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ABSTRACT According to the United States environmental protection agency (EPA), every burned gallon
of gasoline generates 8.87 Kg of CO2. The pollution created by vehicles’ fuel consumption has been one
of the primary sources of environmental contamination that can lead to more climate changes and global
warming. Thus, science and technology have converged on the idea that reducing fuel consumption benefits
the environment and human health. One of the ideas for reducing fuel usage is deploying hybrid electric
vehicles (HEVs) and electric vehicles (EVs) using renewable energy as alternatives to gasoline. One of
the main issues with EV batteries is that over operational time the battery health degrades and ultimately
becomes unsafe to use. It is crucial that safety issues be addressed by researchers and battery manufacturers.
Assessing and predicting battery health has been a high-priority research topic to attempt to mitigate the
danger introduced by EV batteries. Although various techniques have been developed to estimate and predict
the battery’s state of health (SOH), they do not cover all degradation scenarios that may affect the battery’s
lifetime. In addition, the models used in estimating and predicting the battery’s lifetime need to be improved
to provide a more accurate battery health state and guarantee battery safety while in use by an EV. Even
though all types of EV batteries face similar issues, this paper focuses on Li-ion EV batteries. The main
objectives of this paper are 1) to present various Li-ion battery models that are used to mimic battery dynamic
behaviors, 2) to discuss the degradation factors that cause the battery lifespan to be degraded, and to become
unsafe, 3) to provide a review of the estimation and prediction techniques used for Li-ion battery SOH and
remaining useful life (RUL) estimation along with a discussion of their advantages and limitations, and 4) to
provide recommendations for improving Li-ion battery lifetime estimation. This paper represents a concise
source of information for battery community researchers to help expedite beneficial and practical outcomes
to improve EV battery safety.

INDEX TERMS Electric vehicles (EVs), Lithium-ion (Li-ion) batteries, state of health (SOH), remaining
useful life (RUL), battery models, battery aging.

NOMENCLATURE ANN Artificial Neural Network.
The next list describes several symbols that will be later used BMS Battery Management System.
within the body of the Article BOL Beginning of Life.
C-rate  Charge/Discharge rate.
The associate editor coordinating the review of this manuscript and cC Constant Current.
approving it for publication was Jie Gao . CCCV  Constant Current Constant Volt.
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Cascade Forward Neural Network.
Depth of Discharge.

Differential Voltage Analysis.
Electrode Average Model.

Equivalent Circuit Model.
Electrochemical Impedance Spectroscopy.
Extreme Learning Machine.

End of Life.

Environmental Protection Agency.
Echo State Network.

Electric Vehicle.

Feed Forward Neural Network.
Gaussian Process Regression.

Hybrid Electric Vehicle.

Hamming Neural Network.

Incremental Capacity Analysis.

Input Time-Delayed Neural Network.
Kohonen Self Organizing Neural Network.
Lithium Cobalt oxide.

Lithium iron phosphate.

Lithium-ion.

Long Short Term Memory.

Lithium Titanate Oxide.

Mean Absolute Error.

Machine Learning.

NASA Ames Prognostics Center of
Excellence.

Nonlinear Auto-Regressive with exogenous
input.

Lithium Nickel Cobalt Aluminum oxide.
Lithium Nickel Manganese Cobalt oxide.
Ordinary Differential Equation.

Partial Differential Equations.
Probability Density Function.

Porous electrode with Polynomial
approximation Model.

Radial basis function Neural Network.
Random Forest /Regression.

Root Mean Square Error.

Recurrent Neural Network.
Reduced-Order Electrochemical Model.
Remaining Useful Life.

Stacked Denoising Autoencoders.

Solid Electrolyte Interphase.
Semi-empirical Model.
State-of-Charge.

State-of-Health.

Single Particle Model.

Single Particle Model with electrolyte.
Support Vector Machine.

support vector regression.

United States Advanced Battery Consortium.

Open Circuit Voltage.

I. INTRODUCTION

Environmental issues caused by Gasoline-powered vehicles
are a challenge to automotive manufacturers world-
wide. Global energy policies that stress low-carbon emis-
sions require transforming and upgrading vehicles to
use environmentally-friendly renewable energy sources.
Lithium-ion (Li-ion) batteries are commonly used as an
energy source in electric vehicles (EVs) and hybrid electric
vehicles (HEVs) [1], [2] due to their relatively high energy
density as well as their fast charging and low self-discharge
rate [3]. As a point of clarification, in this paper, we refer to a
single battery cell as a battery, whereas an EV’s entire battery
is referred to as a battery pack unless otherwise stated. Batter-
ies’ performance degrades over time and usage due to power
fading and capacity loss [4]. This phenomenon is called
battery aging, which occurs due to factors impacting battery
performance, including chemistry degradation, manufactur-
ing issues, atmospheric conditions(low/high temperature),
and operational conditions. Two parameters describe the age
of batteries: beginning-of-life (BOL), when the battery is first
used, and end-of-life (EOL), when the battery is no longer
usable. A battery capacity measures the available energy that
the battery can deliver. It is proportional to the usable lithium
inside the battery. The diagnosis and prognosis for Li-ion
battery health are essential to guarantee safety while batteries
are in operation. The battery state-of-health (SOH) estimation
and/or remaining useful life (RUL) prediction are used to
track and monitor its age. The battery SOH is defined as the
ratio of the battery current capacity to its capacity at BOL,
whereas the battery RUL is defined as the remaining battery
life to reach its EOL. It is worth noting that the remain-
ing battery life can be measured either as a calendar age
(years or months) or as a cycling age (number of remaining
cycles). In applications like EVs, where the amount of energy
available in the battery plays an important role, the battery’s
capacity is often considered when measuring the battery
age [4], [5]. In contrast, for applications where power is an
essential issue, such as in HEVs, the change in the internal
resistance is usually measured as a SOH metric [4], [S].
Generally, the battery reaches its EOL when its capacity drops
to (70-80)% of its initial value at the BOL or when its internal
resistance doubles [5].

Battery aging impacts both the state-of-safety (SOS) and
the performance of EVs as it decreases the vehicle’s response
to accelerating and reduces the driving range. The SOS is
affected by many events. For example, if the battery’s internal
resistance increases beyond a certain limit, the thermal heat
released from the battery will also increase and can cause
a fire that can lead to loss of life [7]. Table 1 shows some
examples of EV-related fire incidents that occurred in the past
few years with various scenarios, including parked vehicles
(unplugged), crashed vehicles, or simply within driving or
charging operations. In addition, Figure 1 illustrates an exam-
ple of what happened to the EVs’ battery pack after a fire.
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FIGURE 1. An example of an electric vehicle caught fire [6].

TABLE 1. List of selective EVs fire incidents for various scenarios.

Incident location
Tilburg, Netherlands
Virginia,USA
Ashburn, Virginia,USA

Incident date
Mar.2019 [8]
Jul.2020 [9]
May.2021 [10]

Incident scenario

Fire while

being parked

(Unplugged)
pluge Jun.2021 [11] Boryeong, South Korea
Mar.2019 [9] Massachusetts, USA
Fire while Oct.2020 [12] Lucie, Florida, USA

being charged Oct.2020 [13]
Nov.2020 [14]

May.2018  [15]

Gyeonggi-do, South Korea
Langenfeld, Germany
Hubei, China

Fire while Jun.2018 71 California, USA
being driven Jun.2021 [6] Haverford, Pennsylvania
Jul.2021 [16] California, USA
Mar.2018 [7] Texas,USA
Fire after May.2018 [17] Florida, USA

Ticino, Switzerland

Texas, USA

vehicle crashed | May.2018 [18]

Apr2021  [19]

The capacity of a Li-ion battery can be directly mea-
sured using the coulomb counting method under galvanos-
tatic charging/discharging. A battery’s available capacity is
generally measured by how much current passes through it
over time until it is discharged. A battery state-of-charge
(SOCQ) is the ratio between the available capacity of a battery
and the maximum possible charge it can store. Capacitance is
also commonly used to determine the SOH of a battery.

To better understand Li-ion battery dynamics, researchers
have developed a variety of battery models. For example,
an electrochemical battery model that describes the battery’s
internal chemical parameters, such as lithium concentra-
tion in both the positive and negative electrodes, kinetic
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energy within the battery, and charge transfer, is devel-
oped to estimate the SOH and/or to predict the RUL.
The model comprises a set of partial differential equa-
tions and requires the knowledge of several parameters.
The full order of the electrochemical model cannot be used
in real-time for battery health estimation [20], [21]. Thus,
if these unknown parameters are inaccurately identified,
this model will lose its advantage of accurately estimating
the battery SOH. Researchers developed alternative mod-
els to estimate battery SOH, such as the equivalent circuit
models (ECMs). ECMs use capacitors and resistors-based
circuits to study battery dynamics using different input cur-
rents [22]. In addition, several reduced-order models of the
full-order electrochemical model were considered with some
assumptions to estimate battery SOH using adaptive filters,
such as Kalman filters and particle filters [23], [24]. More-
over, several review papers estimating and predicting bat-
tery health based on the aforementioned models have been
published [25], [26], [27], [28], [29].

Recently, researchers and industrial sectors have become
increasingly interested in data-driven models for battery
health diagnosis and prognosis due to their flexibility and the
fact that they do not require any knowledge of the physical or
chemical properties of the batteries, making them model-free
models. Model-free means treating the battery as a black box
with inputs and outputs, where the inputs are extracted from
the training data. Based on the inputs, data-driven models are
used to determine the battery SOH and predict its correspond-
ing RUL. These models require extensive datasets to accu-
rately estimate and predict battery health. The effectiveness
of these models is greatly affected by the quality and quantity
of collected data used for the training and testing processes.

Several technologies can facilitate the building of data-
driven models, including differential analysis methods,
empirical and data-fitting techniques, and machine learning
(ML) algorithms. Differential analysis models are based on
the relationship between the battery SOH and its thermal,
electrical, and mechanical behaviors [30]. In addition, the
differential models use voltage, surface temperature, and
strain information to determine the effect of aging on battery
SOH estimation [31]. Empirical and data fitting techniques
are used to fit large amounts of data collected based on
certain conditions to estimate battery SOH by assuming simi-
lar operational conditions and high computational efficiency.
Nowadays, ML models have become increasingly popular
in estimating and predicting battery SOH. This is due to
ML flexibility and the ability in nonlinear mapping between
inputs and outputs. To estimate the SOH or prediction of the
RUL, relevant data, such as battery output voltage and charg-
ing current should be collected throughout battery operation
and mapped to the battery SOH. Data-driven modeling tends
to focus on either estimating batteries” SOH or predicting
their RUL [32], [33], [34], [35], [36]. Therefore, research
addressing both aspects (battery SOH/RUL) is needed since
SOH is used as an input to the RUL predictors. However,
SOH and RUL are discussed and reviewed in [37], [32],
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and [38], and data-driven models used in EV applications are
not comprehensively covered and not sufficiently compared
to other diagnostic and prognostic techniques.

The main contributions of this article are as follows:

« Provide an overview of the battery operation, character-
istics, and degradation factors. In addition, we present
a detailed review of various Li-ion battery models that
mimic batteries’ dynamic behavior.

« Review and identify the merits and challenges of several
battery health estimations and prediction methods for
various battery models.

o Analyze in-depth the data-driven models for estima-
tion and prediction of battery health, focusing on the
ML models.

o Discuss the strengths and weaknesses of each ML model
and provide suggestions on overcoming these models’
shortcomings for better accuracy of battery lifetime esti-
mation and prediction.

The rest of this paper is organized as follows: Section II
discusses the Li-ion battery charging and discharging oper-
ations. The characterization parameters of Li-ion batteries,
such as power capacity, battery internal impedance, and open-
circuit voltage, are presented in Section III. In Section IV,
an overview of Li-ion battery models is discussed. The
aging factors affecting the Li-ion battery lifetime are com-
prehensively surveyed in Section V. The battery SOH esti-
mation methods are discussed and compared in Section VI
concerning their advantages and disadvantages, along with
suggested ideas for improving battery lifetime estimation.
In section VII, various RUL prediction techniques, includ-
ing the electrochemical prediction methods and data-driven
methods are explained in detail. The performance evalua-
tion of various RUL prediction techniques is compared in
Section VIII. Section IX presents the limitations of the current
models and some enhancement ideas for SOH estimation and
RUL prediction. Finally, the work is concluded in Section X.

Il. LI-ION BATTERY OPERATION

Li-ion batteries are prevalent due to their high energy density.
Consequently, these batteries can be used in high-energy
applications, such as EVs. This section discusses how the
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FIGURE 2. Charging and discharging processes of a Li-ion battery.
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Li-ion battery operates during the charging and discharging
phases. In EVs, the battery pack comprises several modules,
each containing up to hundreds of batteries. Figure 2 illus-
trates the charging and discharging processes of each Li-ion
battery. In general, each battery consists of two electrodes
(positive and negative) with a separation region between
them. The anode is considered a negative electrode, whereas
the cathode is considered a positive electrode, and the sepa-
rator between them is fabricated using porous material. Once
the electrodes are placed, the remaining distance between the
separator and the electrode is filled with liquid electrolyte.

