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ABSTRACT Many graph construction methods for clustering cannot consider both local and global data
structures in the construction of initial graph. Meanwhile, redundant features or even outliers and data
with important characteristics are addressed equally in the graph optimization process. These lead to the
learned representation graph may not capture the optimal structure when clustering. This paper proposes
a novel model for clustering, named adaptive graph construction and low-rank representation of weighted
noise (ACLWN), to overcome these problems. ACLWN is composed of an adaptive representation graph
construction model named ARG, and an adaptive weighted sparse representation graph learning model
named AWSG. In ARG, manifold learning and sparse representation are employed to capture the local
structure of data. In AWSG, an adaptive weighted matrix is proposed to strengthen the important features
and improve the robustness of the low-dimensional representation graph. Moreover, constraints such as non-
negative low-rank, sparsity and distance regularization terms are imposed to capture the local and global
structures of data. Comprehensive experimental results show that our method outperforms the compared
state-of-the-art methods. The low-dimensional representation graph constructed by ACLWN ismore suitable
for clustering.

INDEX TERMS Adaptive initial graph construction, adaptive weighted matrix, graph learning, low-rank
constraint.

I. INTRODUCTION
Clustering as an unsupervised learning method has long been
favored by researchers in machine learning, data mining and
pattern recognition. A cluster is a set of data points that are
the same as one another within the same cluster and are
disparate from the points in other clusters [1], [2], [3]. Spec-
tral clustering [4], [5], [6], the most typical graph learning
clustering method, has good performance when dealing with
complex high-dimensional data. It first constructs an initial
graph to describe the similar relationships among data, then
develops a low-dimensional representation matrix based on
the initial graph, and eventually obtains the final clusters
by k-Means [7]. Spectral clustering can be more accurate
and robust only when the initial graph is well constructed.
Similarly, the other clustering of graph representation is also
done.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

The existing graph construction strategies can be roughly
categorized into three groups: (1) Capture the similarity
between data points by distance metric. Jurusan et al. uti-
lized the straight-line distance between data points to assess
similarity [8]; Yin et al. used the cosine function to construct
the similarity matrix in the original space [9]; and Ding et al.
proposed a random compact Gaussian (RCG) kernel, and
used it to measure similarity between data points [10]. But
these methods are unable to automatically collect structural
information of points suitable for graph learning clustering.
(2) Obtain similarity between data points based on global
self-representation. Each point is encoded as a weighted
combination of all other points, i.e., data point could be
represented by its adjacent and reachable indirect neighbors.
Yun et al. utilized the weighted tensor nuclear norm to capture
the fundamental spatial structure [11]; Shang et al. proposed
a self-representation method based on dual-graph regularized
feature selection [12]; Weng et al. introduced the Laplace
smoothing criteria for graph construction by adopting data
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self-representativeness [13]. Nevertheless, these graph con-
struction methods are not ideal for high-dimensional datasets
because of their high time complexity. (3) Obtain similarity
between data points by describing each point as a linear
combination of its neighbors. kNN-Graph [14], [15] meth-
ods represent a data point only according to its k-closest
points. Roweis et al. developed a locality embedding graph
(LLE-graph) [16] by using kNN-Graph to represent a data
point. However, because of the various domain parame-
ters, these methods often provide different similarity results.
Moreover, the existing initial graph construction methods
cannot capture the full local structural features from the orig-
inal data since they can only reflect structural relationships of
data to some extent.

To obtain more information about data structure for graph
learning clustering, researchers have achieved a promis-
ing effect in extracting the complete structural information
from the initial graph. Elhamifar et al. proposed sparse sub-
space clustering(SSC)) [17] by employing a self-expression
dictionary and a compressed sensing technology. Since
sparse representation can capture the neighborhood struc-
ture of data, numerous sparse subspace clustering methods
have emerged, such as ILRDFL [18], LRGPDDL [19] and
SSC+E [20]. Although the sparsity constraint can indepen-
dently embody the relationships between pairwise points,
it fails to reflect the global structure of data. To perform well
in capturing the global structure of data, another important
researching point, the low-rank representation (LRR) [21],
was proposed by Liu et al. LRR can improve the correla-
tion between samples within clusters while weakening the
correlation between clusters. Because of the rich complex
information in high-dimensional data structures, lots of novel
LRR-based methods are proposed to explore the implicit
information in data [22], [23], [24], [25]. Among them, Latent
low-rank representation [24] is a popular method because
it can recover well the hidden effect of inter-point structure
and remove damaged points by integrating some latent obser-
vations. Xie et al. proposed a low-rank sparse preserving
projection method [25], which learned a robust weight matrix
by employing LRR-based methods to reduce the influence
of outliers and noise. Unfortunately, LRR cannot reflect the
adjacency relationship between points.

