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ABSTRACT Neurons can code for multiple variables simultaneously and neuroscientists are often interested
in classifying neurons based on their receptive field properties. Statistical models provide powerful tools for
determining the factors influencing neural spiking activity and classifying individual neurons. However,
as neural recording technologies have advanced to produce simultaneous spiking data from massive pop-
ulations, classical statistical methods often lack the computational efficiency required to handle such data.
Machine learning (ML) approaches are known for enabling efficient large scale data analyses; however, they
typically require massive training sets with balanced data, along with accurate labels to fit well. Additionally,
model assessment and interpretation are often more challenging forML than for classical statistical methods.
To address these challenges, we develop an integrated framework, combining statistical modeling and
machine learning approaches to identify the coding properties of neurons from large populations. In order
to demonstrate this framework, we apply these methods to data from a population of neurons recorded from
rat hippocampus to characterize the distribution of spatial receptive fields in this region.

INDEX TERMS Deep learning, large-scale neural data, machine learning, neural coding, receptive field,
statistical models.

I. INTRODUCTION
The neural encoding problem is a fundamental area of study
in systems neuroscience [1]. It focuses on understanding the
relationship between activity in a neural population and the
stimuli or behaviors which influence it. What features of
a cognitive process are encoded in an individual neuron or
the population of neurons? If multiple features are encoded,
what is the relative importance of each? Which neurons are
sensitive to which coding variables? These are critical ques-
tions that require statistically powerful and computationally
efficient methods to address. In general, neural encoding is
focused on understanding how informationmaps from a stim-
ulus or behavioral signal to neural responses and on building
models to predict representational spaces [1], [2], [3], [4].
For instance, neural models have been used successfully to
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relate responses in CA1 region of rat hippocampus during
spatial navigation tasks to features of the rat’s movement
trajectory, the phase of the ongoing theta rhythm in the local
field potentials, and the neuron’s past spiking history [5], [6],
[7], [8], [9], [10], [11].

The challenge of neural encoding has increased in recent
years as a result of a number of trends in experimental neuro-
science. First, there has been a shift from low-dimensional,
experimentally controlled stimuli and behaviors to high-
dimensional, naturalistic ones, requiring encoding models
that can capture the simultaneous, interacting influences of
multiple covariates. Second, large-scale electrode arrays and
new brain imaging technologies now allow experimentalists
to record from hundreds to thousands of neurons or brain
sources simultaneously, requiring encoding models that are
computationally efficient for high dimensional responses.
Third, electrophysiology experiments have moved from a
regime where neurons with particular coding properties were
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specifically targeted, to untargeted preparations where the
distribution of cell coding properties can be completely dif-
ferent. This has led to a situation where existing datasets
for which coding properties are well studied are unbalanced
compared to modern, large-scale datasets [13], [14], [15],
[16], [17].

The neural encoding problem has been largely addressed
statistically [1]. However, recent challenges make it more
difficult to analyze neural data efficiently through a purely
statistical framework. One potential approach to resolve this
is based on machine learning algorithms. In this paper,
we explore existing ML approaches, particularly deep net-
work architectures, and the methods to integrate them with
statistical models to address specific modern challenges with
neural encoding analyses.

II. RELATED WORK AND LIMITATIONS
The problem of neural encoding is fundamentally statistical
since neural responses are stochastic [1]. Statistical methods
are used to compare the likelihood of observing particular
spike patterns in individual neurons or populations across
different neural encoding models with distinct coding proper-
ties. These models can include multiple classes of influences,
including biological and behavioral signals, the neuron’s own
past spiking history, and the influences of other neurons in the
population [11]. For instance, statistical models for neurons
in the CA1 region of rat hippocampus have been used to
model spatial place field properties, theta rhythmicity and
precession [9], [10], and the influence of the neuron’s past
spiking history.

Point process models are a class of statistical models that
has been successfully used to characterize the factors that
influence spiking activity in individual neurons or neural pop-
ulations. It has been shown that a point process models can be
efficiently fit to neural spiking data using a generalized linear
model (GLM) framework [11]. Point process GLMs allow
researchers to identify significant influences systematically,
they provide powerful analysis tools for assessing goodness-
of-fit and model refinement, and their parameters are gener-
ally interpretable [1], [11], [18], [19], [20], [21]. However,
statistical models are computationally limiting for large scale
data analysis due to the fact that the model refinement process
is typically performed individually for each neuron. Another
common challenge occurs whenever model covariates are
able to separate events and non-events perfectly, which leads
to infinite maximum likelihood solutions for which compu-
tational algorithms can iterate indefinitely [73]. Moreover,
these models typically make assumptions about the form of
the receptive field that must be assessed. If incorrect, these
assumptions could lead to bias or increased variability in the
model fits and incorrect statistical inference about coding
properties.

The growth of experimental methods in which more neu-
rons are recorded for longer periods of time, necessitates the
development of new data analysis methods that are compu-
tationally efficient [13], [14], [15], [16], [17]. Recently, the

TABLE 1. Properties of statistical methods and machine learning models.

advancement of machine learning (ML) algorithms, particu-
larly deep neural networks (DNNs), makes it possible to ana-
lyze large scale datasets with high computational efficiency
and fewer or no modeling assumptions. These approaches
have come to dominate several applications ranging from
perceptual, visual object [22] and auditory speech recogni-
tion [23], to cognitive tasks, machine translation [24], [25],
motor control tasks such as playing computer games or
controlling a robot arm [26], [27], and so on [28]. Deep
learning (DL) has recently found its way back into com-
putational neuroscience [28] and has been very successful
across many applications such as encoding retinal ganglion
cells’ responses to natural scenes [29], [30], neural encod-
ing and decoding of human visual cortex [31], [32], [33],
monkey primary motor cortex, somatosensory cortex, and the
rat hippocampus [34], [35], [36]. Despite the high predic-
tive power of DL networks, they are parameter-rich mod-
els and often need large amounts of data to be adequately
trained. Moreover, these models have a black-box nature
that leads to difficulty of assessment and interpretation [28],
[30]. We summarize the pros and cons of statistical methods
and ML approaches in Table 1. The prime use of DL meth-
ods in neuroscience is for addressing neural decoding prob-
lems [12], [32], [33], [35], [36], [37], [38], [39], [40], [82]
and there is a relative paucity of these approaches devoted to
neural encoding and classification [29], [30], [31], [34], [81].

