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ABSTRACT This paper considers the observer-based output feedback robust model predictive control
(RMPC) problem for systems with model uncertainties and possible measurement outliers. For the sake
of alleviating the effects of possible abnormal measurements, we design a set of observer-based output
feedback RMPC controllers with the saturation constraint where the saturation level is adaptive according to
the estimation errors. The purpose of the addressed problem is to design a set of desired RMPC controllers
so as to guarantee the robustness and the asymptotical stability of the closed-loop system. Sufficient stability
conditions are obtained by solving a time-varying terminal constraint set of an auxiliary optimization
problem, and the corresponding control law and the upper bound of the quadratic cost function are derived.
In addition, an algorithm including both off-line and on-line parts is provided to find a sub-optimal solution.
Finally, two simulation examples are employed to illustrate the effectiveness of the proposed RMPC
approach.

INDEX TERMS Robust model predictive control, measurement outliers, observer-based output feedback,
time-varying terminal constraint set.

I. INTRODUCTION
Over the past several decades, model predictive control
(MPC), namely receding horizon control has been developed
rapidly because of its great advantage of solving optimization
problems that are limited by hard constraints and multi-
variables, see e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], and [13]. At each time instant, by handling
the online optimization issue based on the present measured
values, a series of control moves within the range of future
forecasts are calculated, and only the first component is
executed on the plant. At the next moment, according to the
new measurement results, the optimization issue is required
to be formulated again, the control input fixed by this issue
is implemented on the system. Given those achievements
for nominal systems, the unavoidable parameter uncertain-
ties have been addressed in the process of modeling due
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to many extensions, which brings about the robust MPC
(RMPC) strategy, see e.g. [14], [15], [16], [17], [18], [19],
[20], and [21]. RMPC strategy has been getting more and
more attention and many novel RMPC strategies have been
put forward in recent years, see e.g. [22], [23], [24], [25], [26],
[27], [28], and [29].

Assuming states of the system are completely available,
a majority of the existing outcomes involving the aforemen-
tioned ones are got. However, the systems to be handled have
been becomingmore andmore complicated nowadays, so that
assumption could not be always correct in actual engineering,
and the states of the system cannot be always obtained in
actual time, which means that the above RMPC strategy may
not be valid. Accordingly, for the unmeasurable system states,
it is of great practical significance to propose a novel RMPC
strategy with output feedback control. For instance, to guar-
antee the stability of the system along with parameter uncer-
tainties, the static output feedback controller based on the
RMPCmethod has been presented [30]. The remarkable thing
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is that the conditions got by using the RMPC strategy based
on static output feedback are somewhat conservative since
output matrices usually need to be sorted in all rows, or the
input matrices need to be sorted in all columns. In order to
overcome this obstacle, the dynamic output feedback RMPC
issue has turned into a charming research subject, then many
outcomes have been achieved [31], [32], [33]. In addition,
the output feedback RMPC strategy based on the observer
is also an effective method to solve the problem [34], [35],
[36]. However, to the author’s knowledge, the observer-based
dynamic output feedback RMPC problem has not been well
studied. Therefore, filling this gap is our motivation.

It is well acknowledged that measurement outliers have
become an inevitable phenomenon, which may give rise to
the worsening of estimation performance. In [37], the state
estimation issues have been handledwith theKalmanfiltering
framework, and the algorithm is robust to the outliers. In order
to estimate the states of LTI systems in case of measurement
outliers in [38], the moving horizon technology has been
employed. In [39], an observer for the LTI system has been
devised, and the effects of measurement outliers are mitigated
due to introducing a saturated output injection. It is very
important to consider the effect of measurement outliers fully
and reduce their influence effectively.

Based on the previous discussion, the design of
observer-based output feedback controllers for polytopic
uncertain systems is studied by using the saturation function,
which ensures the robustness and asymptotic stability of the
system. In this paper, the main contributions are presented
as follows: (1) Because of the difficulties in achieving the
state measurements in practice, the output feedback control
based on the observer is applied in the framework of RMPC.
The technique of output matrix singular decomposition is
used to handle the equality limit, which originates from the
observer-based RMPC strategy. (2) There is a technology
of saturating innovations, which is employed to reduce the
negative influences of possible measurement outliers. At each
time step, the adaptive saturation level is defined recursively
by previous errors. Compare with the saturation mechanism
that along with fixed levels, the dynamical level that we
propose can be adjusted adaptively with the error accuracy
and can present better performance. (3) In the matter of
dynamic output feedback RMPC strategy, some effects of
the polytopic uncertainties as well as the saturation function
are all reflected in the controller establishment. (4) Suffi-
cient conditions are obtained by utilizing the Lyapunov-like
method along with the positive robust control invariant set
technology.

The remaining in this paper is arranged as below.
In Section II, the dynamic output feedback RMPC
(OFRMPC) issue is designed for systems, which along
with polytopic uncertainties being subject to measurement
outliers, and lots of necessary definitions are presented.
In Section III, with regard to the polytopic uncertain sys-
tems without or with hard constraints, sufficient conditions
are obtained to guarantee stability, and the related dynamic

FIGURE 1. Structure of RMPC-based system subject to measurement
outliers.