As a result, exploring how to better capture the both local
and global structures has become a hot research topic [26],
[27], [28], [29], [30]. Zhu et al. [29] designed a novel sub-
space clustering method to learn a representation graph by
conducting feature selection and subspace learning in self-
representation framework. The method addressed the short-
coming that existing methods cannot obtain local and global
structures simultaneously. Han et al. [30] combined distance
regularization and non-negative regularization to improve
the latent LRR model. However, the representation graph
learned by these methods brings about a lack of physical
interpretation because it contains a large number of negative
elements. Moreover, in the initial graph construction, these

models treat redundant features or even outliers as equally
significant data. To balance the importance of data, Li et al.
adaptively assignedweights to distinguish and filter noise and
outliers [31].Wen et al. proposed an AdaptiveWeighted Non-
negative Low-Rank Representation (AWNLRR) [32] model
to assign low weights to redundant features or outliers. They
were still unable to obtain the optimal graph representation.

To keep exploring the optimal representation graph for
graph learning, we propose a novel model, named adaptive
graph construction and low-rank representation of weighted
noise (ACLWN), based on manifold learning [33], [34]
and sparse representation [35]. The framework of ACLWN
model is illustrated in Figure 1. ACLWN includes an adap-
tive representation graph construction model (ARG) for
constructing the initial graph and an adaptive weighted
sparse representation graph learningmodel (AWSG) to obtain
the low-dimensional representation matrix of data. First,
to generate an initial graph capturing the local structure
of data, ARG represents data point by adaptively obtain-
ing its k nearest neighbors. Next, to optimize the initial
graph and obtain a low-dimensional representation graph,
AWSG jointly employs sparse, non-negative and low-rank
constraints to capture the global and local structure of data.
Subsequently, this method uses a weight matrix to guide the
learning of the low-dimensional representation matrix, which
adaptively assigns more weight to important features and less
weight to redundant features or outliers. Meanwhile, AWSG
uses `21−norm [36] to replace the nuclear norm in AWNLRR
to further constrain the representation of noise and outliers.
Since ACLWN can obtain both global and local structures of
data, and it is robust to noise and outliers, it is suitable for
graph learning clustering.

The main contributions of this paper are summarized as
follows,

1. A graph learning clustering model is proposed for adap-
tive graph construction and weighted sparse representation.

2. The model completely utilizes the geometric structural
information of data to guide the construction of the initial
graph. It overcomes the disadvantages of the initial graph
construction based on the complete graph and the k-nearest
graph.

3. An adaptive weight matrix is employed to improve
robustness to noise and outliers, so that the gener-
ated low-dimensional representation matrix can accurately
express significant features of data.

4. Extensive experiments on real datasets are conducted to
verify that the effectiveness of our framework is superior to
those of the other state-of-the-art baseline algorithms.

The remaining sections are organized as follows. The next
section briefly surveys the related works. Section III proposes
the clustering framework ACLWN. Section IV describes the
optimization step of ACLWN. In section V, the framework
is analyzed in terms of experimental results on different
datasets, parameter sensitivity and convergence. Section VI
concludes work.
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FIGURE 1. The framework of ACLWN model.

II. RELATED WORKS
In this section, we begin with a brief introduction to some of
the symbolic conventions used throughout the paper, and then
describe three types of traditional graph construction meth-
ods. Finally, two representation-based techniques are intro-
duced, i.e., representation-based subspace clustering (RSC)
and representation-based classification methods (RC), which
are most closely related to the method proposed in this paper.