Typically, Li-ion batteries contain lithium-metal oxide
(which performs better than lithium) due to their ability to
intercalate. Different lithium-metal oxides, used as a cath-
ode electrode, are presented in Figure 3. In the automotive
industry, NCA is a good choice because of its long lifetime,
high specific energy storage, high power density, low cost,
and high safety [39]. In contrast, the anode electrode uses
lithium-carbon compounds (graphite). For instance, as shown
in Figure 2, the cathode electrode uses lithium-metal oxide
(i.e., LCA), whereas the anode electrode uses Li-Carbon.
Generally, the electrons flow according to redox reactions,
which can be divided into two categories. The former is
called oxidation half-reaction, which happens when the anode
emits electrons. The latter is called a reduction half-reaction
that happens when electrons are taken up by the cathode.
Detailed information about the charging and discharging pro-
cesses inside Li-ion batteries can be found in the following
subsections.

Lithium Nickel
i Cobalt Aluminum
Oxide (NCA)

V4
e “a

Lithium
Titanate Oxide
(LFP) (LTO)

Lithium Cobalt
Oxide (LCA)

Lithium
metal
oxide

Phosphate

Lithium Nickel
Manganese Cobalt
Oxide (NMC)

FIGURE 3. Different types of lithium metal oxide.

A. CHARGING PHASE

During the charging phase of Li-ion batteries, an external
power source is used to excite electrons and lithium ions.
The charging process can be viewed as an oxidation process.
Equation 1 can be used to express the oxidation process
of charging a battery [40]. During the charging process of
a battery, the power source accelerates the lithium ions to
move from the cathode toward the anode. Then, the electrons
migrate from the anode (negative electrode) to the cath-
ode (positive electrode). Consequently, as lithium ions move
between electrodes, they emit continuous ions of electricity.
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Once the battery reaches its maximum storage capacity, the
oxidation process is completed.

LiCe = Ce+ Lit + ¢~ (D

B. DISCHARGING PHASE

The battery begins to discharge when an electrical load is con-
nected between its terminals. Equation 2 depicts how the load
consumes energy, which considers the reverse operation of
the charging process [40]. The discharging process involves
moving the positively charged lithium ions (Li*) from a
negative electrode (anode) to a positive electrode (cathode).
Therefore, electrons will be transferred from the cathode to
the anode.

Co0s + Lit + ¢ = LiCo0, )

The charge and discharge processes of Li-ion batteries
can be repeated up to thousands of times until the battery
reaches 70-80% of its maximum capacity, defined pre-
viously as the battery EOL. At that time, it becomes
retired and starts its second life. Equation 3 summarizes the
oxidation-reduction reactions of a Li-ion battery.

LiCg + CoO; <= C¢ + LiCoO> 3)

IIl. LI-ION BATTERY CHARACTERIZATION

Understanding the Li-ion battery characteristics under all
operating conditions is vital for achieving the highest
energy level and cost-efficiency. In this section, the char-
acteristics that describe Li-ion battery behaviors will be
discussed, which are used as standard benchmarks for
estimating the SOC and SOH of the battery. The Li-ion
battery is characterized by three main dynamic parame-
ters: 1) power capacity, 2) battery internal impedance, and
3) open-circuit voltage (V,.). The battery’s internal
impedance and open-circuit voltage are affected by tempera-
ture and operating conditions.

A. POWER CAPACITY

The power capacity is typically defined as how much electric
charge can be stored inside a battery. Therefore, the capacity
can be directly measured by integrating the current during the
charging process. This direct measurement method counts the
amount of charge, so it is called coulomb counting, and it can
be expressed mathematically as follows:

t
Char = / i dr @
0

where Cp, denotes the battery capacity, i is the charging
current, and ¢ is the time required for the battery to be fully
charged. Additionally, the battery SOC, which determines
the capacity level based on input current, can directly be
measured by coulomb counting as:

In

1
SOCpqt(t) = SOCpan(to) + —— / idt Q)
Chominal

fo

119044

0.8

Charge-transfer region Diffusion region

\ End of diffusion |

(3Hz)

Ohmic region
06

- o

04

0.2f

NV SIS D~ SR ~

Al

o
B

02F
nd of charge transfer

04 (1kHz)

-0.6

-0.8

Imaginary impedance part (mQ)

R P

High frequenc
LY

Low frequency

6.5 7

45 5 5.5 6
Real impedance part (mQ)

FIGURE 4. Nyquist plot of EIS spectrum for Li-ion battery internal
impedance.

where SOCp4(t) is the SOC of the battery at any time 7,
SOCp4(1o) is the initial SOC of the battery at the beginning,
Crominal 18 the nominal capacity, and fg, #, are the initial and
the final time for the battery to be full charged/discharged,
respectively.

Different charge/discharge methods are usually employed
to measure Li-ion battery capacity, such as constant-current
constant-voltage (CCCV) discharge [41] or a constant dis-
charge current pulse [42]. An alternative method is to apply
a constant voltage until the current reaches a preset value
during discharge. The relationship between the rate of charge
or discharge currents and the nominal battery capacity defines
as the C-rate.

B. BATTERY INTERNAL IMPEDANCE

The battery’s internal impedance is essential to determine
its age. The battery RUL decreases as the impedance of
the battery increases. Various methods have been devel-
oped to measure the battery’s internal impedance. One of
the popular methods for measuring the battery’s internal
impedance is electrochemical impedance spectroscopy (EIS),
which can be expressed as a function of frequency between
kHz and MHz. A battery’s EIS spectrum can be determined
experimentally when discharging it by applying low current
levels as input while measuring V,. as output and capaci-
tive effects as positive phase angles. In EIS, the spectrum
(Nyquist frequency) plot is a valuable diagnostic tool for
presenting differences in frequency range as a function of
battery SOC [40].

Figure 4 illustrates a typical EIS plot of a battery’s fre-
quency versus internal impedance. According to this figure,
the battery’s impedance is pure ohmic at high frequency, but
the impedance becomes capacitive at low frequency, repre-
senting the charge transfer and diffusion regions. It should
be noted that the battery has to be replaced if the inter-
nal impedance doubles [5]. Although EIS provides valuable
insights, it cannot be used while the battery is in operation.
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C. OPEN CIRCUIT VOLTAGE

The open-circuit voltage V,. is a fundamental battery charac-
teristic because it helps estimate the battery SOH. Addition-
ally, the measure of V,. plays an important role in developing
the electrical models that are used in estimating battery life.
In most research studies, the battery behavior is predicted
and modeled using V,.(SOC) dependency [43]. However,
temperature impacts the estimation of V,.(SOC).

The characterization of V. is usually carried out using
various methods. One of these methods is the galvanostatic
intermittent titration technique (GITT). This method applies a
constant charging or discharging current until the appropriate
SOC is reached. After that, it permits the battery to relax for a
certain time to enhance its stabilization [44]. Conversely, the
relaxation time and A SOC(%) influence the required time for
the test to be done. For instance, in the case of a high precision
A SOC of 5% at charge rate 1C followed by a relaxation time
of 40 hours, the battery test may take several months for only
one cycle [44].

IV. LI-ION BATTERY MODELS

Several models have been developed to mimic the dynamic
behaviors of Li-ion batteries, each with a different level of
accuracy and complexity. As shown in Figure 5, these models
can be classified into four categories. The main objective of
developing these models is to estimate battery SOH and pre-
dict battery RUL. In addition, these models can help improve
the design and optimize the performance of the battery man-
agement systems (BMSs) in controlling the battery pack
of EVs. Generally, the choice of the appropriate battery model
is influenced by the application it is used for and the level of
estimation accuracy required. Besides the models presented
in Figure 5, there are other battery models, such as kinetic
battery models, which represent batteries with two tanks
(one for available energy and another for bound energy),
and several others that are particularly suitable for lead-
acid batteries. However, they are out of the scope of
this paper.

Li-ion Battery Models

|
| | | !

Thermal-based | |
Models
b | G

0w v
Heat
Generation / l N Lumeed J
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order Electrochemical J Data Fitting and

kEmpiricaI Models

2

T f Parameter
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N|
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Reduced-order | Distributed
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Equivalent Circuit
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¥
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Machine Learning
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FIGURE 5. Classification of Li-ion battery models.
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A. ELECTRIC-BASED MODELS
Electric-based models primarily include full-order electro-
chemical models [45], reduced-order electrochemical mod-
els (ROEMs) [46], [47], and equivalent circuit models
(ECMs) [48], [49]. Doyle et al. [45] proposed the full-order
electrochemical model (white box model or physical model),
which is known as a pseudo-two-dimensional (P2D) model
to explain battery dynamic behavior with a variety of poly-
meric separator materials, composite cathodes, and lithium
salts. The P2D model is expressed on a macro x-scale along
the thickness of the positive and negative electrodes, and
another micro r-scale along the direction of the solid-phase
electrode particles. Due to this two-dimensional representa-
tion, this model is referred to as a pseudo-two-dimensional
model. It is worth noting that each electrode is made up of
many microscopic particles, and each particle is like a rice
ball with many grains [50]. The structure and chemistry of
the particles determine how well the battery operates. The
major advantage of the full-order electrochemical model is
its ability to accurately depict the chemical reactions and the
battery’s dynamic behavior, including lithium concentration
in solid and electrolyte phases, lithium diffusion, and elec-
tric potential. In real-time applications, however, it is nearly
impossible to determine many battery parameters related to
chemical compositions, where the full-order electrochemical
model requires solving a set of partial differential equations
(PDEs) [21]. The measurement of some of these parameters
is not directly available or even possible, and other parameters
change with the aging of batteries over time. Under certain
assumptions, the full-order electrochemical model can be
simplified to reduce its complexity to be suitable for real-
time applications. For this purpose, different ROEMs have
been developed [51], [52], [53], [54], [55], [56], [57], [58].
In Table 2, the P2D model and some of the available ROEMs
are compared with respect to their assumptions, advantages,
and limitations.

Based on the input-output characteristics of the Li-ion
battery, the ECMs were developed using electric circuit ele-

Ordern

Order 1

Voc ('_

FIGURE 6. Equivalent circuit model of Li-ion battery of n R-C networks.
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TABLE 2. Comparison of various electrochemical battery models.

Model Assumption advantages Remarks
P2D Model e Solid phase = multiple identical spherical | @ Describes the entire electrochemical | ® Requires a significant amount of
[45, 59, 60] particles process during battery operation parameters

e Electrolyte phase& potentials = varying in = | e Describes battery dynamics over space

direction and time

o Diffusion is considered in 7 direction e High accuracy to estimate battery SOH
Electrode e Neglects solid phase concentration e Very simple to set-up (few parameters) | e Big error in voltage prediction
Average Model | e Considers only electrolyte phase concentration | e Estimates battery SOC with high de- | e Heavy loss of information
(EAM) [51] e Electrolyte phase concentration = battery SOC | gree of accuracy e Parameter identification is hard

for real-time applications

Porous electrode
with Polynomial

e Parabolic profile describes each spherical parti-
cle

o Estimates the battery voltage at higher
discharge rates (>1C)

e Similar complexity to other

porous electrode models

Model  (PPM) | e Incorporates the parabolic approximation with | e Voltage prediction error € 0.013-

[54] the P2D model 0.135% — discharge rate = 2C

Single Particle | e Each electrode = single spherical particle e Battery’s voltage estimation accuracy | e Inaccurate at high discharge rate

Model (SPM) | e Neglects electrolyte phase concentration is high at low discharge rates (<1C) (> 10

[52-54] e PDE:s of solid phase concentration is simplified | e Voltage prediction error € 3.404- | e Voltage prediction error € 59.37-
to be ODEs 6.70% — discharge rate = 1C 67.43% — discharge rate = 2C

SPM with | e Same assumptions of SPM e More accurate at high discharge rates | @ More complex compared to the

electrolyte e Considers concentration of electrolyte phase e Voltage prediction error € 19 mV — | traditional SPM

(SPMe) [55]

discharge rate = 5C

Note: SPM is considered the most reliable model, so many efforts are being made to improve its accuracy in predicting battery voltage by considering

degradation factors and thermal dynamics under different charge/discharge conditions such as mechanical stress [56-58]

ments (resistance, capacitance, and voltage source). ECMs
are widely used because they are simple to build and have
a limited number of parameters that can be identified for
onboard applications. Figure 6 shows the general framework
of ECMs with n different RC networks. In Figure 6, the
resistance Rg represents the ohmic resistance of the Li-ion
battery, whereas the RC networks represent the polarization
characteristics and diffusion effects of both electrodes. The
model order is determined by the number of RC networks
used, which must be selected carefully for an accurate estima-
tion of battery voltage. For instance, Rui et al. [22] examined
the accuracy of voltage estimation (V) at different orders of
RC networks. Furthermore, a number of studies have reported
that the first-order and second-order ECMs are sufficient
to represent battery dynamics for EV applications, whereas
higher-order models are not always the best choice in many
scenarios [61].

