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ABSTRACT The box-counting dimension, which can effectively reflect the complexity and self-similarity
of models, is an important method for calculating the fractal dimension of models. To improve the precision
of the box-counting dimension algorithm, in this study, we propose an improved 3D box-counting dimension
algorithm for models composed of triangular meshes. Through linear coding and optimization of intersection
detection between triangles and octree cells, we can accurately calculate the box dimension of models with
less memory expense. Through the results of measuring regular geometric bodies and spatial Voronoi bodies,
it can be seen that the method has good performance, and the ability of filling space of fractal bodies can
be calculated accurately. In the circumstance of 3D box-counting dimension algorithm cannot work well for
comparing curvature changes of non-fractal surfaces, the weighted box-counting dimension algorithm can
be used to quantitatively analyze the complexity of surface curvature.

INDEX TERMS Box dimension, triangular mesh, octree, self-similarity, fractal dimension.

I. INTRODUCTION
Many objects in nature present structural complexity and
self-similarity, which are difficult to be described using
Euclidean geometry. Thus, Mandelbrot proposed fractal the-
ory to quantitatively analyze the characteristics of objects [1],
[2]. Inspired by fractal theory, many scholars have attempted
to apply it to computer image processing. Then the box-
counting dimension method has developed rapidly [3]. The
differential box counting was proposed to solve the problem
of texture segmentation [4]. The generalized box-counting
worked for any arbitrarily sized (both squared and rectan-
gular) images and gave a higher rate of accuracy in terms
of less fitting error in detecting exact surface roughness
[5]. The isarithm method was employed to estimate the box
dimensions of grey images [6]. Several fractal dimension
(FD) estimators based on polyhedral generation algorithms
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had been compared in literature [7], [8]. In recent years,
FD has been widely used in fields of geology and medicine,
such as quantifying the shape of fluid inclusions [9], ana-
lyzing the organization patterns of complex river networks
and so on [10], [11], [12], and [13]. In architecture, FD was
applied to classification the building image, and a survey
of the connection between a building’s fractal dimension
trend and observation distance [14], [15]. For estimation of
three-dimensional FD, traditional research methods mostly
use vertices of surface to roughly calculate the number of
intersecting boxes [16]. However, these methods may be
problematic because only three boxes at the vertices of each
triangle are counted. Some boxes that are within a triangle or
cross triangles by edges may be lost [17].

In this study, an improved precision measurement means
for 3D box-counting dimension (3D-BCD) of 3D models
composed of triangular meshes is proposed. In additional, a
3D weighted box-counting dimension (3D-WBD) algorithm
is introduced to quantitatively analyze the complexity of
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surfaces, while similar results obtained by the 3D-BCD
method. Furthermore, the algorithm was used to estimate
the FD value of architectural models, which more clearly
reflected the complex characteristics of the models.

The remainder of the paper is organized as follows.
Section II provides a review of FD and box-counting dimen-
sion. Section III addresses the implementation steps of
the improved 3D-BCD method and the 3D-WBD method,
including creating octree and coding for cubes, intersection
judgment and formula calculation. Section IV provides three
experiments about measuring the box dimension of regu-
lar 3D bodies, Voronoi polyhedrons and real building bod-
ies respectively. we can compute the value of complexity
of surface curvature by the 3D-WBD method. Section V
addresses the problems encountered in the experiments and
discusses them in detail. Finally, Section VI summarizes our
conclusion.

II. FRACTAL DIMENSION AND BOX-COUNTING
DIMENSION
In fractal geometry, Hausdorff–Besicovitch dimension is a
main method for calculating FD, which is used to represent
the ability of filling space. However, in many cases it is diffi-
cult to obtain the value of Hausdorff–Besicovitch dimension,
and it may not even exist. In certain ways the box-counting
dimension can be employed to gain the approximate value
of the Hausdorff–Besicovitch dimension. Through a large
number of experiments, it can be found that within a certain
scale, box-counting dimensions can be used to approxima-
tively analyze the planar or spatial complexity of objects.
We call it fractal parameter [18].

Surfaces of a model to be measured is defined as a set T ,
and T is covered by adjacent cubic cells of side lengths δ. The
expansion of T is represented as the number of intersections
between T and all cells. The box-counting dimension reflects
how the irregularity of the set expands rapidly during δ→ 0
[19]. The formula used is as follows:

D(δ) = lim
δ→0

lgN (δ)
lg δ

(1)

where N (δ) is the number of intersections between the cubic
cells and the surface of the model. δ is the side length of each
cell.