A. NOTATIONAL CONVENTIONS
Throughout this paper, given a datasetX = {x1, x2, . . . , xn} ∈
Rd×n with d features and n instances, its jth column vector
and (i, j)th element are denoted by xj and xij, respectively.
‖X‖p is the `p (p = 1, 2, {1, 2} ,F) norm constraints of
matrix X , and some typical norm are represented as ‖X‖1 =

max
1≤j≤n

d∑
i=1

∣∣xij∣∣, ‖X‖F =
√

d∑
i=1

n∑
j=1

x2ij, ‖X‖2,1 =
n∑
j=1

√
d∑
i=1

x2ij

and ‖X‖2 =
√
λmax

(
XTX

)
=
√

max
1≤i≤d

|λi|, where XT is the

transposed conjugate matrix of X , λ is the eigenvalue of XTX .
I ∈ Rd∗n is an identity matrix, and 1 ∈ Rd∗1 signifies a
column vector with all entries equal to one. Tr(X ) and XT are
the trace and transposition of matrix X , respectively. α � β
denotes the element-wisemultiplication of the vectorα andβ.

B. GRAPH CONSTRUCTION
The traditional gragh learning methods [37], [38] convert the
dataset X into graph as follows.

a. Complete graph. It constructs edges between each point
xi and all the other points in X .

b. k-nearest graph [14], [15]. It constructs edges between
xi and its k closest neighbors for each point xi in X .

Assume S is the initial graph, and each node represents a
point. If nodes i and j share an edge connection, three classic
definitions of similarity sij are as follows.

1) Binary (0–1) similarity: sij = 1.

2) Cosine similarity [9]: sij =
(xi)T xj
‖xi‖‖xj‖

.

3) Gaussian kernel similarity [10]: sij = exp
(
−‖xi−xj‖

2σ

)
,

where σ is the scale parameter.
These measures have some limitations. For example,

although the binary similarity is simple, it cannot reflect
the similarity between complex data. Cosine similarity can-
not take into account the local geometric structure of data.
Gaussian kernel similarity is a distance-basedmeasure, which
is sensitive to noise, outliers and redundant features.

C. REPRESENTATION-BASED SUBSPACE CLUSTERING
In this paper, representation-based subspace clustering (RSC)
is represented by sparse, low-rank constraints and others
techniques. Its general framework [17], [21], [39] is defined
as

min
Z ,E

2(Z )+ λψ (E) s.t. X = XZ + E, (1)

where 2(Z ) is the regularization term of the variable Z ,
and ψ (E) represents noise and outliers constrained by var-
ious norms. E is the reconstruction error term, while λ is
the corresponding regularization parameter of ψ (E). For-
mula (1) can learn a low-dimensional representation matrix
A ∈ Rn×c, which is useful for clustering. It can also to
extract intrinsic geometric structural information from high-
dimensional complex data. For various RSC algorithms, their
differences lie in the choice of 2(Z ). Usually, the final
clustering result of RSC is obtained by using the following
four steps: 1) create the initial graph matrix M ∈ Rn×n,
where mij denotes the similarity between xi and xj; 2) con-
struct the Laplace matrix LM = DM − (MT

+ M )/2 of
the similarity matrix M , where DM =

∑
j
(
mij + mji

)
/2;

3) compute min
A∈Rn×n

Tr
(
ATLMA

)
to get the low-dimensional

representation matrix A; 4) use k-Means to partition the
low-dimensional representation matrix A into c clusters.
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D. REPRESENTATION-BASED CLASSIFICATION METHODS
Representation-based classification algorithms are based on
the assumption that points in the same class as the test point
contribute more than those in other class points in the joint
linear representation of the test point. Based on the above
assumptions, many famous representation-based supervised
classification methods have been proposed, such as sparse
representation classification (SRC) [40], cooperative rep-
resentation classification (CRC) [41], regularization robust
coding (RRC) [42], and local constrained linear coding (LLC)
[43]. The representation-based classification (RC) [44], [45],
[46] method can be uniformly abstracted as

min
α
‖r � (Q− Pα)‖22 + λϕ (d � α) , (2)

where P and Q represent train set and test set respectively.
λ denotes the regularization parameter. Under various norm
constraints, ϕ (d � α) is regarded as the regularization term
of α. Prior knowledge is denoted by vectors r and d respec-
tively. The difference between all kinds of RCmethods is that
they choose the different regularization terms of ϕ (d � α) as
well as the parameters r and d .