B. THERMAL-BASED MODELS

Battery temperature is another crucial aspect of the BMS
of EVs since it affects battery performance and its life-
time [21]. The thermal behavior of batteries is better under-
stood by developing several models, such as heat transfer,
heat generation, and reduced-order thermal models. Different
models of heat generation in batteries were developed to
describe ohmic losses, activation, and concentration, result-
ing in a non-uniform distribution of heat inside the battery.
The equations describing the various sources of heat gener-
ation and heat convection produced by Li-ion batteries can
be found in [21], [62], and [63]. To make the full-order heat
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generation models suitable for onboard battery applications,
various reduced-order thermal models were developed to
estimate/control the temperature of batteries [64], [65]. For
instance, Kim et al. [64] proposed a reduced-order thermal
model to estimate the battery’s internal temperature. The
proposed model is based on two assumptions: 1) the battery
volume is homogeneous and isotropic, and 2) there is no rapid
change in the temperature of the cooling media. Based on
these assumptions, they modeled the thermal properties of the
battery using volume averaging of the temperature gradient.
The dual Kalman filter is used to estimate the core tempera-
ture of the battery based on its surface temperature. This filter
combines two different Kalman filters, the traditional Kalman
filter, and the extended Kalman filter.

C. COUPLED ELECTRO-THERMAL MODELS

There is a strong correlation between batteries’ electric and
thermal behavior, which motivated researchers to develop
battery models based on these relationships. Several cou-
pled electro-thermal models have been proposed to describe
the electrical and thermal properties of Li-ion batteries,
simultaneously [66], [67]; including lumped-parameter and
distributed-parameter models [21], [68]. Chiew et al. [68]
developed a three-dimensional electrochemical-thermal cou-
pled model for a Li-Iron Phosphate battery to include the
thermal properties of such batteries during discharge. This
coupled model incorporates an electrochemical model and
a three-dimensional lumped thermal model to describe the
temperature dynamics to compute the battery SOC. They
validated their model experimentally on 26,650 cylindrical
LFP batteries to demonstrate that the battery can perform
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differently at a lower ambient temperature and discharge
rate where more mild exothermic reactions occur. Their
simulations show that for a lower discharge rate at 1C,
the temperature gradient and heat produced by the battery
are lower than those produced at higher discharge rates
of 2C-4C. Hariharan et al. [21] also developed a cou-
pled three-dimensional electro-thermal model to evaluate the
effects of battery dynamics, such as the flow rate of liquid
coolant and discharge current.

D. DATA-DRIVEN MODELS

Data-driven models are intelligent algorithms for finding
a mapping between inputs and outputs by considering the
battery as a black box. In batteries, voltage, current, and
temperature are the most widely used input features, whereas
the output is the battery SOC or SOH. A variety of data-
driven models, including neural networks [69], [70], [71],
long-short term memory(LSTM) methods [72] and support
vector machines (SVMs) [38], [73], have been developed to
describe battery behavior without prior knowledge of battery
physics or chemistry. Data-driven models perform well when
sufficient and high-quality datasets are used for developing
a battery model. Thus, a dataset must accurately represent a
battery operation at different ages under different operational
conditions. Details regarding data-driven models will be dis-
cussed later in Section VI-A and SectionVII-B.

V. AGING FACTORS OF LI-ION BATTERY

Various aging factors influence Li-ion batteries’ lifetime,
including thermal, electrical, and mechanical abuse. Monitor-
ing these aging factors is necessary to keep track of changes
in the electrochemical degradation parameters, including the
SEI layer growth and decomposition, the electrolyte decom-
position, the graphite exfoliation, and other battery degra-
dation parameters that directly impact capacity or power.
In many studies, SEI layer growth is noted as one of the
most important electrochemical degradation parameters that
influence battery health [4]. More specifically, the change in
the SEI layer thickness highly affects the battery’s capacity.
Figure 7 shows the various battery aging factors that may
cause the battery pack of EVs to catch fire under various
scenarios, including overheating or overcharging, as well as
vehicle accidents. As a result of these aging factors that
affect Li-ion batteries, researchers have been motivated to
find a solution able to accurately predict the battery SOH.
Consequently, understanding how each aging factor impacts
a battery’s behavior will assist in improving its performance
and preventing/mitigating the occurrence of such types of
abuses. An illustration of the impact of these aging factors
on battery parameters is shown in Figure 8. The failure of the
EV’s battery pack may occur if only one battery (i.e., cell) is
affected by one or more of these aging factors.

A. THERMAL ABUSE
Thermal abuse describes the impact of temperature change on
the different components of a battery. In Li-ion batteries, the
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FIGURE 7. Various scenarios that may lead to Li-ion battery thermal
runaway [74].

temperature change is due to chemical reactions inside the
battery. In addition, the ambient temperature highly affects
the performance of the battery. The relationship between
chemical reactions and temperature follows the Arrhenius
equation during the charge and discharge processes of the bat-
tery. According to thermodynamic definitions, these chemi-
cal reactions can be categorized into endothermic reactions,
and exothermic reactions. When Li-ion batteries are being
charged, they produce exothermic heat, which generates
excessive heat from chemical reactions, dissipating easily
into the environment. Alternatively, when the battery is fully
charged, the reaction can be endothermic because the battery
absorbs heat from its surroundings. The temperature gradi-
ent can also affect the ionic conductivity of electrodes and
electrolytes, significantly shortening the battery’s lifespan.
As a result, Li-ion batteries used in EVs are unlikely to
meet the expectations of a 10-year lifetime. Furthermore, the
temperature does not only affect the battery’s lifespan but
could also cause thermal runaway issues, which affects the
battery SOS.

1) LOW-TEMPERATURE EFFECT
The ability of a cooling system to decrease the battery’s
ambient temperature to be below the level (0°C) affects its
performance [76]. Due to the different properties of the
materials used in a battery, the battery’s performance may
be degraded at low temperatures (under-zero temperatures).
It is possible to classify the effects of low temperatures on
performance into three classes: 1) change in electrolyte vis-
cosity 2) change in charge transfer resistance 3) impact on
Li-plating (when metallic lithium forms around the anode
during charging).

Firstly, a decreased temperature results in a greater increase
in the electrolyte viscosity, which decreases the electrolyte’s
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ionic conductivity. An increase in electrolyte viscosity will
also cause an increase in electrolyte density, which in turn
increases the resistance of the electrolyte, which leads to a
decrease in the ionic conductivity, ultimately decreasing the
battery SOC. Secondly, as the viscosity of the electrolyte
increases with a decrease in temperature, the charge transfer
resistance will also increase. As a result, the kinetics of a
battery will be greatly affected, as well as the flow of Li-ions
within its electrodes, which reduces its performance. Lastly,
the cold conditions will cause anodes to polarize, which
will cause their potential to approach lithium metal, further
delaying the intercalation of lithium into the anodes during
charging. The aggregated Li-ions are then deposited on the
electrode surface, reducing the battery capacity. Additionally,
crystalline dendrites formed by lithium plating are capable of
causing internal short circuits due to their ability to penetrate
the separators [77].

Several recent studies have examined how low tempera-
tures affect battery dynamics, particularly subzero temper-
atures [78], [79], [80], [81], [82], [83], [84]. The authors
of [79], for instance, proposed a method for controlling the
temperature of Li-ion batteries that leverages their increased
internal resistance at subzero temperatures to increase the
battery temperature until maximum power is achieved.
Furthermore, the authors of [82] utilized a high-frequency
sine-wave heater using resonant low-current converters to
self-heat automotive battery packs in subzero temperatures
without the need for an external heater. An additional study
presented in [84] investigated both scenarios of the internal

119048

and external heating of the battery (by drawing current from
the battery, a convection heater is powered and by employing
Joule heating, the cell is heated from inside).

2) HIGH TEMPERATURE EFFECT

High-temperature effects on Li-ion batteries are more com-
plex than low-temperature effects. However, it is difficult
to understand how to minimize the effect of the tempera-
ture increase during battery operation. The battery is heated
by a number of processes, including chemical reactions
and charge transfer between the electrode-electrolyte inter-
face. Figure 9 shows all possible sources of heat generation
and their corresponding chemical effects. As illustrated in
Figure 9, many of these sources are related to irreversible pro-
cesses, which are exothermic reactions. During the batteries
are being charged or discharged, the exothermic heat gener-
ated by chemical reactions inside Li-ion batteries will affect
battery chemical components, such as decreased lithium
inventory due to SEI layer growth, metal dissolution, and
electrolyte decomposition. As a result of the degradation
of these chemical components, particularly the decrease in
lithium concentration, battery capacity will decrease. In gen-
eral, the heat generated by batteries affects their aging, as well
as maybe causing thermal runaway issues.

The increase in temperature is considered to be one of the
main causes of battery aging, and it might also potentially
damage the battery. Battery aging is defined by the deteri-
oration of the battery performance, as well as reducing the
battery lifespan. The aging process of a battery accelerates as
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FIGURE 9. Classification of heat generation sources from Li-ion batteries
and their impact on the chemical components of the batteries.

its temperature rises above a certain level, defined as thermal
aging. At high temperatures, the thickness of the SEI layer
increases, resulting in capacity fading. The SEI layer typically
has a thickness in the micrometer range. However, it contin-
ues to thicken with battery aging, reducing the electroactive
surface area of the negative electrode [85].

Thermal runaway occurs when the battery’s internal tem-
perature increases. This could be due to a battery failure,
impact, or abuse. The chemical reactions occurring within
the battery during operation are often exothermic in nature.
These exothermic reactions are considered responsible for
the increased battery temperature. This will lead to the
exothermic decomposition of the battery material. Typically,
Li-ion batteries generate a considerable amount of heat,
which is challenging to handle. Therefore many researchers
are investigating methods for controlling the generation of
heat. For example, in [86], a multistage AC heating scheme is
proposed to reduce the heating time without causing damage
to the Li-plating.

B. ELECTRICAL ABUSE

Electrical abuse happens when a battery is overcharged, over-
discharged, or short-circuited, leading to a series of chemi-
cal reactions resulting in significant performance issues and
safety concerns.

1) OVERCHARGING/OVER-DISCHARGING EFFECTS

An Overcharging/over-discharging of a battery can speed
up its degradation and cause an early EOL. Increased bat-
tery degradation is due to undesirable side reactions within
the battery, resulting in cyclable Li-ions and active material
loss [87]. Particularly, the excessive delithiation (draw all
active Li-ions) of the anode causes decomposition of SEI
when the anode is over-discharged [87]. On the one hand,
when batteries are over-discharged, their capacity decreases
faster since the amount of degradation depends on the depth
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of discharge (DOD). Furthermore, the over-deintercalation of
Li causes an irreversible phase change and the collapse of the
cathode, which results in the release of gas and the generation
of heat. On the other hand, when batteries are overcharged,
the anode becomes over-lithiated and the cathode becomes
over-delithiated (no active Li-ions). In over-delithiated cath-
odes, structured changes are irreversible which causes an
increase in resistance and degradation of the electrolyte
when they are overcharged [31]. An overcharged battery
may generate significant heat due to side reactions at both
electrodes [88].

2) HIGH CURRENTS EFFECTS

High current has the same deterioration effects that result
from overcharging and over-discharging. High currents gen-
erate more heat, consequently, speeding up the aging process.
Furthermore, changing the current level significantly impacts
the electrochemical parameters (SEI layer growth, electrode
particle cracking, loss of electric contact, and lithium plat-
ing), leading to performance degradation. Due to the Li-ion
battery’s organic electrolyte, its relatively low heat capacity
makes it susceptible to temperature rises that are particularly
rapid when current flows, as opposed to water-based bat-
teries. In addition, fast-charging graphite anodes will result
in metallic lithium-plating because graphite cannot accept
Li-ions at high current rates [89].

C. MECHANICAL ABUSE

Mechanical impact or abuse of batteries could result from
mechanical stress/strain or mechanical pressure. In principle,
the battery volume expands if a certain threshold of strain is
exceeded. These types of aging factors are responsible for SEI
layer growth and cracks in electrode particles.

1) MECHANICAL PRESSURE EFFECT

Mechanical pressure results from a manufacturing defect or
an externally applied pressure. In such a case, the penetration
or crash of the battery will cause the battery to explode [90].
It is recommended to use rigid battery casings in some
applications (e.g., EVs) to prevent pressure from external
forces.