OFRMPC algorithm is designed. In Section IV, two illustra-
tive simulation examples are given to verify the effectiveness
as well as the validity of the dynamic OFRMPC strategy that
we propose. We give the conclusion in Section V at the end.
Notations: In this paper, the notations are standard unless

otherwise specified. Rn means the n-dimensional Euclidean
space, Rn1×n2 means the set of all n1 × n2 real matrices.
Concerning a matrix P, if P > 0, then P is positive definite
and symmetric. ‖x‖ means the Euclidean norm and ‖x‖2 =
xT x. ‖x‖2M = xTMx where M > 0 is a positive definite
and symmetric weighting matrix. A scalar |a| means the
absolute value of a. 0 and I mean the zero matrix and the
identity matrix with appropriate dimensions separately. The
symbol ‘‘*’’ means the symmetric part in a symmetric matrix.
The shorthand diag{· · · } stands for a block-diagonal matrix.
The superscript ‘‘T’’ means the transpose and the superscript
‘‘−1’’ means the inverse (if invertible) for a matrix.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. SYSTEM MODELS
The polytopic uncertain discrete-time linear system that we
consider as follows:{

x(k + 1) = A(k)x(k)+ B(k)u(k)
y(k) = C(k)x(k)

(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are the state,
the control input and the measurement output. And A(k),
B(k), as well as C(k), are unknown matrices with appropriate
dimensions that belong to a polytope which is given by

1 :=
{
2|2 =

L∑
l=1

κl2
(l),

L∑
l=1

κl = 1, 0 ≤ κl ≤ 1
}
, (2)

where 2 :=
(
A(k), B(k), C(k)

)
∈ 1, matrices 2(l) are

known that are defined as 2(l)
:=

(
A(l),B(l),C (l)

)
(l =

1, 2, . . . ,L), which are the vertices of the convex hull 1.
As shown in FIGURE 1, the measurement outliers may

exist in the data transmission where from the sensor to the
controller, thus the stability of the system will be threatened,
so the observer-based controller with saturation function is
discussed.

Denote ŷ(k) , C(k)x̂(k) and r(k) , y(k) − ŷ(k), the
observer-based system with the controller is to be defined in
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the following form:
x̂(k + 1) = A(0)x̂(k)+ B(0)u(k)

+H (k)Satσ (k)(y(k)− ŷ(k))
ŷ(k) = C (0)x̂(k)

(3)

where x̂(k) ∈ Rnx̂ and ŷ(k) ∈ Rnŷ are the state estimate
and output estimate of the observer of the system at time
interval k . H (k) is the parameter matrix that we will design.
A(0),B(0),C (0) are the nominal matrices, and the nonlin-
ear mapping Satσ (k)(·) : Rny 7→ Rny in observer-based
system (3) is a saturation function described below:

Satσ (k)(r(k)) ,


Sat (1)σ (k)(r(k))

Sat (2)σ (k)(r(k))
...

Sat
(ny)
σ (k)(r(k))

 ,

where Sat (l)σ (k)(r(k)) , sign(r (l)(k)) ·min{|r (l)(k)|, σ (k)}, and
r (l)(k) denotes the l-th entry of the vector r(k). At each step,
the saturation level σ (k) varies along with time, and it is
defined according to the difference equation as follows:

σ (k + 1) = λσ (k)+ (y(k)− ŷ(k))T<(k)(y(k)− ŷ(k)), (4)

where the matrix λ ∈ [0, 1), <(k) is positive definite and
determined before.
Remark 1: In an observer-based system (3), a saturation

function is used to alleviate some influences from possible
measurement outliers with the help of limiting the innova-
tions which are fed to the observer, the innovations mean
differences between the estimated and measurement outputs.
Unlike in most existing literature, the saturation level is
always fixed [40], on the contrary, we adopt the iterative func-
tion (4) to fix the saturation level σ (k) in this paper, which
takes advantage of the innovation at the related time step.
Specifically, we can see from (4) that when the innovation
gets smaller at time step k , namely the estimation error also
gets smaller, then the saturation level σ (k+1) will get lower,
and the related limit that is imposed on innovation will be
more strict at time step k + 1. With the help of introducing
this mechanism, we can adjust the saturation level adaptively,
and we will present the related superiority in two simulation
examples later.

For conciseness of presentation, φk (·) , Satσ (k)(·) is
denoted. By [41], there is a diagonal matrix 3(k) which
satisfies 0 ≤ 3(k) ≤ I such that

(φk (r(k))−3(k)r(k))T (φk (r(k))− r(k)) ≤ 0, (5)

where 3(k) , diag{ν(1k), ν(2k), . . . , ν(nyk)} with
0 6 ν(ik) 6 1.
Remark 2: In most existing documents, it should be noted

that similar techniques are used to handle the saturation phe-
nomenon, and it is assumed that the matrix 3(k) has been
determined because the saturation level is determined. But
about this paper, we can know from (4) and (5) that 3(k)

ought to be a time-varying matrix because the saturation level
σ (k) varies along with the time. In fact, based on the values
of σ (k) as well as r(k) at the related time step, the value of
the time-varying 3(k) ought to be fixed.