III. ADAPTIVE GRAPH CONSTRUCTION AND LOW-RANK
REPRESENTATION OF WEIGHTED NOISE (ACLWN)
The low-dimensional representation matrix can be realized
in further optimization learning if the initial graph with high
quality is obtained at the early stage, as described above.
This section focuses on presenting the graph learning cluster-
ing framework for adaptive graph construction and weighted
noise low-rank representation (ACLWN).

A. ADAPTIVE REPRESENTATION GRAPH
CONSTRUCTION MODEL (ARG)
Traditional initial graph construction methods, as described
in Section II-B, suffer from many shortcomings. As a simple
explanation for manifold learning, if we choose two very sim-
ilar data points, they will also represent each other very sim-
ilarly when constructing the initial graph [33], [34]. Sparse
representation [35] is robust to noise and outliers. In this
section, we propose a novel graph construction method that
combining manifold learning and sparse representation as

min
S

n∑
i,j=1

∥∥xi − xj∥∥22sij + α n∑
i=1

‖si‖1

s.t. sii = 0, 0 ≤ sij ≤ 1, (3)

where S is the initial graph to be learned, and its ith
column vector and (i, j)th element are denoted by si and sij,
respectively.

Normally, we measure the similarity of two points by
calculating the distance between them.

Here, the first item of Formula (3) calculates the distance
between points, and adaptively chooses k-nearest neighbor of
current point according to the distance information. In other
words, it achieves the sparse representation by represent-
ing current point according to the principle of competitive

representation. The `1 − norm of the second term ensures
the sparseness of the representation matrix columns and
improves the contribution of high discriminative features to
the representation matrix. We also impose constraints sii =
0 and 0 ≤ sij ≤ 1 on the representation matrix to reduce the
self-representation contribution of points.

We add the 1T si = 1 constraint to Formula (3) to ensure
that all points receive equal attention in the expression.
It leads to the second term being a constant term, which
is equal to a sparse constraint on S. Formula (3) can be
transformed into

min
S

n∑
i,j=1

∥∥xi − xj∥∥22sij
s.t. sii = 0, 0 ≤ sij ≤ 1, 1T si = 1. (4)

We denote that Formula (4) has a trivial solution, i.e.,
xi has a similarity value of 1 with xj and 0 with the other
points. To address this issue, we add an induction factor to
Formula (4) so that the similarity value becomes 1

n between
xi and the other points,

min
S

n∑
i,j=1

∥∥xi − xj∥∥22sij + β n∑
i

‖si‖22

s.t. sii = 0, 0 ≤ sij ≤ 1, 1T si = 1. (5)

B. ADAPTIVE WEIGHTED SPARSE REPRESENTATION
GRAPH LEARNING MODEL (AWSG)
Both representation-based clustering and classification algo-
rithms have demonstrated that the data representation matrix
includes lots of discriminant information, as explained in
Section II-C and Section II-D. To maximize the geometric
structure of the data collected in the initial graph and eventu-
ally generate the low-dimensional representationmatrix com-
prising discriminant information, we propose the following
objective function of AWSG,

min
Z

∥∥∥W 1
2 � (X − XZ )

∥∥∥2
F
+
λ1

2
‖W‖2F + λ2 ‖Z‖ 2,1

s.t. W ≥ 0, W T 1 = 1, Z ≥ 0, (6)

where W is the weight matrix, with W ≥ 0; Z is the
low-dimensional representation matrix that has to be learnt;
λ1 and λ2 are penalty parameters. Weight matrix W is used
to regularize the data reconstruction error. The first two
terms of Formula (6) adaptively assign high weights to sig-
nificant elements and low weights to redundant features or
outliers to improve the contribution of high discriminative
features of important points in the representation matrix.
Hence the method is robust to noise and outliers. Under the
constraint `F − norm, the second term and the first term
together constitute the Lasso problem, which is convenient
for optimization to find the optimal solution. W T 1 = 1
constraint can ensure all points to be treated equally. Usually,
distance information is used to measure the local structure of
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data. Therefore, we add the
n∑

i,j=1

∥∥xi − xj∥∥22 constraint to For-
mula (6) in the process of obtaining a low-dimensional rep-
resentation matrix. Suppose D denotes the distance matrix,

dij =
n∑

i,j=1

∥∥xi − xj∥∥22, then n∑
i,j=1

∥∥xi − xj∥∥22zij = Tr
(
DTZ

)
,

Formula (6) can be converted to

min
Z

∥∥∥∥W 1
2 � (X − XZ )