There are a number of major challenges associated with
classifying neural coding properties with ML methods.
1) Both neural spike trains and the signals they encode are
time-series data. Deep learning algorithms [41] have been
successful in various classification tasks which motivated the
recent utilization of DL models for time series classification
(TSC) [42]. However, neuroscience experiments have shifted
from completely controlled stimuli, for which simple DL
approaches may have worked well, to uncontrolled and nat-
uralistic stimuli, which require DL methods that can capture
complex associations between multivariate time series. 2) In
order to train deep network classifiers, we need large training
datasets along with labels. The data size for training DNNs is
often on the order of magnitude of thousands to millions of
samples, however the size of data recorded in neuroscientific
experiments is often on the order of tens to hundreds of cells.
While experimental methods in neuroscience have evolved to
include more neurons, there has been a simultaneous increase
in the dimensionality and length of the recorded data, making
ML classification more difficult. 3) Some classes of neurons
or receptive field structures are rarely observed even in large
datasets, which leads to imbalance in the training datasets.
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This is in part related to historical trends in electrophysio-
logical experiments in which electrodes were localized in the
brain to target specific cell types and largely excluded other
cells that lacked the desired coding properties. For instance,
experiments that target place cells in CA1 region of hip-
pocampus, rarely include non-place specific cells. However,
recent trends in electrophysiology have led to less targeted
experiments in which electrodes with many contacts record
from large neural populations with coding properties substan-
tially different from those for which previous robust elec-
trophysiology datasets exist. In addition to these structural
challenges, previous studies incorporating ML and statistical
models have treated these as competing methods, seeking to
demonstrate the superiority of one over another in specific
applications [29], [34], [40]. Our goal in this work is to
demonstrate that classical statistical methods and supervised
machine learning algorithms have complimentary strengths
and can be used together to address the limitations of each
method on its own.

In this study, we address these challenges by exploring an
analysis framework that integrates statistical modeling and
DL approaches. 1) We implement a CNN-based DL classifier
named multi channel deep CNN (MCDCNN) that applies a
one-dimensional convolutional channel to each coding fea-
ture independently, then combines the learned information
across all channels to perform classification. 2) We utilize
well-developed statistical methods for neural encoding to
generate labels for the training datasets. 3) We use the gen-
erative property of statistical models to generate as many
samples and labels as needed to increase the training data
size. 4) We specifically generate samples to augment data
for the minority classes in order to balance the training data.
We demonstrate the application of this integrated framework
on simultaneously recorded local field potential (LFP) and
spiking data from the CA1 region of hippocampus of a rat per-
forming a memory-guided spatial navigation task [43], [44].
We use point process GLMs to classify each of the neurons
in a training dataset based on whether their firing is influ-
enced by the rat’s location, speed, direction of movement,
and the instantaneous phase of its theta rhythm. We generate
additional, simulated data based on these model fits in order
to augment the training dataset, both increasing its size, and
providing balance by increasing the number of samples with
less common coding properties. Finally, we train aMCDCNN
classifier and evaluate its performance classifying neurons in
a separate test dataset as a function of the size and balance of
the training data.

III. MODELING BACKGROUND
We begin by reviewing the statistical model identification
approach based on point process GLMs. Then we discuss
several neural network architectures for the purpose of clas-
sification in neural coding.

A. POINT PROCESS-GLM FRAMEWORK
A point process model describes the likelihood of any set of
localized events occurring in continuous time. Point process

models are often used to identify the signals that influ-
ence spiking activity in individual neurons or neural popu-
lations [11]. Point processes can be characterized by their
conditional intensity function [45].

λ(t|H (t)) = lim
1→0

P[N (t +1)− N (t) = 1|H (t)]
1

(1)

where N (t) is number of spikes in time interval (0, t] and
H (t) is the past spiking history of the neuron or population
up to time t . For small 1, λ(t|H (t))1 is approximately the
probability of observing a single spike in the time interval
(t, t +1] given the spiking history [21].

A point process neural coding model defines λ(t|H (t)) as
a function of a set of covariates influencing spiking. A com-
mon GLM expresses the log of the conditional intensity of
each neuron as linear combinations of functions of extrinsic
covariates related to spiking, the neuron’s own spike history,
and the past spiking activity of other simultaneously recorded
neurons [11].

log λ(t|H (t)) =
p∑
i=1

θigi[ν(t)] (2)

where the gi(·) are a set of basis functions that act on the
covariate vector ν(t), and p is the dimension of the model
parameter vector θ . GLMs can flexibly capture nonlinear
relationships between stochastic signals in a computationally
efficient and robust way, and provide powerful tools for
assessing goodness-of-fit, and model refinement [1], [11],
[18], [19], [21].

Maximum Likelihood Parameter Estimation Once an
encoding model is expressed as a point process GLM with
a log link function as in Eq.(2), the likelihood surface is
guaranteed to be convex, ensuring that there exists a unique
maximum [11], [21]. The maximum likelihood estimator for
the model parameters can be computed using an iteratively
re-weighted least squares (IRLS) procedure [11]. The IRLS
procedure also computes the observed Fisher information
matrix, I

θ̂
, which allows for the construction of confidence

intervals and standard tests of significance of the influence of
individual or multiple covariates [11], [18], [21], [46].