2) MECHANICAL STRESS AND STRAIN EFFECTS

Mechanical stress and strain are more important than
mechanical pressure since they result from chemical reactions
inside the battery. There are several sources of mechanical
stress and strain in batteries, including the expansion of gas,
the expansion of electrode materials during operation [87],
and external loading. It is worth noting that the cracking
and fracturing of electrode particles cause an internal short
circuit near the separator [74], which generates high stresses.
In the case of over-stressing an electrode, cracking or frac-
turing may occur, resulting in material failure. Thus, the
battery’s performance is significantly degraded and capacity
fades [87].
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VI. LI-ION BATTERY SOH ESTIMATION METHODS
Complex chemical reactions trigger irreversible changes to
the battery’s characteristics during its operation. The SOH
indicates the battery aging stage, which measures the actual
age of the battery during its operational lifetime [4]. A bat-
tery’s SOH can be defined in two ways: either according to
the capacity loss or according to the power fade. The capacity
loss of a battery is due to the increase in internal resistance
and decrease in lithium inventory caused by chemical reac-
tions within the battery over time. When the capacity of the
battery falls to 80% of its original value, it indicates the
battery has reached its EOL, and will then enter its second
life.! According to this definition, the SoH is given by [91]:

Ci—Cp
0.2 C;

SOH =1 —

, 08C <Cp=<( (6)

where C; is the battery capacity before usage (capacity at
the BOL) and Cj is the capacity of the battery with any value
before its EOL. The SOH lies within the range 0 — 1,
in which zero means that the battery reached its EOL
(Cp = 0.8 C;) and needs to be replaced. According to the

Un the second life, the battery still has significant energy storage capacity,
but it does not provide sufficient power to drive an EV. However, it can be
used for other applications such as stationary energy storage, which is used
by grid operators, hospitals, etc.
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second definition of SOH, power fade refers to the reduced
amount of power that can be delivered to a load when the
internal resistance of the battery increases. In this case, the
battery is considered to be at its EOL when its internal
resistance is doubled. By considering the battery’s internal
resistance, the SOH can be expressed as follow [91]:

Ry —R;
SOH =1 — ~2 71

sRi <Rp <2R; (7
l

where R; is the battery initial resistance and R}, is the resis-

tance of the battery at any age. When R, = 2 R;, the SOH

drops to zero and the battery needs to be replaced (reached

its EOL).

Several methods have been developed over the years
for estimating the SOH of Li-ion batteries. In general,
there are two main categories of SOH estimation methods:
1) experimental-based, and 2) model-based. Across all of
these methods, we are aiming to achieve an accurate esti-
mation of the battery age by assessing the battery’s SOH
with less computational complexity. A summary of most
of the available methods for estimating SOH is shown
in Figure 10. The experimental methods are based on measur-
ing the battery parameters (lithium concentration, capacity,
internal resistance, voltage, current, etc) and storing them
to analyze how these parameters are changing during the
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TABLE 3. Comparison of battery SOH estimation methods.

Method Advantages Disadvantages Improvement suggestions

Direct e Easy to implement e Online measurements are difficult e Implement EIS using pseudo-random
- measurement | e Combine easily with model-based e Require high performance equipment sequence instead of sinusoidal signal
B methods e EIS is useful for studying aging e Destructive methods can perma- e Identify offline strategies for mainte-
f:; [92-94] processes nently damage the battery nance and diagnosis
g e High accuracy in laboratory climate e Unsuitable for real-time applications e Combined with a suitable battery model
% Indirect e High accuracy in lab environment e Require constant current for e Consider the temperature effect
£ analysis e Online battery aging using ultra- ICA/DVA charging curve methods o Incorporating with ML algorithms
5 methods sonic measurements & ICA/DVA e Unsuitable for all battery formations e Online methods to obtain DVA&ICA
& [95-97] o Estimate battery SOH using exter- e Temperature changes affect accuracy curves which require less computation
= nal characteristics e Online application is difficult complexity
- Adaptive e Provide trade-off between esti- e Model accuracy depends on param- e Developing multi-model fusion can en-
B filtering mation accuracy and computational eter identification hance model applicability
f:; methods complexity e Need high-performance controllers e Considering more physical parameters
= [24, 96, e Different battery chemistries can be e Require massive experimentation to can improve ECM
.5 98-100] used for online battery aging develop an algorithm
E Empirical& e Accurate to estimate battery SOH e Highly depend on quality of infor- e Adaptive filtering methods can be com-
% data fitting e Reduce number of required pre- mation bined to enhance the accuracy & robust-
— models tests o Algorithm efficiency&portability are ness of on-board battery SOH estimation
% [101-104] highly demanded
:i ML models e High SOH estimation accuracy e Estimation accuracy is sensitive to e Gathering high quality and suffi-
g [105-113] e Not required physical/chemical in- dataset quality cient quantity of battery information can
= formation e Computational effort is high achieve through using a big data& cloud

e Suitable for on-board estimation technology

battery life. These estimation methods are divided into two
subcategories: direct and indirect methods. Even though the
direct methods are simple and more efficient, they can only
be applied to offline battery health estimation and are limited
to small batteries (i.e., large batteries such as those in EVs
require complex operations). Consequently, these methods
are generally limited to laboratories for assessing various
battery aging parameters. For indirect methods, analyzing and
processing the measured battery data is necessary. However,
these methods are not generalized to all EVs since the mea-
sured data depends on a specific battery form (cylindrical,
prismatic, or Pouch). Thus, it is important to validate these
methods under different battery forms. In recent literature,
a variety of indirect methods have been proposed to esti-
mate the battery’s SOH, for example, the work in [95] uses
Voc(SOC) battery characteristic to estimate the SOH online.
In [96], the authors developed a double exponential degrada-
tion model based on the strong correlation between the SOH,
and the online discharging voltage and time measurements
(which are used as health indicators). Then, they used an
unscented particle filter to adjust the model parameters in
real time in order to estimate the SOH from those health
indicators. A study presented in [97] estimated the battery
SOH using incremental capacity analysis (ICA) for battery
packs with cell-level battery tests.

On the other hand, model-based methods, are further
divided into two subcategories, namely adaptive filtering, and
data-driven estimation methods. Adaptive filtering methods
are introduced as a solution to the challenges faced by indi-
rect measurement methods. In other words, these filtering
methods can be applied to various battery chemistries as
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they reduce the dependence of the SOH estimation on the
measured battery parameters. Despite having these methods
with a high degree of accuracy, they are burdened by the
required high computational complexity. These methods are
based on identifying battery parameters (i.e., only the external
parameters such as voltage, current, and temperature) using
various optimization algorithms [114]. Then, they use these
parameters to estimate the SOC and SOH of a battery using
an adaptive filter, such as the Kalman filter family [24],
[98] and particle filter [96], [99]. For example, the ECM
of the battery is used in [115] where SOH is treated as
part of the model state and estimated using a Kalman filter.
In another study presented in [24], SOH was calculated using
the Coulomb counting method for an ECM battery model of
second order. Then, an extended Kalman filter and online
battery parameter identifications are used to estimate the
SOH. In [100], a third-order ECM is used to model the battery
where the internal resistance of the battery is used as part
of the state. Then interactive multiple models are used to
estimate SOH. To estimate the voltage response, the authors
of [116] proposed a scheme that co-estimates SOC and SOH
through fractional-order equivalent circuits. A hybrid genetic
algorithm/particle swarm optimization (PSO) method was
used to parameterize the fractional circuit model. Although
this scheme improves SOH estimation accuracy, it is moder-
ately complex. Consequently, it is crucial to strike a balance
between the accuracy of the SOH estimation and the com-
plexity of the model. Because of the variability in operating
conditions, electrochemical and ECM-based models may not
remain accurate. Generally, estimating the SOH accurately
remains a challenge.
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This paper focuses on data-driven methods for estimating
the SOH, including empirical models and machine learning
models such as support vector machine (SVM) [38], [73],
Gaussian process regression (GPR) [40], [117], logistic
regression [118], artificial neural networks (ANN) [69], [70],
Markov chains [71], [108], recurrent neural network
(RNN) [110], k-nearest neighbors (KNN) [111], and random
forest regression (RFR) [112]. The following section presents
detailed information about data-driven methods. Addition-
ally, in Table 3, we compare a variety of methods for SOH
estimation including some suggestions for improvement. For
more information, there are several other review papers have
discussed the estimation of the SOH [25], [26], [119], [120].

A. DATA-DRIVEN METHODS FOR BATTERY SOH
ESTIMATION

Data-driven methods have gained increasing attention for
estimating battery SOH because they do not require an under-
standing of implicit changes in battery chemical parameters
or working principles. Consequently, these methods provide
an alternative to traditional SOH estimation methods which
normally require an extensive measurement of battery param-
eters during its operation to provide an accurate battery model
and health estimation. However, to achieve a high SOH esti-
mation accuracy using data-driven methods, a large amount
of battery parameter features needs to be collected, which
remains a challenge and requires high computational efforts.

1) EMPIRICAL AND DATA FITTING ALGORITHMS

Empirical and data fitting algorithms use available measure-
ments of battery features to give an estimate of Li-ion bat-
tery age. The most common fitting methods are polynomial,
exponential, and power law. One of the benefits of using
empirical methods is that they require less computation time
due to their simplicity. Most reviews of the literature on the
estimation of battery health considered SOC, ASOC, the
voltage at charge and discharge, temperature change, and
DOD as the most significant features that characterize the
age of the battery. In general, empirical models are built by
analyzing laboratory data and then applying a fitting method
to estimate the capacity loss (an indirect measure of the SOH).
This means that the higher the quality of the data, the more
accurate the battery capacity estimation will be.

Different models have been developed to estimate the
capacity loss associated with various aging factors [101],
[102], [103], [121]. The capacity loss model, for instance,
proposed in [104] is based on the results from a large matrix
of battery cycle tests that include three main battery features:
the DOD in range (90— 10%), temperature to be changed
between (-30— 60 °C), and discharge C-rate which is varying
in the range 0.5C — 10C with the 1C rate corresponding
to 2A. Along with the empirical capacity models, an empir-
ical method is proposed in [102] to estimate the battery
capacity by using a DC charger and equipment to measure the
voltage and current flowing from the charger to the battery.
In this study, the method is used to gain a unique insight
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into how vehicle-to-grid can affect batteries performing an
energy-intensive form of grid service. They compared the
empirical model results with actual measurements of capac-
ity, which estimated a similar degradation but attributed 2/3
of the capacity loss to aging and 1/3 to cycling. In [103] a
hybrid model based on a feed-forward empirical model and
a feed-back data-driven model is developed to deal with the
issue of mismatches in battery parameters and the uncertainty
of online capacity estimations. A recursive least squares
algorithm with a forgetting factor is applied to calculate the
difference between the estimates of capacity made by an
empirical method and a data-driven method; the parameter
feed-back correction algorithm is used to dynamically modify
and update the parameters of the empirical models. Then,
the capacity fusion correction algorithm combines the predic-
tions from the modified empirical model with the data-driven
estimates in order to achieve the fusion capacity. According
to this hybrid method, the fusion capacity can be estimated;
however, it needs several feed-back corrections to achieve
high estimation accuracy of capacity, which could be a reflec-
tion of the SOH.

2) MACHINE LEARNING ALGORITHMS

The use of ML algorithms automates the process of building
analytical models from data [31]. This approach is based on
the notion that the system can learn from historical data or
experiences, and make decisions or estimates without relying
on human intervention. Several ANN algorithms are devel-
oped to estimate the SOH, including feed-forward neural
network (FFNN), radial basis function (RBF) neural network,
RNN, hamming neural networks (HNN), etc. An advantage
of using ANNSs for estimating SOH is their high accuracy and
computing speed (i.e. no knowledge of the battery’s physical
characteristics is required). However, obtaining a comprehen-
sive dataset is challenging and requires high computational
efforts. Figure 11 illustrates the framework of using ML mod-
els, ANNSs, to estimate the SOH for EVs. In the first stage,
sensors such as voltage, current, and temperature collect data
from the EV’s battery pack (i.e., from each battery module,
see Figure 11). In the next stage, the BMS processes the
sensed data by filtering irrelevant data and taking into account
only those features that have a significant influence on the
aging of the battery (capacity loss/power fade). Then applies
the processed data as inputs to stage 3 to train an ANN model
(details are provided in Section VIII). In the final stage, after
the ANN model is trained, the model will be implemented
into the BMS for estimating the SOH.

Various recent studies have utilized ML algorithms to esti-
mate the SOH using a variety of datasets such as [105], [108],
[109], [122], [123], [124], [125], [126], [127], [128], [129],
[130]. Table 4 compares some of these models and summa-
rizes their results (details about these ML models will be dis-
cussed in Section VII). In this table, the comparison of SOH
estimation errors is provided based on root/mean square error
(R/MSE) or mean absolute (percentage) error (MA(P)E).
For example, the work in [123], [109], [105], [108], [125],
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FIGURE 11. A generic workflow of developing an ML model for
estimating the battery SOH.

and [126] presented various ML models including rel-
evance vector machine (RVM) and LSTM with PSO,
prior knowledge-based neural network with Markov chain
(MC-PKNN), convolutional neural network (CNN) and
Bi-directional LSTM, FFNN and RNN, support vector
regression (SVR), and SVM with RBF, respectively to
estimate the SOH. All of these aforementioned models
were developed using battery degradation data collected by
NASA [131], allowing a fair comparison of the SOH estima-
tion error among them. Based on these comparisons, it can
be observed that hybrid models such as bi-directional LSTM,
PA-LSTM, MC-PKNN, or SVM with RBF achieve better
results compared to the traditional single models. Addition-
ally, MC-PKNN and SVM with RBF have the lowest estima-
tion errors, which suggests that more investigation will need
to be conducted on those models under different test con-
ditions and on different datasets in the future. Furthermore,
combining several other ML models may result in better SOH
estimation.

