
Received 22 September 2022, accepted 31 October 2022, date of publication 10 November 2022,
date of current version 17 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221428

Using Conceptual Models in Agile Software
Development: A Possible Solution to
Requirements Engineering Challenges
in Agile Projects
ABHIMANYU GUPTA 1, GEERT POELS 1,2, AND PALASH BERA3
1Department of Business Informatics and Operations Management, Faculty of Economics and Business Administration, Ghent University, 9000 Ghent, Belgium
2Core Laboratory CVAMO, FlandersMake@UGent, 9000 Ghent, Belgium
3Operations and ITM Department, Chaifetz School of Business, Saint Louis University, Saint Louis, MO 63108, USA

Corresponding author: Abhimanyu Gupta (abhimanyu.gupta@ugent.be)

This work was supported by the Fund for Scientific Research—Flanders (FWO) under Grant G.0101.16N-39515.

ABSTRACT Studies on requirements engineering with Agile methods for software development have shown
difficulties in managing the quality of the requirements and communicating with users. Some of these studies
have proposed conceptual modeling as a solution to these problems. However, the effort that is required
to create conceptual models conflicts with Agile values. In this paper, we propose an approach for using
conceptual models in projects while adhering to Agile principles. This approach focuses on projects in
which requirements are expressed as user stories that are the main artifacts of the requirements used for
software development with Agile methods. First, the paper presents a literature review in which we have
systematically searched for the challenges to requirements engineering with Agile methods. Next, we report
on a survey study in which we interviewed 16 experts in the Agile methodology to confirm the identified
challenges and find new ones that are not covered in the literature. Based on a thematic analysis of the
challenges, we argue that most of themmap to the twomain purposes of using conceptual models in software
development: improving communication and understanding requirements. To effectively use conceptual
models in projects that use the Agile methodology, several conditions must be met, which we make explicit
in the paper. The paper ends by illustrating how these conditions can be met demonstrating the models that
can be automatically generated from a given set of user stories. This demonstration was subsequently used to
obtain feedback from the experts on the perceived benefits of conceptual models in addressing the challenges
of requirements engineering.

INDEX TERMS Agile software development, user stories, conceptual models.

I. INTRODUCTION
The purpose of the manifesto for Agile Software Develop-
ment [1] was to uncover better ways of developing software.
The manifesto proposed the following values: individuals
and interactions over processes and tools; working software
over comprehensive documentation; customer collaboration
over contract negotiation; and responding to change over
following a plan.

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Piccinno .

Based on these values, Agile methods like Extreme Pro-
gramming, Scrum, Kanban, and SAFe, prescribe shorter and
more incremental development iterations than other method-
ologies for software development do. After each iteration the
requirements can bemodified [2]. Therefore, developers have
adopted Agile methods in practice for their ability to embrace
change rather than to avoid it and to respond efficiently and
effectively to changing requirements [3].

The main artifact of requirements in the Agile method-
ology is the user story [4]. A user story is a simple textual
description of a desired feature of the working software

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119745

https://orcid.org/0000-0001-9846-5495
https://orcid.org/0000-0001-9247-6150
https://orcid.org/0000-0003-1561-7073


A. Gupta et al.: Using Conceptual Models in Agile Software Development

that is written from the user’s perspective and is typically
formulated using a standardized text template [5], [6] (see
Table 8 in Section 7 for examples). In the Agile methodology,
developers most often use user stories to describe functional
requirements [7] (as in Table 8). Note that the nonfunctional
requirements are out of the scope of this paper. Although user
stories provide an easy-to-use mechanism for documenting
and communicating the desired system features, user stories
as used in practice are prone to ambiguity that leads to risks
of the imprecision, inconsistency, incompleteness, and redun-
dancy of the requirements [8].

Other software development methodologies, for instance
the rational unified process (RUP) or that follow an object-
oriented methodology to software development, use concep-
tual models such as use case diagrams in the unifiedmodeling
language (UML), activity diagrams, state machine diagrams,
and class diagrams (see Figures 1 and 2 in Section 7 for
examples) to conceptualize the domain that the system sup-
ports and to visually represent the functionality expected from
the system. Conceptual models support requirements analysis
and system design [9]. As visual representations, they facil-
itate communication among the project team members and
help create a shared understanding of how a system should
support a domain [10].

In the Agile methodology, the use of conceptual models
is not common as the effort required to create the models
conflicts with Agile values. Instead, the focus of requirements
engineering in the Agile methodology is to efficiently and
flexibly transfer ideas from the customer to the development
team but without creating excessive documentation of the
requirements [11].

In practice, however, requirements engineering in theAgile
methodology is challenging, as many surveys and literature
reviews have reported [11], [14]. So, while visual models
have proven their effectiveness in supporting requirements
engineering, their use is not advocated by Agile proponents.
Therefore, we explore in the following question: how can
conceptual models address the challenges of requirements
engineering in the Agile methodology for software develop-
ment without conflicting with its values? Recently, studies
have suggested that the use of conceptual models to under-
stand and analyze requirements that developers have formu-
lated as a set of related user stories (e.g., a theme or epic
in Scrum) is a research opportunity [8]. We not only inves-
tigate this broad research opportunity but also explore a more
focused one: how can conceptual models address the chal-
lenges of requirements engineering in the Agile methodology
for software development that are related to user stories?

To investigate these research questions, we first reviewed
the recent literature and conducted expert interviews to iden-
tify these challenges. In doing so, we have updated existing
surveys and review studies (e.g., [11] and [14]) as the Agile
methodology for software development is a rapidly chang-
ing area [15] that has become more complex with projects
involving multiple team members in multiple locations

(e.g., offshore premises) [16]. In our investigation, we focus
specifically on the challenges related to the documentation of
user stories as an artifact for requirements.

Next, through a thematic analysis of the identified chal-
lenges, we show that most challenges can be mapped to
the main purposes for using conceptual models: improving
communication among project stakeholders and improving
the understanding of the requirements.

Subsequently, to further explore how conceptual models
can be usedwithout conflicting with Agile values, we identify
the conditions that need to be met for the use of conceptual
models in projects that document user stories for require-
ments. We also demonstrate an example in which we are able
to meet these conditions when models can be automatically
generated from the information captured by the user stories.

Finally, to evaluate the usefulness of conceptual models
in addressing the challenges to requirements engineering in
the Agile methodology for software development, we demon-
strate a set of models to experts that we interviewed to seek
their opinion on how these models could benefit requirements
analysis in the Agile methodology. We also map these ben-
efits to the challenges of requirements engineering that we
identified.

To summarize, this paper contributes to the state-of-the-
art by providing an up-to-date overview of the challenges
to requirements engineering that are observed in the current
practice of the Agile methodology for software development:
we identify those challenges that can potentially be addressed
by using conceptual models; identify the conditions that need
to be met for adopting conceptual models in the practices of
the Agile methodology; and we demonstrate that it is possible
to meet these conditions in projects that use user stories to
document requirements. With these novel contributions, our
explorative research provides a basis from which researchers
can further investigate the use of conceptual models in the
Agile methodology to support requirements engineering.

In Section 2, we provide a background on requirements
engineering in the Agile methodology for software devel-
opment. In Section 3, we describe the methodology of our
explorative study. Section 4 presents the literature review
of the challenges to requirements engineering for the Agile
methodology. Section 5 presents the results of interviewswith
16 experts in the Agile methodology for software develop-
ment. In Section 6, we synthesize the results of the literature
review and the interviews. In this section, we also map the
identified challenges to the purposes of using conceptual
models to explore how the use of conceptual models can
address them. Following this mapping, in Section 7 we iden-
tify conditions for using conceptual models without compro-
mising adherence to Agile values.We also demonstrate in this
section how these conditions can be met for projects using
user stories, andwe report on the perceived benefits ofmodels
generated from user stories after being shown to our experts.
Section 8 presents our conclusion and suggestions for further
research.

119746 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

II. REQUIREMENTS ENGINEERING IN THE
AGILE METHODOLOGY
One of the most difficult tasks in developing software is
requirements engineering [16]. As a result, software develop-
ment has used the Agile methodology as a management tool.
The Agile methodology comprises a set of principles that val-
ues individuals and interactions over processes and similarly,
prefers working software over documentation [1]. The Agile
methodology prescribes an iterative and incremental develop-
ment process in which the Agile team works closely with the
customer [16]. TheAgilemethodology focuses on continuous
and iterative improvement of the software development as
driven by the actual experience of using the software [17].
Each iteration has phases of design, implementation, and
testing as well as an requirements analysis [17].

To organize the Agile process, the team uses several meth-
ods such as Extreme Programming, Kanban, SAFe, and
Scrum; Scrum is generally recognized as the most adopted
method [16]. Scrum defines three roles for project teams:
product owner, developer, and scrum master [16]. The scrum
master guides and coaches the team to the proper understand-
ing and use of Scrum. The product owner is responsible for
managing the requirements and identifying the features to be
implemented in the iterative development phases, also known
as sprints [16], [18]. The implementation of the features is the
responsibility of the developer.

In combination with methods such as Scrum, teams use
several techniques such as behavior-driven development
(BDD) and test-driven development (TDD) in the Agile
methodology to organize the activities in requirements engi-
neering. BDD comprises the use of user stories and accep-
tance criteria to specify a system’s requirements [19]. In the
TDD, the team writes tests before the developers produce the
actual code, and this test writing is considered as part of
the requirements engineering [4].