B. DEEP LEARNING TIME SERIES CLASSIFICATION
Neuronal spiking activity and the signals that influence it are
time series data. There are multiple neural network architec-
tures that are appropriate for time series classification (TSC)
tasks. In this section, we provide some background materials
regarding TSC classification and explore various neural net-
work architectures for this task. We start with a simple multi
layer perceptron (MLP) and then discuss more complicated
architectures such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs).

1) TIME SERIES CLASSIFICATION
Time series classification is among the most challeng-
ing problems in data mining [48]. Deep learning algo-
rithms [41] have been successful in various classification
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FIGURE 1. General deep learning framework for multivariate time series
classification.

tasks which motivated the recent utilization of DL mod-
els for time series classification (TSC) [42], [49]. A gen-
eral deep learning framework for a multivariate time
series classification (MTSC) is illustrated in Fig. 1.
A multidimensional time series, X = [X1,X2, . . . ,XM ]
consists of M univariate time series X i = [x i1, x

i
2, . . . , x

i
T ]

where T is the number of time steps. Let D =

{(X1,Y1), (X2,Y2), . . . , (XN ,YN )} be a dataset where Yi is
a one-hot label vector, and X and Y represent the input
and output spaces respectively. The main goal is to train a
classifier using a dataset D to map from the input space X
to a probability distribution of the labels [42], [49]. In neu-
ral coding, the input variable consists of the activity of a
neuron along with the biological and behavioral signals that
influence it, and the output variable provides a label that
defines the coding properties for that neuron. Classification
depends not on the statistical properties of the neural activity
or covariates on their own, but on the dependence between
these sets of variables across time.

2) MULTI LAYER PERCEPTRONS
MLPs or fully-connected (FC) feed-forward networks are the
simplest and most traditional deep learning network, which
are considered as the baseline architecture for time series
classification [42], [49]. A MLP has three major layers of
neurons: the input layer, hidden layer, and output layer, and
each neuron in one layer is connected with a specific weight
to every neuron in the following layer through an activation
function. In this feedforward network architecture, learn-
ing can be carried out through the backpropagation algo-
rithm [50], [51], [52]. Despite the fact that MLPs do not
exhibit temporal invariance meaning each time step has its
own weight and the temporal information is lost [49], it still
provides a useful baseline for the TSC task.

3) CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNNs), particularly deep
CNNs, have been very successful in many domains of clas-
sification [41], [53], [54]. The successes of CNN architec-
tures motivated researchers to adopt them for time series
analysis as well [55]. Convolutional networks are practically
feedforward neural networks that use convolution instead
of general matrix multiplication. CNNs work with fixed-
size, spatially-organized data. The features from the input
space can be extracted by a set of convolution layers apply-
ing weight-sharing filters and dimension-reducing pooling.

FIGURE 2. Multi channel deep convolutional neural network (MCDCNN)
architecture.

Unlike images, where two-dimensional filters (width and
height) are used, time series classification can be imple-
mented using a one-dimensional CNN with the filters sliding
over time [49], [56]. Next, the outputs of the feature extraction
are fed to a fully connected network to estimate a probability
distribution over the class variables. CNNs achieve their high
levels of success by leveraging three ideas: 1) sparse weights
due to the use of kernels (filters) smaller than the input size,
which leads to computational efficiency; 2) sharing weights
across spatial or temporal locations, leading to less memory
usage and less computational effort; 3) translation invariance,
which allows for robust classification of similar, temporally
shifted input patterns [57].

4) MULTI CHANNEL DEEP CNNs
Multi channel deep convolutional neural networks
(MCDCNNs) are modified CNNs that are well-suited for
MTS data types. These models first learn features from each
input dimension in each channel, then combine information
across all channels and feed them to a fully connected net-
work for classification. In other words, the convolutions are
applied independently on each dimension of the input data
to learn the features (Fig. 2). These networks were originally
proposed for two variable time series data [49], [58], [59].

5) RECURRENT NEURAL NETWORKS
Recurrent neural networks (RNNs) are a family of neural net-
works that are designed for processing sequential data [60].
They are able to handle temporal structure in time series
data, and they are specialized to handle sequences of variable
length [56]. A RNN processes a sequence of events, one
time step at a time. For each time step, it passes information
about the current and previous time to the next time step,
until reaching the last one whose output is propagated to the
next layer [56]. RNNs are particularly designed to predict an
output for each element (time step) in the time series [61]
and are thus often used for time series forecasting, but are
less often used for time series classification [49]. They typ-
ically suffer from the vanishing/exploding gradient problem
when trained on long time series [62], [63], [64]. RNNs are
also considered hard to train and parallelize [64]. How-
ever, these networks’ ability to capture temporal structure
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in time series data make them worth considering for neural
encoding. The problem with vanishing/exploding gradients
can be addressed by a particular form of RNNs called long-
short term memory (LSTM) [65]. The LSTM model uses
self-loops to produce paths where information related to the
gradient can flow for long stretches of time [57]. LSTMs have
been successful in the neural coding domain particularly for
predicting neural responses to stimuli [29], [30] and for neural
decoding [35], [36].

IV. MATERIALS AND METHODS
A. EXPERIMENTAL DATA
The data has been described in detail previously [43], [44],
but we summarize the key points here. One male Long–Evans
rat weighing 450–550 g was implanted with a movable array
of recording tetrodes in the CA1 region of hippocampus,
which recorded simultaneous local field potentials (LFP) and
neural spiking activity from 254 neurons. The animal had
been trained for 8 days in 2-4, 20-minute run sessions per
day to perform a spatial alternation task on a W-shaped track,
alternating between the left and right arms before returning
to the center arm. It received a reward at the ends of the left
and right arms after each correct alternation [21], [43], [44].
This data was recorded at a 1500 Hz sampling frequency and
later re-sampled at 100 Hz (10 ms time resolution) prior to
data analysis. This data is publicly available at the CRCNS
data sharing site.