Let us consider L as the edge length of the model and m as
the maximum number of subdivision levels. Each parent cell
is divided into several equal parts in the i-th subdivision. The
length of each child node is δi = δi−1/2(i = 1, 2, . . . ,m),
specially δ0 = L.

Thus, the i-th function Di is defined as follows:

Di =
lg(Ni/Ni−1)

lg 2
(2)

where Ni is short for N (δi).
The function used to determine box-counting dimension

was herein extended from 2D to 3D. A square in plane was
subdivided into four small ones each time in 2D, while a

FIGURE 1. Coding rules of the subdivision of spatial octree.

cube in space was subdivided into eight small ones in 3D.
To compute the number of cubes intersected in each layer,
octree was employed [20].

III. ALGORITHM OF AN IMPROVED 3D BOX-COUNTING
DIMENSION
On the basis of the previous work [18], we optimized
the relevant algorithms including linear coding and high-
precision intersection detection to improve the efficiency
and accuracy of 3D-BCD. Furthermore, the 3D-WBD algo-
rithm was proposed to quantify the complexity of surface
curvature.

A. CREATING OCTREE AND CODING FOR CUBES
The model is divided into a set of triangular patches T (n),
where n is the number of triangles. The minimum x, y, z com-
ponents of all triangles in the set are taken as the coordinate
origin, and the minimum axial bounding box surrounding the
model is taken as the root node to establish an octree. The
linear codes of the eight nodes in the first subdivision level are
defined asQ1 = Z+Y ×2+X×22, where X ,Y ,Z = {0, 1},
which represents the number of one node in each direction of
the coordinate axis, as shown in Fig. 1. If qi is the code of one
cell in the process of iterative decomposition of the octree, the
set of child nodes of qi is coded asQi−children = qi×23+Q1.
The bounding box of the model is initialized as the root

node, and the algorithm for calculating the number of inter-
secting cells is presented in Algorithm 1.

In Algorithm 1, ci is i-th cube object with six vertices and
eight links to its child nodes. qi is the code of ci. TS is a set of
all triangles in model mesh, andm is the maximum number of
times the root node is subdivided. intersectSet stores all codes
of intersecting cells. The intersection detection algorithm is
described in the next section.

B. INTERSECTION DETECTION OF A TRIANGLE AND A
CUBIC CELL OF OCTREE
The intersection of one spatial triangle (T ) and one cubic
cell (C) of octree can be divided into four categories:
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Algorithm 1 Subdivide Node and Code for Child
Nodes
Input: ci, qi, TS = (T1, T2, . . . , Ti, . . . , Tn) and m
Output: intersectSet

1: foreach Tj in TS:
2: if Tj intersects with ci then
3: intersectSet.push(qi);
4: if subdivided times of ci <m then
5: for k = 1; k ≤ 8; k ++ do
6: coding child node qi−k = qi∗8+k-1;
7: generate child-node object ci−k ;
8: ci.children.push(ci−k );
9:

Algorithm1(ci−k , qi−k , TS, m);
10:

break;
11: return intersectSet

C containing T , C intersecting T with T ’s vertex(es) in C ,
C intersecting T without T ’s vertex(es) in C , and coplanar
(Fig. 2). Whether triangle vertices are present in a cell can
be regarded as a sufficient but unnecessary condition for
intersection. Whether the triangle intersects with the six faces
of the cubic cell must be detected individually to accurately
determine if they intersect or not, as shown in Fig. 2(c). The
process to judge one triangle intersecting another triangle or
not is based on the Tomas Möller algorithm [21]. Thus, the
whole implementation of intersection detection is presented
in Algorithm 2.

When the axial bounding box of the triangle intersects
the cubic cell, and the distances between the vertices of the
triangle and the plane in which one face of the cubic cell is
located is equal to zero, the triangle is coplanar with the plane.
If the normal direction of the plane is the same as that of the
triangle, it is judged to be intersecting. Otherwise, if the two
normal directions were opposite, it is judged as disjoint to
avoid repeated counting.

C. CALCULATION OF WEIGHTED BOX DIMENSION
For each cubic cell, if it intersects with the model, the cell’s
code is recorded, and the number of intersecting cells at the
level is increased by 1. Simultaneously, the cell is decom-
posed to eight child cubes. Cells that do not intersect all trian-
gles are no longer subdivided, so that unnecessary computing
and memory expense can be saved. Through this iterative
process, we can calculate the actual number of intersection
cells at each level, and then substitute it into formula (2) to
obtain the value of 3D-BCD.

