to the observa-
tion of small-sized features. Because focusing on small-sized
features reduces accuracy, cases with noise must be included
in the model training phase to account for other nonessential
features (e.g., mucoid, hyperemia, and swelling can cause
EVC-DD noise).

The data used in the present study were reviewed by the
Research Ethics Committee of China Medical University &
Hospital, which approved the use of 15 cases. The stro-
boscopy videos recorded by doctors during patient exam-
inations were used, and more than 30,000 images were
extracted from 13 selected stroboscopy videos. Subsequently,
1740 images were extracted from the 13 EVCD cases and
included in the performance evaluation process of the present
study. All stroboscopy videos and images were confirmed by
two otorhinolaryngologists to ensure that the selected images
represented real positive cases. In our experiment, we evalu-
ated three convolution depths to determine how convolution
depth affects the accuracy and flexibility of the proposed
EVC-DD when new cases were added for training. To ensure
that all images were evaluated, five-fold cross-validation
was applied in the present experiments. The experimental
results indicate that the EVC-DDmodel performed favorably
for categorical accuracy; when an optimized hyperparameter
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configuration was applied, the model achieved 100% accu-
racy. The experiment results obtained from the test data reveal
that the proposed EVC-DD model achieved a similar per-
formance during five-fold cross-validation testing, especially
for cancer and in terms of F1 score, recall rate, precision,
accuracy, Matthews correlation coefficient (MCC), and area
under the curve (AUC). To compare the performance of the
EVC-DD model against the performance of other widely
applied methods, the performance of VGG16, EfficientNet,
and Inception V3 models were also assessed in the present
study.

The experimental results show that the performance gap
between the VGG16 and EVC-DD models was <1% for
nodules and cancer, and the EVC-DD model outperformed
the VGG16 model by 2.63% for polyps. However, the struc-
ture of the VGG16 model is deep and complex, and that
of the proposed EVC-DD model is simple and lightweight.
The performance of the VGG16model approached that of the
proposed EVC-DD, but its training cost was greater than that
required for the EVC-DD model. Thus, the EVC-DD model
was more efficient than the VGG16 model for new EVCD
cases. By contrast, the EfficientNet and InceptionV3 models
were efficient training models but underperformed against
the EVC-DD model for EVCD detection. Additionally, the
EVC-DD model requires only approximately 400 s to train,
which is a sufficiently short training time for new cases. With
its excellent categorical accuracy, the EVC-DD model can
help doctors to perform diagnoses and verify the diagnoses
of other doctors, thereby reducing the risk of misdiagnosis.
In addition, the short training time of the model enables
doctors to input new characteristics related to EVCDs or cases
in real time during training or case discussions to improve the
model’s feature comprehension.

The rest of the article is organized as follows. Section II
displays the related results in object and disease detec-
tion, and a summary table is given for comparing com-
mon approaches. Section III provides the target scenario and
the proposed EVC-DD model. The performance evaluation,
hyperparameter adjustment, and the performance comparison
between the proposed EVC-DDmodel and other state-of-the-
art approaches are discussed in Section IV. Eventually, the
conclusion and future works are stated in Section V.

II. RELATED WORKS
Artificial Intelligence (AI) methods have contributed consid-
erably to recognition techniques and helped to improve VC
disease recognition. Common AI methods include machine
learning and DL. Machine learning methods classify data by
attribute (e.g., gender, age, and patient’s behavior), whereas
DL methods classify images on the basis of their features.
Davaris et al. combined a polynomial kernel and a k-nearest
neighbor algorithm with a support vector machine to assess
vocal fold leukoplakia [42]. Zhao et al. proposed a hybrid
method involving the application of a convolutional neural
network and transfer learning for the classification of VC
lesions [43]. Low et al. compared the performance of several

machine learning methods (e.g., logistic regression, random
forest, and the Stochastic Gradient Descent classifier) in
detecting unilateral vocal fold paralysis [44]. To trace the
sound generation and evaluate the health of VCs, Yousef et al.
applied an unsupervised machine-learning method and an
active contour modeling technique to identify the position
of the glottis to understand VC actions [45]. Salem et al.
applied various DL networks with an Adam optimizer to
detect ocular diseases [51]. Luo et al. used DL networks
and proposed a novel mixture loss function for detecting
various eye diseases [52]. Rath et al. adopted a long short-
term memory, generative adversarial network to increase the
accuracy of heart disease detection [53].

