IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 October 2022, accepted 4 November 2022, date of publication 10 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221427

== RESEARCH ARTICLE

A Heuristic Approach Using Template Miners for
Error Prediction in Telecommunication Networks

PETER MARJAI', PETER LEHOTAY-KERY'!, AND ATTILA KISS “1:2

! Department of Information Systems, ELTE Eétvés Lorand University, 1117 Budapest, Hungary
2Department of Informatics, J. Selye University, 945 01 Komarno, Slovakia

Corresponding author: Attila Kiss (kiss @inf.elte.hu)

This work was supported in part by the National Research, Development and Innovation Fund of Hungary through the Thematic
Excellence Programme (National Challenges Subprogramme) for the Project Application Domain Specific Highly Reliable IT Solutions
under Grant TKP2020-NKA-06; in part by the Research and Development Operational Programme for the Project ‘““Modernisation and
Improvement of Technical Infrastructure for Research and Development of J. Selye University in the Fields of Nanotechnology and
Intelligent Space” under Grant ITMS 26210120042; in part by the European Regional Development Fund; in part by the National
Research, Development and Innovation Fund through the New National Excellence Program of the Ministry for Innovation and
Technology under Grant UNKP-21-3; and in part by the Ericsson-E6tvos Lordnd University (ELTE) Software Technology Laboratory.

ABSTRACT With the appearance of large-scale systems, the size of the generated logs increased rapidly.
Almost every software produces such files. Log files contain runtime information of the software, as well as
indicate noteworthy events or suspicious behaviors like errors. To understand and monitor the operation of
the system, log files are a valuable source of information, which can be used to predict upcoming anomalies.
In recent years numerous techniques have been proposed for this purpose. There are supervised models
like SVM or decision trees and also unsupervised ones like Isolation Forest, Log Clustering, or PCA.
There are also methods that use deep learning, like Autoencoder, CNN, LSTM, or Transformer. Many
of the above-mentioned methods take advantage of template miners, that extract the event types from
the unstructured data. In our paper, we propose a method that uses these templates to predict upcoming
anomalies. We use 80% of our data for training, and 20% for tests. First, we use half of the train data and
sort the templates that have an occurrence that is followed by an error to create a list of candidate templates.
In the second step, we use the other half, to check how often the ten upcoming lines after a candidate template
actually contain an anomaly. If a given percentage is reached, we consider the template as an indicator for
upcoming anomalies. We conduct various experiments to verify the capability of our method like measuring
the precision, recall, f-score accuracy, and speed on various data sources. The proposed method slightly falls
behind SVM and CNN with an average of 88.06% precision, 90.43% recall, and 89.11% f-score, however,
it has better accuracy with 98.19%. In addition, our algorithm is two times faster than SVM and three and a
half times faster than CNN.

INDEX TERMS Anomaly detection, autoencoder, CNN, IPLoM, isolation forest, log clustering, log parsing,
LSTM, PCA, SVM, transformer.

I. INTRODUCTION

The creation of log files is a general task that every software
performs. The developers insert print statements into the
source code, to save the runtime information of the applica-
tion. With the use of the generated log files, crucial infor-
mation can be retrieved, which then can be used for several
objectives, like business model mining [1], [2], user behavior

The associate editor coordinating the review of this manuscript and

approving it for publication was Wanqing Zhao

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

identification [3], [4], office tracking [5], performance mon-
itoring [6], [7], or reliability engineering [8].

Log files contain information about the preferences of
users on various subjects. Business models can be created
with the use of this information and be used to enhance
the performance of the service, for example, with the use
of targeted advertising. In [1] a conceptual model that uses
hyper-personalization is introduced to escalate buyer interest.
In [2] an e-customer behavioral graph is proposed that can be
used to measure the movements of e-customers based on their
behavior change.

118953

https://orcid.org/0000-0001-8174-6194
https://orcid.org/0000-0001-6160-9547

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

User behavior identification can also be done by the use
of information gathered from log files. Patterns of mental
problems, addictions, or underperforming can come to light
with inspection of such files. In [3] they use machine learning
and linear regression to identify students that are likely to
fail a subject. The authors of [4] also use machine learn-
ing in pair with Weighted Support-vector Machine (SVM),
BernoulliNB, logistic regression, and MLPClassifier to detect
“internet addiction” in the case of children.

In [5] the system logs that are logged in a distributed file
system are used in a scalable online manner to be checked
again policies that are formulated in an expressive temporal
logic.

Due to the rapid development of information technology,
more and more large-scale system has appeared. Since it is
impossible to monitor the functionality of such systems by
hand, software-aided performance monitoring has become a
crucial task. The authors of [6] propose a clustering-based
algorithm that uses system key performance indicators and
log sequences to identify impactful system problems that
result in performance loss. Since the troubleshooting of cloud
services is especially hard, a new approach called megatables
is represented in [7] that outputs millibottleneck predictions
and supporting visualizations based on automatic interpreta-
tion of log data.

Reliability engineering can be done with the use of auto-
mated log analysis. In [8] a survey is provided regarding this
subject.

Over the course of the last few years, numerous algorithms
have been proposed to retrieve event types from unstructured
logs. Each log line can be associated with an event template.
These templates are made up of a constant part, that is identi-
cal at all occurrences and a parameter part, that could be dif-
ferent at each instance. The algorithm in [9] builds a fix-depth
tree. Each layer of internal nodes sorts the log lines based on
a heuristic. A node in the first layer represents log messages
of the same length. At the second layer, each node contains
messages that have the same constant token at the beginning
of the message. The third layer filters the log entries into
groups based on their token similarity. The authors of [10]
make us of the assumption that entries that correspond to a
template have words with equivalent length at the same token
positions. In [11] Non-dominated Sorting Genetic Algorithm
IT (NSGA-II) [12] a multi-objective genetic algorithm is
employed to randomly generate a group of chromosomes,
which are possible solutions. These chromosomes are then
evolved and reproduced with the use of crossover and muta-
tion. In the end, out of all possible solutions, the knee point
is chosen to be the final solution. With the use of Longest
Common Subsequent (LCS), the algorithm proposed in [13]
the log messages are converted into a sequence of tokens
identified by a unique ID. With the use of backtracking, they
retrieve the message types. The authors of [14] propose a
new tree-based template mining technique, that in addition
to the rate of matching tokens in two distinct log entries, also
considers the tokens at which two log entries disagree.

118954

Our method is built to be used in a system that automati-
cally collects logs, configuration, and state description files
from telecommunication network nodes on daily basis. After
the collection of these files, they can be analyzed to support
the maintenance of the network. Using our method, based
on the vast amount of collected logs, possible networking
failures can be predicted in advance, so that these failures can
be prevented. The algorithm can also predict exact error codes
that are going to be thrown on the networking nodes. Using
the information provided by our system, customer support,
and network maintenance groups can intervene effectively
before the actual failure happens. Naturally, our method can
also be used in other kinds of systems too, where logs are
generated by the software.