The box-counting dimension of 3D model is not the same
as that of the nature. Affected by the modeling precision, its
result tends to 2 mostly. It is sometimes difficult to quanti-
tatively compare the complexity of building models only by
the 3D-BCD method. Therefore, we propose a method that is
more sensitive to curvature changes.

Algorithm 2 Judge Intersection of Triangle T and
Cubic Cell C

Input: V (T ) = (v1, v2, v3), C
Output: isIntersect

1: initial isIntersect = false;
2: if C contains v1 or C contains v2 or C contains v3 then
3: isIntersect = true;
4:

else
5: create T ’s Bounding box boxT;
6: if boxT intersects C then
7: create six faces of C faceSet(C) = {f1, f2, . . . ,

f6};
8: for k = 1; k ≤ 6; k ++ do
9: if fk coplanar with T then
10: compute normal vector −→nfk and

−→nT ;
11: if −→nfk =

−→nT then
12: isIntersect = true;
13: break;
14:

else if fk intersects T then
15: isIntersect = true;
16:

break;
17: return isIntersect

Let Ni be the number of intersections between the model
and the cells of the i-th level octree. P i = [pi1, p

i
2, · · · , p

i
8],

where pik (k =1. . . 8) represents the number vector of cells
with k child cell(s) intersecting with the model at the i-th
level. Therefore, we can obtain Ni =

∑8
k=1 p

i
k . The weights

vector W = [w1,w2, · · · ,w8], where wk ∈ [0, 1], is set.
We do dot product betweenW and Pi to control the weight of
each component of Pi. Further, the weighted box dimension
at i-th level is defined in formula (3).

Diw = log


8∑

k=1
wkkpik

8∑
k=1

wkpik

 / log 2 (3)

That can be abbreviated as formula (4).

Diw = log
(
kW · Pi

W · Pi

)
/ log 2 (4)

IV. EXPERIMENTAL ANALYSIS
Three experiments were carried out in order to make sense of
the reliability and accuracy of themethod. First, wemeasure a
cube, a sphere and aMenger spongemodel to compare the FD
results of the proposedmethod and others. Thenwe employed
the method to Voronoi models and a real engineering project
in order to quantitatively analyze the curvature changes of
surfaces of seven building structures.
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FIGURE 2. Types of intersection of one spatial triangle (T) and one cubic cell (C). (a) C containing T. (b) C intersecting T with
T’s vertex(es) in C. (c) C intersecting T without T’s vertex(es) in C. (d) coplanar.

TABLE 1. The FD results obtained using the theoretical FD, typical
traditional methods, and the proposed 3D-BCD method.

A. TEST FOR REGULAR MODELS
To test the box-counting dimensions of a regular model by
the 3D-BCDmethod, an axial cubic bounding box was estab-
lished. The bounding box was considered as the root node of
octree. The nodeswere divided iteratively and the intersection
cells at each level were recorded (Fig. 3). Table 1 provides
the FD results obtained using the theoretical FD, typical
traditional methods, and the proposed 3D-BCD method. The
theoretical FD of objects can be computed by formula (1).

TABLE 2. Results of Ni and Di
w of voronoi models.

Details of the theoretical values can be found in [1] and [19].
This example shows that the method has high accuracy and
good performance.

B. TEST OF SPATIAL VORONOI MODELS
A series of spatial Voronoi models, with the same volume
(length: width: height = 160: 100: 24), were created to cal-
culate the 3D box-counting dimension of fractal structure
models. five Voronoi models are composed of 30, 60, 90,
120 and 150 blocks individually. The specific divisions are
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FIGURE 3. Phantom three dimension models. (a) cube occupied by
3rd-level cells. (b) sphere occupied by 3rd-level cells. (c) Menger sponge.

shown in Fig. 4 (Designed and generated by grasshopper in
Rhino 7.0). After the operation of triangulation, the models
were imported into the program one by one for 3D-WBD

calculation. The numbers of intersecting nodes were inte-
grated into the formula (3). The obtained values Dw are
shown in Table 2. The FD values of five models increased
accordingly as the number of blocks increases.