The accuracy of DL-based image recognition has consid-
erably increased through the implementation of pixel-level
feature comparison techniques. DL is used to examine the
pixel structure of a given area, and the accuracy and efficiency
of feature learning is increased through the operations of
multiple layers. For example, autopilot systems have a high
commercial development value, and in autopilot research,
topics such as road detection, pedestrian detection, and obsta-
cle avoidance have been extensively studied. Because roads
contain complex information, the filtering of irrelevant infor-
mation to extract crucial information is a highly relevant
topic. Convolutional neural networks (CNNs) can be used
to develop image recognition models for making inferences
pertaining to a single disease and for classifying multiple
diseases [9], [10], [11].

Fully convolutional networks (FCNs) can detect normal
objects (e.g., pedestrians and moving vehicles) and semantic
objects (e.g., stationary objects) [11], [12], [13]. Although
the excellent segmentation ability of FCNs facilitates object
detection, network correction is required to increase the appli-
cability of such networks. Various step sizes can be integrated
to achieve detailed segmentation, and global and local FCNs
can be implemented to adapt to the characteristics of local and
global information. FCNs are suitable for images that contain
a large amount of information.

The semantics of VC images are simple. The structure
of the glottis is fixed; unless cancer or a tissue mutation is
present, the images obtained through a given method usu-
ally yield highly similar results, particularly during the early
stages of a disease. The semantic information of VC images is
less complex than that of autopilot systems; however, the sub-
tle changes in VC images may indicate highly valuable and
crucial features. Therefore, networks that rely on semantic
analysis require the implementation of highly detailed obser-
vations [13], [14], [15]. The U-structure of a U-Net allows
for connections to be skipped such that this requirement for
medical images can bemet and a high level of accuracy can be
achieved with a small amount of sample data for applications
such as cancer cell detection. A U-Net can perform object
detection and segmentation; however, the detection of VC
diseases in the glottis does not require the detection of VCs
because a doctor only has to confirm that a VC curve exhibits
the features of a target disease. Therefore, when a U-Net is
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TABLE 1. The summary of current common DL approaches.

applied, the observation results obtained frommultiple angles
can generate noise that reduces accuracy. Thus, algorithms
that can recognize small-area features are crucial for detect-
ing EVCDs.

The position relationship between features is another fac-
tor for DL. For example, images with corrected features
may be placed in appropriate positions, and a DL model
may check all target features but fail to examine position
relationships [32], [35]. CapsNet, which considers Prima-
ryCaps to check the position relationships between target
features, is useful for recognizing images with similar fea-
tures. The accuracy and efficiency of remote sensing image
scene classification [33], text classification [34], and emotion
recognition [36] can be improved through CapsNet. Because
the collected glottis images were simple and the collected
stroboscopy images were carefully collected by otorhino-
laryngologists, evaluating the position relationships between
tissues is unnecessary.

The abnormal tissue area is small for specific diseases;
therefore, distinguishing small objects with specific features
is crucial. No strict definition is applied for small objects.
A small object is usually defined as an object with a resolution
of 32 pixel by 32 pixel or an object that is regarded as ‘‘small’’
relative to the size of the target object in an image. Because of
their high convolution cost, region-based convolutional neu-
ral networks (R-CNNs) are highly inflexible during repeated
training [16], [17], [18]. Fast R-CNNs share computational
load with convolutional features through region-based net-
works; thus, their computation efficiency and accuracy can
be increased.

Major changes were made to the fourth version of the
YOLO model [19], which uses CSPDarknet53 + PANet +

SPP to reduce computation time and combines local and
global features to improve the expression ability of feature
maps. Different methods use different entry points to identify
small objects, but they are generally highly applicable in
practice. However, the flexibility of model training is crucial
in medical diagnosis. Doctors should add cases to a model
when they encounter indicative VC tissue to ensure that the

experience associated with a case is captured by the model.
Therefore, the flexibility of repeated training is a key consid-
eration for network designers.

Borsato et al. marked the edge of eyeballs by object color
and shape to enable the evaluation of user focus through the
tracking of eyeball positions [8]. Eyeball tracking is tractable
because eyeball images can be stored directly and an invasive
test is not required. However, VC disease inference is more
difficult to implement relative to eyeball position tracking
because patients may feel uncomfortable. Vo et al. proposed
a hybrid model that uses CNN, random forests, and support
vector machines to identify cancers [9].