B. POINT PROCESS-GLMs
In this task, the candidate predictor signals are the rat’s
linearized- position x(t), speed s(t), direction d(t), and the
phase of the theta rhythm φ(t) (Fig. 4). x(t) represents the
distance from the tip of the central arm (in cm), with the range
[0,80] representing the center arm, [80,190] representing the
right arm, and [190,300] representing the left arm. d(t) is an
indicator function that is equal to 0 for outbound movements
away from the center arm and equal to 1 for inbound move-
ments toward the center arm. We constructed point process
models such that the conditional intensity had the following
form:

log λ(t) =
p∑
i=1

θigi(x(t), s(t), d(t), φ(t)) (3)

where p is the dimension of model parameter θi, and gi(.)
represents a set of basis functions acting on the candidate
covariates. We start with a null model (class 0) comprising
a simple homogeneous Poisson model and add predictors
incrementally. The first such model merely includes the lin-
ear position signal and uses modified cardinal spline basis
functions [21] to estimate if the neuron has a statistically
detectable place field (class 1). This model can be written as
log λ(t) = θ0 +

∑pS
i=1 θigi(x(t)), where gi are the cardinal

spline basis functions and pS is the number of spline control
points. The value of pS and the locations of the spline con-
trol points were selected by first constructing an occupancy

normalized histogram of the place field of each neuron over
the linearized track as in Fig. 4B, and then placing control
points on the local peaks on the histogram. The next model
class includes an interaction between place coding and the
rat’s speed at each time step (class 2). This model has the
form log λ(t) = θ0+

∑pS
i=1 θigi(x(t))Is(t)>2, where Is(t)>2 is an

indicator function that is equal to 1 if the rat’s speed is above
2 cm/sec at time t and 0 otherwise. Next, we added the rat’s
direction of motion (outbound vs inbound) to the model along
with the speed and place coding (class 3). This model has the

form log λ(t) = θ0 +
∑pS

i=1
∑2

j=1 θi,jgi(x(t))Is(t)>2IDj , where

ID1 and ID2 are indicator functions for inbound and outbound
trajectories, respectively. Finally, we added an interaction of
the phase of the rat’s theta rhythm to the direction, speed
and place coding model (class 4). This model has the form

log λ(t) = θ0 +
∑pS

i=1
∑2

j=1
∑4

k=1 θi,j,kgi(x(t))Is(t)>2IDj I8k ,
where I8k is an indicator function for the phase of the theta
rhythm being in each of the following intervals, respectively:
81 = [−π,−π/2), 82 = [−π/2, 0), 83 = [0, π/2), and
84 = [π/2, π).

We estimated model parameters using maximum
likelihood.

We classify each neuron based on a step-up model iden-
tification procedure: for each neuron we begin with the null
model and perform sequential maximum likelihood ratio tests
to determine if the next set of covariates provide a signifi-
cant improvement to model fit. The neuron’s classification is
determined by the first test in this sequence that fails to reach
significance.

C. SIMULATION ANALYSIS
Before applying deep learning models to the data,
we assessed the classification accuracy of several network
architectures on simulated data. We simulated each neuron
so as to fall into one of the GLM classes described above.
Simulated neurons in model class 0 were generated as a
homogeneous Poisson process with constant rate, λ0(t) =
α, where α for each cell is drawn independently from a
uniform distribution with range [0, 200] spike/s. This range is
based on minimum and maximum of observed intensity from
experimental data. Neurons in class 1 were simulated with an
intensity function with a Gaussian shape as a function of the
rat’s position, λ1(t) = α ∗ exp((xt − a)2/2b2) where α is the
peak firing rate at the center of the place field, a is the location
of the peak, and b defines thewidth of the place field.α, a, and
b were drawn from independent uniform distributions with
ranges [6, 9] spikes/s, [10, 290] cm (linear position varies
between 0-300 cm), and [10, 100] cm respectively. Neurons
in class 2 were simulated with a place field that is modulated
by the rat’s speed, λ2(t) = λ1(t)∗exp(γ st ), where λ1(t) is the
place field structure from class 1 neurons, described above,
st is rat’s speed and γ is a fixed constant set to 0.05. Finally,
neurons in class 3 have place fields modulated by speed and
direction: λ3(t) = λ2(t) ∗ exp(ηdt), where dt is an indicator
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TABLE 2. Software and model configuration and parameters.

function that is equal to 1 for inbound movements and -1 for
outbound movements and η is a fixed parameter set to 0.5 for
this analysis.

D. DEEP LEARNING MODELS
We explored a number of network architectures to assess their
classification performance on our simulated dataset, then we
used the results to select one neural network for classifying
the real data. The input space includes multivariate time
series: the spike train, the rats’ movement trajectory including
position, direction, and speed, and the instantaneous phase
of the theta rhythm in the rat’s LFP. The output labels are
either binary variables indicating whether a neuron is or is
not significantly influenced by a set of covariates, or are
5-ary, indicating which of the model classes discussed in
the previous section was selected by the model identification
procedure.

For both the simulation and real data analyses, 70% of
the data is devoted to training, 10% to validation, and 20%
to testing. We used mini-batch gradient descent (GD) [74]
as the learning algorithm to update model parameters. Mini-
batchGD is based on gradient descent (GD); however, instead
of updating parameters once per epoch (iteration), it updates
them in real time within each epoch. This algorithm splits
the data to m batches of samples and updates parameters in
every batch per epoch, which reduces the variance in the
estimate of the gradient and leads to faster converge [75].
For this analysis we split the training data into 128 batches
and iterated the learning algorithm on the entire training set
90 times. All models were trained using RMSprop optimizer
which is an extension of stochastic gradient descent (SGD)
algorithm [66] to minimize a categorical cross-entropy loss
function [67]. Classification performance was assessed by the
classification accuracy, which is the ratio of the number of
correct predictions to the number of input samples. We sum-
marize the software configuration, splitting procedure, and
learning parameters in Table 2.