Il. RELATED WORKS

Until this day, numerous methods have been proposed to pre-
dict upcoming anomalies and errors. It can be done manually
with the use of domain knowledge, however, it is usually a
slow process. Because of this, detection is especially impor-
tant in the case of large-scale services, where the precise
and fast detection of an anomaly can aid the operators in
quickly solving the problem. Anomaly detection has been
employed in various fields, like performance monitoring,
intrusion detection, fault detection in manufacturing, fraud
detection, or even healthcare to spot potential medical prob-
lems or risks.

Many researchers are taking advantage of machine learn-
ing techniques, to make a prediction. In [15] they provide a
framework that detects anomalies based on application log
files. First, a correlation analysis is made on the data. The
result of this analysis is the input for various machine learning
techniques of which the one with the best precision and
accuracy values. They state that the combination of machine
learning and parameter approximation aided by time-series
models yielded the best results.

The authors of [16] propose an approach that is capable
of intrusion detection in industrial control systems with the
use of anomaly detection. A hybrid model is used to take
advantage of the difference between the communication pat-
terns that occur between ground devices and the anticipated
communication. They use several techniques like data pre-
processing, dimensionality reduction, nearest-neighbor rule,
or Bloom filters.

Cyber-physical systems are complex systems that contain
both software and physical components. They don’t have
an accurate model, due to their ever-changing nature, thus
anomaly detection is a hard task in the case of such systems.
With the use of the logs of such a system, the authors of [17]
propose a method that is capable of finding outliers that
indicate actual faults in the system. They first collect the
related log entries. After that, each entry is converted into a
real-value vector. Each vector is then normalized. A single
vector is then created from the vectors within a given window.
For every window, the outlier factor is calculated with the

VOLUME 10, 2022

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

IEEE Access

Local outlier factor (LOF) [18] algorithm. Finally, every high
outlier factor is identified as an anomaly.

There is also a growing interest in research on financial
fraud detection. An in-depth survey is performed in [19]
regarding unsupervised, clustering-based anomaly detection
in the economic domain. There are also other graph-based
techniques that inspect connectivity patterns to recognize
fraud. The authors of [20] have created a framework of such
methods that had been published between 2007 and 2018.
There are very little labeled data (legal/fraud) in the field
of tax fraud. In [21] unsupervised anomaly techniques are
employed to detect fraud based on the labeled data.

Detecting anomalies in medical images like X-rays are
a very laborious task. To meet this challenge, the authors
of [22] develop a new method that uses a re-designed training
pipeline as input for classic autoencoders. These pipelines are
capable of handling complex images that have high resolu-
tion. A survey about the usage of machine learning methods
in medical anomaly detection is concluded in [23].

In a previous paper [24] we investigated the predic-
tion capability of cosine distance, Jaccard similarity, and
Euclidean distance between the actual log entry and the
previous entries. The methods were used in pair with Term
Frequency-Inverse Document Frequency(TFIDF), Doc2Vec,
and Locality Sensitive Hashing (LSH).

In this paper, we propose a method that predicts if an error
is going to happen in the window of the next ten entries based
on the template of the actual entry. With this method higher
than 90% values of precision, recall, f-score, and accuracy can
be reached within a short time. A more detailed explanation
of the algorithm can be found in Section IV.

The paper has the following structure. Section III contains
the introduction of the log parsing concept. It is followed by
a brief summary of the used template miner, Iterative Parti-
tioning Log Mining (IPLoM). A high-level overview of other
anomaly detection methods such as Isolation Forest, Log
Clustering, Principal Component Analysis (PCA), and SVM
can also be seen here. Other algorithms, that use machine
learning techniques like Autoencoder, Convolutional Neural
Network (CNN), Long Short-term Memory (LSTM), and
Transformers are also explained here. A brief explanation of
the used evaluation metrics can also be found in this section.
We provide a detailed description of the proposed algorithm
in Section IV. In Section V, we present an explanation of
the concluded experiments, that measure the achieved pre-
cision, recall, f-score, and accuracy values on log files that
were created by real-work networking assets. The speed of
the different methods is also evaluated in this section. The
conclusion of the paper and the possible future works are
listed in Section VI.

IIl. CONCEPTS AND PROBLEMS

A. ACQUIRING TEMPLATES

1) LOG PARSING

Since developers can insert free-text messages, the entries in
a log file are usually raw and unstructured. An entry con-

VOLUME 10, 2022

tains information about events that have occurred during the
runtime of the software like system upgrades, restarts, error
messages, and such. A log entry is a collection of information
like timestamps, flags, sequence numbers, messages, and so
on. The message part can be divided into two groups. The
tokens (strings separated by spaces) can either be constants
or parameters. A constant token is always the same at each
occurrence of a log line corresponding to an event type.
Parameter tokens can be different on each occasion. A frag-
ment of our working data can be seen in Figure 1.

The template (event type) corresponding to the fifth line
consists of a single constant token “XF_START”. It can
be seen that it is the same at each occurrence. The fourth-
row “NPU Cold Restart” is made up of two constant tokens
“NPU” and ““Restart”, while the “Cold” token is a parame-
ter. In the line with sequence number 1088, the “NPU”* and
“Restart” tokens are the same, however instead of “Cold”,
a “Warm” parameter can be seen. During log parsing, each
message m of all messages my, mo, ..., my is assigned to a
group that correspond to a template 7. Although log parsers
are powerful tools, they have their limitations. Pre- and
post-processing of the data can improve the performance. For
example, the number of entries to be parsed can be reduced
by deleting duplicates or regex can be used to eliminate
unnecessary fields like timestamp. A list of suggestions for
pre-and post-processing can be found in [25].

2) IPLoM

The authors of [26] propose a method that iteratively clusters
the log entries based on different heuristics to retrieve the
templates. In the first three steps, different heuristics are used,
while the fourth step yields the event types.

The first step uses the assumption that log entries that are
made of the same number of tokens are corresponding to the
same template. Based on this, distinct groups are created that
contain lines that are n long sequences of words.

The number of unique tokens can also be used to partition
the log entries. Based on the assumption that the token posi-
tion with the least unique values is a constant, the algorithm
partitions the lines into groups. At the end of this step, each
line in the group has the same constant token at the same
position.

In the last partitioning step, bijection between the entries in
a group is used as a heuristic. The most frequently appearing
token count expresses the number of different templates in
the group. The algorithm partitions the entries into different
groups based on the first two token positions that have an
equal number of unique tokens as the most frequent token
count.

By this time, the groups only contain lines that correspond
to the same event type, however, the distinction between
constant tokens and parameters has to be done. To achieve
this, the algorithm counts the number of different words at
a position. If it has multiple words, then it is a parameter
otherwise, it is a constant.