Several major frameworks may be applied to detect
EVCDs. LeNet-5 proposed by LeCun is a back-propagation
network [37], and easy use is the major advantage of LeNet-5
that the image preprocess is not too much. LeNet-5 can
achieve high recognition rates, especially for the recognition
of handwritten and machine-printed characters. LeNet-5 has
a seven-layer structure with three convolutional layers, two
pooling layers, one fully connected layer, and one output
layer. Some layers do not fully use the information from pre-
ceding channels to increase computational efficiency. How-
ever, the appearance of target features in unused channels
reduces the recognition rate of a model. Vo et al. applied
an LeNet-5 model and used images captured through con-
focal laser endomicroscopy to distinguish healthy tissues
from cancerous VC tissues [9]. Analyzing the properties of
tissues is another method for implementing disease recogni-
tion, and tissue variations can be detected in the early stage
of a disease. However, the analyzer should have sufficient
knowledge about the relevant tissue properties. For real-time
inferences, the method proposed by Vo et al. yields a recog-
nition rate of >81.5%. Vo et al. also reported that increasing
the search area of a model increases its accuracy as well as its
computational cost. Cho and Choi compared the performance
of the CNN6, VGG16, Inception V3, and Xception models in
terms of recognizing nodules and vocal fold granuloma [38].
The simulation results reported by Cho and Choi indicate
that the VGG16 model has a 99% recognition rate, which is
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high and can be attributed to the large-scale network structure
of the model. Because the VGG16 model uses 138,357,544
parameters, it requires a lengthy training time [39]. When
valuable cases are used to train the VGG16model, its network
structure should be modified to reduce training time; further
studies on recognition rate are required.

The aforementioned DLmethods for detecting EVCDs and
the related studies are listed Table 1, which summarizes their
advantages, applications, and challenges in the context of
EVCD detection. Because glottis images are simple and the
objects found in such images are not complex, the detection
of semantic objects is unnecessary; however, the training
efficiency associated with new features and accuracy should
be considered.

III. SCENARIO AND METHODS
A. OBJECTIVE OF THIS STUDY
The present study focused on EVCDs (i.e., nodules, polyps,
and cancer); specifically, the case managers of this study col-
lected data pertaining to several cases for each target disease.
All the cases were confirmed by two otorhinolaryngologists,
and those with obvious key features were selected. The data
used in the present study were reviewed by the Research
Ethics Committee of China Medical University & Hospital,
and 15 cases were approved. Subsequently, 13 cases were
evaluated in the present study; Table 2 presents the cases
selected for evaluation.

The objective of the present study was to design a detec-
tion model that can recognize EVCDs in VC tissues by
examining the stroboscopy videos recorded during clinical
examinations. Otorhinolaryngologists can use the proposed
AI model to verify the appropriateness of their disease infer-
ences. Moreover, doctors can input new cases into the model,
thereby enabling the model to consider newly discovered
key features of VC tissues and minimize the cost of model
training.

B. SYSTEM DESIGN
The entire process of designing and implementing the
EVC-DD is illustrated in Fig. 4. Here the steps are briefly
described as follows.

1) The otorhinolaryngologist used Stroboscope to observe
and record patient’s VC status during the consultation,
and the diagnosis videos are collected.

2) The engineer used Free Video to JPG Converter1 to
convert videos to images at 50 Hz.

3) All images are carefully examined by two otorhino-
laryngologists to make sure that each image has correct
features of target diseases.

4) All examined images are randomly classified into train-
ing data and testing data for model training and perfor-
mance evaluation.

5) The training data were used to train the proposed deep
learning model.

1https://free-video-to-jpg-converter.en.uptodown.com/windows

FIGURE 4. The overall processes of design and implementation of
EVC-DD.

TABLE 2. Distribution of cases by condition.

6) The EVC-DD disease model could be derived after
training model.

7) The testing images were used to evaluate the perfor-
mance of the derived model.

8) The derived model outputted the potential disease for
each given testing image.

After step six, the detection model is obtained and can
then be used by doctors. The disease inference process is as
follows:

1) Uploading VC video: the VC video is uploaded, and
the VC images are captured for examination by the
EVC-DD model.

2) Disease inference: the EVC-DD model infers the dis-
eases in each image one by one.

3) Report: the results of disease inference are summa-
rized, and an analysis report of the disease is generated.

C. NETWORK DESIGN
After the stroboscopy images and VC features were con-
firmed by the two otorhinolaryngologists, we identified the
following network design issues:

1) Plane image analysis: EVCDs can be detected by iden-
tifying the deformation of VC edges in an image. Doc-
tors identify VC diseases during clinical examinations
by checking for deformations on VC edges. Therefore,
a two-dimensional (2D) image analysis is appropriate.

2) Slight changes in VC edges: Polyps only cause small
changes in VCs. A sampling analysis revealed that
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polyp pixels account for only 0.3%–0.7% of an image
area. Therefore, a small-area image analysis must be
performed.

3) Enhancement of object features and reduction of data
redundancy: Because nodules cause more swelling rel-
ative to polyps and an entire VC edge may swell when
nodules form, nodule features account for approxi-
mately 2.5%–7% of an image area. Therefore, enhanc-
ing the key points of features is an effective method for
detecting nodules.