B. PROBLEM OF INTERESTS
Consider the following controllers in the framework of MPC
for system (3):

u(k + n|k) = F(k + n|k)x̂(k + n|k), n = 0, 1, 2, . . . (6)

where u(k+n|k) and x̂(k+n|k) are the nth step prediction of
control input and state estimate at time k . We will determine
the feedback gain F(k + n|k) by optimisation. In the light
of the actual requirement of engineering, the constraints on
control input and state are given by

‖ u(k + n|k) ‖2 ≤ ū(k), n ≥ 0 (7)

‖ x(k + n|k) ‖2 ≤ x̄(k), n ≥ 0 (8)

where ū > 0, x̄ > 0 are known scalars.
Denoting the estimate error e(k) = x(k) − x̂(k), the

closed-loop system within the predicted horizon can be writ-
ten as below:

η(k) =
[
ζ (k) xT (k) x̂T (k) φT (k)

]T
=
[
1 eT (k) xT (k) x̂T (k) φT (k)

]T
, (9)

ζ (k) =
[
1 eT (k)

]T
,

we can obtain the following augmented system:

ζ (k + 1) = f̃ (k)η(k), (10)

where

f̃ (k) ,
[
f̂ (k) Â(k) B̂(k) Ĥ (k)

]
,

f̂ (k) ,
[
1 0
0 0

]
, Â(k) ,

[
0

A(k)

]
, φ(k) , φk (r(k)),

B̂(k) ,
[

0
B(k)F(k)− A(0) − B(0)F(k)

]
, Ĥ (k) ,

[
0

−H (k)

]
.

(11)

We could find that system (10) is polytopic uncertain.
In addition, concerning the above augmented closed-loop
system (10), we consider a min-max cost function of the
following form to design the controllers:

min
F(k),H (k)

max
(A(k),B(k),C(k))∈1

J∞(k), (12)

where the objective function J∞(k) is determined by

J∞(k) ,
∞∑
n=0

[ζ T (k)Qζ (k)+ uT (k)Ru(k)] (13)

with Q1,Q2,Q3,Q4,Q5 and R expressing the posi-
tive definite and symmetric weighting matrices, Q =

diag{Q1,Q2,Q3,Q4,Q5}.
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Given the min-max problem Eq.(12), the online optimiza-
tion issue is shown to determine the controllers based on out-
feedback MPC:

Op1 : min
F(k),H (k)

max
(A(k),B(k),C(k))∈1

J∞(k),

s.t.max
c
|[u(k + n|k)]c| ≤ ū,

s.t.max
d
|[x(k + n|k)]d | ≤ x̄,

ζ (k + n|k)∈ϒ(P(k + n|k), 5ρ), n = 0, 1, 2, . . .

where ϒ is the terminal constraint set, which is fixed by

ϒ , {ζ (k + n|k)|ζ (k + n|k)TP(k + n|k)ζ (k + n|k) 6 5ρ},

(14)

and P(k + n|k) expressing a positive definite matrix of a
quadratic function. We will cover further particulars in the
next part. Note that the first component u(k) of a group of pre-
dicted inputs {u(k), u(k + 1), u(k + 2), . . .} will be employed
on the plant at every moment. Significantly, according to
an online optimization problem, the terminal constraint set
ϒ concerning the varying time is usually obtained, and the
initial system state is required to be inside. In addition, infi-
nite horizon control laws have been shown to ensure nominal
stability as described by [22]. Therefore, we have adopted
the prediction horizon of this paper ∞ to guarantee at least
nominal stability.

In this paper, the dynamic output feedback controllers
Eq.(6) based on RMPC are designed to make the system (1)
asymptotically stable under introducing the observer with a
saturation function. To be more specific, an auxiliary opti-
mization issue Op1 is given to find the required parameter
matrices F(k) and H (k), so that we can ensure stability in
the closed-loop system. In order to reach this aim, about any
admissible parameter k , two requirements want to be satisfied
at the same time as follows:

R1. an auxiliary optimization issue is presented to denote
the issue Op1, so that we can get the sub-optimization
solution;

R2. according to the parameter matrices F(k) and H (k)
that we obtain, the observer-based closed-loop system with
a saturation function Eq.(3) is asymptotically stable.

III. MAIN RESULTS
In establishing our main outcomes, the following lemmas are
useful.
Lemma 1. (Schur Complement Equivalence) Given con-

stant matrices Mk (k = 1, 2, 3) where M1 = MT
1 and 0 <

M2 = MT
2 , then M1 +MT

3 M
−1
2 M3 < 0 if and only if[

M1 MT
3

M3 −M2

]
< 0,

or [
−M2 M3
MT

3 M1

]
< 0.

A. OBSERVER-BASED CONTROLLER DESIGN OF MPC
WITHOUT HARD CONSTRAINTS
In this part, we will provide a number of sufficient conditions
in constrained systems, which assure the performance that we
desire by means of the quadratic function method. Therefore,
we can get the dynamic output feedback controllers which
are based on RMPC. To be exact, firstly, sufficient condi-
tions are given to meet the terminal constraint set conditions
in Op1, i.e., ζ (k + n|k) ∈ ϒ(P(k + n|k), 5ρ). After that,
an auxiliary optimization issue is proposed to seek out the
suboptimal solution for the unconstrained system. In addi-
tion, the inequation analysis technique is used to deal with the
unavailable state x(k) problem of the obtained auxiliary issue,
another auxiliary issue is presented for solvability. In the
end, by solving this kind of on-line auxiliary optimization
problem, we get sufficient conditions to ensure stability in
the closed-loop system.

1) TERMINAL CONSTRAINT SET
The following significant definition is presented before devel-
oping the mean results.
Definition 1:Under the control law (6), the setϒ is a robust

positive invariant (RPI) set for system (1) if ζ (k) ∈ ϒ implies
ζ (k + 1) ∈ ϒ .