118955

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

1078: 2018-12-14T09:47:00+0000#NOOP#suffNot Committed. Fallback

1079: 2018-12-14T09:47:00+0000#NOOP#eh#APU warm restart 0, slot 6, error 197 00000000 00000000
1080: 2018-12-14T09:47:034+0000#WARM#eh#Init NPU/node warm restart

1081: 2018-12-14T09:48:274+0000#NOOP#eh#NPU Cold Restart

1082: 2018-12-14T09:48:41+0000#NOOP#cli#XF START

1083: 2018-12-14T09:48:51+0000#NOOP#eh#APU cold restart (su fpga), slot 4

1084: 2018-12-14T09:49:324+0000#N0O0OP#ech#APU cold restart 1, slot 4, error 182 00000000 00000000
1085: 2018-12-14T09:49:35+0000#N0OOP#eh#APU cold restart (su fpga), slot 5

1086: 2019-01-02T11:22:454+0000#NOOP#eh#APU cold restart 0, slot 6, error 192 00000000 00000000
1087: 2019-01-02T11:22:45+0000#WARM#ch#APU error 192, slot & (npu cold restart)

1088: 2019-01-02T11:24:17+0000#N0O0OP#ch#NPU Warm Restart

1089: 2019-01-02T11:24:54+0000#NOOP#cli#XF START

1090: 2019-01-02T11:25:04+00004NOOP#eh#APU cold restart (su fpga), slot 4
1091: 2019-01-02T11:26:46+0000#NOOP#eh#APU cold restart 1, slot 4, error 227 00000000 00000000

FIGURE 1. An extract of a log file generated by real-world networking device.

B. REGULAR ANOMALY DETECTION METHODS

1) ISOLATION FOREST

Isolation Forest was introduced in [27] and uses the idea that
under random partitioning, anomalies are more likely to be
isolated. They use data-induced random trees, that recursively
repeat the partitioning of instances, until all of them are
separated. In the paper, they first randomly select an attribute,
then randomly select a spit value between the minimum and
maximum values of that attribute.

Let T be anode of an isolation tree. 7" can either be an inter-
nal node with one test that has two child nodes (7}, T,), or an
isolated node that has no child. During a test data points are
split between T; and 7, based on the test ¢ < p, where ¢ is an
attribute, and p is the split value. Let X = {x1, x2, ..., x,} be
a data sample of n elements with d- variate distribution. The
isolation tree is built as follows. X is recursively partitioned
by g and p until one of the three followings is satisfied: either
the height limit of the tree is reached, all elements in X have
the same values, or |X| = 1.

The anomalies are detected with the use of the path length.
The path length i(x) of a node is the number of edges that
are needed to reach it from the root node. Since anomalies
result in a lesser number of partitions, shorter paths in the
tree indicate the presence of an anomaly.

During the training phase, a bunch of isolation trees is
built with sub-samples (this is the isolation forest). In the test
phase, the test elements are passed through these trees and an
anomaly score is calculated with the use of the path length.
When such a forest produces outstandingly short paths for
some distinct set of nodes, then they are considered to be
anomalies.

2) LOG CLUSTERING

The authors of [28] introduce a method to identify problems
in the case of online systems. The algorithm consists of two
steps. The first one is the construction, where log sequences
that were acquired from a test environment are turned into
vectors and these vectors are then clustered. The representa-
tive vector of each sequence and the steps required to resolve

118956

the problem are saved into a knowledge base. The second
phase is the same, except that the sequences are collected
from a production setting. The representative vectors are
compared with the ones in the knowledge database. Only
the unseen sequences have to be examined by the engineers.
A more detailed description of the steps follows.

The log sequences contain multiple events. These
sequences are transformed into a vector where each element
represents an event. Since not every event has the same
informative power, the vectors are weighted with the use
of IDF [29] and Contrast-based Event Weighting. IDF is
calculated as:

N
Wigr(t) = lOg<n—) (D
t

where ¢ is a template, N is the total number of log sequences
and n, is the number of the appearances of ¢. With this, lower
weights are assigned to frequent events, while uncommon
events have higher weights. Based on the assumption that
events in the production setting are more likely to express
errors. Either 1 or 0 is assigned to an event:

Weon(t) = 1 ifr app.ears in AS @)
0 otherwise
where the set of the log events that only appear in the
production setting is denoted as AS. For every ¢ event,
the contrast-based weight and the IDF-based weight are
combined:

w(t) = 0.5 X weon(t) + 0.5 x Norm(wigr (1)) 3)

where Norm is a Sigmoid function that is used to normalize
the IDF-based weight to a value between 1 and 0. After this
the cosine similarity between any two V; and V; vectors is
calculated as follows:
NN
IS WS
_ ZZ:] SiEy x SiEy @)
I SiE0? xS (SiE?

VOLUME 10, 2022

Sim(V;, Vj) =

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

IEEE Access

where SjEk indicates the k”* event in the j* vector. With
the use of the Sim value, an Agglomerative Hierarchical
clustering [30] takes place. In the end, the centroid of each
cluster is used as a representative vector for the cluster.

3) PCA

A general methodology to detect system anomalies is pro-
posed in [31]. The approach consists of three separate phases.
The first one can be broken down into two further steps.
First, they analyze the source code, to salvage all of the print
statements and deduce variable types, which are related to the
statement. This is followed by runtime log parsing to acquire
all possible message templates.

The second phase is the feature extraction, during which
correlating messages are grouped together, and represented
with a vector per group, to create the message count vec-
tor [32]. Each element of the vector represents the number
of occurrences of a given template.

In the third phase, Principal Component Analysis
(PCA) [33], an unsupervised machine learning technique
is applied to the feature vector to identify abnormal and
normal messages. PCA creates new uncorrelated variables
that successively maximize variance.

4) SVM

The authors of [34] investigate the anomaly prediction per-
formance of different machine learning techniques like RIP-
PER, a rule-based classifier [35], Nearest Neighbor-based
classification, and Support Vector Machines (SVM) [36].
Out of these three methods, for our paper, we use the SVM
approach. SVMs are a set of generalized classifiers. Nor-
mally, a hyperplane or a set of hyperplanes is constructed
by a support-vector machine. These are usually high- or
infinite-dimensional spaces, that can be used for various pur-
poses like regression, classification, or outlier detection. The
hyperplane that is the farthest from any of the training-data
points usually achieves good separations, since the bigger the
margin, the lower the generalization error. Outlying points are
usually identified as anomalies.