Specific implementation details for each of the network
architectures explored are provided below.

1) MULTI LAYER PERCEPTRONS (MLPs)
The MLP network includes five fully connected layers in
total, with three hidden layers of 10, 7, and 4 neurons per layer
respectively. In the first layer, the product of the input data
with aweightmatrix is passed through a Rectified Linear Unit
(ReLU), R(z) = max{0, z}, and this procedure is repeated
at each hidden layer. The final layer takes weighted inputs

from the final hidden layer to determine the classification
result using either a sigmoid activation function, S(z) =
1/(1 + exp(−z)), for the binary classification or a softmax,
F(z)i = exp(zi)/

∑
j exp(zj), for categorical classification.

2) CONVOLUTIONAL NEURAL NETWORKS (CNNs)
The CNN network consists of five layers in total including
three layers of one-dimensional convolutions. The first con-
volution layer has 10 filters with kernel size 3, and uses a
ReLU activation function. The second layer contains 7 filters
of kernel size 3 along with a ReLU. Next, MaxPooling is
applied to downsample the output of second. The third layer
includes 4 filters with size 3 and a ReLU function. Then,
GlobalAveragePooling [68] is used to downsample the fea-
tures extracted from the convolutional layers. The final stage
is a FC network with a sigmoid or softmax function applied
for the classification output.

3) MULTI CHANNEL DEEP CNNs (MCDCNNs)
In this network, two layers of one-dimensional convolutions
including 4 filters with a kernel size of 3, are applied to
each input dimension independently for the real data analysis.
For the simulation analysis, we used 3 filters of size 2. The
output of the top convolutional layer is passed through a
batch normalization operation to help the network converge
quickly [69], and is then put through ReLU activation func-
tions. The outputs of this process are concatenated across all
input dimensions and fed into a FC network with 128 nodes
and a ReLU activation. At the end, a dropout layer was used
with rate 0.5 to prevent overfitting [49], [70], and a sigmoid
or softmax function was used for classification (Fig. 2).

4) LONG-SHORT TERM MEMORY (LSTMs)
The LSTM network consists of three layers in total including
two LSTM layers. The first layer has 6 LSTM units which
use sigmoid activation functions. The second layer includes 4
LSTM units and a sigmoid function. At the last layer, sigmoid
or softmax functions were used for classification.

E. INTEGRATION AND DATA AUGMENTATION
The neural dataset does not include labels. Putative labels
were generated using the statistical model identification pro-
cedure described above. These statistical models were also
used to augment the training datasets to includemore data and
to provide balance between classification categories and gen-
erate data from rare or unobserved receptive field structures.
When augmenting data to provide balance, we generated
spike trains based on methods described in simulation anal-
ysis, from neurons with receptive fields according to the
models in Eq. (3) using a distribution of parameter val-
ues, irrespective of whether similar parameters values are
observed in the actual data. We refer to this approach for
augmentation as balanced augmentation.

We also generate spike trains from simulated neurons
according to Eq. (3) using the estimated parameter values
from observed neurons to increase the size of our training
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FIGURE 3. Hippocampal neural activity patterns during behavior.
(A) From top to bottom, LFP (1-400 Hz) activity in CA1 and spiking activity
of 18 CA1 neurons represented in a raster plot in green. The gray line
indicates the linearized position of the animal. The bottom plot shows the
rat’s speed vs a threshold speed of 2 cm/s, used to differentiate the
running state from rest. The scale bars are 2s (horizontal) and 10 cm/s
(vertical). (B) Magnification of the shaded area from A where the yellow
line is filtered LFP in the theta rhythm bandwidth (6-12 Hz). The scale bar
is 250 ms. (C) The animal’s movement trajectory in a W-track maze. The
scale bar is 20 cm. (Jadhav et al.).

sets, without changing the distribution of observed spiking
properties. We refer to this augmentation approach as empir-
ical augmentation.

V. RESULTS
To demonstrate the interplay between statistical models, sim-
ulation, and ML, we have applied an integrated approach to
the problem of classifying neurons from the CA1 region of
rat hippocampus during a spatial memory and navigation task
based on their coding properties. It is well known that rat
hippocampus contains place cells, which code for the rats’
location during spatial navigation, but hippocampal neurons
have also been shown to have activity that depends on move-
ment speed and direction, the phase of the theta rhythm, and
on the timing of past spikes [9], [10], [11]. Fig. 3 shows an
example of the data for a small subset of neurons over a short
movement interval. Fig. 3A shows the LFP (1-400 Hz) and
the spiking activity of 18 CA1 neurons in a raster plot. The
linearized location of the animal is shown as a gray line in the
raster plot. The bottom panel shows the animal’s speed along
theW-track and a 2 cm/s threshold to differentiate the running
state from the rest state. Fig. 3B shows a magnification of
the filtered LFP signal in theta range (6-12 Hz) in the shaded
area from from the top panel of Fig. 3A. The rat’s movement
trajectory through the W-track maze is shown in Fig. 3C.
A visualization of some of the coding properties of an

example hippocampal neuron is shown in Fig. 4. Fig. 4A
shows the rat’s movement through the W-track in gray and
the location of the animal when the neuron fired as black
dots. This neuron tends to be more active on the left side of
the track. Fig 4B shows an occupancy normalized histogram
of the place field of this neuron on a linearized version
of the track, where each color represents a different arm.
As expected based on 4A, the highest firing rate occurs on
the left arm of the track, but there is also a smaller place
field at the beginning of the right arm. Fig. 4C suggests an

FIGURE 4. Coding properties of an individual neuron in CA1.
(A) Locations of rat at spike times are shown as black dots within the rat’s
movement trajectory in gray. (B) Occupancy-normalized histogram of the
neuron’s firing in a linearized version of the track. Each color represents a
different arm of the W-track. (C) Position and speed of the rat during
movement (gray) and at spike times (black). (D) Position and theta phase
during spike times during inbound (blue) and outbound (red) trajectories.