On the basis of the on-line optimization issueOp1, we need
to satisfy the following conditions so that the set ϒ(P(k +
n|k), 5ρ) is the terminal constraint set for Op1:
C1: there is a quadratic function determined by

V (ζ (k + n|k)) , ζ T (k + n|k)P(k + n|k)ζ (k + n|k) (15)

such that

V (ζ (k + n+ 1|k))− V (ζ (k + n|k))

6 −ζ T (k + n|k)Qζ (k + n|k)− uT (k + n|k)Ru(k + n|k)

(16)

C2: the set ϒ(P(k + n|k), 5ρ) is an RPI set.
Next, we will discuss two conditions that we mention

above one after another.
Firstly, according to the RLMI approach, the theorem pro-

vides a sufficient condition for the system (10) as follows.
Theorem 1: We give γ > 0, 0 > 0 and
{F(k),H (k)}0≤k≤N . If there are a series of positive definite
matrices {P(k)}0≤k≤N+1 with P(0) ≤ γ 20̄(0̄ , diag{0, 0}),
many positive scalars {τ (k)}0≤k≤N , a series of real value
scalars {ε(k)}0≤k≤N such that

�(k) , �̄(k)+ 8̌+ R̄− τ (k)�(ik)− ε(k)�(σk) ≤ 0,

(17)

where

�̄(k) , f̃ T (k)P(k + 1)f̃ (k)− diag{P(k), 0, 0, 0}, (18)

8̌ , diag{Q, 0, 0, 0},

R̄ , diag{0, 0, 0,
√
RF(k), 0},

�(ik) , diag{0, 0, 0, 0, I } − πT4(k)g̃(k)
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−g̃T (k)4T (k)π + g̃T (k)3(k)g̃(k), (19)

�(σk) , diag{−σ (k + 1)+ λσ (k), 0, 0, 0, 0}

+g̃T (k)<(k)g̃(k),

g̃(k) ,
[
0 0 C(k) −C(k) 0

]
. (20)

The following theorem proves the condition C1.
Lemma 2: Let positive definite and symmetric matrices

Q1,Q2,Q3,Q4,Q5 as well as R be provided. For system (10)
which is controlled by Eq.(6), if there exists a positive scalar
ρ > 0, positive definite and symmetric matrices Q̃(k),
Q̃(k + 1) and matrices ω, l = 1, 2, 3, . . . ,L so that the
conditions hold as follows:

EQl(k) ∗ ∗ ∗

8̃l ρ̄I ∗ ∗

Y̆ 0 ρI ∗

E9 l 0 0 Q̃(k + 1)

 ≥ 0, (21)

where Q̃(k) = diag{Q̃i}(i = 1, 2, 3, 4, 5), Q̃(k + 1) =
diag{Q̃j}(j = 1, 2, 3, 4, 5),

EQl(k) =


Q̄1 0 0 0 0
0 Q̄2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

8̃l
=


√
Q1S11 0 0 0 0
0

√
Q2S11 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
Y̆ =

[
0 0 0

√
Rω 0

]
,

E9 l
=

[
S11 0 0 0 0
0 0 Al Blω − Al − B(0)ω −H (k)

]
,

ρ̄I =


ρI 0 0 0 0
0 ρI 0 0 0
0 0 ρI 0 0
0 0 0 ρI 0
0 0 0 0 ρI

 ,
Q̄1 = (S11)T + S11 − Q̃1,

Q̄2 = (S11)T + S11 − Q̃2,

ω = F(k)Q̃4,

we have Eq.(16) with V (k + n) determined by Eq.(15).
In addition, the related output feedback gains of control
law (6) is provided by

F(k) = ωQ̃−14 . (22)

Proof :Determine a quadratic function according to (15), i.e.,

V (ζ (k + n|k)) , ζ T (k + n|k)P(k + n|k)ζ (k + n|k), (23)

where P(k + n) = diag{Pi(k + n)}(i = 1, 2, 3, 4, 5) is the
positive definite and symmetric matric to be fixed.

Calculate the difference of Eq.(15) according to
system (10) yields.

4V (ζ (k + n|k))

= V (ζ (k + n+ 1|k))− V (ζ (k + n|k))

= ζ T (k + n+ 1|k)P(k + n+ 1)ζ (k + n+ 1|k)

−ζ T (k + n|k)P(k + n)ζ (k + n|k)

= ηT (k + n|k)zη(k + n|k) (24)

where

P1 = f̃ T (k + n|k)P(k + n+ 1|k)f̃ (k + n|k)

P2 = P(k + n|k)diag{1, 0, 0, 0}

z = (P1− P2).

Next, we provide a free matrix:

S =
[
S11 0
0 S22

]
where the matrix S11 is arbitrary diagonal, and the matrix S22
is arbitrary with the appropriate dimension.

Substitute the conditions(i = 1, 2)

S11 + (S11)T − Q̃i − (S11)T Q̃
−1
i S11

= −(Q̃i − S11)Q̃
−1
i (Q̃i − S11)T ≤ 0,

into Eq.(21), we will get
←−
Q l(k) ∗ ∗ ∗

8̃l ρ̄I ∗ ∗

Y̆ 0 ρI ∗

E9 0 0 Q̃(k + 1)

 ≥ 0, (25)

where
←−
Q l(k)

=


(S11)T Q̃

−1
1 (S11) 0 0 0 0
0 (S11)T Q̃

−1
2 (S11) 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
Afterward, it can be known that we will get Eq.(25)

if pre- and post-multiplying the following inequality with
diag{S11, S11, I , Q̃4, I , . . . , I︸ ︷︷ ︸

9

} and its transpose:


−→
Q l(k) ∗ ∗ ∗√
Q̌ ρ̄I ∗ ∗

Ȳ 0 ρI ∗

f̂ l 0 0 Q̃(k + 1)

 ≥ 0, (26)

where

−→
Q l(k) =


Q̃−11 0 0 0 0
0 Q̃−12 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
119032 VOLUME 10, 2022
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√
Q̌ =


√
Q1 0 0 0 0
0

√
Q2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
Ȳ =

[
0 0 0

√
RF 0

]
,

f̂ l =

[
1 0 0 0 0

0 0 Al BlF − Al − B(0)F −H (k)

]
,

Because system (10) is polytopic uncertain, i.e., Eq.(26) is
affine in � and means that

−→
Q l(k) ∗ ∗ ∗√
Q̌ ρ̄I ∗ ∗

Ȳ 0 ρI ∗

f̂ l(k) 0 0 Q̃(k + 1)

 ≥ 0. (27)

According to the Schur Complement, deduce from Eq.(27)
that

f̃ T (k)Q̃−1(k + 1)f̃ (k)+ Ȳ Tρ−1Ȳ + ρ−1Q̌− Q̃−1(k) ≤ 0.

(28)

Multiply both sides of Eq.(28) with ρ > 0 and define
P(k) = ρQ̃−1(k),P(k + 1) = ρQ̃−1(k + 1), we can get

f̃ T (k)P(k + 1)f̃ (k)+ Ȳ T Ȳ + Q̌− P(k) ≤ 0. (29)

Pre- and post-multiplying Eq.(29) with ηT (k+n|k) and its
transpose means

0(k)− ηT (k + n|k)P(k)η(k + n|k)

+ηT (k + n|k)Q̌η(k + n|k)+� ≤ 0. (30)

where

0(k) = (f̃ (k)η(k + n|k))TP(k + 1)(k + n+ 1)

×(f̃ (k)η(k + n|k)),

� = (Ȳη(k + n|k))T (Ȳη(k + n|k)).

Notice Eqs. (6), (10), and (24), condition (16) can be
assured by Eq.(30). So we can complete the proof.

Let us handle the saturation function φ(k). We can know
from (5) that

(φ(k)−3(k)r(k))T (φ(k)− r(k)) ≤ 0, (31)

which, by noticing4(k) , 1/2(3(k)+I ), can be represented
by

φT (k)φ(k)− φT (k)4(k)r(k)− rT (k)4T (k)φ(k)

+rT (k)3(k)r(k) ≤ 0, (32)

We know that

r(k) = y(k)− ŷ(k)

= C(k)x(k)− C(k)x̂(k)

= g̃(k)η(k). (33)

In the end, (32) can be described by

ηT (k)diag{0, 0, 0, 0, I }η(k)− ηT (k)πT4(k)g̃(k)η(k)

−ηT (k)g̃T (k)4T (k)πη(k)+ηT (k)g̃T (k)3(k)g̃(k)η(k) ≤ 0,

(34)

equivalently,

ηT�(ik)η(k) ≤ 0, (35)

where �(ik) is given in (19) and

π =
[
0 0 0 0 I

]
,

According to the limit (4) which is imposed on the satura-
tion level, we have

σ (k + 1) = λσ (k)+ (y(k)− ŷ(k))T<(k)(y(k)− ŷ(k)),

which can be described by

ηT (k)(diag{−σ (k + 1)+ λσ (k), 0, 0, 0, 0}

+g̃T (k)<(k)g̃(k))η(k) = 0

equivalently,

ηT (k)�(σk)η(k) = 0.

where �(σk) is given in (20).
Remark 3: Specifically, for the polytopic uncertainties of

system matrices in (1) and hard constraints in (7) and (8),
some theoretical analysis techniques which may generate
sufficient and necessary conditions like Riccati equations are
usually invalid. By comparison, the Lyapunov-like function
approach makes the solution adequate.

Next, we are going to study condition C2 in the terminal
constraint set. Namely, we need to seek out sufficient con-
ditions, which can satisfy that the set ϒ(P(k), 5ρ) is an RPI
set.

From Definition 1, we know the requirements should be
met to ensure the RPI set ϒ(P(k), 5ρ) as follows.
R1. at the time instant n = 0, the initial state is part of the

set ϒ , i.e,

ηT (k)Q̃−1(k)η(k) 6 5;

R2. future states η(k + n|k), n > 0 are part of the set ϒ .
In the following content, we handle the above requirements

one by another.
According to the Schur Complement, R1 holds if and only

if [
5 ∗

η(k) Q̃(k)

]
≥ 0. (36)

In addition, on account of Lemma 2 and ζ (k) =

[I 0 0 0 0]η(k), it is easy to see from Eq.(36) that

V (ζ (k + n+ 1)) ≤ V (ζ (k + n)) ≤ . . . ≤ V (ζ (k)) ≤ 5ρ.

(37)

which means that predicted states ζ (k + n|k) are part of the
set ϒ so long as ϒ contains the initial state ζ (k). And this
guarantees that the set ϒ is an RPI set.

VOLUME 10, 2022 119033



J. Wang et al.: Robust MPC for Systems With Model Uncertainties and Measurement Outliers

Up to now, by conditions (21) and (36), we can ensure
the terminal constraint set. That is to say, the condition
ζ (k + n|k) ∈ ϒ(P(k), 5ρ) of Op1 is met.