C. MACHINE LEARNING ANOMALY DETECTION METHODS
1) AUTOENCODER
An unsupervised method that combines two deep Autoen-
coder networks with an Isolation forest is introduced in [37].
An Autoencoder is a feed-forward multilayer neural network
that has an equal number of input and output units [38]. Dur-
ing training, a compact representation with minimized error is
created with the use of a loss function is used that ensures that
the output is not far from the input. An Autoencoder that has
more than one hidden layer is called a deep Autoencoder [39].
After pre-processing the text and padding the sentences the
data is split into #1, t2, t3, where #| and #, are small training
sets, while 73 is the test set. The Autoencoders are used for
feature extraction in an unsupervised way. Lets denote the
two Autoencoders as a1 and a». As the first step, 71 is used

VOLUME 10, 2022

to train a;. After this, a; is fed with #, and #3, which results
in the extraction of feature sets f] and f>. To predict the data,

f11s used as an input for an Isolation Forest with 100 Isolation

Trees. The positive predicted data from the output of the
Isolation forest is split into p; and p, and then is used as an
input for ay. Lastly, the output of a, with a threshold is used
to detect anomalies.

2) CNN

The authors of [40] employ Convolutional Neural Networks
to detect anomalies. Instead of global information, CNN is
capable of seizing local semantic information and overcom-
ing over-fitting difficulties that arise in a normal neural net-
work. Features are extracted from local receptive fields that
are part of feature maps of the previous field, with the use of a
convolution operator. A non-linear transformation is executed
with the use of an activation function such as Rectified Linear
Units(ReLU), Tahn, or Sigmoid. The value of an unit position

m,n

(m, n) in i layers j" feature map is denoted as Vi i

Pi1 Qi1
Vi =o (bu 2.2 wf»}qvié‘ﬁ%”‘”))
N p=0 g=0
where P; is the height of the kernel, Q; is the width of the
kernel, N indexes over the set of feature maps in the (i — 1
layer, wf “ is the parameter and b;, ;j stands for a bias function
of this feature map [41].

First, a codebook (a trainable matrix) is created to map each
log key (a frequent constant) in a sequence into a vector.
They call this approach logkey2vec. Since CNN require a 2-
dimension matrix as its input, the codebook is used to map
1-dimension vectors into 2-dimension matrices. After this,
CNN convolutes over the embedded log vectors with three
one-layer filters at the same time. Leaky Rectified Linear Unit
(ReLU), which solves the dead ReLU problem, is used as
an activation function. After the three independent filterings,
a max-pooling layer is employed to concatenate the output
of the filters. In the end, a softmax function is applied to the
concatenated output, which results in the labeling of normal
and abnormal logs.

3) LSTM

The approach proposed in [42] introduces a new word repre-
sentation model, template2vec. To create the template vector,
first, the set of synonyms and antonyms are constructed. This
is followed by the word vector generation, which is based on
the distributional Lexical-Contrast Embedding (dLCE) [43]
algorithm. In the end, the template vector, which is the
weighted average of the word vectors of the words that make
up the template.

Based on the assumption that during normal operation,
log entries have some kind of sequential pattern, they
assume that if no anomaly arises, the next template is
predictable. Denote the set of all discrete template vec-
tors as 2 = {vi,v2,...,v,}. The detection sequence
is a sliding window of w recent templates. Suppose that

118957

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

S; = (8, 8+1,...,8+w—1) is a subsequence of § =
(s1, 82, ..., Sm,) log sequence. In this case, the template vector
sequence for S;is V; = (V(Sj), Vsip1)s -« > V(sj+w_1)), where the
template vector of s; is v(5;) and v(;) € 2.

At this step, they employ a favored recurrent neural net-
work architecture, that is capable of prediction for sequences,
namely LSTM (Long Short Term Memory) [44]. For §; in the
training stage, V; is the input for LSTM.

Apart from sequential patterns, a template sequence
can also have quantitative relations that can be also
used to detect abnormal behavior. Based on this, C; =
(ci(v1), ci(v2), ..., ci(vy)) denotes the count vector of the
log sequence a log entry s; € S;, where ¢;(vy) indi-
cates the number of v; in the template vector sequence
(Vsimwa1)s V(siia)s - - +» V(sp) and v € V. To learn the quanti-
tative pattern of S;, Cj, Cjy1, ..., Cjyw—1 is used as the input
of the LSTM. Using LSTM, the probabilities of the possible
upcoming template vectors after a log sequence is learned.
In the end, if the actual template vector is considered to be
normal, if it is included in the top k candidates provided by
LSTM, otherwise it is considered to be abnormal.

4) TRANSFORMER

The algorithm introduced in [45] consists of two main parts,
the tokenization of the log messages, and the use of a trans-
former, a simple network architecture that is based solely on
an attention mechanism.

First, the log entries are converted into a token sequence
with the use of the Natural Language Toolkit (NLTK)
text processing module [46]. Special ASCII characters are
removed, and the entries are transformed into lowercase and
broken into word tokens. The numbers and stop words are
eliminated, and a special '[EMBEDDING]’ token is added as
the first token, which can be used to summarize the context
of the log entry as a vector representation.

The transformer architecture has an offline and online
mode. The offline mode is used to tune parameters with the
use of the backpropagation of the log entries. During this step,
optimal hyperparameters are chosen. To retrieve the anomaly
score and respective log vector representation z, the entries
are passed through the saved model in the online phase.
The positional encoding is achieved with the use of a multi-
head, self-attention Transformer model [47], which takes the
tokenized entries as its input. The model considers normal
data, to have small distances, while anomalies to be distant.
In the end, a Spherical Cross-Entropy Loss function is used
to calculate the anomaly score for test entries.

D. EVALUATION METRICS
To indicate the performance of a classification model on a set
of test data for which the true values are known, a confusion
matrix is usually used. Figure 2 showcases the structure of
such a matrix.

where T), (True Positives) is the number of positive sam-
ples that the model correctly classified as positive, 7;, (True
Negatives) is the number of negative samples that are pre-

118958

Confusion Matrix

Actually Actually
Positive (1) | Negative (0)
2 True False
Predicted rUL : 5
Positive (1) Positives Positives
e (TPs) (FPs)
. False T
Predicted o s
Negative (0) Negatives Negatives
8 (FNs) (TNs)

FIGURE 2. Confusion matrix.

dicted to be negative, F), (False Positives) is the number of
negative samples which are predicted to be positive, F,, (False
Negatives) is the number of positive samples that the model
incorrectly classified as negative.

Accuracy indicates the ratio of the data that has been
correctly predicted and is denoted as:

T, 4T,
Ty+Ty+Fp+Fy

Precision is a metric that quantifies the number of correct
positive predictions made:

(6)

Ty
=77 @)
p+Ep
Recall is the fraction of relevant instances that were retrieved:
T,
P=—"_ ®)
T, +Fy

F-Measure provides a way to combine both precision and
recall into a single measure that captures both properties:

_2><P><R

P+R ®

IV. THE PROPOSED ALGORITHM
In this paper, we propose a method that uses templates to
predict upcoming anomalies.

First, we use IPLoM, to retrieve the corresponding tem-
plate for all of the log lines. It consists of four steps based
on different heuristics. First, messages with the same word
length are grouped together. Next, the positions that have
the least different words are considered to be constants. The
messages that have the same constants at the same position
are put into the same collection together. After this, a bijection
is made between the entries of a collection to further group
them, resulting in groups that represent different message
types. Finally, the algorithm decides if a word is constant
or not based on the number of different words in that posi-
tion. While there are other template miners, based on our
experiments in [48] and the benchmarking results that were
proposed in [49], we chose to use IPLoM for our algorithm.
A more detailed description of IPLoM can be found in
Section III-A2.