VII. LI-ION BATTERY REMAINING USEFUL LIFE
PREDICTION METHODS

RUL has been defined in various ways by different
researchers in this field. Generally, once the battery is put into
service, it begins to age until it reaches its EOL and needs
to be replaced. Battery RUL is used to predict the remain-
ing time for a battery before it reaches its EOL, however,
there is no universally accepted definition of battery EOL.
Specifically, the RUL can be defined in two different ways:
either according to the calendar life or according to the
cycling life. On the basis of the calendar life definition,
the RUL is predicted as a function of time (i.e., months or
years). Nevertheless, the battery may reach its EOL before the
calendar’s prediction. Alternatively, on the basis of the
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cycling life definition, the RUL is determined by predict-
ing the number of cycles the battery can complete before
it reaches its EOL. However, in some instances when the
battery is not cycled in a normal way, it can be difficult
or even impossible to determine a precise cycling number.
In addition, EVs with battery packs containing hundreds or
thousands of batteries may perform differently from battery
to battery, as well as the number of cycles may vary from one
battery to another.
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FIGURE 12. Classification of the RUL prediction methods.

In contrast to SOH estimation which provides information
about battery age at a certain time, RUL prediction makes use
of SOH information to predict the residual life of the battery.
The RUL prediction methods can be divided into two main
categories: 1) electric-based methods, and 2) data-driven
methods. RUL prediction using the electric-based methods
can be performed either onboard (during battery operation)
or off-board, depending on the complexity of the battery
model being used (detail of electrical battery models is dis-
cussed in Section IV-A). Alternatively, data-driven methods
can either be empirical or semi-empirical (SeMs), which
calculate by fitting mathematical equations, or ML models
based on battery degradation data. This classification of the
RUL prediction methods is illustrated in Figure 12. In this
paper, we present an overview of electric-based RUL predic-
tion methods with a focus on data-driven methods. Table 5.
presents a comparison of these prediction methods in terms
of their strengths and weaknesses, along with suggestions for
improving each method.
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TABLE 4. Comparison of various ML models for estimating the SOH.

ML algorithm | Battery type SOH Methodology Temperature Dataset Lowest error rate (at 25°C)
range

FFNN [122] | Battery pack of 13 Lithium | In— variation of (SOC, V, C, E and T) (20—60°C) CALCE™** classification error of 0.6% for current pro-

classifier cells connected in series Out— SOH (75%—100% with 5% step) | with 5°C step file 1, and 1.3% for current profile 2

FFNN [123] | Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA* RMSE— 0.0298, and MAPE— 1.73%

regressive Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah) with 40 neurons in the hidden layer

FFNN [124] | Pack of Li-ion 18650 cells | n— multi-channel (V, I, and T) 10, 25, 45, | upDDSt RMSE— 0.0677 (less than 2.18% error on

with k-means | with Cpor=3.1 Ah Out— C in Ah (during charging) and 60° average)

RNN(LSTM) | Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA* RMSE— 0.0246, and MAPE— 1.032%

[123] Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah)

Bi-directional | Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA* RMSE— 0.01, and MAPE— 0.0081 for

LSTM [109] Cpor=2 Ah(NMC) Out— C in Ah (EOL at C= 1.4 Ah) battery#5 (forward/backward processing)

PA-LSTM Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA* RMSE— 0.006 for battery#5 based on

[105] Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah) PSO and Attenuation mechanism (PA)

RVM [105] Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA™ RMSE— 0.0141 for battery#5 (training on
Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah) 70% of the raw data)

CNN [109] Li-ion battery 18650 with | In— multi-channel (V, I, and T) 25°C NASA™* RMSE— 0.0482, and MAPE— 0.0514 for
Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah) battery #5

MC-PKNN Li-ion battery 18650 | In— V4 (charge/discharge), t(charge)| 25°C NASA* MSE— 0.2145% for battery #5 (NASA),

[108] (2Ah) (NMC) , AV (at fixed time), dSOC /dV (peak) Commercial | and MSE— 0.0076% for battery #1 (com-
LiFePO4 battery Out— C in Ah battery™*** | mercial battery data)

SVR [125] Li-ion 18650 (NMC) In—e DT curve (dT/dt vs. V) & 25°C NASA NASA* RMSE— 2.49%, MAE— 4.9% (NASA)
8 small Li-ion pouch cells | ICA curve (C vs. V) 40°C Oxford | Oxford*** RMSE— 1.08%, MAE— 2.5% for battery
(NCA) Out— C in Ah #3 (Oxford), both for DT curve

SVM [126] | Li-ion battery 18650 with | In— all features (V, I, and T) 25°C NASA™ MSE(10 exp —4)— 0.45,

with RBF Cpor=2 Ah (NMC) Out— C in Ah (EOL at C= 1.4 Ah) MAPE— 0.59% for battery#3

ELM [127] 3 (LiNMC) batteries with | In— variation in ohmic & polarized R | 25°C UDDSt & RMSE— 0.0109, MAE— 1.72%, Max

Extreme Leaming | Cpop, = 2.6 Ah (AR), Out— C in Ah NEDCT+ | Error—2.22%

RF [128] Pouch batteries (NMC) In—e , Out— C in Ah 25°C charging (V- | RMSE— 0.48 %, MAE— 0.36%,, and
17 with 20 Ah (type A) C) curves Max Error—2.22% for battery#3 (type A)
6 with 31.5 Ah (type B) RMSE— 0.53% for battery#3 (type B)

NASA™ is a battery degradation dataset collected by NASA Ames Prognostics Center of Excellence (NAPCE) [131]
CALCE™™ is a battery degradation dataset collected by Center for Advanced Life Cycle Engineering at the University of Maryland [132]

Oxford™™™ is a battery degradation dataset collected by a research group at the University of Oxford [133]

Commercial battery™***

is a battery degradation data collected by Hefei Guoxuan High-Tech Power Energy Co., Ltd., China [134]

UDDS™ stands for Urban Dynamometer Driving Schedule and represents dynamic driving profiles within a city collected by EPA in the USA

NEDC*™ stands for New European Driving Cycle and represents dynamic driving profiles for vehicles in Europe

A. ELECTRIC-BASED RUL PREDICTION METHODS

Several battery models have been developed to predict the
RUL of Li-ion batteries based on the battery electrochemical
parameters as discussed previously in Section IV. In this
section, we review the methods of predicting battery RUL
based on the complexity of the model, which can be classified
into two categories: off-board and on-board predictions.

1) OFF-BOARD ELECTRIC-BASED RUL PREDICTION
METHODS

Figure 13 shows the P2D model for a Li-ion battery which
has a separate structure for each part of the battery (negative
electrode, positive electrode, and separator). The mass and
charge conservation in these parts are expressed in a set of
governing PDEs. These PDEs describe the diffusion, migra-
tion, and reaction kinetics inside the battery. The equations
that describe the diffusion of Li-ions at the solid phase (posi-
tive and negative electrodes) and the transportation of Li-ions
in the electrolyte phase can be found in [59].
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The RUL of a battery is determined by the lithium concen-
tration available for producing an electrical charge. However,
solving the PDEs of the full-order P2D model is challenging.
Experimental evidence confirms that the full-order P2D is the
most convenient way to simulate the actual electrochemical
dynamics of Li-ion batteries [135]. In practice, however,
using this method to predict battery RUL for applications con-
taining hundreds to thousands of batteries, such as the battery
pack for EVs, becomes problematic, since the simulation time
could take months [135]. A set of optimization techniques is
proposed for estimating the unknown parameters of PDEs in
order to enable the use of the full P2D model.

Unlike the on-board parameter identification methods
(discussed in the following section), off-board methods do
not need to find optimal parameters during battery operation.
Therefore, they can deal with the full-order P2D model. Using
voltage and current measurements for a recent time period,
they determine the parameters that are likely unknown. The
term “likely unknown” refers to variables identified using
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TABLE 5. Comparison of Li-ion battery RUL prediction methods.

Method Advantages Disadvantages Enhancing ways
g | Offline e Provide all information on battery | e More complex to implement e Use more accurate parameter identifi-
~ &| prediction | dynamic characteristics e Unknown parameters need to identify | cation approaches
2 E techniques | e High estimation performance of | e Estimation accuracy sensitive to pa- | e With high-performance processors, on-
3 g battery health rameter identification accuracy line applications may be possible
5 2
g E Online e Easy to implement with the BMS e Assumptions to simplify EM cause | e Consider the degradation factors
% 5| prediction | e Reduce the complexity of EMs loss of important information such as high current effects, and
3| techniques| e Acceptable accuracy of battery | e Complexity of ECMs o< Number of | overcharge/over-discharge
a (ROEMs health estimation RC-networks e Incorporating with ML algorithms to
/ ECMs) e Models as EAM not practical validate | improve the system complexity
e BMS can easily monitor battery life | e Developed models are not universal e Test various battery formations with
g Semi- for online applications e Require specific operating conditions | various characteristics to find a relation
2 empirical | e Parameters extraction is easy for each battery type between them
'—aa)‘ 2| aging e Model construction is simple e Require more laboratory tests
5, 5| model e Fast in estimating battery SOH o Take a long time and expensive
G —‘35 e Fewer computation efforts e Aging tests are difficult in laboratory
g 8 e Actual measurements update esti- | e Online applications are more difficult e Improve the mathematical represen-
g Empirical | mation errors e Require high computational efforts tation of the model to achieve better
< aging e Modeling aging process requires computational efforts
model little aging data
e Recurrent link makes RNNs an | e Cannot deal with battery nonlinearity e Collect more battery features to pro-
excellent long-term forecasting o Incapable to handle uncertainty vide more information on battery dy-
@ 9 ANN e Possess an in-depth understanding | e Possibility to cause over-fitting issues | namics
2 2 of non-linearities e Performance of the model is greatly | e Combining different ANNs together to
§ % e Optimal prediction accuracy influenced by the training process improve battery SOH estimation
e @ e Accurate prediction e Difficult to handle nonlinearities in | e Using a hybrid model instead of a sin-
% z“ SVM e Robustness in the face of ateliers battery parameters gle model will improve the system per-
%’ ZO e Analyzes without parametric vari- | e Need to determine hyper-parameters | formance for handling the non-linearity
ables by cross-validation such as GPR model with SVM
e Prediction time is short e Computational cost is high
o Support high flexibility e Very expensive to compute o Enhance the quality and quantity of the
20 GPR e Provide co-variance to generate lev- | e Kernel functions have a high impact | dataset to improve the model robustness
=Y els of uncertainty on performance e Select model parameters carefully to
§ ;Z achieve the best possible results
e _'E e Accurate prediction e Local optimization issues easy occur e Gather high-quality datasets & accu-
% 2| RVM e Realize a high degree of sparsity e Consume large time in training process | rately sampling&pre-processing them to
%‘ = e Results are non-parametric e Potential to cause over-fitting issues avoid over-fitting
e Easily to create PDF e Modeling requires plenty of data
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FIGURE 13. P2D electrochemical model representation of Li-ion battery.

data in order to minimize the differences between measure-
ments and predictions derived from this model. By using
Jacobian and random search methods, for instance, this
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difference can essentially be minimized. Nevertheless, these
methods can get stuck in local optima, and thus cannot create
an accurate parameter identification. Note that inaccurate
identification of these parameters will adversely affect the
accuracy of the prediction of the RUL. Thus, P2D becomes
a more complicated model without gaining any benefit in
terms of predicting the RUL. This is why the P2D model is
commonly used on a laboratory scale since it yields highly
accurate results when its parameters are identified correctly.

The authors of [136] used gradient-based, then local
least-squares fitting in conjunction with the uncertainty quan-
tification procedure to estimate parameter changes due to
battery aging and to calculate confidence intervals for the
parameter estimates. Lenze et al. [137] proposed a param-
eter identification approach for a full-order electrochemi-
cal model whose parameters were manually adjusted. Using
a partially random-based optimization approach, Chun and
Han [138] demonstrated how to estimate the parameters for
the P2D model using a cascaded improved harmony search.
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According to Laue et al. [139], a three-stage process is
proposed which includes the use of quasi-static 3-electrode
measurements of EIS, the open-circuit potential, and C-rate
tests. According to their study, open-circuit potential testing
and C-rate tests are not sufficient to parameterize the electro-
chemical model, which makes highly dynamic tests essential
to resolve the inconsistency between diffusive and electric
processes.