Using conceptual models in the Agile methodology is by
itself not a novel idea. Recker and Green [20] have pointed
out that although the Agile methodology has gained popu-
larity recently, the use of conceptual models has not disap-
peared from software development. Some researchers suggest
using even more documentation (including visual models)
and tools in the Agile methodology. For instance, contrary
to Agile practices, researchers have found that tacit knowl-
edge is not sufficient and formal documentation is therefore
necessary [21]. Vithana [16] argues that since formal doc-
umentation is missing, verification of requirements might
not be adequately addressed. To alleviate the communication
problems in Agile projects, Sundararajan et al. [21] suggest
the creation of design documents for the overall architecture
of the systems, the design of the database, and the inter-
facing needs of the systems. Daneva et al. [22] conduct a
survey and find that the sharing of domain knowledge is an
important characteristic for prioritizing requirements in Agile
projects. Consequently, they suggest the introduction of the
role of domain owner to the Agile team that is responsible for

acquiring knowledge of the business processes. This knowl-
edge is usually reflected in business process models.

Related to user stories, Kannan et al. [23] have proposed
the use of use case diagrams in the UML that are obtained
from user stories where each user story is represented as a use
case. Based on a survey of the use of models, Schön et al. [15]
finds that some organizations that use the Agile methodology
are using use case diagrams, story cards (i.e. details of user
stories), and mind maps to create shared understanding and
getting potential users involved in the development process.
Along a similar vein, Helmy et al. [24] argue that developing
high-level domain models as part of the initial efforts at archi-
tectural modeling can guide both the design of the physical
data model and class design. Trkman et al. [25] suggest that
using business process models leads to a better understanding
of the dependencies among user stories. In their systematic
literature review, Amna and Poels [8] find 13 studies that
propose the use of models for tackling problems related to
the ambiguity in user stories. They also find that the literature
has only validated a few of these proposed solutions. Further,
the question of how to develop and use the models within an
Agile project is still an open one.

III. METHODOLOGY
We conducted an exploratory study to investigate our research
questions. Our study consisted of three steps. First, we con-
ducted a literature review to identify current challenges to
requirements engineering in Agile projects. The literature
reviews and surveys [11], [14] indicated that in spite of the
popularity of applying the Agile methodology to software
development, there were key challenges in eliciting, docu-
menting, analyzing, verifying, and validating requirements
in these projects. Some of these studies reviewed research
papers published in the early development of Agile when its
use was not yet common. As of today, the Agile methodology
is used extensively in software development which is an
area that has increased in complexity (e.g., global software
development) [16]. Therefore, the verification of whether
the challenges to requirements engineering that these past
reviews and surveys have identified are still relevant and
whether studies or practitioners have found new challenges
in the development of Agile.

As a second step we conducted semi-structured interviews
with experienced practitioners of the Agile methodology to
validate the challenges identified by the literature and to iden-
tify new ones it had not uncovered. In these interviewswe also
focused specifically on the practice of describing require-
ments with user stories. The synthesized list of literature-
based and interview-based challenges was then mapped for
the purpose of using conceptual models to provide some
initial insights into the answers to the research questions.

As a third and last step, we reflected on the conditions that
needed to be met for using conceptual models in the Agile
methodology. To further explore the answers to our research
questions, we then demonstrated how the information

VOLUME 10, 2022 119747



A. Gupta et al.: Using Conceptual Models in Agile Software Development

captured in user stories could be used to generate concep-
tual models, and how these models could then be useful
for addressing the identified challenges. To evaluate whether
expert practitioners of the Agile methodology would also
perceive this process as useful, we continued some of the
interviews of the second step by showing the example set of
related user stories and the models generated from them and
asking the participants how they thought these models could
benefit the analysis of requirements.

A. LITERATURE REVIEW
To update the current knowledge of the challenges that Agile
faces in requirements engineering, we performed a systematic
search of papers published in the academic journals in the
Elsevier and Science Direct libraries. These libraries include
numerous field journals that frequently publish peer-reviewed
papers related to software development (e.g., Journal of Sys-
tems and Software, Information and Software Technology,
IEEE Software, and Software Quality Journal). They also
contain the flagship journals of the broader field of software
engineering and information systems (e.g., MIS Quarterly
and Information Systems Research).

To manage the scope of the literature review and effort
required to analyze papers, we searched for those that explic-
itly discussed the challenges to requirements engineering for
the Agile methodology. In other words, we did not intend to
review all published work on the Agile but to look ourselves
for elements that could be interpreted as challenges to engi-
neering and managing requirements that could also introduce
a certain degree of subjectivity. To search for papers, we built
search strings that contained the words ‘‘agile’’, ‘‘require-
ment(s)’’, and ‘‘challenge(s)’’. The ‘‘challenges’’ searches
used three synonyms ‘‘difficulties’’, ‘‘obstacles’’, and ‘‘hin-
drances’’ (and the singular version of these plural words) as
alternates. As agile is a term also used in other domains,
we added ‘‘software’’ or ‘‘information systems’’ to these
search strings to focus exclusively on papers related to the
development of software or information systems.

Our searches were performed at the end of 2020 and were
limited to the most recent 11 full years from 2009-2019. The
automated search returned 865 papers. Our inclusion criteria
for the review were ‘‘peer-reviewed papers’’ (e.g., exclud-
ing book reviews and editorials) and ‘‘relevancy’’. The lat-
ter criterion was evaluated by reading the papers’ abstracts
and verifying whether the term ‘‘agile’’ referred to software
development and its challenges (or difficulties, obstacles,
etc.) while also referring to requirements engineering related
activities or concerns. The exclusion criteria used language
(only papers in English) and when the full text of the paper
was not available. After verifying these criteria, 57 papers
were selected for further analysis (see Table 1 for the full
references of these papers).

The analysis itself involved extracting the challenges to
requirements engineering discussed in the papers. Next, a uni-
fied list of these challenges was compiled. As we ended
up with a list of 22 challenges, much longer than the

8 challenges in each of the previously mentioned reviews
[11], [14], we decided to group challenges into several themes
in our analysis. The thematic analysis [26] is a qualitative
data method that relies on coding techniques to make sense
of the data and discover underlying themes. Although these
coding techniques are like those used in the grounded theory
method [27], the thematic analysis does not aim at con-
structing hypotheses about phenomena observed in the data.
We took a reflexive and inductive approach to the thematic
analysis by using the open coding technique that has no a pri-
ori theoretical definition of the themes to guide the coding
and summarization process.

B. INTERVIEWS
Practitioners of the Agile methodology were interviewed to
validate the identified challenges to requirements engineer-
ing found in the literature and to identify any new ones
not mentioned in the papers that were reviewed. We looked
for practitioners that should be knowledgeable about these
challenges due to their expertise and experience. To get
access to these practitioners, we used a convenience sampling
method. We searched for members of the Agile community
on LinkedIn and based on their profiles, selected members
that had at least five years of experience working with Agile,
described themselves as a senior business analyst or a tech-
nologist, and that had served onAgile teams in different roles.

Interviews were conducted using a semi-structured inter-
view protocol. The first guiding question was: ‘‘What chal-
lenges do you face with requirements in terms of using Agile
for software development?’’ Based on our second research
question, as the use of user stories is the most popular require-
ments artifact in the Agile methodology, we introduced a
second question on user stories: ‘‘What challenges do you
face with the development and management of user stories in
the Agile methodology?’’ Finally, we demonstrated a set of
models generated from an example set of user stories to 11 of
the interview participants (F1 to F11) – we did not consider
doing this in the five first interviews which was the reason
why we only got 11 expert opinions. We then asked them
to comment on the benefits such models would add to the
requirements analysis in Agile if they were available. In total
we recruited 16 participants to interview (Table 2). The first
five interviewees (who were not shown the models generated
for the demonstration) were coded with IDs E1 to E5, and the
later 11 interviewees were coded with IDs F1 to F11.

The average length of for the first half of the interviews
was 20 minutes (i.e., Agile challenges) and 22 minutes
for the second half of the interviews (i.e., model benefits).
All interviews were recorded, and transcripts were generated.
For each statement, words or phrases related to what could be
identified as challenges or benefits were identified.

IV. RESULTS OF THE LITERATURE REVIEW
Table 3 contains the list of 22 challenges to requirements
engineering and the papers that mention them. Some chal-
lenges were found in just one or a few papers but often

119748 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 1. List of references used in Table 3.

VOLUME 10, 2022 119749



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 1. (Continued.) List of references used in Table 3.

119750 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 2. Participant profiles.

there were several papers mentioning the same challenge,
up to a maximum of 11. The thematic analysis resulted in
five overarching themes: project team, customer involvement,
requirements quality, user stories, and testing.

If a challenge was associated with requirements engineer-
ing or management issues that related to project teams, their
management, or any specific role within the team (e.g., Scrum
master, product owner); then this challenge was categorized
in the project team theme. There were five challenges identi-
fied in this theme (1-5).

If a challenge related to the involvement of customers
in requirements processes, then it was categorized in the
customer theme. We found two challenges under this
theme (6-7).