The base idea of our approach is that there could be specific
templates that occur before an error. Error messages usually
contain strings like “error”’, “fail”, “fault” and so on. Based

VOLUME 10, 2022

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

IEEE Access

on the domain knowledge, the user of our algorithm can
define the set words or substrings that may indicate anoma-
lous log messages. Let this set be denoted as E. We split our
data into three parts, 40-40% for training purposes and 20%
for testing The two training sets are denoted as 71 and f», while
the testing set is denoted as #3. The algorithm consists of three
steps.

In the first step, we use the first 40% of our data, t;. We first
identify all the templates, that appear before errors or anoma-
lies. A logline /; is considered to be an anomaly if it contains
any words or substrings from E .First, an empty candidate set
is created, namely C. The corresponding template C; of a log
line, /; is added to the candidate set C, if the following log
line /4| contains any substrings from E.

In the second step, we iterate over t, and watch for candi-
date templates. If a candidate template is found, the upcoming
ten lines are checked for errors and anomalies. Once again,
the words and substrings in E are used to detect anomalies.
We employ two counters for each candidate template C;. The
first one, c;, is increased at every occurrence of C; while the
second one, cj, is only increased if an error has been found in
the next ten lines after the candidate template C;. Candidate
templates, that do not reach a user-defined k ratio of zﬂ are
removed from the candidate set C. "

In the testing phase, the remaining candidate templates are
used to predict upcoming errors on #3 If a candidate template
C; is reached, we signal that the next ten-line is likely to have
an error or anomaly.

A pseudo-code of the proposed algorithm is presented as
Algorithm 1 and a flowchart explaining the proposed algo-
rithm can be seen in Figure 3.

The time complexity of our algorithm is O(n), where n
is the number of log messages that are used to train our
algorithm. This would be a drawback in the case of large
datasets with the size of TBs, however since there are a fixed
number of templates that can occur during the runtime of an
algorithm (no new print statements can be inserted into the
code while running), the algorithm can be trained on small
datasets that contain the templates. This way, our algorithm
can be trained on a predetermined chunk of data, which makes
the algorithm perform in O(1) time, since only the actual log
line has to be checked, and no distribution of the algorithm is
needed. For the same reason, once trained, the algorithm also
can handle real-time data.

V. RESULTS

A. DATA

Four of our datasets, namely ‘“Small”, “Mid”, “Large”
and “Extra Large” were generated by real-life networking
devices that operate at Ericsson-ELTE Software Technology
Lab. All of the provided datasets are distinct. In the case of
these datasets, based on domain knowledge, messages con-
taining the word “error”” were considered to be anomalies.
To get a more detailed picture of the performance of the pro-
posed algorithm compared to the other investigated methods,
the experiments were also carried out on two other datasets

VOLUME 10, 2022

Algorithm 1 Acquiring the Candidate Templates

Input: A collection of log messages
Input: &
Input: E
Output: A set of log templates that indicate upcoming
anomalies
t1 < 40% of the data
tr < 40% of the data
C<{
l; < first line of #;
while /; in #; do o Iterating over all of the log lines in #;
if any from E is in /;;; then
C <« C,‘
end if
li <= lipy
end while
for C;in C do
cin <0
cip <0
end for
l; < first line of 7,
while /; in #; do > Iterating over all of the log lines in 7,
if C; is in C then
Cin < Cin + 1
Bool < False
forj=1,j++,j<10do
if any from E is in [;; then
Bool < True
end if
end for
if Bool then
Cip < Cip+ 1
end if
end if
li <= lip1
end while
for C; in C do
if 22 < k then
remove C; from C
end if
end for

“BGL” and “OpenSSH”’, which are available at [50].In the
case of “BGL” anomalies are indicated with anything other
than “—"" in the first column. In the case of “OpenSSH”’,
the ““fail” string was used to classify the messages, based on
domain knowledge. While log entries from our dataset can
belong to 107 possible templates, there are 27 event types
regarding “OpenSSH” and 377 in the “BGL” dataset. More
detailed information about the datasets can be seen in Table 1.

B. EXPERIMENTAL ANALYSIS
We performed several experiments to measure the prediction
performance of our proposed algorithm. The runtime of the

118959

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

Jump to next

Initialize E and k and
ty

Have log message?

ave following log
message?

message

Does the following
message contain
anything from E7

Add template to C

A

Jump to next
message

Is the message
template in C?

Initialize: to Have log message?

Jump to next

message

Is the message
template in C?

Have log message?

Initialize t3

FIGURE 3. The flowchart of the proposed algorithm.

TABLE 1. Size of the datasets.

Name Number of messages | Size in kilobytes | Number of templates
OpenSSH | 2,000 220 KB 27

BGL 2,000 310 KB 377

Small 39,139 1,152 KB 107

Mid 124,433 4,607 KB 107

Large 280,002 10,198 KB 107

ExtraLarge | 637,369 22,840 KB 107

method was also inspected. In the case of all the datasets,
IPLoM [26] was used to retrieve the templates. Since the
other algorithms required blocks (a set of lines after each
other), we grouped the lines by tens to create blocks. As men-
tioned before, in the case of our datasets, blocks containing
“error” were considered to be anomalies. The “fail”” string
was associated with anomalies in the case of “OpenSSH”.
In the case of the “BGL” dataset, every label other than “—"
is an anomaly [50]. To acquire our user-defined parameter k,

118960

Does the following
ten message contain
anything from £?

Increase cip

Increase Cin

Signal error

we ran the algorithm on a small subset of our data, for all
possible parameters (1-100%), and the one yielding the best
result was chosen. In the case of the examined algorithms,
the default parameters were used [51], [52]. A summary of
the parameters that have been used by the different machine
learning algorithms can be seen in Table 2. The “OpenSSH”
and “BGL” datasets were also used to evaluate performance
in the papers of the investigated methods. The results on
these datasets, as well as on our datasets can be seen in
Tables 3, 4, 5, 6, 7.

1) EXPERIMENT 1: COMPARING THE PRECISION VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS

First, we investigated the precision values achieved by the
different algorithms on the used datasets, to measure the

VOLUME 10, 2022

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

IEEE Access

TABLE 2. The parameters used for the machine learning algorithms in the experiments.