2) AUXILIARY OPTIMIZATION PROBLEMS
About this part, for the unconstrained system in this paper,
we will discuss how to deal with Op1.
Op1 is an optimization issue that includes parameter uncer-

tainties in an infinite time horizon, handle it directly is not
easy. On the contrary, to seek out a sub-optimal solution,
we will propose a certain auxiliary optimization issue. We try
to present this auxiliary problem next.

Evidently, if condition (21) holds, we have Eq.(16). This
means that ζ (∞|k) = 0 and V (∞) = 0. Sum up both sides
of Eq.(16) from n = 0 to n = ∞ and use Eq.(12) yields

J∞(k) ≤ V (k) = ζ T (k)P(k)ζ (k) 6 5ρ, (38)

which means

max
(A(k),B(k),C(k))∈1

J∞(k) 6 5ρ. (39)

This provides a superior limit of the objective function of
Op1.

On the basis of the above analysis, we are ready to
present an auxiliary optimization issue for the systemwithout
constraints:

Op2 : min
Q̃i(i=1,2,3,4,5),F(k),H (k)

5ρ, s.t Eqs.(21) and (36).

The condition (36) can’t be checked online because of the
immeasurable state x(k). In what follows, we will handle
the problem of unavailable states in Eq.(36). The following
significant assumption is shown before proceeding with the
endeavor.
Assumption 1:On the basis of the initial state of the system

(1), we show a known set:

x(0) ∈ {x(k)|xT (k)S−1x(k) ≤ 1}, (40)

where matrix S > 0 can be specified in advance from actual
experience.
Lemma 3: In view of the system (1) which is controlled by

Eq.(7), if there are positive definite and symmetric matrices
Q̂i(i = 1, 2, 3, 4, 5), for Assumption 1, such that 2 ∗ ∗

x̂(k) Q̃4 ∗

φ(k) 0 Q̃5

 ≥ 0, (41)

[
Q̃(k) ∗

f̂ lQ̃(k) Q̂

]
≥ 0, (42)

Q̃1 ≥ Q̂1, Q̃2 ≥ Q̂2,

Q̃3 ≥ Q̂3, Q̃4 ≥ Q̂4,

Q̃5 ≥ Q̂5, Q̃1 ≥ S,

(43) Q̃(k) ∗ ∗

[0, 0, I , 0]f̂ lQ̃(k) 2/5Q̂4 ∗

[0, 0, 0, I ]f̂ lQ̃(k) 0 2/5Q̂5

 ≥ 0. (44)

hold, where Q̂ , diag{Q̂1, Q̂2, Q̂3, Q̂4, Q̂5} and f̂ l mean the
vertices of f̃ (k), l = 1, 2, 3, . . . ,L, so we can always ensure
the condition (36).

Proof: By taking a similar to [41], the above lemma can
be gotten and is omitted. So the proof is completed.

According to Assumption 1 and Lemma 3, we are able to
transform the problem Op2 into the approximate optimiza-
tion for the solvability as follows:

Op3 : min
Q̂i>0,Q̃i>0(i=1,2,3,4,5),F(k),H (k)

5ρ,

s.t Eqs.(22), (41), (42) and (44).

3) FEASIBILITY AND STABILITY
In what follows, we will make the feasibility of the presented
problems clear. And to move forward a single step, we will
represent the stability of the system (1), which is controlled
by Eq.(6).
Theorem 2: The positive definite and symmetric matrices

Qi(i = 1, . . . , 5) and R are given. We take the system (1)
controlled by Eq.(7) into account. If a feasible solution to
the optimization issue Op3 at the initial time instant k exists,
after that, the corresponding feasible solution also exists at
any future time instant t > k . In addition, the closed-loop
system is asymptotically stable and Eq.(7) determines feed-
back gains.

Proof:

a: FEASIBILITY
At the initial moment k , let us assume that the optimization
issue Op3 is feasible. For all the future time instant k + n,
n ≥ 1, we have to prove that the issue Op3 is feasible too.
It is not hard to see that only the condition (21) depends
on the states, and other conditions are feasible at any future
time instant t > k so long as they are feasible at the time
instant k . To this extent, we need to prove that condition (21)
is feasible for the future time instant. Namely, the feasibility
of condition (36) in Op2 needs to be proved. From Eqs. (1)
and (10), we can get the following relations:

ζ (k + n|k + n) = ζ (k + n), n ≥ 1 (45)

ζ (k + 1|k) = f̃ (k)η(k|k), (46)

ζ (k + 1) = f̃ (k)η(k), (47)

for some f̃ (k) ∈ 4. On the basis of RPI set and ζ (k) =
[I 0 0 0 0]η(k), we have

ηT (k + 1|k)Q−1(k + 1)η(k + 1|k) < ηT (k)Q−1(k)η(k) < 5.

and we get

ζ T (k + 1|k)Q−1(k + 1)ζ (k + 1|k)<ζ T (k)Q−1(k)ζ (k)<5.