interesting interaction between place and speed coding in this
neuron. Again, the rat’s movement trajectory is shown in gray
and the location and speed of the rat when the neuron spikes
is shown in black. When the rat is in this neuron’s primary
place field on the left arm of the track (around 200 cm in
the linearized position), the neuron fires more when the rat is
running quickly (10-20 cm/s). When the rat is moving toward
the right arm of the track around 80 cm in the linearized
position), this neuron also spikes, but generally when the
rat is moving more slowly (0-10 cm/s). Fig. 4D shows an
interaction between the rat’s position and the phase of its
theta rhythm in determining neural spiking. The blue dots
represent the rat’s position and theta phase during spiking
when the rat moves inbound from the outer arms to the center
and the red dots correspond to the rat’s position and theta
phase at spike times when the rat moves outbound from the
center to the outer arms. We see that the primary place field
on the left arm occurs during inbound trajectories while the
smaller place field in the right arm occurs during outbound
trajectories.We also note that the blue dots are clearly slanted,
with spikes occurring at earlier phases of the theta rhythm
as the rat moves further into the neuron’s place field. This
phenomenon is known as theta precession [71], [72].

We applied a statistical model identification framework to
classify the coding properties of a population of 254 hip-
pocampal neurons. As explained above, we start with a null
model in which neurons fire as a homogeneous Poisson
process, and add potential predictors of neural spiking to
the model sequentially, starting with position, followed by
direction, speed, and theta phase. Eachmodel class is selected
over the previous one if adding the new predictors leads to a
p-value below 0.01 using a maximum likelihood ratio test.
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FIGURE 5. Population summary of coding properties in CA1 population.
Relative frequency of p-values for maximum likelihood ratio tests for
each potential predictor of spiking, including position, speed, direction
and theta phase.

Testing occurs sequentially, so that cells that are not found
to have significant position dependence are not evaluated for
any other influences, for example. Fig. 5 demonstrates the
population level summary statistic of the candidate variables
versus p-values computed from themaximum likelihood ratio
tests. In this dataset, every single cell has significant place
coding, which is not surprising considering the role rat hip-
pocampus plays in spatial navigation, and the fact that in this
experiment, tetrodes were implanted specifically to find place
cells. Slightly more surprising is the fact that every neuron’s
spiking is also influenced significantly by the rat’s speed,
even when accounting for dependence between position and
speed in this task. Using this model identification paradigm,
we also found that 94% of the neurons code for direction, and
68% of the population code for theta phase. We used these
classification results to label the data to train our supervised
machine learning algorithms.

Before applying the ML classifiers to this data, we begin
with a simulation study to assess the strengths and weak-
nesses of our proposed architectures. For this analysis,
we begin with a simple binary classification in which the
inputs are spike trains and the rat’s linearized movement
trajectory, and output is whether each neuron codes for posi-
tion (class 1) or not (class 0). We vary the data size from
20% the size of our dataset (50 neurons) to 300% its size
(750 neurons). For each dataset, we divide the data into a
training set using 80% of the neurons, where half of those
neurons are place specific and the other half are non-place
specific, and a test set of the remaining 20% of the neurons.
Fig. 6A shows the classification accuracy of each of the
network architectures for various training set data sizes. 100%
data size means that the training set includes 204 neurons
and any smaller percentage indicates that the training set
was reduced to that fraction of its original size, maintaining
balance between both classes. We find that for this training
set size, only the CNN and MCDCNN architectures are able
to classify the test set at all. Then, we doubled (200%) and
tripled (300%) the training size while keeping the balance

between classes in order to illustrate the classification accu-
racy of MCDCNN and CNN classifiers as a function of
training set size.

As Fig. 6A shows, the MCDCNN’s test accuracy grows
above chance at a smaller data size compared to the CNN.
Once the training set size is doubled to around 400 neurons,
the CNN is becoming asymptotically equivalent to the
MCDCNN curve, with both architectures providing high
accuracy classification. We had expected the LSTM architec-
ture to be a strong candidate to provide efficient classification
due to presence of temporal structure in data. However, this
network was not able to classify above change levels for the
data sizes we explored. We also expected the MLP to work
well for a simple binary classification, which also proved
incorrect. These result suggest that even though these archi-
tectures have been used previously to classify multivariate
time-series datasets, they may not be appropriate for prob-
lems that involve identifying dependence structure between
multiple time series.

Next, we expanded the simulation analysis to a categorical
classification problem where the input variables included the
spike trains, rat’s position, speed, and direction. The outputs
are indicators for each of the four model classes: no coding
properties (class 0); place code only (class 1); place and speed
code only (class 2); and place, speed, and direction code
(class 3). We used the same approach as the binary case by
generating balanced simulated data of different sizes, in this
case ranging from 160 neurons to 13,600 neurons. In each
training set, there were an equal number of simulated neurons
in each model class. Fig. 6 (B) illustrates test accuracy of
different neural networks as a function of training size where
100% data size means 816 neurons (204 per class). Again, the
MLP and LSTM were unable to classify, and the MCDCNN
and CNN grow in classification accuracy as the training size
increases. Again, the MCDCNN performs better an any fixed
training set size compared to the CNN, but the CNN becomes
asymptotically equivalent to the MCDCNN with sufficiently
large datasets. Based on these results, we opted to focus on
the MCDCNN architechture in our analysis of the real neural
data.