Challenges related to analyzing or verifying requirements
were categorized in the requirements quality theme. These
challenges (8-15) referred to the specific problems of manag-
ing requirements in Agile projects or using them for purposes
like estimation or prioritization.

The fourth theme was user stories and contained those
challenges that referred specifically to this requirements
artifact (16-18).

The final theme was about the role of requirements during
testing in Agile projects (19-20).

Two challenges, (21) external visibility on project tasks,
and (22) inadequate or inappropriate architecture and inter-
faces could not be categorized in these themes as they seemed
to be stand-alone challenges that were not related to the other
challenges. All the challenges are summarized in Table 4.

The 22 challenges presented here are neither mutually
exclusive nor independent from each other. One challenge
might be the effect or a cause of another challenge.

A. CHALLENGES RELATED TO THE PROJECT TEAM
1) TEAM’S LACK OF INVOLVEMENT AND MOTIVATION
Project management needs to motivate team members to
respond reasonably quickly to changes in requirements and
with enough detail and understanding of the situation [28].
This motivation is reflected by team members’ willingness
to commit to a decision [29], [30] and take risks [31]; there-
fore, the members rely on the Scrum master’s decisions [32].
Developers are less likely to adopt the Agile methodology
if it is not made mandatory [33]. Tessem [34] shows that
empowering and rewarding developers in decision-making
drives the success of projects. McHugh et al. [35] find that the
trust between developers and product owners is important for
project success. Schön et al. [15] find that involving end users
is crucial to the success of Agile for software development.

2) BREAKDOWN OF TEAM COMMUNICATION
AND COORDINATION
The lack of open communication is the root cause for
many project failures [36]. A lack of detailed documentation
can also lead to communication issues. Ramesh et al. [11]
point out that when there is a breakdown in communication
(e.g., turnover of personnel) then lack of documentation leads
to the inability to scale the software, evolve the application
over time, and to add new members to the development team.
As Agile projects do not scale well, it requires much more
effort in team coordination [37], [38]. This coordination is
particularly difficult when the developer uses the outsourcing
model [21], [39] or disperses the project team [4], [40], [41].
Heck and Zaidman [42] argue that using collaborative tools
facilitates team coordination.

3) DIFFICULTY IN MANAGING DISPERSED TEAMS
Due to the globalization of software-intensive, high-
technology businesses, developers are building Agile projects
that involve teams in different geographic locations and time
zones [43]. In a survey, Misra et al. [44] find that the use
of dispersed teams creates problems for project success.
Communication and team coordination among the mem-
bers is particularly challenging in these teams [45], [46].
Iqbal et al. [41] use a Delphi study to understand the chal-
lenges to requirements engineering in outsourced software
development projects and find that the most common chal-
lenge is related to the communication among project teams,
stakeholders, and customers. An example of such challenges
is when stakeholders are unable to express the requirements

VOLUME 10, 2022 119751



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 3. List of requirements engineering challenges and the IDs of the papers in which they occur (see Table 1).

119752 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 4. Thematic analysis of challenges to requirements in the
reviewed papers.

clearly among themselves and to the team. Llyod et al. [47]
argue that communication between the onshore and off-
shore sites is a key challenge to Agile projects for software
development.

4) SHARING OF KNOWLEDGE
Spreading the knowledge across the project team is a chal-
lenge [48]. Drury et al. [32] find that decisions are made on
the incomplete understanding of functionality by the team.
Minimal documentation often reduces effective knowledge
transfer [3], [48], and the teammembers often lackmotivation
to share their knowledge [49]. The use of short iterations,
daily stand-upmeetings, and the presence of customers onsite
reduces the amount of time for sharing ideas outside the
team [48]. In this context, Serrador and Pinto [50] show that
having a clear goal of the project helps in successful project
implementations. Yang et al. [51] argue that project teams
often depend on tacit architectural knowledge, which is a
challenge.

5) LACK OF MANAGEMENT INVOLVEMENT
Identifying and engaging managers in projects is a challenge
[48], [52]. Dikert et al. [53] argue that due to a lack of
management involvement, high-level requirements are often

missing. Gregory et al. [54] find that project teams struggle
to communicate the progress of development to the manage-
ment team. On the other hand, support from top management
improves the team’s acceptance of the Agile methodology
[33], [55], particularly if the management team promotes the
perceived benefits of using that methodology [56].

B. CHALLENGES RELATED TO CUSTOMER INVOLVEMENT
1) DIFFICULTY IN CUSTOMER INTERACTION
Interaction with the customer in each iteration of the Agile
methodology for software development is difficult [13]. This
is because customers are busy and are typically not available
in each iteration [11], [57]. Moreover, it takes more effort to
negotiate the requirements with multiple representatives of
the customer as it is challenging to unify the perspectives
of these representatives [58], and at times customers are
unaware of their own requirements [43], [59]. Also a very
high level of customer interaction can cause conflicts [60].

2) CUSTOMER INABILITY AND DISAGREEMENT
Customer inability refers to the incompetence of customers in
terms of decision-making and complete domain knowledge,
and customer disagreement is about the lack of consensus
among more than one customer group involved in a project
[12], [13], [16]. In this respect, Drury et al. [32] find that
customers cannot always communicate accurately what they
want to the project team. As Hess et al. [57] point out, the
communication gap happens due to a lack of documentation.
The disagreement between customer groups affects the team
performance [11].

C. CHALLENGES RELATED TO REQUIREMENTS QUALITY
1) DIFFICULTY IN ESTIMATING TIME AND COSTS
It is often difficult to estimate an accurate cost at the begin-
ning of the project [11], [13], [59]. Several researchers [13],
[61], [62] have shown that costs, resources, and time estima-
tions are key challenges to Agile projects. A primary reason
for these challenges is that the initial estimation is based on
the set of user stories known at that time [13]. However, over
time the team adds new user stories that affect the resources,
costs, and time required for the project. McHugh et al. [35]
find that teams have difficulties in accurately estimating
unknown tasks.

2) MINIMAL DOCUMENTATION
Creating documentation is a challenge that many projects
face [15], [54]. Ramesh et al. [11] mention that minimal
documentation is a vital challenge that the Agile method-
ology poses to project teams. Lack of documentation raises
communication gaps, and the gaps are exacerbated by large
and global projects [22]. This is particularly acute in situ-
ations such as dispersed teams, large teams, and complex
projects [12]. Because of incomplete, inaccurate, or non-
existing documentation, teams often make decisions based
on poor intelligence [32], [57]. Drury-Grogan et. al [63]

VOLUME 10, 2022 119753



A. Gupta et al.: Using Conceptual Models in Agile Software Development

find that the lack of documentation results in poor decisions
as teams have an incomplete understanding of the system’s
functionalities. Similarly, using case studies, Saito et al. [64]
suggest that undocumented knowledge in Agile projects
for software development is an important long-term
challenge.

3) INCOMPLETE NONFUNCTIONAL REQUIREMENTS
Capturing nonfunctional requirements (NFRs) is a key chal-
lenge to the use of the Agile methodology for software
development [12], [14], [24], [45]. Inayat et al. [12] argue
that user stories generally focus on system or product fea-
tures that ignore NFRs such as security and scalability.
Ramesh et al. [11] also mention this as a key challenge to
producing requirements.

4) INCOMPLETE AND MISSING REQUIREMENTS
When the iterations are in large numbers, there is the pos-
sibility of missing important requirements [14]. High-level
requirements are generally missing in Agile projects [53].
This omission usually happens because of a lack of access to
all stakeholders and stakeholders’ inability to communicate
the requirements clearly [41].

5) AMBIGUOUS REQUIREMENTS
Dikert, Paasivaara, and Lassenius [53] argue that Agile
projects for software development are especially complicated
because of ambiguous requirements. They also find that the
tester often struggles to breakdown ambiguous requirements
for testing. Torrecilla-Salinas et al. [65] show that the uncer-
tainty in definitions of requirements is a hindrance to projects.

6) REQUIREMENTS VOLATILITY
Although changes in requirements are an inherent part of the
Agile methodology, frequent changes can cause trouble for
the development team [12], [14]. These changes can increase
costs that thus lead to failure [22]. The teams generally strug-
gle to adapt to changes as there is a lack of tracking mech-
anisms for change management [32]. Any documents that
the team produces in the initial stages can quickly become
irrelevant because the Agile principles encourage changes
in requirements [66]. Hess et al. [57] find that a sudden
change in requirements results in communication lapses.
Inayat et al. [12] find that increased communication and clear
specifications of requirements can resolve this issue. When a
new change affects the existing design, the user stories and
unit tests should be sufficient to address the change [67].
But Knauss [67] claims that as user stories represent a delta
of the requirements, collapsing all the deltas is insufficient
for understanding the overall features of the system. He also
argues that this lack of understanding has a negative effect on
testing. In dispersed global software development projects,
management of changes in requirements is particularly
challenging [47], [68].

7) PRIORITIZING REQUIREMENTS
In Agile projects, priorities change very fast, and these
changes affect software development [69], [70]. Prioritizing
the list of requirements is challenging as the list itself has to
be flexible to reflect changing customer needs [37].

8) INADEQUATE REQUIREMENTS VERIFICATION
Consistency checking or formal inspections are seldom per-
formed during requirements engineering in Agile projects,
which makes software development based on requirements
lacking verification risky [11].