C. PROJECT APPLICATION
The Yu Qingcheng Art Museum [22], which is located in
Tianjin, China, was designed by Professor Zhang Hua, who is
a member of our project group. He was awarded the German
Design Award in 2018 for the design of the museum, which
comprises seven interrelated sculpture-like blocks that seems
to be in a perpetual state of motion. The gradual change in the
design of the seven individual blocks of the YuQingchengArt
Museum is based on homotopy equivalence transformation
from blocks 1 to 7 (Fig. 5). The difference in seven FD values
of calculated box-counting dimensions were not obvious and
they all trend to 2 because of these buildings are not fractal.
The 3D-BCD method cannot be used to calculate the curva-
ture change of these blocks. To compare the rate of curvature
change, more-children nodes were reserved and less-children
nodes were ignored by the 3D-WBD method.

Let W = [0,0,1,1,1,1,1,1]. The nodes which only had one
and two child nodes intersecting themodel during subdivision
were filtered. Substitute W into the formula (4), and we can
obtain the results. The changes in the spatial complexity of
the blocks from left to right can be seen more clearly, which
is consistent with the trend of the proportion of non-zero
Gaussian curvature (Fig. 6-7).

V. DISCUSSION
More experiments about measuring surface complexity of
architecture by the 3D-BCD method have been described in
previous work [18]. For a complex 3Dmodel, due to the large
number of triangles and necessary of intersection detection,
the algorithm requires much running time and computing
memory. Therefore, we try to improve the previous algorithm
by linear coding and detection optimization. The required
memory for each subdivision level would increased nearly
seven times than that of parent level because of the character-
istic of the octree. Linear coding, instead of an octree-linked
list, can make use of less memory. The octree-node objects
in the program are generated from the code of nodes only
when we need to perform intersection detection. After that

FIGURE 4. Five Voronoi models with different blocks.
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FIGURE 5. Yu Qingcheng Art Museum.

they would be destroyed immediately. Furthermore, nodes
which don’t intersect with models will not be subdivided.

Artificial models are different from natural objects because
they have no infinite fractal structures when they are

subdivided to a small size. Therefore, the fractal-dimension
measurement of a 3D model is affected by the actual mod-
eling precision. The box-counting dimension of a model
without self-similarity usually converges quickly to 2. Within
a certain subdivision range, the model with self-similarity
shows a stable box-counting dimension interval, which is
called the scale-free interval [23]. The box-counting dimen-
sion of the 3D model invariably reflects the complexity or
space-filling ability of the model.

It should be noted that 3D-WBD is not Hausdorff–
Besicovitch dimension. The calculated value of 3D-WBD
is related to parameter W. According to formula (4), the
value of 3D-WBD is between 1 and 3. From Experiment C,
it can be seen that, unlike 3D-BCD, when less-child nodes
are ignored, the calculation results show a linear correla-
tion with the change of surface curvature. This provides a
new reference for the design of building models. In fact,
we measure a cube and a sphere respectively by 3D-WBD
(whereW= [0,1,1,1,1,1,1,1]). The final result of cube is 2.00,
while the one of sphere is 2.16. Compared with the Gaussian
curvature, which can only be used to calculate the complex-
ity of continuous surfaces, the 3D-WBD algorithm can be
employed to calculate intersecting or discontinuous triangular

FIGURE 6. Simplified shape model of Yu Qingcheng Art Museum and homotopy change of its
surface. (a) Block number of the simplified model of Yuqingcheng Art Museum. (b) Gaussian
curvature analysis of the blocks. (c) Triangulation of the space surface of the art gallery.
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FIGURE 7. Comparison of 3D-WBD and 3D-BCD.

meshes. In additional, 3D-WBD is reduced to 3D-BCDwhere
W = [1,1,1,1,1,1,1,1].

VI. CONCLUSION
In this study, we propose an improved box dimension calcu-
lation method for a 3D model based on collision detection
optimized. Key technologies such as octree linear coding,
intersection detection of cubic cells and triangles, and the
weighted box-counting dimension algorithmwere introduced
in detail. Several experiments about regular models and typ-
ical fractals prove that the improved 3D-BCD method is
reliability and accuracy. 3D-WBDmethod could be employed
to calculate the complexity of surface curvature which pro-
vides a new reference for the design of building models.
The influence of different components of the box dimension,
which are classified by the number of children cells owned,
can be redistributed. In the future, we will further study the
effect of the weighed vector on global or partial box-counting
dimensions in practical engineering applications.
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