We begin the data analysis with a binary classification
example corresponding to the simulation analysis procedure,
which included only class 0 and 1. Since the real data contains
no examples of non-place specific activity (class 0), we aug-
mented it with balanced simulated data. Then, we divided the
data to training and test sets where the test set had a fixed
size of 50 neurons from the real data (class 1) and 50 neurons
from balanced simulated data (class 0). For the training set,
we considered two augmentation scenarios. In the first, the
amount of real data in the training set was fixed at 204 neu-
rons, and we added different amounts of balanced simulated
data (blue line in Fig. 7). The x-axis in this figure indicates
the size of the balanced simulated data added to the training
set as a fraction of the original training data size. Thus a value
of 100% indicates that 204 balanced simulated neurons were
added to the 204 real neurons to generate the training set.
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FIGURE 6. Performance of different neural network architectures on
classifying simulated data. Performance of four neural networks
including MLP, LSTM, CNN, and MCDCNN for (A) binary classification of
place field vs non-place specific firing where 100% data size means
204 neurons, and (B) categorical classification with 4 classes including
place, speed, and direction specific firing. 100% data size means
816 neurons.

The second augmentation scenario consists of a fixed amount
of simulated data that includes 204 neurons, 102 neurons in
class 0 and 102 neurons in class 1, to which we add data from
varying numbers of real neurons (orange line in Fig. 7).
When there is no augmentation to the real data (blue line,

0% augmentation), the classification accuracy on the test set
is 50%, since the data is imbalanced and the model in only
trained on one class. When we add 20% of the simulated data
(class 0) to balance the training set, the classification accuracy
increases to 92%, suggesting that a relatively small amount of
balanced simulation data can drastically improve the value of
an unbalanced training set. Addingmode balanced simulation
data then leads to modest additional improvements, which
asymptote towards 100% classification accuracy. The second
simulation scenario shows how the results would change if
the training dataset were balanced from the outset (orange
line, 0% augmentation). Rather than starting at chance, the

FIGURE 7. Test accuracy of binary classification for two training
scenarios. Scenario (1): fixed amount of real data that includes only place
specific neurons (class 1) augmented by adding balanced data of size
20%, 50%, 80% and 100% of the original data size, 204 neurons, (blue
line). Case (2): fixed amount of balanced simulated data augmented by
adding subsets of the real dataset of different sizes (orange line).

classification accuracy for a balanced dataset of the same size
as the real data is 87%. We then add the unbalanced real data
to this initially balanced training set and the classification
accuracy quickly converges with the curve from simulation
scenario 1. Taken together, the results from these two scenar-
ios suggest a couple of things. First, that even a small amount
of balanced data can substantially improve the quality of in
imbalanced training set. Second, that once a training dataset
is relatively balanced, adding unbalanced data leads to about
the same improvement that adding balanced data does.

Next, we add the animal’s speed to the input space and the
output includes class 0, 1, and 2. As discussed above, real data
contains no example of class 0, also it has no example of class
1 where position signal is exclusively involved. Accordingly,
the real data is imbalanced regarding class 0 and 1, and it
requires augmentation. We repeat the same procedure as for
the binary classification where the test case is fixed, including
50 neurons in class 0 and 50 neurons in class 1 from balanced
simulated data, and 50 neurons in class 2 from observed data.
For training process, again, we consider two cases: The first
case contains 204 neurons from observed data (class 2) that
is augmented by various proportion of 4584 neurons from
balanced simulated data (1596 neurons class0, 1596 class 1,
and 1392 class2), and the second case involves 204 neurons
from observed data (class 2) augmented by different fraction
of 3192 neurons from balanced simulated data (1596 neurons
per class, class 0 and 1), and 1392 neurons from empiri-
cal simulated data (class 2). We illustrates the classification
results for these two cases in Fig. 8 which indicates how
different type of data augmentation can affect test accuracy
by balancing as well as enlarging the training size.

Both cases start with using real data alone for training
that results in poor test accuracy, 33.33% since the data
is imbalance. Then, we add 408 neurons (204 neurons per
class) from balanced simulated data for class 0 and 1 to the
training set, and test accuracy improves to 55.7%. From
this point, we increase the training size in two different
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FIGURE 8. Test accuracy of categorical classification for two training
cases and a fixed test set. Case (1): real data that includes only place and
speed specific neurons (class 2) and different proportion of balanced
simulated data (class 0 and 1). Case (2): real data (class 2), balanced
simulated data (class 0 and 1) augmented by the different proportion of
empirical simulated data (class 2) while keeping balance. In both training
cases, 100% augmentation size means 4584 neurons.

TABLE 3. Comparing classification accuracy between methods without
data augmentation and methods with statistical model-based data
augmentation.

ways for case one and two. In the first case, we add 20%,
50%, 80%, and 100% of balanced simulated data (including
4584 neurons) respectively to the training set that improves
the test accuracy to 58.32%, 62.4%, 76.8% and 78.43%. The
test accuracy grows as the training size increasing but it is
getting asymptote eventually. In the second case, we augment
the training set by adding 20%, 50%, 80%, and 100% of
empirical simulated data (1392 neurons in class 2) while
maintaining balance, which leads to 63.4%, 68%, 88.24% and
91.6% test accuracy respectively. Comparison of these two
cases demonstrates that empirical based augmentation leads
to higher rate of improvement.

We summarize the classification results based on our sta-
tistical model-based data augmentation compared to prior
methods without data augmentation in Table 3. The results
suggest that prior methods cannot achieve better than chance
performance for either classification problem; however, the
classification results from our proposed data augmentation
method are substantially and significantly improved.

In the next step, we add direction to the input space, and
outputs are class 0 to class 3. Since we have more categories,
ourML algorithm requires more data for training. In addition,
according to Fig. 8, empirical augmentation for categorical
classification indicates higher rate of model performance
improvement. Therefore, here we augment the training data
including 204 observed neurons (class 3), with 7200 neurons
(3600 neurons per class) from balanced simulated data for
class 0 and 1, then we add 3600 neurons for class 2 and
3346 neurons for class 3 generated from empirical augmen-
tation. The resulting accuracy was poor although we doubled

TABLE 4. Classification results of incremental categories.

the training size compare to the previous step. This issue
led us to more augmentation, however we had limited com-
putational resources that did not allow for working with a
larger dataset. To address this challenge, we makes our ML
algorithm (MCDCNN) simpler by changing the number of
filters and kernel size of the MCDCNN’s layers from 4 and
3 to 3 and 2 respectively. After this change, we obtain 92.3%
test accuracy.