4) Classification of three conditions: Because three con-
ditions were evaluated in the present study, multiclass
classification was considered for achieving machine
vision (MV).

On the basis of the aforementioned requirements, a network
with the following elements was designed:

1) A 2D convolution layer with a small kernel was imple-
mented to convolve the features in each image and iden-
tify small-area changes. Because stroboscopy images
are generally similar, notable differences can only be
observed when cancer causes symptoms to appear on
the tissue near the glottis. Therefore, small kernels are
useful for analyzing VC images.

2) Max pooling is suitable for large feature differences,
and it can increase judgement accuracy during the eval-
uation of a series of cases. Therefore, max pooling can
be used to achieve high-accuracy nodule detection.

3) A dense layer can be used for multiclass situations.
Before dense layer classification is performed, data are
reduced to a single dimension through layer flattening.

Fig. 5 illustrates the network structure of the
EVC-DD model. Continuous and precise feature recognition
was achieved by implementing two 2D convolution layers
and max pooling. The disease class of the image was deter-
mined by a flattened layer and a dense layer. This network
structure was named ‘‘VC-MV21’’ because of its two 2D
convolution layers and one-layer convolution depth. ‘‘VC-
MV21’’ matches the VC edge features of polyps and early-
stage nodules. However, its recognition efficiency may be
less than ideal for large-area, mid-to-late-stage nodules or
cancer. Therefore, we applied two- and three-layer depths for
each set of 2D convolution layers to identify the continuous
feature of large areas; the models with two- and three-layer
depths were named ‘‘VC-MV22’’ and ‘‘VC-MV23’’, respec-
tively. Figs. 5(a) - 5(c) illustrate the network structures of
‘‘VC-MV21’’, ‘‘VC-MV22’’, and ‘‘VC-MV23’’ network
structures, respectively. Convolution layers were added to
each of the two 2D convolutions to increase the depth of
recognition, thereby increasing the dimension of features and
the number of pixels considered in large-area features.

D. HYPERPARAMETERS SETTING
Table 3 presents the hyperparameter settings. The principle
behind the complex hyperparameter settings is explained
below. The learning environment of the EVC-DD model

TABLE 3. Hyperparameters setting.

was allotted 16 GB of memory space. Therefore, the batch
size can be increased to 32 to simultaneously interpret more
information. Setting epoch at 20 is sufficient for EVC-DD
learning, and epoch can be reduced to approximately 16 in
early stop. Because EVC-DD uses smaller kernels, the kernel
size can be set to 3 by 3. Activation uses reLU in each con-
volution layer, whereas the dense layer uses softmax; because
the characteristics of the features are emphasized in the learn-
ing process, reLU can yield high-quality results with few
resources. The final determination of condition in the image
based on the probability distribution of each condition. There-
fore, softmax was suitable for the multiclass classification
problem. The one-hot format was considered for labeling.
Because the resolution of Stroboscopy images is 540, 720,
input_shape was set to 540, 720, 3. Categorical crossentropy
was applied to the EVC-DD model because three conditions
were considered. Metrics were set to categorical accuracy.

E. ENVIRONMENT
The EVC-DD platform specifications for training, validating,
and testing the model is as follows: Intel Core i9, 64 GB
Memory, 1TB SSD, 1Gb Intel Ethernet, NVIDIA GeForce
GTX 1060.

F. IMAGE DISTRIBUTION
We collected a total of 1740 images to identify polyps, nod-
ules, and cancer. The distribution for each condition in the
different tasks was 60% (1044 images) for training, 20%
(348 images) for validation, and 20% (348 images) for test-
ing, and one-hot encoding was used to label the conditions.

IV. PERFORMANCE EVALUATION
A. DATA SET
The data set used in this study comprised videos recorded by
otorhinolaryngologists from China Medical University Hos-
pital; these videos were recorded during regular examinations
of the VC tissues of patients. During a regular examination,
a doctor uses a stroboscope to examine the VC tissue of a
patient and record the full examination process. In accordance
with the processes described in Section III-B, the two otorhi-
nolaryngologists confirmed that the 19 videos indicated the
presence of the target EVCDs. Next, we extracted the frame-
by-frame images from all videos and examined them to verify
that the VC tissues in these images exhibit the key features of
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FIGURE 5. The proposed network structures.

the target EVCDs. All the selected images were then labeled
on the basis of the target EVCD that they indicated and used
to evaluate the performance of the proposed network.