D. CHALLENGES RELATED TO USER STORIES
1) DETAILED USER STORIES NOT CREATED
Teams usually do not describe user stories in much detail.
User stories may not be detailed enough to capture vulnera-
bilities, bugs, unexpected termination, and undefined behav-
ior [62]. This is especially a problemwhen newmembers join
the project team [16].

2) USER STORIES ARE NOT INTEGRATED
Managing user stories is a challenge when their number is
large. Drury-Grogan et al. [63] find that linkages between
user stories are difficult to maintain. Trkman et al. [25]
suggest using business process models to better understand
the dependencies among user stories as the models can
provide the missing context to better understanding those
dependencies.

3) DIFFICULTY IN DECOMPOSING USER STORIES
Teams often struggle to break down user stories to a size
that facilitates estimation [53], [65]. Those studies also show
that such a task is especially complicated with ambiguous
requirements.

E. CHALLENGES RELATED TO TESTING
1) AVAILABILITY OF TESTING RESOURCES
The Agile methodology assumes that there is plenty of fast
testing resources available in each iteration but this is gener-
ally not true [62]. Although many projects have adopted TDD
methods [71], the testing team often struggles to breakdown
ambiguous requirements for testing [53].

2) REDUCING TESTING AND TEST COVERAGE
Getting the developers and testers to verify and to val-
idate the code is difficult. In this respect, Petersen and
Wohlin [37] find that the lack of independent verification
affects the test coverage. They provide an example where
designers can influence testers to only focus on parts of the
system by arguing that the other parts do not need to be tested
as they did not touch those parts.

119754 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

F. OTHER CHALLENGES
1) INADEQUATE OR INAPPROPRIATE ARCHITECTURE
AND INTERFACES
Architecture receives little attention in the Agile method-
ology for software development that leads to bad design
decisions [37]. Architectural decisions by the project team in
the early cycles often becomes redundant as they identify new
requirements and thus reworking the architecture increases
the project cost significantly [11], [16]. Also, the overall
architecture is hard to envision as understanding the depen-
dencies of the parts of the system is difficult [37]. Because
eliciting the complete requirements upfront is a problem, then
it becomes a considerable rework to design the interfaces of
the application at the later stages of development [24].

2) EXTERNAL VISIBILITY ON PROJECT TASKS
McHugh et al. [35] find that making the project’s progress
visible to organizational members is difficult if they are
not part of the Agile team. The non-team members lack
visibility of the statuses of the project tasks, and thus non-
team members are unaware of the reasons for their delays.
Fagerholm et al. [30] show that having clear communication
with non-team members is important for project success.

V. RESULTS OF THE INTERVIEWS
Table 5 gives examples of the coding done on the inter-
view transcripts to identify the challenges to requirements
engineering.

TABLE 5. Samples of the coding of the challenges to requirements
engineering in the Agile methodology for software engineering.

In Table 6, the theme column categorizes each challenge.
The practitioner reference column identifies the interviewee
that made a statement related to that challenge – statements
are identified by the time passed since the start of the inter-
view (e.g., E1 (6:56)). Note that several challenges were
alluded to by more than one expert.

If a statement by an interviewee indicated a challenge that
was not already identified in the literature review, then that

new challenge was added to the list of 22. In this analysis, the
interviewed practitioners identified three new challenges that
were not discussed in the literature review. They were lack
of vision in planning sprints, lack of domain and application
knowledge, and waterfall mindset in Agile. Thus, we ended
up with 25 challenges in total. The interviews also confirmed
the presence of 20 challenges (out of 22) that were identified
in our literature review. For challenges 4 and 22, we did not
find support for in the interviews. The theme column for
challenges 21, 22, and 25 was empty as these challenges
could not be grouped or categorized under a theme. The
newly identified challenges 23 and 24 were categorized in
the project team theme.

VI. DISCUSSION
The previously mentioned literature review and survey stud-
ies [11], [13] were published between 2010 and 2017.
All these studies identified challenges related to our themes
of customer involvement and requirements quality.

To investigate our general research question (i.e., How
can conceptual models address the challenges of require-
ments engineering in the Agile methodology for software
development without conflicting with its values?), we further
categorized the five themes that we had identified in the lit-
erature review and confirmed through the interviews into two
broad high-level themes: challenges to requirements engi-
neering related to human communication and collaboration
and challenges related to understanding and clarifying the
requirements.

Challenges 1 to 5 and 23 to 24 are related to the project
team theme, and challenges 6 and 7 are related to the cus-
tomer involvement theme. These challenges refer to obsta-
cles to effective requirements engineering that can be traced
back to problems in human communication and collaboration
that were observed in Agile projects. Challenges 8 to 15
are related to the requirements quality theme, and chal-
lenges 16 to 18 are related to the user stories theme. These
challenges are different as they refer directly to problems
with the requirements or their analysis or the user story tech-
nique as an artifact. We broadly categorized these challenges
as related to understanding and clarifying the requirements.
Further, we recognized the challenges related to testing
(i.e., 19 and 20) and the challenges not categorized by a theme
(i.e., 21, 22 and 25) as referring to other problems or obstacles
than those categorized by the two broad themes.

These two broad themes are also explicitly discussed in
the literature on the Agile methodology for software develop-
ment. Based on a qualitative survey, Schön et al. [15] find that
enhancing collaboration between the stakeholders, develop-
ers, and end users is important, while building a shared under-
standing of requirements from the users’ perspective is not
very well established in Agile projects. Collaboration [4] and
shared understanding [15] are essential to developing Agile
projects. Too much collaboration is harmful while too little
is insufficient [4], [36]. The issue of collaboration becomes
more critical when stakeholders including potential users are

VOLUME 10, 2022 119755



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 6. Final list of challenges to requirements engineering in the Agile
methodology for software engineering.

TABLE 6. (Continued.) Final list of challenges to requirements
engineering in the Agile methodology for software engineering.

119756 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 6. (Continued.) Final list of challenges to requirements
engineering in the Agile methodology for software engineering.

actively involved in developing Agile projects [15]. A lack
of collaborative tools was observed to be a hindrance for
sustained use of the Agile methodology [55].

In a case study on the Agile methodology, Moe et al. [72]
find that the project team lacked a shared mental model on
what the outcome of the project should be. Knowledge of the
big picture from project goals could be wrongly understood
by the stakeholders and the development teams [49]. As a
system consists of components which in turn change rapidly,
understanding the state of the system at any point of time can
be difficult [67]. Thus a deep understanding of the domain
and sharing that knowledge are crucial factors for the suc-
cess of Agile projects [22]. Managing requirements for inter-
dependent project teams is a challenge as it relates to the over-
all understanding and dependencies of the requirements [67].
When the domain knowledge is tacit and therefore difficult
to articulate and share with others, requirements may appear
unanalyzable and unstable [39]. Drury-Grogan et al. [63]
find that in Agile projects, poor decisions are made because
of an incomplete understanding of functionality. They argue
that these poor decisions happen because the necessary data
is lost, and decisions are forgotten because of the lack of
documentation. Insufficient and inappropriate understanding
of the requirements and quick changes in requirements are
the leading reasons for the failure of global Agile projects for
software development [41].

Coming back to the research question, conceptual models
facilitate communication between users and analysts and sup-
port the analysts’ understanding of the domain [73]. These
two model purposes directly refer to the two higher level
themes that we identified in our analysis of the challenges
to requirements engineering in the Agile methodology for
software development, that is, human communication and
collaboration and understanding and clarifying the require-
ments. Table 7 shows that potentially, 20 of the identified
challenges (i.e., those related to the project team (1 – 5, 23,
24) customer involvement (6 - 7), requirements quality (8 –
15), and user stories (16 – 18) themes) can be addressed using
conceptual models.

VII. HOW TO USE CONCEPTUAL MODELS IN
THE AGILE METHODOLOGY?
The above discussion points out that although the research has
recognized the opportunities that conceptual models offer to

TABLE 7. Linking the purpose of using conceptual models to the
identified challenges to requirements engineering in the Agile
methodology for software development.

address the challenges related to communication and domain
understanding, the recommendations of how to incorporate
conceptual modeling in Agile practices are quite varied and
inconsistent (e.g., ranging from informal models like mind
maps to more formal models like the use case diagrams in
UML). The literature review and the expert interviews did
not indicate that conceptual models were widely practiced
in Agile. Despite little priority in documenting the Agile
methodology, studies have discovered that Agile practitioners
rate documentation as important and that too little docu-
mentation is available in their own projects [64]. Further,
the software documentation that is available is often incom-
plete, inconsistent, difficult to maintain, and in practice out
of date [75]. Williams [17] reports that overall not much
documentation is prepared in the Agile methodology. Given
that limited effort is spent on this documentation, for project
team members to develop, maintain, and update conceptual

VOLUME 10, 2022 119757



A. Gupta et al.: Using Conceptual Models in Agile Software Development

models when sprints last only about two weeks is unrealistic,
despite the potential benefits of using those models.