2) ON-BOARD ELECTRIC-BASED RUL PREDICTION
METHODS

To deal with the complexity that arises from the full-order
electrochemical (i.e., P2D) model, a set of reduced-order
versions is developed for use in real time. Basically, the
reduced P2D model simplifies the solution of diffusion
PDE:s in the solid phase. By applying volume averaging, the
full-order P2D model can be simplified by reducing the
coupled PDEs to a set of uncoupled ordinary differential
equations (ODEs), and a set of analytical expressions. These
reduced order models are referred to as ROEMs (outlined
in Section IV-A). In obtaining the ROEMs, no physical
insight is lost — all variables retain their physical signifi-
cance. Additionally, these ODEs are easy to integrate and
can be applied to on-board RUL prediction. In order to
use the ROEMs to predict the RUL, unknown parameters
must also be determined, such as lithium concentration on
the electrodes, lithium concentration of the electrolyte, the
resistance of the SEI layer, and solid/electrolyte fractions.
Therefore, online parameter identification techniques are
developed, such as improved recursive least squares [140],
and Kalmen filters [141]. Once the battery parameters are
identified, the RUL of the battery can be predicted using
the ODE:s.

Allam et al. [4] proposed an adaptive interconnected
observer using the enhanced SPM that considers battery
degradation parameters and their dependence on temperature
change. This interconnected observer determines on-board
the value of unknown battery parameters such as Li-ions
concentration in the solid phase, battery capacity, diffusivity
of the anode, and ionic conductivity at the SEI layer. The
experimental results of this approach prove that the prediction
error is around 1% for a fresh battery whereas 2% for an
aged one. Additionally, capacity prediction remains robust
to measurement errors and sensitivity bias. A major limi-
tation is, however, that this method can only be applied to
new vehicles since it requires overhauling the BMS. The
authors of [142] developed an SPM model based on battery
degradation factors that detects the capacity fade and two key
degradation mechanisms. Specifically, at the anode electrode,
the SEI layer growth is determined based on the lithium loss
that causes chemical battery parameters degradation. While,
at the cathode electrode, the volume change in active material
due to dissolution, as well as the corresponding changes in
the transport properties were also determined. This approach
is successful in predicting the remaining cycle number of
batteries based on capacity fade and voltage profile change
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considering the lithium concentration loss as well as the
volume fraction changes. According to their experimental
results, the predicted capacity matches the measured value
within a 1% margin. However, the model parameters are
calculated empirically for each batch, and the model is not
able to predict fluctuating current profiles.

ECM models simulate electrochemical parameters as elec-
trical components, which are considered to be a simplified
version of a full-order electrochemical model. To accurately
predict RUL on-board, ECMs need to identify the circuit
components that reflect actual changes in battery chemical
parameters. Due to the accuracy of ECMs in predicting
the RUL depending on the accuracy of identifying circuit
parameters, a wide range of methods have been devel-
oped to accurately identify these parameters. For instance,
Jussi et al. [143] proposed a novel fitting algorithm to deter-
mine the parameters of ECM based on the shape of the bat-
tery’s internal impedance from the Nyquist plot. The authors
of this paper used pseudo-random sequence (PRS) instead of
the traditional way of measuring battery internal impedance
such as sinusoidal signal, resulting in a shorter measurement
time, maximum performance, and a decrease in complexity.
The experimental results showed that their approach can
predict the battery voltage accurately with RMSE 3.7% at
25°C and increased to 8.8% at 45°C when the battery SOC
was adjusted at 90%. Another fractional-order circuit model
is proposed by the authors of [144] where the EIS is first
estimated using real-time voltage and current measurements.
Then a regression model based on EIS was obtained and
used in the framework of a particle filter to predict the
RUL. A second-order ECM, as well as a thermal model of
the battery, were used in [145], which determines first the
core temperature and the capacity of the battery. Then the
parameters of the aging model are identified online to predict
the RUL. By using a stochastic model [146], [147], [148],
[149], [150], the battery degradation is modeled as a random
process with random drift. Then the drift in the degrada-
tion model parameters is estimated using different filtering
methods.

B. DATA-DRIVEN BASED RUL PREDICTION METHODS

1) DATA FITTING USING ANALYTICAL MODELS

Analytical models utilize mathematical equations that cor-
relate a battery’s aging status with its calendar life or cycle
number. In the literature, there are two types of analytical
models that have been developed: a) SeM with data fitting,
and b) empirical model with data filtering. The SeM takes the
form of an open-loop method, in which a vast amount of aging
data are analyzed to determine the model parameters and the
battery age (e.g., SOH or RUL). However, once the model
is constructed, the developed model cannot change these
battery parameters (no feedback). The latter takes the form
of a closed-loop method, meaning that as new information
or data becomes available, the model parameters are adjusted
accordingly.
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a: SEMI-EMPIRICAL MODELS WITH DATA FITTING

The SeMs are derived using the mathematical expression of
battery performance that depends on the direct relationship
between battery aging factors and battery capacity. In other
words, the SeM models rely on the battery characteristics that
are often measured over the battery’s lifetime. These models
are built using a variety of interpolation and fitting infor-
mation obtained from a set of experiments. For an accurate
estimation of the battery life as well as for a prediction of
how long the battery will last, a comprehensive aging analysis
taking into account various operating conditions must be
performed. However, assessing all aging factors is considered
difficult and challenging for battery RUL prediction. In gen-
eral, the application of Li-ion batteries (e.g., HEVs, EVs,
or power storage) will determine which aging factors need to
be taken into account. The temperature, for instance, released
from EV’s battery pack during the charging and discharging
processes affects battery chemical parameters, which causes
the battery pack life to be reduced or degraded.
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FIGURE 14. A generic workflow of the SeM model for RUL prediction,
starting from offline integration to online prediction.

Figure 14 illustrates how SeM can be used for online (on-
broad) prediction of the RUL. According to this figure, there
are two main stages for predicting the RUL: a) the offline
integration phase, which is associated with constructing the
battery lifetime estimation model, and b) the online predic-
tion phase, which utilizes the estimation model in predicting
the SOH/RUL. Specifically, the offline phase combines the
cycle life model with the calendar life model to develop a
battery estimation model. As an example, the cycle life model
may include cycling temperature, SOC, DOD, C-rate, cycle
number, and so on, whereas the calendar life model may
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include relaxation temperature, relaxation SOC, and relax-
ation time. Next, the performance of the estimated model
is examined and compared with real-life battery profiles,
followed by the prediction phase.

In the second stage, the battery estimation model is used to
predict SOH and RUL using dynamic load profiles (recorded
online). During the prediction phase, each battery (or each
battery module that consists of a set of batteries) measures
different battery parameters, including temperature, voltage,
current, etc. After that, the capacity degradation of each bat-
tery is determined according to its number of cycles, its usage
time, or its Ah-throughput (i.e., the quantity of current that
passes between electrodes during cycling). For example, the
authors of [151] developed a SeM based on an aging dataset
for NMC batteries and compared the prediction accuracy of
their developed SeM model with various ML models. Based
on their simulation results, the SeM performed less well in
both the static and dynamic validation tests than the ML
models. Although, the SeM model is simpler and easier to
construct than the ML models.

b: EMPIRICAL PREDICTION MODELS WITH FILTERING

In empirical models, the battery parameters are continuously
updated as new data becomes available, regardless of whether
the data was measured or estimated. In general, aging mod-
els are developed by fitting experimental data to a function
that accounts for the loss of capacity over time. Most of
these models are constructed as functions of the number of
cycles or the calendar life with fitted parameters. As well,
the behavior of degradation may be described by linear,
exponential, or polynomial functions. In our experience, the
most usable empirical model for RUL prediction is the double
exponential model [132]. For the prediction process to be
successful, these parameters (battery aging parameters) must
be updated continuously. Due to this, the empirical model is
referred to as a closed-loop model, meaning the parameters
are updated in response to changes in measurement data (i.e.,
based on feedback). When a new capacity estimate (always
using filters) or measurement is available from the BMS,
an optimal state estimation method is employed. By using
the empirical models with tuned parameters, the RUL may
be more accurately predicted after each update.

Empirical models are always associated with the use of
filtering algorithms such as the Bayesian filter family, which
includes the Kalman filter and particle filter, as well as their
variants. By using these filters, a general framework can
be developed for modeling dynamic states. With Bayesian
estimation, parameters are estimated and updated based on
observations using a probability density function (PDF). For
this reason, it is important to consider the components of
the system and how the noise is distributed when choosing
a suitable filter. For linear systems with Gaussian noise,
Kalman filters (based on the estimation of state-space PDFs)
are considered to be the most suitable technique, since the
state-space PDF remains Gaussian with each iteration, and
the variance of the distribution is propagated through the filter
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equations [152]. In contrast, Li-ion batteries degrade in a
nonlinear manner, and during the RUL prediction process,
different errors emerge from different sources. As a conse-
quence, the overall noise does not always exhibit Gaussian
behavior. As a result, the traditional Kalman filter could
diverge under such circumstances. Various algorithms have
been developed to address this problem, including extended,
sequential, and unscented Kalman filters such as the ones
described in [152], [153], [154], and [155] as part of the
Kalman filter family.

Particle filter algorithms are also advantageous for dealing
with non-Gaussian problems since they take into account the
non-linearities of the system, which gives them a distinct
advantage. In a sequential Monte Carlo method (e.g., par-
ticle filter), Bayesian estimation and importance sampling
are incorporated. In other words, based on the Bayesian
algorithm, particles with unknown parameters are updated
sequentially with parameter probability information. Then,
the information acquired in the previous step is utilized at the
beginning of this step, and by doing so, updating the param-
eters by multiplying them by the probability [99]. Several
studies, including [156], [157], [158], [159], [160] have used
particle filters in predicting the RUL.

2) MACHINE LEARNING ALGORITHMS

Although ML algorithms can be used for estimating SOH
and predicting RUL, there are significant differences between
them in terms of the input features and expected out-
puts [161]. On the one hand, the BMS collects the input
features (e.g., voltage, current, temperature) on-board to esti-
mate the SOH, where the output of the SOH estimator usually
represents the capacity for different battery cycles. On the
other hand, the use of ML algorithms in predicting the RUL
requires a set of capacity values of the SOH estimator as
inputs. In other words, the results of the SOH estimation
models are used as inputs for the RUL prediction models to
predict battery life as a function of cycle count or calendar
count (months or years).

ML algorithms can be categorized into three groups: super-
vised, unsupervised, and reinforcement learning algorithms.
In supervised learning, the objective is to find a map between
input features and outputs with an acceptable degree of
accuracy [150]. Additionally, supervised learning can also
be divided into two categories: classification problems as
discrete values (such as failure or non-failure), or regres-
sion problems as continuous values (such as resistance or
capacity values). In other words, classification problems pro-
duce categorical output, while regression problems produce
real-valued output. In most cases, battery health prediction
problems can be classified as regression problems since they
produce a numerical value corresponding to the battery’s
capacity. The unsupervised learning algorithms can make use
of given features in order to identify trends or clusters in
the data without having an output specified. In reinforcement
learning, input/output features do not need to be labeled.
Reinforcement learning is simply the process of an intelligent
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agent making a series of decisions/actions based on what
he sees in the environment using rewards in response to the
desired behavior.