When a doctor uses a stroboscope to observe VC tis-
sue, three steps are performed; specifically, the stroboscope
(1) enters the nasal cavity, (2) captures the images of VC
tissue, and (3) then leaves the nasal cavity. Because the first
and third steps do not involve the examination of VC tissue,
only the data captured during the second step were used in
the present study.

After the stroboscopy videoswere obtained, we used image
capture software to obtain images from the videos at 50 Hz.
Each image was inspected to ensure that they pertained to the
second step of the examination process. To capture the move-
ment of throat tissue, the sampling rate of the stroboscope is
usually high. Therefore, capturing images at 50 Hz provides
a balance between obtaining a clear view of tissue changes
and maximizing the number of images obtained.

The glottis can either be open or closed (Figs. 6 and 7).
When it is closed, the shape of VC edges becomes unclear,
and identification of the features of nodules and polyps
becomes difficult. Therefore, we only used images that show
an open glottis. Stroboscopy can be performed in both flash
and nonflash modes (Figs. 8 and 9), enabling doctors to

observe the movement of VCs under different lighting con-
ditions. Because doctors usually confirm the state of VCs in
both modes, both flash- and nonflash-mode images were used
in the present study.

Fig. 4 presents a flowchart describing the collection of the
19 stroboscopy videos and the candidate cases that they cor-
responded to. A total of 13 cases were selected from 19 candi-
date cases because of video quality considerations, and more
than 30,000 images were extracted from the 13 videos that
corresponded to the 13 cases. Eventually, 1740 images were
selected after the collected images were evaluated frame by
frame. Table 4 lists the number and proportion of the images
that correspond to each condition. The selected images all
displayed an opened glottis and clearly visible target tissues
and VCs.

B. HYPERPARAMETER EVALUATION
When more layers are used in a network structure, the num-
ber of parameters increases, which also increases the model
training time. However, the disease inference time is not
notably affected. This study designed the model to satisfy
clinical consultation needs and doctors’ case training needs
to ensure the model training time would not affect the clinical
consultation or the quality of case training. Therefore, the
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FIGURE 6. Open glottis.

FIGURE 7. Closed glottis.

accuracy of the disease inference was prioritized over the
time cost of model training. The performance of the different
networks was evaluated in terms of accuracy and loss.

1) Accuracy: because this study investigated three
EVCDs, multiclass judgement accuracy would directly
benefit doctors the most. Therefore, the model was
evaluated in terms of categorical accuracy. The predic-
tion error and results can be obtained through categor-
ical accuracy.

2) Loss: the difference between the identification of the
conditions during training, validation, and testing and
the actual occurrence of the condition. The closer the
loss to 0, the higher the quality of the disease inference.

Figs. 10 and 11 display the categorical accuracy and loss of
each network in the identification of the conditions, respec-
tively. The x-axis is the learning rate, and the y-axis are the
categorical accuracy and loss. The three models achieved
the highest categorical accuracy and the lowest loss. When
the learning rate was 0.01, the loss and categorical accuracy
ofmodels 1 and 2were approximately 0.001 and 0.99, respec-
tively. VC-MV23 performed better when its learning rate was
0.001; its corresponding categorical accuracy and lowest loss
were approximately 0.07 and 0.98, respectively. In terms
of the overall performance, all three networks achieved

FIGURE 8. Non-flash mode.

FIGURE 9. Flash mode.

near-optimal categorical accuracy and loss, but VC-MV23,
which had the largest network depth, required a lower learn-
ing rate to achieve results similar to those of models 1 and 2.
Therefore, models 1 and 2 outperformedVC-MV23 in disease
inference.

These results were yielded when epoch was 20. This
study evaluated disease inference performance under differ-
ent epoch settings. Figs. 12 and 13 present the performance
of the three models under a fixed learning rate of 0.00001 and
epoch at 20, 50, and 100. The performance of the models
improved with the increase in epoch; with epoch at 100, the
difference in categorical accuracy among the models was
less than 0.05, and the loss was only 0.05. Although the
difference in performancewas unsubstantial, the performance
of the network with the largest depth was inferior to that
of the shallow networks. The effect of network depth on
disease inference was not as considerable as expected, but the
models trained by the shallow networks performed better in
EVC-DD.

We further analyzed the differences in performance among
the three models. Figs. 14 and 15 present the results for cat-
egorical accuracy and loss, respectively, with extreme values
of learning rates of 0.0006 and 0.0001 and epochs of 20 and
50. The x-axis is a combination of different hyperparameters;
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TABLE 4. Number and proportion of images by condition.