So, the question rises, how to use conceptual models in
the Agile methodology? In this section we explore a vision
on how to use conceptual models to address the challenges
related to requirements engineering and management in the
Agile methodology without contradicting its values. In our
exploration, we focus on our more specific research question
(i.e., How can conceptual models address the challenges
to requirements engineering in the Agile methodology for
software development that are related to user stories?) by
developing a tentative answer through a demonstration exper-
iment. We next present the feedback on this demonstration
that were given by interview participants F1 to F11. We end
the section by reflecting on what is needed to provide more
definite answers to the research questions that we investigated
in this explorative study.

A. GENERATING CONCEPTUAL MODELS FROM USER
STORIES – A DEMONSTRATION EXPERIMENT
We believe some conditions need to be fulfilled to introduce
the use of conceptual models to the Agile methodology. This
methodology prefers using working software over documen-
tation, if conceptual models are created then they should
be created within the current framework of requirements
engineering and not as an additional activity requiring extra
effort. Simply, team members cannot be forced to create
conceptual models as an additional activity. Therefore, the
creation of conceptual models must be automated to the
largest possible extent. As the Agile methodology promotes
continuous development of the software, the conceptual mod-
els should also be continuously updated such that they always
codify the most current domain knowledge as reflected by the
requirements.

In what follows, we demonstrate an example of the ele-
ments needed to construct conceptual models already being
present in user stories. We also illustrate how conceptual
models generated from user stories could be of use in Agile
projects. Also, other researchers have suggested that organiz-
ing user stories and extracting information from them can
be useful: ‘‘As a succinct, readily understandable descrip-
tion, a user story could promote shared understanding of a
newly proposed CDS [Clinical Decision System] tool among
diverse clinical and nonclinical stakeholders, resolving a
common challenge’’ (pp. 1346) [23]. Daneva et al. [22] find
that understanding the dependencies of the user stories is very
important in the Agile methodology. They suggest maintain-
ing traceability between user stories all the time that facili-
tates the vision of how a high-level business process translates
into small chunks that are represented as user stories.

User stories represent the bird’s eye view of how every-
thing fits together [63] in terms of requirements. The standard
user story template is ‘‘As a <role>, I want <feature> so
that <benefit>’’ [6]. We extend this template with behavior-
driven development (BDD) scenarios that consist of a feature
title, a user story, and a scenario that is defined by three

segments – ‘‘Given <precondition>, when <triggering
event>, then <postcondition>’’ [19]. Using not just user
stories but also their associated BDD scenarios facili-
tates the generation of a wider set of conceptual models,
as we will illustrate in what follows. We focused on mul-
tiple types of conceptual models as a recent survey by
van der Linden et al. [74] has shown that different types of
UML diagrams and business process model and notation
(BPMN) diagrams are the most common conceptual models
used in practice. Surveys also indicate that practitioners use
more than one conceptual model for different types of tasks
[20]. This is because information systems are getting more
complex and interrelatedmodels can be used to offer different
perspectives of the system and represent different aspects
of it [76].
In our demonstration we focused on four types of concep-

tual models whose information could be identified in user sto-
ries and their associated BDD scenarios. These four types of
models were a use case model, domain model, state machine,
and a process model. Using the concepts of actor and use
case, a use case model provides a description of the users’
possible interactions with the system [77]. These interactions
involve actions on objects that are described in a domain
model. The domain model thus shows the concepts that a
system needs to process and store data on their relationships
and properties [78]. A state machine is a model that shows
the different states that a single object, as an instance of
a domain concept described in the domain model, passes
through during its life in response to events [79]. A process
model has a description of the possible orderings of these
events and how they trigger actions on objects [80].
For our demonstration, we used the set of related user

stories in Table 8 as our example and consider them as written
for a software system that handles service requests.
Moreover, these segments of the user stories in

Table 8 were annotated with numbers so that these numbers
could be used to trace the mapping from user stories to
conceptual models.
Figure 1 shows a use case model and a domain model that

are based only on the information contained in the standard
user story template. The use case model shows that customer
and support assistant are the only two actors (i.e., roles in the
user stories), and the actions that these two actors perform
(i.e., use cases) are the features specified in the user stories.
Thus, a use case model provides an overview of the roles and
related features described in a related set of user stories and
allows a visual grouping of user stories per role.
The domain model distinguishes among the objects to

which the actions of the use case model are applied – in
our case this is just the service request. The different roles
are related via their actions to the objects, clearly showing
which role wants to perform which action on which object.
Like the use case model, the domain model only relies on
the information captured by the role and features segments of
the user stories but provides a clear visual overview of this
information.

119758 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 8. An example set of related user stories.

Like Figure 1, the models in Figure 2 can be traced to
the user stories in Table 8. For example, the state machine
shows that the ‘‘accept action’’ changes the state of the service
request from submitted to open, and the ‘‘approve action’’
changes the state of the service request from fixed to closed.
Similarly, the process model shows that the prerequisite of the
accept action is the ‘‘create action’’ (by the customer), and the
prerequisite of the approve action is the ‘‘resolve action’’ (by
the support assistant). To generate these two models, we also
need to document the pre- and postconditions in the BDD
scenarios of the user stories.

How can these models now help in improving communica-
tion and domain understanding? Let’s consider the following
situation. It might not be clear to the project team when a
customer is allowed to cancel a service request (i.e., user
story 6). The state machine can provide a basis for discussion
among the team members and with the customer to clarify
what the actual expectation of the system is. The current
interpretation obtained from the understanding of the state
machine is that cancellation of a service request is only
allowed before the service request is approved, however not
in the state of ‘‘open’’. So, in a state of open, cancellation is
not allowed, while it is in states of ‘‘submitted’’ and ‘‘fixed’’.
Also, the process model shows that once the service request
is accepted, it needs to be resolved and the customer cannot

cancel it before the support assistants have done their work.
Based on the use case model, a further discussion can be held
on which type of user can cancel service requests. Is only the
customer allowed to cancel service requests or is a support
assistant also allowed to cancel based on certain conditions
(e.g., when a customer repeatedly rejects the work performed
to resolve the service request as is clearly shown by the
resolve-reject loop in the state machine)?

Therefore, when the number of user stories increases, such
insights on the user expectations and hence system require-
ments can be difficult to obtain purely based on the textual
user stories themselves. Although the stakeholders might
have developed individual mental models of the domain to
be supported by the system, structured visual representations
(such as Figures 1 and 2) can help to align these mental
models consistently for all stakeholders. Further, the models
can also be used to obtain an overall understanding of the
requirements for members of the Agile team who join the
project in later stages.

B. FEEDBACK FROM EXPERTS
In this subsection, we also evaluate whether the usefulness
of conceptual models is acknowledged by expert practition-
ers of the Agile methodology. To understand the perceived
usefulness, interview participants F1 to F11 were asked how
the conceptual models could benefit the project team under
the assumption that these models would be made available
without the team having to invest effort in creating and
updating them. Specifically, we asked what benefits were
available fromwhich type of conceptual model and whether a
particular role in the project team benefited more than the rest
of the team. The participants were shown the set of models
(Figures 1 and 2) and the user stories (Table 8) but without
explaining to them how the models were obtained from the
user stories.

Table 9 shows the analysis of the perceived benefits of
the models as mentioned by the participants. We mapped
these benefits to the challenges to requirements engineer-
ing that we identified earlier in the literature review and
interviews. As most benefits could be mapped to challenges
for which we proposed that conceptual models could help
(i.e., challenges 3, 4, 9, 11, 15, 16, 17, 18, 24; see Table 7), the
expert opinions provided empirical support for our proposed
approach.

C. REFLECTION
User stories are more than just an artifact of requirements.
In the Agile methodology, teams plan and allocate user stories
for implementation (e.g., in Scrum they are a key element
in composing the product/spring backlogs that detail the
implementation work to be performed). User stories thus
decompose the system design into units whose implementa-
tion can be managed individually [8]. The conceptual models
generated from user stories do not focus on the individual user
story but span a set of related user stories. These models are
not used for managing the implementation of each desired

VOLUME 10, 2022 119759



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 9. Mapping of potential benefits of conceptual models.

119760 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

TABLE 9. (Continued.) Mapping of potential benefits of conceptual models.

system feature individually but provide a visual overview
of dependencies and relationships between individual user
stories which is hard to obtain just based on the text which
user stories basically comprise. The use case model and
process model are types of conceptual models useful for
analyzing requirements as we illustrated with the ‘‘cancel
service request’’ scenario that was sketched in the demon-
stration experiment. Other types of conceptual model, like the
state machine and especially the domain model, can also be
useful for software design [9]. For instance, the business logic
captured by user stories provides the basis for the domain
model that can, during software design activities, be fur-
ther extended to a class diagram. Here the advantage is that
software classes can be implemented with functionality that
relates to more than one user story that ensures an adequate
modularization of the software. We did not explore this use
of conceptual models in the demonstration experiment but,
for instance, referred to [81] who proposed a mapping of
user stories into agent-oriented and object-oriented software
architectures.