In this section, we focus on supervised ML algorithms
because the Li-ion battery features and their associated out-
puts (e.g., capacity) can be measured on-board. It is also
possible to classify supervised ML models as follows: a) non-
probabilistic approaches and b) probabilistic approaches.
In the first approach, states are related to events rather than
describing probabilities, and in the second approach, the
uncertainty in predictions is indicated by the distribution of
probabilities.

a: NON-PROBABILISTIC APPROACHES
i) AUTO-REGRESSIVE MODEL

Auto-regressive models use past observations of previous
time steps to predict future values. Easy parameterization
and low computational complexity make the autoregressive
model an attractive choice for predicting the RUL. For exam-
ple, the authors of [162] applied a particle swarm algorithm
to optimize an autoregressive model for the prediction of bat-
tery capacity degradation. However, when batteries degrade,
the fading process becomes nonlinear, thus the autoregres-
sive model will be under-fitted, especially in the context of
long-term predictions. To address this problem, a nonlinear
autoregressive framework that combines the autoregressive
model with moving averages was developed. Through the
use of the moving average, the traditional autoregressive
model is enhanced by using past prediction errors instead of
past prediction values. Another model was proposed by Gou
et al. [163], in which a nonlinear autoregressive model was
used in conjunction with an ensemble learning structure to
improve the stability and accuracy of RUL prediction.

i) ARTIFICIAL NEURAL NETWORKS

In predicting the RUL for Li-ion batteries, a wide variety of
ANNS is being utilized, including modular neural network
(MNN), FFNN, Kohonen self-organizing neural networks
(SONNSs), RBF neural networks, HNNs, RNNs, LSTMs, etc.
As part of this work, we explain in detail the most useful
networks, including FFNNs, RNNs, and HNNs. In general,
ANNs simulate the human brain by using artificial neurons
(processing units) arranged in three layers: an input layer,
an output layer, and a hidden layer. The input layer prepro-
cesses data before redirecting it to the hidden layer(s). Data
preprocessing refers to the process of filtering the data that
is derived from incomplete battery charging and discharging
cycles as well as from data that contains a large amount
of noise in order to achieve high accuracy. Each neuron in
the hidden layer is represented mathematically by a linear
weighted combination coupled with an activation function to
determine its output. Accordingly, the more weight a neuron
has, the greater its sensitivity will be to the particular input.
On the output layer, the model predicts the RUL value accord-
ing to the input data.
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1. Feed-Forward Neural Network:

FFNN is considered the simplest ANNs (no loop or feed-
back) because the data travel in only one direction from
the input layer toward the output layer, through the hidden
layer. Various researchers have used the FFNN to predict the
RUL. For instance, the authors of [123] developed an FFNN
model to predict the capacity of Li-ion batteries based on a
multi-channel charging profile. They developed and trained
their prediction model using the NASA dataset [131]. In their
experimental study, they utilized batteries #5, #6, #7, #18
that were charged through the CCCV charging protocol until
they reached a maximum voltage of 4.2V. The multi-channel
charging profile of these batteries includes voltage, current,
and surface temperature which are considered as input to
the model, and the capacity data is considered as the model
output. Due to the limited size of the available data, they
trained the FFNN model by the datasets from batteries #5, #6,
#7 and then validated and tested the model with the dataset of
battery #18. A key feature of this paper is that it discusses the
diversity of feasible data regarding the prediction accuracy of
capacity. They compare the prediction accuracy of capacity
when the model is trained with single-channel (voltage only)
and when it is trained with multi-channel (voltage, current,
temperature). Their experimental results showed that predic-
tion accuracy is increased by 58% when using multi-channel
data instead of a single channel.

As illustrated in Figure 15, an improved FFNN model is
proposed by the authors of [149] which uses cascade forward
neural network (CFNN) to predict the RUL. To train and
validate their model, they utilized the same experimental
environment as in [123] and the same batteries: #5, #6, #7,
and #18. The main difference between the CFNN model and
the traditional FFNN model is that the CFNN model has a
direct connection from the input layer to the output layer.
As a result of this direct connection, the CFNN assigns addi-
tional weights equal to neuron numbers in the network which
results in a faster estimate of the weights. Comparing the
CFNN model to the traditional FFNN model, the experimen-
tal results showed that the CFNN model has higher accuracy
in predicting RUL when using single or multiple-channel
input features.

In [164], the authors proposed another ANN model based
on applying time-delayed data as an input to the tradi-
tional FFNN model to estimate the SOH. This proposed
model is referred to as the input time-delayed neural network
(ITDNN). As a consequence of the time-delayed inputs, the
ITDNN model is more effective to model battery dynamics
and memory effects on the battery. Figure 16 depicts the time-
delayed voltage, current, and ambient temperature, as inputs
to the model, with battery SOH as an output. For the purposes
of training and validating their model, they used four mile-
stones from a 20 Ah LFP battery with varying ages (0 h for
a fresh battery, 352 h, 544 h, and 650 h for an aged battery).
According to their experimental results, the ITDNN model
provided better SOH estimation accuracy than the traditional
FFNN model. Considering these findings it can be concluded
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FIGURE 15. A representation of cascade forward neural network with
3 input features, 1 hidden layer with n number of neurons, and 1 output
layer [149].
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that the use of ITDNN in predicting the RUL may provide
better results than either FENN or CENN; however, there is
no research that has employed this model up to this point.
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FIGURE 16. A simple representation of input time-delayed neural
network for SOH estimation [164].

2. Recurrent Neural Network:

RNNs are similar to FFNNs but include feedback connec-
tivity between the output layer and the hidden layer, which
is shown in Figure 17. In terms of internal memory, the
RNN model can process and store past information over a
period of time, thereby making it an ideal tool for tracking the
correlation between different battery features. Additionally,
there is a strong correlation between capacity degradation
and battery age, when the batteries are used over hundreds
or thousands of cycles. Therefore, extracting and analyzing
the correlations is essential in determining the RUL. Based
on these considerations, LSTM is a promising type of RNN
to capture and update degradation data due to its ability to
learn both on short-term and long-term scales.

According to [123] as discussed previously, the authors
also constructed an LSTM model to predict the RUL and
compared its prediction accuracy to the FENN model. Based
on their experimental results, LSTM is more accurate in

119059



IEEE Access

M. Elmahallawy et al.: Comprehensive Review of Li-lon Batteries Modeling, and SOH and Remaining Useful Lifetime Prediction

predicting RUL than FFNN. Furthermore, they demonstrated
that using multi-channel data instead of single-channel data
can improve the accuracy of LSTM by 25%. A hybrid
approach combining an ML model and a physical model is
proposed in [165] to increase the accuracy of RUL predictions
for Li-ion batteries using the RNN model and state-space
estimation methods, which are typical of filtering-based tech-
niques. For the training of the RNN, a large dataset is gener-
ated with the state-space estimation procedure. The condition
monitoring unit provides data on the battery’s internal capac-
ity, and these data are used to estimate the battery’s SOC. This
newly generated data is then used to train the RNN model.
In the corresponding RNN model, a genetic algorithm is used
to optimize the model using additional deep layers in order to
improve predictions of the nonlinear trend of battery levels.
The NASA battery dataset of batteries #5, #6, #7, and #18 has
been also used to assess the performance of their proposed
method. In addition, they examined two degradation models,
a well-known empirical double exponential model and a new
single exponential model, which is capable of ensuring opti-
mal performance with fewer estimation parameters. Further-
more, they compare the predictions of their model to a state-
of-the-art, demonstrating that their model performs optimally
in terms of RUL prediction. Generally, it can be observed
that the feedback between the hidden and output layers of the
RNN model can increase the accuracy of the RUL prediction.
Several other research studies that employ RNNs, LSTMs,
or a hybrid model can be found in [166], [167], [168], [169],

and [170]
\

P
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o

FIGURE 17. A simple representation of an RNN with 3 input features,
1 hidden layer with n number of neurons, and 1 output layer.

3. Hamming Neural Network

An HNN model can be thought of as a combination of
the FFNN model and the RNN model. In [171], a dual
extended Kalman filter was employed in conjunction with
an HNN model in order to identify the battery parameters of
ECM (first-order ECM) with the objective of achieving high
estimation accuracy for SOH. Specifically, HNN estimates
of ECM battery parameters are presented based on three
patterns: capacity patterns, charge-discharge voltage patterns,
and changes in those patterns over time. Following the iden-
tification of battery parameters, the dual extended Kalman
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filter is used to estimate SOH. The dataset patterns used to
develop and validate this model are divided into 15 different
categories. To make the data suitable for use in an HNN,
a binary array must be created with elements of -1 or 1. When
the HNN model has identified the predetermined pattern
closest to an arbitrarily selected battery, the ECM battery
parameters corresponding to the selected pattern are then
identified. Based on their experimental results, the developed
model can correctly identify battery ECM model parameters
without having to repeat battery parameter measurements.
This study, however, is limited to one temperature setting
of 27°C, and no further investigation has been conducted to
predict the RUL using this model. Therefore, more attention
is needed to utilize this model in predicting the RUL, which
could have better accuracy than the previous state-of-the-art.

b: PROBABILISTIC APPROACHES

Considering the non-linearity in Li-ion battery parame-
ters, as well as the uncertainties in measurement procedure
and operating environment, the prediction models of RUL
should account for these uncertainties for better accuracy.
For this reason, probabilistic approaches have been devel-
oped to reflect all of these types of uncertainty by identify-
ing unknown uncertainty and its relationship with the data
through probabilistic distributions [172], [173].

i) GAUSSIAN PROCESS REGRESSION

Models based on GPR can be used to predict RUL using their
flexible, non-parametric, and probabilistic techniques that are
very useful for predictions [174]. In GPR, a Bayesian kernel is
used to encapsulate historical knowledge and provide predic-
tions. The authors of [175] described residual variances that
are associated with average predictions for various scenarios
as a function of uncertainty. Therefore, Gaussian processes
can be viewed as a group of random variables with joint
multivariate Gaussian distributions [174], [176]. Based on the
level of degradation in battery capacity that occurs during
battery operation, the authors of [177] proposed a GPR model
with multiple outputs to predict SOH as well as RUL for Li-
ion batteries. Their model was trained and validated using
the NASA dataset for batteries number #1, #2, and #4, which
were captured from a charging/discharging of a 0.9 Ah Li-ion
battery. The experimental results showed that multiple-output
models tended to perform better when extracting data from
multiple batteries, resulting in highly accurate predictions
of RUL. Nevertheless, this model has a high computational
complexity when dealing with multiple or large numbers of
outputs. They further developed an enhanced GPR transition
model [178] for describing the mappings between diverse
current, voltage, temperature, and capacity with an aim to
predict battery degradation. In contrast to this model, the
basic GPR method does not detect the local regeneration that
occurs when a battery shows abrupt and temporary increases
in capacity during capacity degradation. In the GPR model,
co-variance functions and mean functions are combined for
multi-step-ahead prognostics [117].
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GPR’s prediction accuracy is high in response to the co-
variance function, which means the kernels must be selected
carefully due to the complex nature of capacity fading
(as many factors contribute to it) [176]. In the case of
non-linear mappings involving multi-channel input features,
a single co-variance function would result in unreliable pre-
dictions [174]. Thus, advanced structures such as automatic
relevance determination [179] should be used for construct-
ing an isotropic kernel. Overfitting may result when hyper-
parameters in the co-variance function are not optimized
appropriately. In developing the GPR model, this problem
can be solved by reducing the negative logarithmic marginal
likelihood [176].

According to [151], the authors developed three differ-
ent ML algorithms, including GPR, nonlinear autoregressive
with exogenous input (NARX), and SeM to predict RUL.
In comparison with the GPR model, the NARX model shows
a lower RMSE for both static and dynamic validation as well
as a lower training time, while the SeM model shows a higher
RMSE but requires less time for training.

i) RELEVANCE VECTOR MACHINE
RVM method is originally introduced by Tipping [180], it is
similar to the SVM algorithm but based on probabilistic prin-
ciples. Using the RVM, PDFs of the outputs can be obtained
instead of point estimates (classification) by estimating the
weights of the Bayesian network. Despite using kernel func-
tions with high sparsity, RVM has comparable performance
to SVM and provides probabilistic predictions [181]. It is
important to note that sparsity occurs when a large proportion
of weights have zero values, which results in more efficient
models.

Several studies have shown that RVM is a powerful tool for
predicting RUL because of its ability to deal with uncertainty.
According to the model proposed by the authors of [182], the
RVM is capable of producing relevance vectors that can be
used to predict future battery capacity degradation. An uncer-
tainty model is used for determining the parameters of a
capacity degradation based on the prediction of degradation
values. In that article, the authors used a wavelet denoising
method to reduce the model uncertainty and calculate the his-
torical information. In addition, the RVM model is employed
as a nonlinear time series for predicting the battery’s remain-
ing life. A further incremental approach for online learn-
ing was proposed by the authors of [183] to improve the
prediction accuracy of the RVM model for long-term RUL
prediction. According to their findings, the RVM achieved
a high degree of precision, excellent learning capabilities,
simple training procedures, and accurate prediction results
with a high probability level. RVM model, however, has a
major disadvantage of requiring large datasets for training,
resulting in significant computational and memory expenses.

VIil. PERFORMANCE TESTS
For the purpose of estimating battery SOH or RUL using
ML models, an acceptable quantity and quality of data are
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required. However, collecting the battery aging data is an
exhausting process of experiments designed to gather suf-
ficient battery information that represents the entire battery
life. Furthermore, it would be challenging to repeat these
experiments because they would require a large amount of
time and money. Thus, the collection of a high-performance
battery dataset can take up to several years.

In this section, one of the most valuable battery degradation
datasets in this line of research, the NASA battery degradation
dataset, is used to train and validate three ML algorithms,
including SVR, FFNN, and LSTM. NASA dataset contains
three different operational profiles: charge, discharge, and
impedance at different ambient temperatures for various
Li-ion batteries from their BOL until they reached their EOL.
Initially, the battery voltage was charged in a constant current
mode at 1.5 A until 4.2 V was reached, then in a constant volt-
age mode until the current dropped to 20 mA. Batteries were
deemed to be obsolete (EOL) when their capacity failed by
30% from its fresh value (i.e., dropped from 2 Ah to 1.4 Ah).
In this work, we first extract the features from this dataset,
particularly from the discharge profile. Next, we process and
filter the dataset by removing the redundant data. Finally,
we use the pre-processed data to estimate the SOH. Following
is an explanation for the extraction of features and filtering of
the NASA dataset during the discharge profile.