FIGURE 10. Disease Inference results in categorical accuracy in various
learning rate settings.

the first number is the learning rate, and the second number
is epoch. The results indicated that the performance with a
learning rate 0.0006 was superior to that with a learning rate
of 0.0001 and that performance was superior with an epoch
of 50. VC-MV23 performed well when the learning rate was
0.0001 and epoch was 50, but its performance was inferior to
that of the other models.

In the following experiments, we consider 5-Fold Cross-
Validation [50] to guarantee that all images are evaluated.
The validation strategy applied in this experiment is shown
in Fig. 16, and we derived five experiment results. In the
beginning, all images are shuffled randomly, and the shuffled
images are classified into five groups with a sequence. Each
group will be training dataset thrice, validation dataset once,
and testing dataset once to make sure that each image will be
evaluated.

C. DISCUSSION
1) TRAINING TIME
High categorical accuracy and low loss were achieved when
the hyperparameters were more detailed for long-term train-
ing. However, the benefit of increasing the accuracy and
decreasing the loss for extreme configurations with a low
learning rate and large epoch was marginal (Figs. 14 and 15).
Because new cases added to model training can increase
the inference accuracy of the model, the hyperparameter
settings for periodic model retraining are key considerations
in practice. The analysis of training time revealed that the
time required to train the model was proportional to the
epoch but was unrelated to the learning rate. Table 5 presents
the time required to train the model under different epoch
values; the training time of each model can be determined
on the basis of epoch. A learning rate of 0.0006 and an
epoch of 50 can achieve a balance between performance
and practicality. Additionally, the difference in performance

FIGURE 11. Disease inference results in loss in various learning rate
settings.

FIGURE 12. Disease inference results in categorical accuracy in various
epoch settings.

betweenmodels 1 and 2was only 0.586%with these hyperpa-
rameters (VC-MV21: 0.9885; VC-MV22: 0.9827). Therefore,
VC-MV21 was superior in terms of training time.
The training results of VC-MV21 with learning rate

0.006 and epoch 50 are shown in Figs. 17 and 18 for loss
and categorical accuracy. The EVC-DD model has plenty of
epochs for convergency, so the tails are stable for both train-
ing and validation curves. Moreover, in the first 10 epochs,
the curves drop dramatically and smoothly. Model 1 is the
shallow network structure, so the convergency curves do not
require too many epochs to reach steady states, and this
property helps in the training time of modifying the EVC-DD
model in considering new cases.

2) PREDICTIONS FOR EACH CATEGORY
As highlighted in Section III-F, 20% of the images were
selected randomly for use as the test data for each target
EVCD. Therefore, the EVC-DD model examined 36, 214,
and 97 images showing polyps, nodules, and cancer, respec-
tively (Table 4). To measure the model’s performance for all
images and verify that all images were evaluated, we per-
formed five-fold cross-validation [50]. Through the valida-
tion strategy applied in this experiment (Fig. 16), we obtained
five sets of experiment results. The confusion matrixes of
three iterations are presented in Fig. 19. Our predictions for
cancer classes were accurate, but those pertaining to sev-
eral polyp and nodule images were incorrect. From specific
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FIGURE 13. Disease inference results in loss in various epoch settings.

FIGURE 14. Disease inference results in categorical accuracy in various
epoch settings.

stroboscope angles, cancer features appear different from
those of polyps and nodules; by contrast, the difference
between the features of polyps and nodules is small. Clinical
experience indicates that the tissue properties of polyps are
similar to those of nodules; thus, predictions pertaining to
polyps and nodules are occasionally inaccurate. Moreover,
the number of incorrect predictions for polyp and nodules
matched the image distribution; thus, the results obtained
were reasonable (Fig. 19).

On the basis of the results presented in Fig. 19, we used
Python and Sklearn to calculate the performance of the pro-
posed EVC-DD model (see Table 6 for the results), which
was revealed to be stable in terms of F1-score, recall rate,
and precision. The weighted performance model applied in
the present study considered the ratio of the number of dis-
ease images to total images; thus, the distribution of image
number was considered in the weighted performance of the
model. Although the performance of themodel in terms of the
weightedMCCwas slightly poorer relative to its performance
in terms of other metrics, the model still achieved 97.83%
weighted MCC in iteration 2. Clinical experience indicates
that polyps and nodules are difficult to distinguish, partic-
ularly during their early stages. The EVC-DD model made
erroneous inferences for four out of 250 images (error rate of
approximately 1.6%); therefore, its performance in terms of
the MCC was slightly poorer relative to its performance in
terms of other metrics.

FIGURE 15. Disease inference results in loss in various epoch settings.

FIGURE 16. The proposed 5-Fold cross-validation.