Regarding the demonstration experiment, Figures 1 and 2
illustrate some things about the models. First, these models
are solely based on the information that is present in the
user stories and their associated BDD scenarios. Therefore,
some constructs that are usually found in these types of
conceptual models are absent (e.g., attributes in the domain
model, extends and adds relationships between use cases in
the use case model). Second, to be an effective aid to commu-
nication and domain understanding, the conceptual models
must be syntactically correct and semantically accurate as
well as provide a pragmatically relevant and understandable
representation of the domain. As these conceptual models are
solely based on information captured in the user stories and

BDD scenarios, the completeness and consistency of the user
stories is important. Quality problems with the user stories
will probably come to surface when themodels are generated,
hence hidden quality problems might be discovered when
analyzing the models (e.g., when the graph shown in the
state machine is not connected or when an end event in the
process model cannot be reached from a start event). Third,
we demonstrated that four types of conceptual models can be
constructed using the information that is present in the user
stories. We did not use other types of conceptual models, but
they could certainly be explored in the future. For instance,
future studies could investigate if a goal model could be con-
structed using the information in the benefit segment of the
user stories. Fourth, if we had only used the original standard
template of user stories (without the BDD scenarios), then
it would not have been possible to construct the models that
show and allow analyzing dependencies between user stories
(i.e., the state machine and the process model).

Regarding the example scenario for the validation and pos-
sibly further elicitation of the ‘‘cancel service request’’ user
story, we note that this scenario illustrates how visual concep-
tual models like process models and use case models can help
address some of the challenges to requirements engineering
for the Agile methodology that were mapped to the purposes
of using conceptual models in Table 7, like sharing of knowl-
edge, incomplete and missing requirements, and inadequate
requirements verification. Mapping the purposes for using
conceptual models to the high-level themes of the challenges
to requirements engineering does not mean that the use of
conceptual models is equally useful for all challenges that are
categorized in these themes. The benefits mentioned by the
experts did not cover all those challenges. For instance, for
challenges like lack of management involvement, difficulty

VOLUME 10, 2022 119761



A. Gupta et al.: Using Conceptual Models in Agile Software Development

FIGURE 1. Use Case Model and Domain Model based on the user stories.

in estimating time and costs, and incomplete nonfunctional
requirements, it would be harder to demonstrate the use-
fulness of conceptual models. This usefulness also depends
on the type of conceptual model generated from the user
stories. For instance, in our demonstration experiment, all six
user stories articulated desired system features that could be
classified as functional requirements. In the case of nonfunc-
tional requirements (e.g., ‘‘As a customer, I want to have 90%
of my service requests resolved within 2 working days.’’),
whether the generation and use of other types of models are
possible could be explored (e.g., the NFR Framework for goal
modeling and goal-oriented requirements engineering [82]
may help address the challenge incomplete nonfunctional
requirements).

Considering the conditions for using conceptual models
in the Agile methodology for software development that we
mentioned before, and as we now have demonstrated that
the information captured by a set of related user stories
and BDD scenarios is sufficient to create different types of
conceptual models that are used in other methods to develop
software (e.g., RUP), a natural direction for future research
is to recommend the automatic extraction of the conceptual
models from the set of user stories. For this purpose, appro-
priate algorithms and tools need to be developed. Natural
language processing (NLP) techniques could be a good fit
for this purpose. Using this support, any time user stories
change, the extraction and model generation could easily
be repeated to update the conceptual models. This way, the

119762 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

FIGURE 2. State Machine and Process Model based on the user stories.

members of the team could focus on writing user stories,
while the conceptual models would be available to them to
support requirements engineering. Themodels could not only
provide a basic documentation of the requirements to foster
communication and shared domain understanding but could
also help improve the completeness and consistency of the
user stories and help verifying them. An early elaboration of
these ideas to demonstrate their feasibility is found in [83].

We note that some tools have already been developed
to generate conceptual models from textual descriptions of
requirements (e.g., [84]). There are also a couple of tools
that automatically extract specific types of conceptual models

from user stories (e.g., the visual narrator shows the concepts
and relationships extracted from user stories [85]). A recent
systematic literature review analyzed 38 different studies on
the application of NLP techniques to user stories, including
research on generating models from user stories [85], [86].
To the best of our knowledge, current NLP-based solutions
for generating conceptual models from user stories apply
the original version of the user story template and not the
version with BDD scenarios. We believe that the information
provided by the pre- and postconditions as captured in the
BDD scenarios is essential for identifying, understanding,
and analyzing the dependencies between user stories, as we

VOLUME 10, 2022 119763



A. Gupta et al.: Using Conceptual Models in Agile Software Development

showed with our demonstration. We have yet to come across
research on generating processmodels or statemachines from
user stories.

VIII. CONCLUSION
In this paper, we have explored the use of conceptual models
to address the challenges to requirements engineering and
management in software development. We started with a
literature review to update the current understanding of the
challenges to requirements engineering for the Agile method-
ology. We also interviewed 16 seasoned practitioners of this
methodology to validate and possibly extend the challenges
documented in the literature. In total, we identified 25 dif-
ferent challenges, which we discussed in the paper. This
up-to-date overview is more extensive and detailed than the
challenges to requirements engineering discussed in other
studies [11], [14], which is the first contribution of our paper.

Next, to investigate our main research question, how can
conceptual models address the challenges of requirements
engineering in the Agile methodology for software develop-
ment without conflicting with its values?, we performed a
thematic analysis of the challenges grouping 22 of them first
into 5 categories (i.e., project team, customer involvement,
requirements quality, user stories, testing) and next in one of
two higher order themes: challenges related to human com-
munication and collaboration (i.e., project team and customer
involvement categories) and challenges related to understand-
ing and clarifying requirements (i.e., requirements quality
and user stories categories) that covered a total of 20 of
the 25 identified challenges. For both types of challenges,
the literature suggests that conceptual models can be helpful
as they promote both communication and collaboration, and
shared domain understanding.

The potential benefits of using conceptual models in the
Agile methodology are no guarantee that they will be adopted
by practitioners as the effort involved in creating models may
contradict Agile values and principles. Therefore, we con-
tinued outlining the conditions for adoption of models – the
creation of models should fit within current requirements
engineering and management related activities in Agile
projects, should be automated, and models should be updated
whenever requirements change.

To investigate how these conditions could be fulfilled,
we focused on a second research question, how can con-
ceptual models address the challenges of requirements engi-
neering in the Agile methodology for software development
that are related to user stories?, considering that the user
story is the main artifact used in the Agile methodology
and that the literature has shown the problems with using
and managing user stories (i.e., our challenges in the user
stories category). By means of a demonstration experiment,
we showed that four types of conceptual model (i.e., use case
model, domain model, state machine, process model) can be
constructed solely based on the information captured by a set
of related user stories (e.g., epic or theme in Scrum) provided
that the user stories are extended with BDD scenarios that

document pre- and postconditions for the actions described
in the user stories. This demonstration of the feasibility of
generating conceptual models from user stories, particularly
for models that allow understanding and analyzing dependen-
cies between user stories, is another contribution of this paper.
To the best of our knowledge, the generation of models using
information of BDD scenarios is novel.

To automate now the generation of models, we suggest
relying on NLP techniques. The application of NLP tech-
niques to user stories is not new (see [86] for a recently
published exhaustive review), andwe experimented ourselves
with the idea in [83]. We suggest the further elaboration and
exploration of that approach that could be guided by the
insights provided in our paper as a valuable and viable avenue
for further research on requirements engineering within the
Agile context for software development.

REFERENCES
[1] W. Cunningham. (2001). Manifesto for Agile Software Development.

[Online]. Available: http://agilemanifesto.org/
[2] L. Cao and I. Ramesh, ‘‘Agile requirements engineering practices: An

empirical study,’’ IEEE Software, vol. 25, no. 1, pp. 60–67, Jan. 2008.
[3] K. Conboy, ‘‘Agility from first principles: Reconstructing the concept

of agility in information systems development,’’ Inf. Syst. Res., vol. 20,
pp. 329–354, Sep. 2009.

[4] I. Inayat and S. S. Salim, ‘‘A framework to study requirements-driven col-
laboration among agile teams: Findings from two case studies,’’ Comput.
Hum. Behav., vol. 51, pp. 1367–1379, Oct. 2015.

[5] D. Leffingwell, Agile Software Requirements: Lean Requirements Prac-
tices for Teams, Programs, and the Enterprise (Agile Software Develop-
ment Series). Boston, MA, USA: Addision-Wesley, 2011.

[6] M. Cohn, User Stories Applied: For Agile Software Development. Boston,
MA, USA: Addison-Wesley, 2004.

[7] M. Murtazina and T. V. Avdeenko, ‘‘An ontology-based approach to sup-
port for requirements traceability in agile development,’’ Proc. Comput.
Sci., vol. 50, pp. 628–635, Jan. 2019.

[8] A. R. Amna and G. Poels, ‘‘Ambiguity in user stories: A systematic litera-
ture review,’’ Inf. Softw. Technol., vol. 145, May 2022, Art. no. 106824.

[9] J. A. Hoffer, J. F. George, and J. S. Valacich,Modern Systems Analysis and
Design, 6th ed. London, U.K.: Pearson, 2011.

[10] Y. Wand and R. Weber, ‘‘Information systems and conceptual modeling:
A research agenda,’’ Inf. Syst. Res., vol. 13, no. 4, pp. 363–376, 2002.

[11] B. Ramesh, L. Cao, and R. Baskerville, ‘‘Agile requirements engineering
practices and challenges: An empirical study,’’ Inf. Syst. J., vol. 20, no. 5,
pp. 449–480, Nov. 2007.

[12] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband,
‘‘A systematic literature review on agile requirements engineering prac-
tices and challenges,’’ Comput. Hum. Behav., vol. 51, pp. 915–929,
Oct. 2015.