Hidden Directions | Layers Embedding| Head Kernel
size dimension | number size
Autoencoder 128 2 2 32 - -
CNN 128 - - 32 - 2
LSTM 128 2 2 32 - -
Transformer 128 - - 32 2 -
TABLE 3. The precision values achieved by the different algorithms.
BGL OpenSSH | Small Mid Large ExtraLarge | Average
Proposed 52,00 100,00 92,06 85,63 100,00 98,74 88,07
Autoencoder 50,00 50,00 86,08 54,22 54,76 60,05 59,19
CNN 60,00 100,00 99,69 99,10 99,72 99,80 93,05
LSTM 58,33 80,00 53,82 49,67 41,33 44,65 54,63
Transformer 60,00 75,00 52,63 37,25 32,66 38,30 49,31
IsolationForest | 0,00 0,00 84,50 68,60 79,10 90,90 53,85
LogClustering | 27,50 100,00 96,50 89,50 97,80 98,80 85,02
PCA 41,70 0,00 49,10 45,60 55,40 59,30 41,85
SVM 52,20 100,00 98,20 99,80 100,00 100,00 91,70
Precision values on the different datasets Recall values on the different datasets
100.00 x Proposed 100.00 ~ x = * Proposed
X * Autoencoder = % Autoencoder
s X * ChN * x ChN
7500 . x LSTM 500 == . X x LSTM
§ ¥ X * Transformer = X * Transformer
T:’ X x X IsolationForest Ef, x % IsolationForest
5 5000 % x x = 5000
» . X LogClustering 0] x & g . LogClustering
é x : X PCA I PCA
25.00 SvM 2500 F 2 SvM

0.00

BGL OpenSSH Small Mid Large Extralarge

FIGURE 4. Precision values achieved by the different algorithms on the
investigated datasets.

number of correct predictions. The results can be seen in
Figure 4. The numerical results are shown in Table 3.

It can be seen that the proposed algorithm ranks in the top
four in the case of every dataset. On average, the proposed
method achieves 88.07% precision and is only outperformed
by SVM (91.7%) and CNN (93.05%), while PCA has the
worst performance with 41.85% on average.

2) EXPERIMENT 2: COMPARING THE RECALL VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS

To evaluate the algorithm’s capability to return most of the
relevant results, we also measured the recall values achieved
on the different datasets. The results are shown in Figure 5.
The numerical results can be seen in Table 4.

In the case of almost all of the investigated datasets, our
algorithm has the second-best value. It accomplishes 90.43%
on average, slightly behind SVM and CNN that reaching
91.17% and 91, 76% respectively. In the case of recall, Isola-
tion Forest comes the worst with 5.55%.

3) EXPERIMENT 3: COMPARING THE F-SCORE ACHIEVED BY
THE DIFFERENT ALGORITHMS

In this experiment, we measure the F-score of the investigated
methods, which provides a way to combine both precision
and recall into a single measure that captures both properties.

VOLUME 10, 2022

0.00

BGL OpenSSH Small M@ Large Extralarge

FIGURE 5. Recall values achieved by the different algorithms on the
investigated datasets.

F-score values on the different datasets

100.00 * x Proposed
X) < Altoencoder

CNN

LST™M

*x x Transformer

75.00

e

x IsolationForest
50.00 %
LogClustering

X X PCA

F-score (%)

2500 x X SV

BGL OpenSSH Small Mid Large Extralarge

FIGURE 6. F-score values achieved by the different algorithms on the
investigated datasets.

The results are shown in Figure 6 and the detailed results can
be seen in Table 5.

Based on our experiments, the proposed algorithm is prac-
tically among the three best algorithms. It scores an average
of 89.11%, somewhat falling behind CNN and SVN with
91.89% and 91.95%, while Isolation Forest comes last with
9.98%.

4) EXPERIMENT 4: COMPARING THE ACCURACY VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS

Accuracy indicates how close or far off a given set of mea-
surements (observations or readings) are to their true value.

118961

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

TABLE 4. The recall values achieved by the different algorithms.

BGL OpenSSH | Small Mid Large ExtraLarge | Average
Proposed 57,14 100,00 99,29 100,00 96,40 92,72 90,43
Autoencoder | 28,57 28,57 19,71 17,00 20,00 17,09 21,82
CNN 85,71 85,71 91,88 97,23 95,02 94,99 91,76
LSTM 100,00 57,14 81,74 47,10 47,67 41,23 62,48
Transformer 85,71 42,86 78,26 77,08 71,67 64,35 69,98
IsolationForest | 0,00 0,00 6,20 10,00 8,70 8,40 5,55
LogClustering | 95,00 70,60 48,60 42,00 35,70 32,00 53,98
PCA 75,00 0,00 10,30 20,40 10,80 11,00 21,25
SVM 60,00 100,00 94,50 100,00 99,50 100,00 91,17
TABLE 5. The f-score values achieved by the different algorithms.
BGL OpenSSH | Small Mid Large ExtraLarge | Average
Proposed 53,06 100,00 95,54 92,26 98,17 95,64 89,11
Autoencoder | 36,36 36,36 32,08 25,89 29,30 26,61 31,1
CNN 70,59 92,31 95,63 98,16 97,31 97,34 91,89
LSTM 73,68 66,67 64,90 48,35 44,28 42,87 56,79
Transformer 70,59 54,55 62,94 50,23 44,87 48,02 55,20
IsolationForest | 0,00 0,00 11,50 17,40 15,70 15,30 9,98
LogClustering | 42,70 82,80 64,70 57,20 52,30 48,30 58,00
PCA 53,60 0,00 17,00 28,20 18,00 18,50 22,25
SVM 55,80 100,00 96,30 99,90 99,70 100,00 91,95
TABLE 6. The accuracy values achieved by the different algorithms.
BGL OpenSSH | Small Mid Large ExtraLarge | Average
Proposed 92,81 100,00 98,72 98,48 99,82 99,30 98,19
Autoencoder 82,50 82,50 63,17 69,93 73,71 68,84 73,44
CNN 87,50 97,50 96,29 98,83 98,57 98,28 96,16
LSTM 82,50 82,50 55,88 68,09 72,77 66,95 71,44
Transformer 82,50 82,50 55,88 68,09 72,71 66,95 71,44
IsolationForest | 80,00 83,20 61,40 70,40 74,00 69,50 73,08
LogClustering | 49,00 95,00 78,40 80,30 81,90 77,50 77,01
PCA 74,00 83,20 59,20 67,40 72,80 68,20 70,80
SVM 81,00 100,00 97,00 99,90 99,90 100,00 96,30
TABLE 7. The speed values achieved by the different algorithms in seconds.
BGL OpenSSH | Small Mid Large ExtraLarge | Average
Proposed 0,076 0,071 1,242 3,378 9,628 31,956 7,72
Autoencoder 1,345 1,365 11,114 28,048 62,930 265,978 61,79
CNN 0,330 0,700 6,878 11,256 25,824 74,548 19,92
LSTM 2,002 1,764 7,811 23,404 53,328 261,412 58,28
Transformer 1,413 0,750 2,297 17,884 19,832 65,812 17,99
IsolationForest | 0,394 0,388 3,082 11,333 20,522 45,193 13,48
LogClustering | 0,255 0,259 18,525 40,642 89,944 290,464 73,34
PCA 0,170 0,166 2,101 6,747 19,877 98,798 21,30
SVM 0,157 0,154 2,448 7,354 16,770 50,211 12,84

In this experiment, we measure the achieved accuracy values
of the different algorithms. The results can be seen in Figure 7
as well as Table 6.