(48)

Using Eqs. (46) and (47), we can get the following condi-
tion from Eq.(48)

ζ T (k + 1)Q−1(k + 1)ζ (k + 1) < 5. (49)
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This indicates that condition (36) is feasible at the time instant
k + 1. In addition, this process is able to go on for any time
k + 2, k + 3, . . . in the future.

b: STABILITY
We need to build a strictly decreasing quadratic function
V̄ (ζ (k)) = ζ T (k)P∗(k)ζ (k), which is used to prove that
the system (1) controlled by Eq.(6) is asymptotically stable,
the subscript ‘‘*’’ means the optimal solution of issue Op3
at the time instant k . On the basis of the above Feasibility,
we have

ζ T (k + 1)P∗(k + 1)ζ (k + 1) ≤ ζ T (k + 1)P∗(k)ζ (k + 1)

< ζ T (k)P∗(k)ζ (k) (50)

where P(k),P(k + 1) without the subscript ‘‘*’’ means the
feasible solution. So the quadratic function V̄ (ζ (k)) is strictly
decreasing, we can end the proof of the theorem.
Remark 4:As a note, it is very difficult to provide sufficient

and necessary standards to deal with the RMPC problem,
which is subject to hard constraints. Inequality transformation
techniques may lead to some conservatism, see e.g. [42].
However, due to the property of the MPC strategy, if it is
feasible at the initial time instant, the solvable optimization
problem is feasible for any future time instant.

B. OBSERVER-BASED CONTROLLER DESIGN OF MPC
WITH HARD CONSTRAINTS
About this part, the MPC issue for the polytopic systems that
along with hard limits is going to be handled, which is based
on the establishments made before. After that, a number
of sufficient conditions are gotten. In the end, subject to
some conditions, an algorithm is proposed to solve an online
optimization issue.

1) CONTROLLER DESIGN WITH A SATURATION FUNCTION
In the first place, to ensure the hard constraints on the inputs
and states Eqs. (7), (8), and a few inequalities are proposed.
Afterward, based on MPC for the constrained system, the
controllers are designed and the related algorithm is proposed
according to the optimization problem.
Lemma 4: If there are positive definite and symmetric

matrices Q̃3, Q̃4, ω, hard constraints on the inputs and the
states Eqs. (7) and (8) are met so that the following conditions[

I ∗

ωT ū2Q̃4

]
≥ 0, (51)[

I ∗

Q̃3 x̄2Q̃3

]
≥ 0. (52)

hold.
Proof: Taking into account the limitations on the input

predictions at first, for any n ≥ 0, we get from Eq.(6) that

|[u(k + n|k)]c|2 = |rc(Fx̂(k + n|k))|2

= |rcωQ̃
−1
4 x̂(k + n|k)|2

= |rcωQ̃
−1/2
4 S11−1/2x̂(k + n|k)|2

≤ ‖ rcωQ̃
−1/2
4 ‖

2
‖ Q̃−1/23 x̂(k + n|k) ‖2

(from Cauchy Schwarz inequality)

≤ ‖ rcωQ̃
−1/2
4 ‖

2

= rc(ωQ̃
−1
4 ωT )rTc

≤ ū2 (53)

where rc is the cth row of an nu-ordered identity matrix.
Eq.(53) holds if and only if Eq.(51) holds by the Schur
Complement.

Afterward, in terms of the constraint on the state pre-
dictions, we can get the following by the similar technique
presented above

|[x(k + n|k)]d |2 = |rd Q̃
1/2
3 Q̃−1/23 [x(k + n|k)]|2

≤ ‖ rd Q̃
1/2
3 ‖

2
‖ Q̃−1/23 [x(k + n|k)] ‖2

(from Cauchy Schwarz inequality)

≤ ‖ rd Q̃
1/2
3 ‖

2

= rd Q̃3rTd

≤ x̄2 (54)

where rd is the d th row of an nx-ordered identity matrix.
Eq.(54) holds if and only if Eq.(52) holds by the Schur
Complement.

For a constrained system, according to Lemma 4, a further
auxiliary optimization issue can be achieved by

Op4 : min
Q̂i>0,Q̃i>0(i=1,2,3,4,5),F(k),H (k)

5ρ,

s.t Eqs.(21), (40), (41), (43)

and (51), (52).

On the basis of the above discussion, we get ready to
show the following theorem so that the system (1) with hard
constraints controlled by Eq.(6) is asymptotically stable.
Remark 5: Significantly, it is difficult to directly solve the

online optimization problem Op1 which includes parameter
uncertainties over an infinite horizon. To deal with such a
difficulty, the auxiliary optimization problem Op2 has been
formulated by giving a certain upper bound of the objective
function of Op1. However, Op2 is still unsolvable due to
the immeasurable state x(k) of the condition (28). So the
optimization problem Op2 has been transformed into the
problem Op3 by using Assumption 1 and Lemma 3. Based
on the established results for unconstrained systems and
Lemma 3 for hard constraints, a further auxiliary optimiza-
tion problem Op4 has been presented for the constrained
system.
Theorem 3: Eq.(1) and (7), (8) are controlled by Eq.(6) and

a system with hard constraints is considered. At the initial
time instant k , if the optimization problem Op4 is feasible,
then for all the future time instants t > k , the optimization
problem Op4 is feasible too. In addition, with the feedback
gains F(k) = ω(k)Q̃−14 , the closed-loop system is stable.
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Proof: The proof procedure is ignored because it is
similar to that in Theorem 2.

2) ALGORITHM OF RMPC FOR CONSTRAINED SYSTEM
About this part, consider the dynamic OFRMPC strategy, the
algorithm for the constrained observer-based systems with a
saturation function is to be shown.

Algorithm
Off − linepart :

Define an initial state η(0) =

[1 eT (0) xT (0) x̂T (0) φT (0)]T , proper matrix S so
that x(0) ∈ {x(k)|xT (k)S−1x(k) ≤ 1} is feasible at k = 0.
On− linepart :
Step 1. Firstly, at the moment k , address the optimization

issue Op4 to get the controller gain F(k) and H (k) by the
observer and parameters in the Off-line part.
Step 2. Secondly, calculate F(k) = ω(k)Q̃−14 , act u(k) =

F(k)x̂(k) on the plant and return to Step 1.