[13] H. Elshandidy and S. Mazen, ‘‘Agile and traditional requirements engi-
neering: A survey,’’ Int. J. Sci. Eng. Res., vol. 4, no. 9, pp. 473–482, 2013.

[14] S. Alam, S. Nazir, S. Asim, and D. Amr, ‘‘Impact and challenges of
requirement engineering in agilemethodologies: A systematic review,’’ Int.
J. Adv. Comput. Sci. Appl., vol. 8, no. 4, pp. 411–420, 2017.

[15] E. M. Schön, J. Thomaschewski, and M. J. Escalona, ‘‘Agile requirements
engineering: A systematic literature review,’’ Comput. Stand. Interface,
vol. 49, pp. 79–91, Jan. 2017.

[16] V. N. Vithana, ‘‘Scrum requirements engineering practices and challenges
in offshore software development,’’ Int. J. Comput. Appl., vol. 116, no. 22,
pp. 43–49, Apr. 2015.

[17] L. Williams, ‘‘Agile software development methodologies and practices,’’
in Advances in Computers. Amsterdam, The Netherlands: Elsevier, 2010.

[18] F. Anwer, S. Aftab, S. M. Shah, and U. Waheed, ‘‘Comparative analysis of
two popular agile process models: Extreme programming and scrum,’’ Int.
J. Comput. Sci. Telecommun., vol. 8, no. 2, pp. 1–7, 2017.

[19] J. F. Smart, BDD in Action: Behavior-Driven Development for the Whole
Software Lifecycle. Shelter Island, NY, USA: Manning Publications Com-
pany, 2014.

119764 VOLUME 10, 2022



A. Gupta et al.: Using Conceptual Models in Agile Software Development

[20] J. Recker and P. F. Green, ‘‘How do individuals interpret multiple concep-
tual models? A theory of combined ontological completeness and overlap,’’
J. Assoc. Inf. Syst., vol. 8, no. 8, pp. 1210–1241, 2019.

[21] S. Sundararajan, M. Bhasi, and P. K. Vijayaraghavan, ‘‘Case study on
risk management practice in large offshore-outsourced agile software
projects,’’ IET Softw., vol. 8, no. 6, pp. 245–257, 2014.

[22] M. Daneva, E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar,
N. Ajmeri, U. Ramteerthkar, and R. Wieringa, ‘‘Agile requirements prior-
itization in large-scale outsourced system projects: An empirical study,’’
J. Syst. Softw., vol. 86, no. 5, pp. 1333–1353, May 2013.

[23] V. Kannan, M. A. Basit, P. Bajaj, A. R. Carrington, I. B. Donahue,
E. L. Flahaven, R. Medford, T. Melaku, B. A. Moran, L. E. Saldana,
D. L. Willett, J. E. Youngblood, and S. M. Toomay, ‘‘User stories as
lightweight requirements for agile clinical decision support development,’’
J. Amer. Med. Inform. Assoc., vol. 26, no. 11, pp. 1344–1354, 2019.

[24] W. Helmy, A. Kamel, and O. Hegazy, ‘‘Requirements engineering method-
ology in agile environment,’’ Int. J. Comput. Sci., vol. 9, no. 5, pp. 293–300,
2012.

[25] M. Trkman, J. Mendling, and M. Krisper, ‘‘Using business process models
to better understand the dependencies among user stories,’’ Inf. Softw.
Technol., vol. 71, pp. 58–76, Mar. 2016.

[26] V. Braun and V. Clarke, ‘‘Using thematic analysis in psychology,’’ Quali-
tative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[27] A. L. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Thousand Oaks, CA, USA: SAGE,
1990.

[28] J. Recker, R. Holten, M. Hummel, and C. Rosenkranz, ‘‘How agile prac-
tices impact customer responsiveness and development success: A field
study,’’ Project Manage. J., vol. 48, no. 2, pp. 99–121, Apr. 2017.

[29] K. Conboy, S. Coyle, X. Wang, and M. Pikkarainen, ‘‘People over pro-
cess: Key challenges in agile development,’’ IEEE Softw., vol. 28, no. 4,
pp. 48–57, Jul. 2011.

[30] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto, and
P. Abrahamsson, ‘‘Performance alignment work: How software developers
experience the continuous adaptation of team performance in lean and agile
environments,’’ Inf. Softw. Technol., vol. 64, pp. 132–147, Aug. 2015.

[31] G. Alaa and G. Fitzgerald, ‘‘Re-conceptualizing agile information systems
development using complex adaptive systems theory,’’ Emergence, Com-
plex. Org., vol. 15, no. 3, pp. 1–23, 2013.

[32] M. Drury, K. Conboy, and K. Power, ‘‘Obstacles to decision making in
agile software development teams,’’ J. Syst. Softw., vol. 85, pp. 1239–1254,
Jun. 2012.

[33] F. K. Y. Chan and J. Y. L. Thong, ‘‘Acceptance of agile methodologies: A
critical review and conceptual framework,’’ Decis. Support Syst., vol. 46,
no. 4, pp. 803–814, Mar. 2009.

[34] B. Tessem, ‘‘Individual empowerment of agile and non-agile software
developers in small teams,’’ Inf. Softw. Technol., vol. 56, pp. 873–889,
Aug. 2014.

[35] O. McHugh, K. Conboy, and M. Lang, ‘‘Agile practices: The impact on
trust in software project teams,’’ IEEE Softw., vol. 29, no. 3, pp. 71–76,
May 2012.

[36] S. Adolph, P. Kruchten, and W. Hall, ‘‘Reconciling perspectives:
A grounded theory of how people manage the process of software devel-
opment,’’ J. Syst. Softw., vol. 85, no. 6, pp. 1269–1286, Jun. 2012.

[37] K. Petersen and C. Wohlin, ‘‘A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case,’’ J. Syst. Softw., vol. 82, no. 9, pp. 1479–1490, Sep. 2009.

[38] Y. Lindsjørn, D. I. K. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå,
‘‘Teamwork quality and project success in software development: A sur-
vey of agile development teams,’’ J. Syst. Softw., vol. 122, pp. 274–286,
Dec. 2016.

[39] S. Kudaravalli, H. Paris, S. Faraj, and S. L. Johnson, ‘‘A configural
approach to coordinating expertise in software development teams,’’ MIS
Quart., vol. 41, no. 1, pp. 43–64, Jan. 2017.

[40] S. Sarker and S. Sarker, ‘‘Exploring agility in distributed information sys-
tems development teams: An interpretive study in an offshoring context,’’
Inf. Syst. Res., vol. 20, no. 3, pp. 440–461, Sep. 2009.

[41] J. Iqbal, R. B. Ahmad, M. Khan, S. Alyahya, M. H. N. Nasir, A. Akhun-
zada, and M. Shoaib, ‘‘Requirements engineering issues causing software
development outsourcing failure,’’ PLoS ONE, vol. 15, no. 4, Apr. 2020,
Art. no. e0229785.

[42] P. Heck and A. Zaidman, ‘‘A systematic literature review on quality criteria
for agile requirements specifications,’’ Softw. Quality J., vol. 26, no. 1,
pp. 127–160, Mar. 2018.

[43] S. V. Shrivastava and U. Rathod, ‘‘Risks in distributed agile develop-
ment: A review,’’ Proc. Social Behav. Sci., Article, vol. 133, pp. 417–424,
May 2014.

[44] S. C.Misra, V. Kumar, andU. Kumar, ‘‘Identifying some important success
factors in adopting agile software development practices,’’ J. Syst. Softw.,
vol. 82, no. 11, pp. 1869–1890, Nov. 2009.

[45] M. Brhel, H. Meth, A. Maedche, and K. Werder, ‘‘Exploring principles of
user-centered agile software development: A literature review,’’ Inf. Softw.
Technol., vol. 61, pp. 163–181, May 2015.

[46] W. Alsaqaf, M. Daneva, and R. Wieringa, ‘‘Quality requirements chal-
lenges in the context of large-scale distributed agile: An empirical study,’’
Inf. Softw. Technol., vol. 110, pp. 39–55, Jun. 2019.

[47] D. Lloyd, R. Moawad, and M. Kadry, ‘‘A supporting tool for requirements
change management in distributed agile development,’’ Future Comput.
Informat. J., vol. 2, no. 1, pp. 1–9, 2017.

[48] K. Conboy and L. Morgan, ‘‘Beyond the customer: Opening the agile
systems development process,’’ Inf. Softw. Technol., vol. 53, no. 5,
pp. 535–542, May 2011.

[49] R. P. Ghozali, H. Saputra, M. A. Nuriawan, Suharjito, D. N. Utama, and
A. Nugroho, ‘‘Systematic literature review on decision-making of require-
ment engineering from agile software development,’’ Proc. Comput. Sci.,
vol. 157, pp. 274–281, Jan. 2019.

[50] P. Serrador and J. K. Pinto, ‘‘Does agile work?—A quantitative anal-
ysis of agile project success,’’ Int. J. Project Manage., vol. 33, no. 5,
pp. 1040–1051, Jul. 2015.

[51] C. Yang, P. Liang, and P. Avgeriou, ‘‘A systematic mapping study on
the combination of software architecture and agile development,’’ J. Syst.
Softw., vol. 111, pp. 157–184, Jan. 2016.