It can be seen that the proposed algorithm has the best or
the second-best score achieved on the given datasets. On aver-
age, it has the best value with 98.19% and is followed by SVM
which scored 96.30%, and CNN with 96.16%, while PCA is
the worst with 70.8%.

5) EXPERIMENT 5: COMPARING THE SPEED OF THE
DIFFERENT ALGORITHMS

While the precision, recall, f-score, and accuracy values of an
algorithm are important, the time an algorithm takes to predict
or detect anomalies is also important, especially in the case of
large-scale software or healthcare software, where immediate
response is vitally important. In this experiment, we measured

118962

Accuracy values on the different datasets

100.00 x x Proposed
X x Autoencoder
¥ X CNN
75.00) < LSTM
- X & = Transformer
g X IsolationF
" solationForest
& 5000
g LogClustering
8 PCA
<
2500 SVM

0.00

BGL OpenSSH Small Mid Large ExtraLarge

FIGURE 7. Accuracy values achieved by the different algorithms on the

investigated datasets.

the run time of the different methods. The results are shown
in Figure 8 and Table 7.

VOLUME 10, 2022

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

IEEE Access

Speed on the different datasets

300.000 x Proposed

x Autoencoder
CHNN

* LSTM

200800 = Transformer
IsolationForest
LogClustering
PCA

SVM

Elapsed time (s)

100.000
x %

X x

¥ x

* X

0000 — =i

BGL OpenSSH Small Mid Large ExtraLarge

FIGURE 8. The speed of the different algorithms on the investigated
datasets.

It can be seen that our algorithm is the fastest out of all
of the investigated methods. It needs about two times less
time to make the predictions/detections than SVM, and about
three and a half times less time than CNN. Based on our
experiments, the Autoencoder, LSTM, and LogClustering
algorithms needed the most time to yield the results.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a new algorithm that takes the
template of the actual log entry into account while predicting
if either an anomaly/error will happen, or not. The data is first
split into three pieces, 40-40% for the two training phases,
and 20% for the testing phase. In the first training phase,
the templates that are followed with an error or anomaly
are collected into a set, these are called candidate templates.
In the second training set, we check if there is an actual
error in the next ten template after a candidate template. If a
user-defined percentage is reached, we keep the template,
otherwise, we discard it from the candidate set.

To evaluate the performance of the new method, we con-
ducted various experiments like measuring the precision,
recall, f-score, or accuracy values, as well as the time it takes
to make a prediction. The results yielded that the proposed
algorithm achieves high values, an average of 88.06% for
precision, 90.43% for recall, and 89.11% for f-score. These
values are slightly lower (about 1% to 4%) than the values
that were achieved by SVM and CNN. In the case of accuracy,
our algorithm had the best results with an average of 98.19%.
Our algorithm is also faster than all of the other investigated
methods, it is about two times faster than SVM and three and
a half times faster than CNN.

Thanks to the speed and high accuracy of our method, it can
be effectively used in the prevention of software failures in
telecommunication networks, based on logs collected from
the network nodes, but in various other environments too
helping the maintenance of such systems.

We only evaluated the performance of a set of algorithms,
in the future, it would be beneficial to compare the perfor-
mance with other methods. It would be also interesting to
investigate if machine learning algorithms used in pair with
our algorithm could achieve better results.

VOLUME 10, 2022

REFERENCES

[1]

[2]

[3]

[4]

[5

—

[6]

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

I. W. R. Wijaya and Mudjahidin, ‘“Development of conceptual model to
increase customer interest using recommendation system in e-commerce,”
Proc. Comput. Sci., vol. 197, pp. 727-733, Jan. 2022.

1. S. Y. Kwan, J. Fong, and H. K. Wong, “An e-customer behavior model
with online analytical mining for internet marketing planning,” Decis.
Support Syst., vol. 41, no. 1, pp. 189-204, Nov. 2005.

A. Nguyen, “Using machine learning to predict the low grade risk for
students based on log file in moodle learning management system,” Int.
J. Comput. Digit. Syst., vol. 11, no. 1, pp. 1133-1140, Mar. 2022.

R. M. Alguliyev, F. J. Abdullayeva, and S. S. Ojagverdiyeva, “‘Log-file
analysis to identify internet-addiction in children,” Int. J. Mod. Educ.
Comput. Sci., vol. 13, no. 5, pp. 1-9, 2021.

D. Basin, M. Gras, S. Krstic, and J. Schneider, *“Scalable online monitoring
of distributed systems,” in Proc. Int. Conf. Runtime Verification. Cham,
Switzerland: Springer, 2020, pp. 197-220.

S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang, ‘“‘Identifying
impactful service system problems via log analysis,” in Proc. 26th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018,
pp. 60-70.

J. Kimball, R. A. Lima, and C. Pu, “Finding performance patterns from
logs with high confidence,” in Proc. Int. Conf. Web Services. Cham,
Switzerland: Springer, 2020, pp. 164-178.

S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey on
automated log analysis for reliability engineering,” ACM Comput. Surveys,
vol. 54, no. 6, pp. 1-37, Jul. 2021.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in Proc. IEEE Int. Conf.
Web Services (ICWS), Honolulu, HI, USA, Jun. 2017, pp. 33-40, doi:
10.1109/ICWS.2017.13.

K. Shima, “Length matters: Clustering system log messages using length
of words,” 2016, arXiv:1611.03213.

S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas,
“A search-based approach for accurate identification of log message for-
mats,” in Proc. 26th Conf. Program Comprehension, Gothenburg, Sweden,
May 2018, pp. 167-177.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002, doi: 10.1109/4235.996017.

M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in Proc.
IEEE 16th Int. Conf. Data Mining (ICDM), Barcelona, Spain, Dec. 2016,
pp. 859-864.

D. Plaisted and M. Xie, “DIP: A log parser based on ‘disagreement index
token’ conditions,” in Proc. ACM Southeast Conf., 2022, pp. 113-122.

I. Yagoub, M. A. Khan, and L. Jiyun, “IT equipment monitoring and
analyzing system for forecasting and detecting anomalies in log files
utilizing machine learning techniques,” in Proc. Int. Conf. Adv. Big Data,
Comput. Data Commun. Syst. (icABCD), Aug. 2018, pp. 1-6.