A. DISCHARGE PROFILE OF NASA DATASET

Prior to developing an ML model, we need to analyze the
battery discharge profile which has three sub-profiles: volt-
age profile, current profile, and temperature profile, each of
which will serve as an input feature to train our ML algo-
rithms. For labeling these input features, the measured battery
capacity of each cycle from the battery’s BOL to its EOL will
be utilized. Figures 18 and 19 depict the voltage, current, and
temperature profiles as well as the degradation curve of the
battery capacity during the battery discharge phase for battery
number #5, as documented by NASA’s dataset, at ambient
temperature 25°C.

B. FEATURE EXTRACTION OF DISCHARGE PROFILE

During the discharge process, the size of the samples col-
lected is affected by the battery life. More specifically, each
discharge cycle contains different numbers of data samples,
where the fresh battery may have 5000 samples, but an aged
battery may only have 700 samples. For this reason, raw
data must be processed to extract key characteristics from
the data of each battery cycle before being integrated into the
feature fusion model. Generally, a better SOH estimation can
be achieved through the extraction of more key features from
raw data.

To solve the problem of varying sample sizes, it is logical
to take the same sample points at equal intervals during each
battery cycle. The easiest way to do this is to discard some
points in each cycle. This way, however, does not produce
satisfactory results due to the non-linearity degradation of
the battery data. For this reason, it is essential to determine
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FIGURE 18. An example of a Li-ion battery discharge profile (battery #5 in NASA's dataset), in which (a) shows voltage curves from the battery’s BOL to
its EOL, (b) and (c) show the profiles of current and temperature, respectively, for one complete cycle.
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FIGURE 19. The capacity curve of Li-ion battery number #5 during a
discharge phase from its BOL to its EOL.

a reliable way to extract the battery features in order to
have sufficient and effective sample points. Specifically, for
each characteristic of the Li-ion Battery, there are very clear
geometric patterns, which are highly dependent on the battery
decay. As a result, we can extract typical key characteristics
for each of the discharge cycles and use them to characterize
the current state of Li-ion batteries.

Figure 18a illustrates the voltage profile of battery num-
ber #5 at its BOL and EOL. As shown from this figure, it is
hard to determine which points should be included in esti-
mating the SOH and which should be discarded. On the other
hand, if we consider the points such as A, B, and C which
represent the degradation of voltage gradient with regard to
different ages of batteries, the problem of non-linearity in
battery data can be overcome. Therefore, it is important to
consider a number of key points that may represent a differ-
ence between the battery at different ages as they influence
the battery’s performance.

After processing the input features, we train three
ML models, FFNN, SVR, and LSTM, and compare their
performance in estimating battery SOH. For a fair com-
parison between these battery models, the same training
parameters (number of layers, number of epochs, number of
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neurons, etc.) were employed. The following considerations
apply to all ML algorithms used:

o Each ML algorithm is composed of one input layer, two
hidden layers, and one output layer.

o Training parameters are: epochs=500, batches=32,
loss function=mean_squared_error, optimizer=ADAM,
metrics=accuracy.

o Each battery is trained and tested with the same train-
ing/testing ratio 80-20 %.

Additionally, testing was performed using Python 3.9 on a
platform with a processor of Intel(R) Core (TM) i7-CPU
Q720 at 1.6 GHz and memory (RAM) of 4.00 GB. In order
to label input features with the corresponding SOH, the SOH
of the battery is determined based on the following equation:

C.
SOH% = —< % 100% 8)

nom
where C, is the capacity of the battery at each cycle, and C,op,
denotes the battery nominal capacity at BOL which is given
in the dataset for each battery. Below is the RMSE equation
used in our evaluation:

N

1 SOH, — SOH,

RMSE% = | Y | = ———*
N SOH,

2
} *100%  (9)
i=1
where the number N denotes the number of sample points,
SOH, is the determined SOH as shown in (8), and SOH, is
the estimated battery SOH derived from the testing of our
model. It is worth noting that the lower the RMSE, the better

the accuracy of the battery model.

C. RESULTS DISCUSSION

The experiment was repeated and initially produced satisfac-
tory results in some cases. Following additional experiments,
the results have become stable. Figure 20 shows the results
of estimating battery SOH using the FFNN algorithm for
batteries #5, #6, and #7. As shown in the figure, the horizontal
axis represents the number of cycles a battery goes through
from its BOL until reaching its EOL, while the vertical axis
represents a percentage estimate of battery life. In this figure,
the lowest SOH value of the battery is 58%, where the battery
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reached the end of its first life for on-board applications and
must retire and start its second life oft-board. Additionally, the
figure shows that the difference between the measured and the
estimated values of SOH is relatively small for batteries #5,
and #6, but it is slightly larger for battery #7.
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FIGURE 20. Comparison of SOH using FFNN algorithm in modeling Li-ion
batteries based on NASA datasets of batteries #5, #6, and #7.

Figure 21 shows the estimations of SOH for batteries #5,
#6, and #7 using the SVR algorithm. According to this figure,
the difference between the calculated and estimated SOH
values for batteries #5 and #6 is still within acceptable limits.
On the other hand, the difference between the measured and
estimated value of SOH is increased for battery #7, especially
at the first fifty cycles, indicating that the dataset for this
battery is not very accurate in comparison to other batteries.
An important consideration is that the quality of the dataset
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FIGURE 21. Comparison of SOH using SVR algorithm in modeling Li-ion
batteries based on NASA datasets of batteries #5, #6, and #7.
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is crucial to the accuracy of the ML algorithm in estimating
battery health.

Figure 22 depicts the SOH estimation for batteries #5, #6,
and #7 using LSTM algorithm. According to this figure, the
difference between the measured and estimated battery SOH
values for batteries #5 and #6 is very small when compared
to the FFNN and SVR algorithms. Although, the large differ-
ence between the measured and estimated battery SOH value
for battery #7 is reduced and becomes an acceptable range
compared to previously mentioned algorithms. This improve-
ment in estimation accuracy was expected since the LSTM
algorithm estimates the next value by looking at the past
as well as the present. Therefore, even though the dataset’s
accuracy is not very high, the estimated value can have good
accuracy. In comparison to FFNN or SVR, the LSTM algo-
rithm is more complex and requires more training time.
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FIGURE 22. Comparison of SOH using LSTM algorithm in modeling Li-ion
batteries based on NASA datasets of batteries #5, #6, and #7.

D. BENCHMARK

Table 6 and Figure 23 summarize the results for SOH estima-
tion using FFNN, SVR, and LSTM algorithms in modeling
batteries number #5, #6, #7, and #18 as numbered in NASA
dataset. In comparison with SVR and FFNN, the LSTM algo-
rithm has the lowest RMSE, therefore it is the most accurate
algorithm when estimating battery SOH. In spite of this, the
RMSE difference between these three models is around 1.5%,
which is not significantly different when considering that the

TABLE 6. The RMSE% for various battery SOH estimation models.

Battery#5 Battery#6 | Battery#7 Battery#18
FFNN 2.51% 2.81% 3.33% 3.52%
SVR 3.62% 3.52% 3.97% 3.76%
LSTM 2.14% 2.54% 3.05% 2.32%
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LSTM is more complex than the other two models. As a
result, there can be a trade-off between model complexity and
accuracy.

e FFNN
N SVR
B 1sT™

3.05 2.32

RMSE(%)

LSTM

FIGURE 23. Comparison of different ML models (FFNN, SVR, and LSTM )
in terms of SOH with respect to RMSE%.

Although LSTMs demonstrate acceptable SOH estimation
accuracy, they are based on the degradation dataset used,
meaning that traditional models are not robust enough when
used with dynamic battery data. In order to improve the
estimation accuracy and enhance the robustness of ML mod-
els, the researchers developed hybrid models. For instance,
the authors of [163] developed a hybrid ML algorithm that
combines ELM and random vector functional link (RVFL) to
estimate SOH and predict the RUL of Li-ion batteries. Their
proposed model was also trained and tested using the NASA
dataset. Additionally, they compared their hybrid model with
a variety of ML models, including stacked denoising autoen-
coders (SDA), SVM, echo state networks (ESN), random
forest (RF), RVFL, and ELM. They proved that the combined
ELM&RVFL model offers the lowest RMSE value in com-
parison to the other models as well as is more robust when
they tested it under different datasets.

NARX model with embedded LSTM is another hybrid
ML mode proposed by [184], which incorporates jump-ahead
connections in the time-unfolded model. These jump-ahead
connections reduce long-term dependence on the RNN by
providing a shorter path for gradient information to propa-
gate. They validated their model using urban dynamometer
driving schedules and dynamic stress tests. The experimental
results presented in [184] showed that the NARX-LSTM
model has the smallest RMSE 0.76% and 0.78% using two
different datasets, whereas the traditional LSTM has a greater
RMSE which is 1.87% and 1.95% using the same dataset and
parameters.

Through this section, we presented a comparison between
various ML models used to estimate the SOH. As shown
in this comparison, hybrid algorithms produce higher accu-
racy than a single ML algorithm in estimating SOH.
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Unfortunately, these models have some gaps due to their
dependency on the quality of the datasets, which affects the
robustness of SOH estimation. As most of these datasets
were collected in laboratories, the performance of these mod-
els does not reflect real-world applications. Further, these
datasets typically measure only the current, voltage, and tem-
perature of batteries, which may not provide sufficient infor-
mation about how batteries perform over time. Consequently,
enhancements are necessary to fill these gaps.

IX. BENCHMARK OF BATTERY HEALTH PREDICTION
TECHNIQUES

A variety of methods are developed to estimate and predict
battery health. All prediction methods are aiming to achieve a
high degree of accuracy, however, no single strategy has been
developed to address all the current challenges. For each indi-
vidual application like EVs or HEVs, the suggested model
attempts to strike a balance between accuracy, computational
effort, complexity, and applicability. Figure 24 illustrates a
comparison between various techniques for battery RUL pre-
diction. According to our analysis, the data-driven models
had high applicability and performance, making them useful
for on-board battery life prediction. Nevertheless, these meth-
ods are limited by their high level of computational efforts,
which is considered the main drawback of these methods.
In fact, there is no straightforward method for selecting
the best battery health prediction method. The selection
of the most appropriate prediction method depends on the
given application, the information available about the battery
parameters, and the quality of the dataset.
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FIGURE 24. Comparison between different battery lifetime prediction
models.

In Figure 25, a framework of the complete estimation and
prediction processes is shown in conjunction with the BMS
for EVs as a real-world application. In this framework, data-
driven models are considered for estimating and predicting
battery health thanks to their high applicability for onboard
applications. There are three main phases in this framework:
a) diagnostic phase, b) prognostic phase, and ¢) maintenance
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FIGURE 25. The diagnosis, prognosis, and maintenance processes of
Li-ion batteries in EVs based on ML algorithms.

phase. During the first phase, the installed sensors measure
and record battery external parameters. After that, the data
will be stored in a memory to be used as a historical dataset
in the future. The next step would be to extract features
from the dataset that would contain information about the
battery age. Next, the ML model is created and trained using
this available dataset. In the final stage of this process, the
battery SOH estimation is determined as the estimated output.
It is important to emphasize that during the battery life, the
data collection process continues in order to increase the
model’s accuracy. The second phase of the RUL prediction
utilizes the output from the estimation process as an input to
the battery RUL predictor. Following this, the output of the
battery RUL predictor is sent directly to the BMS to improve
battery performance. During the maintenance process phase,
the battery health status will be displayed for the user on the
graphical interface. In the event of worsening battery health
or the need to retire the battery, the user will schedule an auto
maintenance appointment to replace or repair the battery.

X. CONCLUSION AND RECOMMENDATION

The main objective of this paper was to review and discuss
the health status of EV batteries to ensure their operational
safety. For this purpose, various battery modeling techniques
were discussed. Two main approaches have been proposed
in the literature: physically-based approach and data-driven
approach. In the physically-based approach, the most com-
prehensive and accurate model is the electrochemical model
which consists of a set of partial differential equations. Unfor-
tunately, this model is complex and may not be used to
monitor the battery’s health in real-time applications. Fur-
ther research is needed to achieve an acceptable compromise
between model complexity and accuracy. In the data-driven
model, the model parameters are not known directly, but rel-
evant model information is determined using ML algorithms
and training data. Even though this modeling approach is sim-
ple to use, its accuracy mainly depends on the amount of train-
ing data, and the ML algorithm used. Nevertheless, obtaining
the proper amount of data is challenging. In addition, there is
no universal ML model that can be used to estimate battery
health with a high level of accuracy. Further research is
needed to find a compromise between the model accuracy,

VOLUME 10, 2022

and ML algorithm complexity. A performance comparison
between physical and data-driven modeling approaches using
the same battery and the same operating conditions will be
useful. It is worth considering the use of deep learning neural
networks that can be trained during vehicle operation. Given
an accurate model, battery SOH and RUL prediction can
be achieved to ensure the safety of the use of EV batteries.
Also, to provide a fair and accurate comparison between the
different data-driven models, a generalized validation test is
needed for estimating battery health.
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