Finally, we build the full classification model by adding
the theta phase to the input space, and outputs are class 0 to
class 4. In this case, training set contains 204 neurons from
the experiment (class 4). First, we augment it with 7200 neu-
rons (3600 neurons per class) from balanced simulated data
(class 0 and 1). Then, we add 7200 neurons (3600 neurons
per class) for class 2 and 3, and 3346 neurons for class
4 generated from empirical augmentation procedure. Due to
limited computational resources, we made the MCDCNN
algorithm simpler by changing the number of filters and
kernel size from 3 and 2 to 2 and 1 respectively which led
to 91.58% test accuracy. The classification results for our
methodology are summarized in Table 4 from the binary
classification including class 0 and 1 to the full classification
model.

VI. DISCUSSION
Statistical models provide a powerful approach to study neu-
ral encoding at the level of individual neurons or popula-
tions [1], [11]; however, they are computationally inefficient
for analyzing large-scale neural recordings. As experimental
methods evolve, more data is recorded over longer periods of
time, making it difficult to classify the coding properties of all
the neurons in a large population efficiently. Machine learn-
ing methods have been shown to provide improved compu-
tational efficiency in analyzing large-scale data particularly
in neural decoding problems [12], [32], [33], [35], [36], [37],
[38], [39], [40]; however, they often require large amounts of
training data and labels (for supervised learning), and it can
be challenging to assess their quality and interpret the outputs.
In this work, we explored the potential for integrating statis-
tical neural encoding models with ML tools for identifying
coding properties, and demonstrated how these methods can
complement each other to help resolve the limitations of each
approach.

This analysis has led to a number of key findings:
(1) There are certain classes of network architectures that
are specifically well-suited to neural encoding problems since
they can identify associations within multivariate time series.
Initially, we expected RNN based networks such as LSTMs
to be best suited to these datasets [60]. LSTMs have been suc-
cessful in some neural coding analyses, particularly for pre-
dicting neural responses and for neural decoding [29], [30],
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[35], [36]. However, they were not able to classify neural pop-
ulation in our analysis, and the potential reason could be their
lack of ability to capture the associations between encoded
signals and neural responses. CNNs andMCDCNNswere the
only network structures in our analysis that were able to clas-
sify different neural representations, and MCDCNNs showed
substantially faster classification accuracy as a function of
training data compared to CNNs. (2) Data augmentation can
lead to dramatic performance improvement in classification
accuracy in cases where there is uneven sampling in the
training set. Neuroscientific experiments are often designed
so that certain coding properties are undersampled and others
are oversampled, and this leads to imbalanced data. This
makes the DL classification challenging and augmentation
with synthetic data for those coding patterns is a power-
ful way to address this issue. We used GLMs with prior
parameter estimates to generate data for minority classes to
balance the training set. (3) Not all augmentation schemes are
the same. Augmentation with purely theoretical model struc-
tures does not provide the same information as augmentation
with models that are based on empirical estimates of coding
properties from the observed data. The first augmentation
scheme is most useful for balancing data, however, once even
a small degree of balance is achieved, classification accuracy
increases most by augmenting with data that best reflects
features in the observed data. Therefore, augmenting data
using GLM models with parameters estimated from existing
recorded data leads to more powerful classifiers.

We anticipate our proposed approach could be extremely
valuable for large-scale electrophysiology studies of neural
coding that are becoming increasingly common [13], [14],
[15], [16], [17]. For instance, neuropixel analysis has been
recently used to study brain-wide systems including audi-
tory, visual, memory, and motor systems using neuropixel
probes, for which potentially thousands of neurons might be
identified [77], [78], [79], [80], [81], [82], [83], [84], [85].
In many of these research areas, recordings are made from
a large population of neurons and multiple coding properties
that require to be assessed simultaneously [86]. We expect
using the extended neural network architectures based on
CNNs such as the MCDCNN that we explored here, would
be helpful for the reasons demonstrated.

There are a number of limitations to this study that suggest
additional analysis to perform. We examined only a small
number of ML architectures and selected just one to apply to
a particular neural system with a small set of possible covari-
ates. A broader study exploring more architectures, imple-
menting more advanced learning and optimization tools, and
applying the methods to broader neural datasets with varied
coding properties would provide critical information about
the extent to which these data augmentation results gener-
alize. The scope of this study is to to demonstrate that ML
methods with specific network architectures can be integrated
with statistical models to overcome issues related to limited
data and imbalance in the training sets. In our analysis, MLP
and LSTM architectures never achieved better than chance

performance, however a broader exploration of datasets and
estimation methods might suggest situations in which these
architectures are successful, or even preferred, for neural clas-
sification. In addition, here we focused on coding at the level
of individual neurons, but recent trends in neural encoding
have focused on interactions between neural spiking and on
population level coding. The role of statistical model based
data augmentation for thosemodels could be explored by aug-
menting both the statistical models and ML architectures to
include multiple neural responses simultaneously. Moreover,
these methods can also be extended to other brain areas, other
animals or different types of experiments where the coding
variables are unknown.

Statistical methods provide a flexible, interpretable,
methodological terminology, and powerful inference meth-
ods that have been very successful for understanding neural
coding [1], [11], [18], [19], [20]. As neuroscience experi-
ments record from larger neural populations over a longer
period of time, the need for computationally powerful and
efficient models is expanding. On the other hand, ML algo-
rithms demonstrate strong computational power to analyze
large-scale data efficiently [22], [24], [25], [32], [33], [35],
[36]. We believe that integrating these two modeling perspec-
tives allows for the development of a statistically principled
and computationally efficient paradigm for understanding
neural representations. We believe this work is a first step
toward addressing the challenges arising from modern neu-
roscience experiments.
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