By the way, with the help of the ‘‘Algorithm’’, the
optimization problems can be solved online to obtain
the controller gain F(k). It should be noted that only
the first component u(k) of a set of predicted inputs
u(k), u(k + 1|k), u(k + 2|k), . . . will be acted on the plant at
every time instant.

Note that the controllers we design are determined by the
‘‘min-max’’ problem over an infinite time horizon. Although
the MPC strategy we proposed in this paper is based on an
infinite horizon, the optimization problem needs to be recon-
structed by the newmeasurements. In other words, in the next
time step, a new optimization problem will be reformulated
to solve a new controller in the framework of the RMPC
approach.
Remark 6: The dynamic OFRMPC issue is handled for

observer-based linear systems which along with polytopic
uncertainties. The main unique properties of our outcomes
are outlined: (1) because of the existence of measure-
ment outliers, for systems with polytopic uncertainties, the
observer with a saturation function is provided to handle
the dynamic OFRMPC problem; (2) a number of method-
ologies are made to obtain desired results on the satura-
tion function; (3) the optimization issue Op4 is formed to
seek out a certain superior limit of the quadratic cost func-
tion with the derivation; (4) an online dynamic OFRMPC
algorithm is put forward to get some controllers, which
makes the closed-loop constrained system mentioned before
asymptotically stable.

IV. ILLUSTRATIVE EXAMPLE
In this part, we demonstrate the effectiveness of the proposed
OFRMPC strategy via two illustrative examples. The system
in a distillation process has two manipulated variables, boil-
up radio and reflux; two controlled variables, bottom compo-
sition and top.

FIGURE 2. The estimation error subject to the different saturation level.

Example 1: We get the discrete-time system according
to selecting the same sampling period. From the practical
viewpoint, the parameter uncertainties in system matrices
need to be considered. We consider this system model:

x(k + 1) =

[
0.948 0

0 0.948

]
x(k)+

[
0.512 0.015

0.086 0.469

]
u(k)

, Ax(k)+ Bu(k),

y(k) =

[
1.5 0

0 1.5

]
x(k) , Cx(k),

with the initial value

x(0) =

[
−5

5

]
, x̂(0) =

[
−4

4

]
.

The initial condition x(0) corresponds to the feasible sys-
tem states of the distillation column, where two components
denote the initial values of top composition and bottom
composition, respectively. After that, to better satisfy the
polytopic uncertainties requirements of the practical system,
we choose system parameters:

A(1) =

[
0.948 0

0 0.948

]
, A(2) =

[
0.096 0

0 0.089

]
,

A(0) = 1/2(A(1) + A(2)).

B(1) = B(2) = B =

[
0.512 0.015

0.086 0.469

]
,

B(0) = 1/2(B(1) + B(2)).

C (1)
= C (2)

=

[
1.5 0

0 1.5

]
,
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FIGURE 3. State responses for the open-loop and closed-loop systems.

Q1 = Q2 = Q3 = Q4 = Q5 =

[
3 0
0 3

]
,

R = 0.01 ∗
[
0.05 0
0 0.05

]
.

The superior limits of input, as well as state, are given by
ū = 55 and x̄ = 950 separately. We define the weighting
matrix as

S =
[
0 0.9
0.9 0

]
.

The simulation results are shown in FIGURE 2 and
FIGURE 3. To be exact, FIGURE 2 plots the trend of esti-
mation errors e(k) for a system with the fixed saturation level
and a system with the adaptive saturation level. It is not
difficult to know that the proposed algorithm, which along
with adaptive changed saturation level is able to alleviate the
impact of measurement outliers effectively, so the estimation
performance is improved. FIGURE 3 depicts the state trends
of systems without and with controllers. And we can find
that the closed-loop system addressed is more stable than
the open-loop system with the proposed dynamic OFRMPC
algorithm.
Example 2:We consider the second example as an unstable

system without control. The parameters are given as follows:

A(1) = A =
[
1.501 0.1
−0.13 −0.1

]
, A(2) =

[
1 1.5
−0.1 −0.2

]
,

B(1) = B(2) =
[
1.24 0.51
0.18 0.69

]
,C (1)

= C (2)
=

[
1.5 0
0 1.5

]
.

As can be seen from FIGURE 4, the trend of estimation
errors e(k) for a system with the adaptive saturation level
shows that the proposed algorithm can effectively alleviate
the impact of measurement outliers. FIGURE 5 depicts the
state trends of systems without and with controllers. From
FIGURE 5, it can be seen that the system is stable with the

FIGURE 4. The estimation error subject to the different saturation level.

FIGURE 5. State responses for the open-loop and closed-loop systems.

designed RMPC controller, which means that the presented
RMPC scheme is necessarily effective.

V. CONCLUSION
In this paper, we have investigated the dynamic OFRMPC
problem for the discrete-time polytopic uncertain system
subject to possible measurement outliers. For the sake of
alleviating the effects from possible measurement outliers,
an observer has been designed with a saturated output injec-
tion where the saturation level is defined dynamically accord-
ing to the errors. Considering the states are often unmeasur-
able in the practical system, the observer-based output feed-
back controller has been designed. In addition, the control
law has been obtained by solving an optimization problem
with convex constraints. And an iterative algorithm has been
developed to find the sub-optimal solution. In the end, two
simulation examples have been applied to demonstrate the
effectiveness of the proposed RMPC algorithm.
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