The AUC results of the present study are listed in the final
row of Table 6, and they reveal the absence of a gap between
the actual diagnoses and the predictions (the maximum value
of AUC is 1). The EVC-DDmodel achieved high AUC values
of >0.98, which were similar to the optimal results. After the
results for all iterations were verified, the AUC scores were
revealed to match the prediction results; iteration 3 produced
the optimal result, and the final result was obtained in itera-
tion 5. However, the miniscule gap between the optimal and
final AUC scores ( 0.0087) indicates that the variance of the
EVC-DDmodel’s performance from iteration to iteration was
low.

3) SCALABILITY PERTAINING TO COVERAGE OF OTHER VC
DISEASES
The proposed EVC-DD model achieved a high recognition
rate for EVCDs, which can primarily be attributed to its
ability to perform DL-based feature evaluations. For images
with specific and clear features, DL allows for the appropriate
selection of valuable features, resulting in a high recogni-
tion rate after a prediction model is obtained. However, the
scalability of the EVC-DD model for recognizing untrained
diseases is low. The inference process of the EVC-DD model
was dependent on the features of the training images used
to train it; thus, its accuracy for predicting the images of
untrained diseases is low. To overcome this problem, the
EVC-DD model could be implemented with a shallow net-
work to reduce its training time. However, a shallow network
structure can only reduce the training time of the model to
increase its training efficiency when new features are consid-
ered; this type of network does not improve the scalability of
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TABLE 5. The running time required in the training phase for each model
(unit: second).

FIGURE 17. The training history of EVC-DD in loss.

the model. Because a trained EVC-DD model can achieve a
high recognition rate, connecting multiple models with vari-
ous trained models may increase its level of disease coverage;
this strategy could be considered in future EVC-DD studies.

4) PERFORMANCE OF EVC-DD MODEL RELATIVE TO OTHER
NETWORKS
We compared the performance of the proposed EVC-DD
with those of other DL networks. On the basis of the results
of other studies [46] and [38], the VGG16 [47], Efficient-
Net [48], and InceptionV3 [49] models were selected for the
comparison analysis. Although researchers have studied the
MobileNetV2model [46], which can be built at a low compu-
tational cost, it was excluded from our comparison analysis
because its accuracy is unacceptable for clinical applications.

Each algorithm was implemented using the simulation
environment and data setting applied in the preceding exper-
iment performed in the present study. The metrics used
were F1 score, recall rate, precision, accuracy, and MCC. F1
scores, recall rates, and precision values were calculated for
each target EVCD, and the weighted average was obtained;
accuracy and MCC were used to assess the overall perfor-
mance of the models through sklearn. The performance of the
EVC-DD, VGG16, EfficientNet, and InceptionV3 models is
presented in Tables 7, 8, 9, and 10, respectively. Furthermore,
Table 7 lists the optimal results of the EVC-DDmodel, which
were obtained during iteration 3.

The results obtained in this experiment were matched with
those reported in other studies [38], [46]. The results of the
VGG16 model were similar to those of the EVC-DD model
(i.e., 100% prediction accuracy for cancer andmore favorable
performance for nodules than for polyps).

FIGURE 18. The training history of EVC-DD in categorical accuracy.

The EfficientNet and InceptionV3 models both performed
most favorably for nodules, followed by cancer and polyps.
The sequence pertaining to performance corresponded to the
number of images of each EVCD that were used. That is,
both the EfficientNet and InceptionV3 models encountered
difficulties in capturing the key features of small-scale data
sets. Therefore, both networks were only helpful for diseases
with well-defined features. Although these two networks still
achieved a performance level of >85%, they underperformed
against the EVC-DD and VGG16 models.

5) PERFORMANCE OF EVC-DD MODEL VS. VGG16 MODEL
The aforementioned results reveal that the proposed EVC-DD
model was highly accurate in recognizing EVCDs and could
be trained at a low training cost. We compared the per-
formance of the EVC-DD model with the performance of
other networks. On the basis of the results reported by
Cho et al. [46] and Cho and Choi [38], we compared the
performance of the EVC-DD model with the performance
of the VGG16 [47], EfficientNet [48], and InceptionV3 [49]
models. According to one study [38], [46], the VGG16model
can achieve a high level of accuracy (>99%); thus, we con-
ducted further experiments to compare the performance of the
EVC-DD and VGG16 models.

Cho and Choi reported that the VGG16 model is excellent
at recognizing VC diseases [38]; therefore, we included the
VGG16model in our performance comparisons. Tomatch the
properties of the EVCD and VGG16 models, we performed
the following modifications:

1) The original VGG16 model only accepts 224 by
224 images; thus, the size of all images was adjusted
from 540 by 720 to 224 by 224.