1. A. Khan, D. Pi, Z. U. Khan, Y. Hussain, and A. Nawaz, “HML-IDS: A
hybrid-multilevel anomaly prediction approach for intrusion detection in
SCADA systems,” IEEE Access, vol. 7, pp. 89507-89521, 2019.

Y. Harada, Y. Yamagata, O. Mizuno, and E.-H. Choi, ‘“Log-based anomaly
detection of CPS using a statistical method,” in Proc. 8th Int. Workshop
Empirical Softw. Eng. Pract. (IWESEP), Mar. 2017, pp. 1-6.

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2000, pp. 93-104.

M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly
detection techniques in financial domain,” Future Gener. Comput. Syst.,
vol. 55, pp. 278-288, Feb. 2016.

T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo, “Fraud detec-
tion: A systematic literature review of graph-based anomaly detection
approaches,” Decis. Support Syst., vol. 133, Jun. 2020, Art. no. 113303.
J. Vanhoeyveld, D. Martens, and B. Peeters, ““Value-added tax fraud detec-
tion with scalable anomaly detection techniques,” Appl. Soft Comput.,
vol. 86, Jan. 2020, Art. no. 105895.

N. Shvetsova, B. Bakker, I. Fedulova, H. Schulz, and D. V. Dylov,
“Anomaly detection in medical imaging with deep perceptual autoen-
coders,” IEEE Access, vol. 9, pp. 118571-118583, 2021.

T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes,
“Deep learning for medical anomaly detection—A survey,” ACM Comput.
Surv., vol. 54, no. 7, pp. 1-37, 2021.

P. Marjai, P. Lehotay-Kéry, and A. Kiss, “Document similarity for error
prediction,” J. Inf. Telecommun., vol. 5, no. 4, pp. 407-420, Oct. 2021.

118963

http://dx.doi.org/10.1109/ICWS.2017.13
http://dx.doi.org/10.1109/4235.996017

IEEE Access

P. Marjai et al.: Heuristic Approach Using Template Miners for Error Prediction in Telecommunication Networks

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log
parsing and its use in log mining,” in Proc. 46th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Toulouse, France, Jun. 2016, pp. 654-661.
A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 1921-1936, Nov. 2012, doi:
10.1109/TKDE.2011.138

F.T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413-422.

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “‘Log clustering based
problem identification for online service systems,” in Proc. 38th Int. Conf.
Softw. Eng. Companion, May 2016, pp. 102-111.

H. Schiitze, C. D. Manning, and P. Raghavan, Introduction to Informa-
tion Retrieval, vol. 39. Cambridge, U.K.: Cambridge Univ. Press, 2008,
pp. 234-265.

J. C. Gower and G. J. Ross, “Minimum spanning trees and single link-
age cluster analysis,” J. Roy. Stat. Soc., C Appl. Statist., vol. 18, no. 1,
pp. 54-64, 1969.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, ‘“Largescale
system problem detection by mining console logs,” in Proc. SOSP, 2009,
pp. 1-20.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “‘Detecting large-
scale system problems by mining console logs,” in Proc. ACM SIGOPS
22nd Symp. Operating Syst. Princ. (SOSP), 2009, pp. 117-132.

R. Dunia and S. J. Qin, “Multi-dimensional fault diagnosis using a sub-
space approach,” in Proc. Amer. Control Conf., 1997, pp. 1-5.

Y. Zhang and A. Sivasubramaniam, “Failure prediction in IBM Blue-
Gene/L event logs,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Apr. 2008, pp. 583-588.

M. V. Joshi, R. C. Agarwal, and V. Kumar, “Mining needle in a haystack:
Classifying rare classes via two-phase rule induction,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2001, pp. 91-102.

M. V. Joshi, R. C. Agarwal, and V. Kumar, “Predicting rare classes: Can
boosting make any weak learner strong?”” in Proc. 8th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), 2002, pp. 297-306.

A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly detec-
tion,” ICT Exp., vol. 6, no. 3, pp. 229-237, 2020.

J. L. McClelland and D. E. Rumelhart, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Psychological and Bio-
logical Models, vol. 2. Cambridge, MA, USA: MIT Press, 1987.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data system
logs using convolutional neural network,” in Proc. IEEE 16th Intl Conf
Dependable, Autonomic Secure Comput., 16th Intl Conf Pervasive Intell.
Comput., 4th Intl Conf Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), Aug. 2018, pp. 151-158.

S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, Jan. 2012.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “LogAnomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proc. 28th
Int. Joint Conf. Artif. Intell., Aug. 2019, vol. 19, no. 7, pp. 4739—4745.

K. A. Nguyen, S. S. I. Walde, and N. T. Vu, “Integrating distributional
lexical contrast into word embeddings for antonym-synonym distinction,”
2016, arXiv:1605.07766.

M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285-1298.

S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-
attentive classification-based anomaly detection in unstructured logs,” in
Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2020, pp. 1196-1201.

118964

(46]

(47]

(48]

(49]

(50]

(51]

(52]

E. Loper and S. Bird, “NLTK: The natural language toolkit,” 2002,
arXiv:cs/0205028.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30,2017, pp. 1-11.

P. Marjai, P. Lehotay-Kéry, and A. Kiss, “The use of template miners and
encryption in log message compression,” Computers, vol. 10, no. 7, p. 83,
2021.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and
benchmarks for automated log parsing,” in Proc. IEEE/ACM 41st Int. Conf.
Softw. Eng., Softw. Eng. Pract. (ICSE-SEIP), May 2019, pp. 121-130.
S.He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection of system
log datasets towards automated log analytics,” 2020, arXiv:2008.06448.
S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in Proc. IEEE 27th Int. Symp. Softw. Rel.
Eng. (ISSRE), Oct. 2016, pp. 207-218.

Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,” 2021,
arXiv:2107.05908.

PETER MARIJAI received the M.Sc. degree in
computer science from the Faculty of Informat-
ics, Eotvos Lordand University, Budapest, in 2021.
He is currently pursuing the Ph.D. degree with spe-
cialization in information systems. His scientific
research interests include centrality measures, log
processing, parsing, and compression.

PETER LEHOTAY-KERY received the M.Sc.
degree in computer science from the Faculty of
Informatics, E6tvos Lordand University, Budapest,
in 2018. He is currently pursuing the Ph.D. degree
with specialization in information systems. His
scientific research interests include databases, big
data, datamining, and bioinformatics.

ATTILA KISS received the Ph.D. degree database
theory, in 1991. Seven students received their
Ph.D. degrees under his supervision. Since 2010,
he has been the Head of the Department of Infor-
mation Systems, Eotvos Lordand University, Hun-
gary. He is also teaching with J. Selye University,
Slovakia. He has more than 190 scientific publi-
cations. His research interests include information
systems, data mining, and artificial intelligence.

VOLUME 10, 2022