[52] G. K. Hanssen, ‘‘A longitudinal case study of an emerging software ecosys-
tem: Implications for practice and theory,’’ J. Syst. Softw., vol. 85, no. 7,
pp. 1455–1466, Jul. 2012.

[53] K. Dikert, M. Paasivaara, and C. Lassenius, ‘‘Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review,’’
J. Syst. Softw., vol. 119, pp. 87–108, Sep. 2016.

[54] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, and K. Taylor, ‘‘The chal-
lenges that challenge: Engaging with agile practitioners’ concern,’’ Inf.
Softw. Technol., vol. 77, pp. 92–104, Sep. 2016.

[55] M. Senapathi and M. L. Drury-Grogan, ‘‘Refining a model for sustained
usage of agile methodologies,’’ J. Syst. Softw., vol. 132, pp. 298–316,
Oct. 2017.

[56] L. Vijayasarathy and D. Turk, ‘‘Drivers of agile software development use:
Dialectic interplay between benefits and hindrances,’’ Inf. Softw. Technol.,
vol. 54, no. 2, pp. 137–148, Feb. 2012.

[57] A. Hess, P. Diebold, and N. Seyff, ‘‘Understanding information needs of
agile teams to improve requirements communication,’’ J. Ind. Inf. Integr.,
vol. 14, pp. 3–15, Jun. 2019.

[58] S. Jayatilleke and R. Lai, ‘‘A systematic review of requirements change
management,’’ Inf. Softw. Technol., vol. 93, pp. 163–185, Jan. 2018.

[59] D. Dönmez and G. Grote, ‘‘Two sides of the same coin–how agile software
development teams approach uncertainty as threats and opportunities,’’ Inf.
Softw. Technol., vol. 93, pp. 94–111, Jan. 2018.

[60] N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, ‘‘Software process diver-
sity: Conceptualization, measurement, and analysis of impact on project
perfromance,’’ SSRN Electron. J., pp. 787–807, 2015.

[61] A. S. Campanelli and F. S. Parreiras, ‘‘Agile methods tailoring—A system-
atic literature review,’’ J. Syst. Softw., vol. 110, pp. 85–100, Dec. 2015.

[62] R. Chapman, N. White, and J. Woodcock, ‘‘What can agile methods
bring to high-integrity software development? Considering the issues and
opportunities raised by agile practices in the development of high-integrity
software,’’ Commun. ACM, vol. 60, no. 10, pp. 38–41, 2017.

[63] M. L. Drury-Grogan, K. Conboy, and T. Acton, ‘‘Examining decision
characteristics & challenges for agile software development,’’ J. Syst.
Softw., vol. 131, pp. 248–265, Sep. 2017.

[64] S. Saito, Y. Iimura, A. K. Massey, and A. I. Antón, ‘‘Discovering undoc-
umented knowledge through visualization of agile software development
activities,’’ Requirements Eng., vol. 23, no. 3, pp. 381–399, Sep. 2018.

[65] C. J. Torrecilla-Salinas, J. Sedeño, M. J. Escalona, and M. Mejías, ‘‘Esti-
mating, planning and managing agile web development projects under
a value-based perspective,’’ Inf. Softw. Technol., vol. 61, pp. 124–144,
May 2015.

[66] A. De Lucia and A. Qusef, ‘‘Requirements engineering in agile software
development,’’ J. Emerg. Technol. Web Intell., vol. 2, no. 3, pp. 212–220,
2010.

VOLUME 10, 2022 119765



A. Gupta et al.: Using Conceptual Models in Agile Software Development

[67] E. Knauss, ‘‘The missing requirements perspective in large-scale agile
system development,’’ IEEE Softw., vol. 36, no. 3, pp. 9–13, May 2019.

[68] T. Kamal, Q. Zhang, and M. A. Akbar, ‘‘Toward successful agile require-
ments change management process in global software development: A
client–vendor analysis,’’ IET Softw., vol. 14, no. 3, pp. 265–274, Jun. 2020.

[69] E. Bjarnason, K. Wnuk, and B. Regnell, ‘‘Are you biting off more than you
can chew? A case study on causes and effects of overscoping in large-scale
software engineering,’’ Inf. Softw. Technol., vol. 54, no. 10, pp. 1107–1124,
Oct. 2012.

[70] A. Henriksen and S. A. R. Pedersen, ‘‘A qualitative case study on agile
practice and project success in agile software projects,’’ J. Mod. Project
Manag., vol. 5, no. 1, pp. 62–73, 2017.

[71] I. Nurdiani, J. Börstler, and S. A. Fricker, ‘‘The impacts of agile and lean
practices on project constraints: A tertiary study,’’ J. Syst. Softw., vol. 119,
pp. 162–183, Sep. 2016.

[72] N. B. Moe, T. Dingsøyr, and T. Dybå, ‘‘A teamwork model for understand-
ing an agile team: A case study of a scrum project,’’ Inf. Softw. Technol.,
vol. 52, no. 5, pp. 480–491, May 2010.

[73] C. H. Kung and A. Solvberg, ‘‘Activity modelling and behavior modelling
of information systems,’’ in Information Systems Design Methodologies:
Improving the Practice, T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart,
Eds. Amsterdam, The Netherlands: North-Holland, 1986, pp. 145–171.

[74] D. van der Linden, I. Hadar, and A. Zamansky, ‘‘What practitioners really
want: Requirements for visual notations in conceptual modeling,’’ Softw.
Syst. Model., vol. 18, no. 3, pp. 1813–1831, Jun. 2019.

[75] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M. Moussavi, and
B. Smith, ‘‘Usage and usefulness of technical software documentation: An
industrial case study,’’ Inf. Softw. Technol., vol. 57, pp. 664–682, Jan. 2015.

[76] M. A. J. Sabegh and J. Recker, ‘‘Combined use of conceptual models
in practice: An exploratory study,’’ J. Database Manage., vol. 28, no. 2,
pp. 56–88, Apr. 2017.

[77] K. E. Kendall and J. E. Kendall, Systems Analysis and Design, 10th ed.
London, U.K.: Pearson, 2019.

[78] K. M. Markham, J. J. Mintzes, and M. G. Jones, ‘‘The concept map as
a research and evaluation tool: Further evidence of validity,’’ J. Res. Sci.
Teaching, vol. 31, no. 1, pp. 91–101, Jan. 1994.

[79] A. Dennis, B. H. Wixom, D. Tegarden, and A. Dennis, Systems Analysis
and Design: An Object-Oriented Approach With UML, 5th ed. Hoboken,
NJ, USA: Wiley, 2015.

[80] J. Mendling and J. Recker, ‘‘Towards systematic usage of labels and icons
in business process models,’’ in Proc. 12th Int. Workshop ExploringModel.
Methods Syst. Anal. Design, Montpellier, France: CEUR, 2008, pp. 1–13.

[81] S. Heng, M. Snoeck, and K. Tsilionis, ‘‘Generating a software architecture
out of user stories and BDD scenarios: Research agenda,’’ in Proc. 1st Int.
Workshop Agile Methods Inf. Syst. Eng. Leuven, Belgium: CEUR, 2022.

[82] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Require-
ments in Software Engineering. Dordrecht, The Netherlands: Kluwer Aca-
demic, 2000.

[83] A. Gupta, G. Poels, and P. Bera, ‘‘Creation of multiple models from
user stories—A natural language processing approach,’’ in Proc. Entity
Relationship (ER) Conf., in Lecture Notes in Computer Science, Salvador,
Bahia, Brazil, vol. 11787, 2019, pp. 47–57.

[84] R. Mesquita, A. Jacqueira, C. Agra, M. Lucena, and F. Alencar,
‘‘US2StarTool: Generation i∗ models from user stories,’’ in Proc. Int.
Workshop (iStar), 2015, pp. 1–6.

[85] G. Lucassen, F. Dalpiaz, M. van der Werf, and S. Brinkkemper, ‘‘Visual-
izing user story requirements at multiple granularity levels via semantic
relatedness,’’ in Conceptual Modeling ER, vol. 9974. Springer, 2016.

[86] I. K. Raharjana, D. Siahaan, and C. Fatichah, ‘‘User stories and natural
language processing: A systematic literature review,’’ IEEE Access, vol. 9,
pp. 53811–53826, 2021.

ABHIMANYU GUPTA is currently a full-time
Instructor at the Operations and IT Management
Department, Chaifetz School of Business, Saint
Louis University, and the Ph.D. degree with Ghent
University. His research interests include con-
ceptual modeling, agile methodologies, and data
analytics. He has over 17 years of corporate IT
experience.

GEERT POELS is currently a Full Professor with
the Faculty of Economics and Business Admin-
istration, Ghent University. His research interests
include the quality of conceptual models, concep-
tual modeling of service systems, and business
process architecture. He has published, such as
European Journal of IS, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, and other information sys-
tems journals.

PALASH BERA is currently an Associate Profes-
sor at the Operations and IT Management Depart-
ment, Chaifetz School of Business, Saint Louis
University. His research interests include empir-
ical studies of information systems analysis, use
of eye tracking, and design thinking. He has pub-
lished in reputed journals, such as MIS Quarterly
and Information Systems Research.

119766 VOLUME 10, 2022