2) The output layer of the original VGG16 model com-
prised 1000 dimensions, which was reduced to three
because of the number of EVCDs examined in the
present study.

During the simulation of parameter optimization pro-
cesses, the VGG16 model requires 134,272,835 parameters
but achieves a categorical accuracy of approximately 70%.
The VGG16 and EVC-DD models both consider the same
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FIGURE 19. The confusion matrix derived by the test results of EVC-DD in each iteration.

TABLE 6. The performance of the proposed EVC-DD.

TABLE 7. The best performance of the proposed EVC-DD.

kernel size; however, the VGG16 model has larger channels
than those of the EVC-DD model. The VGG16 model con-
siders between 64 and 512 channels, and we inferred that

TABLE 8. The performance of the VGG16.

this model considered an excessive amount of information,
which resulted in a reduction in the values of target features.
Therefore, the number of channels of the VGG16 model was

120394 VOLUME 10, 2022



C.-K. Tsung, Y.-A. Tsou: Recognizing Edge-Based Diseases of Vocal Cords by Using Convolutional Neural Networks

TABLE 9. The performance of the EfficientNet.

TABLE 10. The performance of the InceptionV3.

FIGURE 20. The accuracy of the proposed EVC-DD, VGG16, EfficientNet,
and InceptionV3.

FIGURE 21. The training history of VGG16 in loss.

reduced by half for each layer, and the model’s categorical
accuracy was also increased from 70% to 99%. Furthermore,
the number of parameters used by the VGG16 model was
reduced to 16,789,411, and the model’s training time was
reduced to 4.5 s/epoch.

The training results of the VGG16 model are presented
in Figs. 21 and 22. Both the EVC-DD and VGG16 mod-
els achieved similar recognition rates (approximately 99%);
however, the VGG16 model required more epochs to reach
convergency (Figs. 17, 18, 21, and 22). Moreover, the
VGG16 model required approximately 4.5 s/epoch for train-
ing, whereas the EVC-DD model only required 1.5 s/epoch.
Therefore, the EVC-DD and VGG16 models performed

FIGURE 22. The training history of VGG16 in the categorical accuracy.

similarly in terms of recognition rate, but the EVC-DD could
more quickly consider new features when new EVCD cases
were input.

V. CONCLUSION
To assist doctors in observing the symptoms of patients dur-
ing clinical consultations, medical equipment manufacturers
have developed sampling equipment with light and shadow
modes and multiple resolution and sampling-rate options.
These tools greatly assist doctors in identifying disease fea-
tures and formulating treatment plans. The present study
applied DL to construct an EVC-DD model that records and
stores lesion data and can be integrated into otorhinolaryn-
gology practice because it does not require the collection of
additional data or modification of consultation processes. The
EVC-DDmodel can achieve an accuracy of >99%, and under
specific parameter settings, a 100% accuracy can be achieved.
During consultations, the EVC-DD model can help doctors
to assess the consistency of their disease inferences. In case
discussions, the EVC-DD model can help doctors to engage
in case learning. Consequently, the experience of senior doc-
tors can be effectively applied through the EVC-DDmodel to
support consultations and case learning.

The EVC-DD system can achieve a high recognition rate.
The integration of Stroboscope video stream could enable the
model to obtain auxiliary information for disease inference
in real time during clinical consultations with doctors and
enable the immediate confirmation of the consistency and
appropriateness of a diagnosis. Research should be conducted
on the applicability of EVC-DD to conditions other than
EVCDs, such as diseases related to VC oncology, VC edema,
and laryngopharyngeal reflux. In the future, further research
could be conducted on the convenience of EVCD and the
extended sickness of other VC diseases.

The proposed approach recognizes EVCDswith high accu-
racy, and it will be applied to following two applications:

1) Extending the target diseases from EVCDs to other
VC diseases. After obtaining some trained models for
various VC diseases, we will design a mechanism to
connect the trained models to recognize various VC
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diseases, and the disease coverage of EVC-DD will be
increased. This idea came from the research results of
Yan et al. [31]. Since each model provides high accu-
racy for a specific disease, the hierarchical or tree test-
ing structure would extend the disease converge. This
interesting issue will be designed and implemented
after finishing some ECVD models.

2) The model also enables real-time recognition dur-
ing clinical consultations. The core function of the
EVC-DD model, namely recognizing EVCDs, was
designed and tested in the present study. In the future,
the core function of the EVC-DDmodel will be applied
to a stroboscopy system to realize real-time recognition
during clinical consultations (as opposed to offline dis-
ease inference). With the support of this model, doc-
tors can immediately receive consultation suggestions
and therby reduce the risk of errors during clinical
consultations.
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