∥∥∥∥2
F
+
λ1

2
‖W‖2F

+ λ2‖Z‖2,1 + λ3Tr
(
DTZ

)
s.t. W ≥ 0, W T 1 = 1, Z ≥ 0. (7)

To eliminate negative effects of low-dimensional repre-
sentation matrix Z , such as all 0 for some rows of Z and
self-representation of points, we introduce the Z1 = 1 and
diag (Z ) = 0 constraints to the Formula (7). Finally, we can
derive that the objective function is

min
Z

∥∥∥W 1
2 � (X − XZ )

∥∥∥2
F
+
λ1

2
‖W‖2F

+ λ2‖Z‖2,1 + λ3Tr
(
DTZ

)
s.t. W ≥ 0, W T 1 = 1, Z ≥ 0,

Z1 = 1, diag(Z ) = 0. (8)

C. VERIFY THE FORMULA (6)
In this section, we prove that Formula (6) can generate a
sparse non-negative and low-dimension representation graph.
Proposition 1: Suppose E = X − XZ and the ele-

ments of each column of E are not all 0, then the
optimization sub-problem is simplified to variableW , namely

min
Z ,W

∥∥∥W 1
2 � (X − XZ )

∥∥∥2
F
+

λ1
2 ‖W‖

2
F , and Formula (6) gen-

erates a sparse weighted non-negative matrixW .
Proof: Define D = E � E , apparently, D ≥ 0. Then,

this problem min
W≥0,W T 1=1

∥∥∥W 1
2 � (X−XZ )

∥∥∥2
F
+
λ1
2 ‖W‖

2
F can

be converted to min
W≥0,W T 1=1

‖W‖2F +
2
λ1
‖D�W‖1. It is also

the same as the n separate sub-problems min
W≥0,W T 1=1

‖wi‖22 +

2
λ1
‖di � wi‖1 i = 1, 2, . . . , n, where di and wi are the ith vec-

tors of D and W respectively. Then, the min
W≥0,W T 1=1

‖wi‖22 +

2
λ1
‖di � wi‖1 can be regarded as a variant of Lasso’s

issue [47], which can produce a sparse solution wi. The
penalty parameter 2

λ1
controls the sparsity. Thus, we can

deduce that the sparse weighted matrix W will be produced
by solving Formula (6).

Most notably, combining the regularization term λ1
2 ‖W‖

2
F

and boundary constraints W ≥ 0 and W T 1 = 1 can
avoid a trivial solution of W [44], [48]. The Z ≥ 0 con-
straint can ensure that the graph learned by similarity
between points is interpretable. Furthermore, non-negative
constraints can improve representation-based graph learning
performance [49].

IV. OPTIMIZATION ALGORITHMS
A. OPTIMIZATION ALGORITHM FOR FORMULA (5)
According to the work of Nie et al. [50], we define that the jth
column element dij of distance vector di is dij =

∥∥xi − xj∥∥22.
Then Formula (5) can be rewritten as

min
si

∥∥∥∥si + di
2β

∥∥∥∥2
2

s.t. sii = 0, 0 ≤ sij ≤ 1, 1T si = 1.

(9)

The Lagrange function in Formula (9) about conditions
0 ≤ sij ≤ 1 and 1T si = 1 is written as

L (si, η, ξ) =
1
2

∥∥∥∥si + di
2β

∥∥∥∥2
2
− η

(
1T si − 1

)
− ξT si,

(10)

where η is the scalar Lagrange coefficient, and ξ is the vector
Lagrange coefficient.

We differentiate Formula (10) with respect to si and set the
partial derivative to 0, then we can obtain the jth element sij
of si as follows,

sij +
dij
2β
− η − ξi = 0. (11)

By multiplying both sides of Eq.(11) by sij, and according
to the Karush-Kuhn-Tucker (KKT) [51] condition that sijξj =
0, we can obtain sij. Here, we denote it as sij,

sij =
(
−dij
2β
+ η

)
+

. (12)

Suppose di1, di2, . . . , din are sorted in ascending order, and
si needs to satisfy these conditions that sik > 0, sik+1=0, and
si contains at most k non-zero values, then we have

−dik
2β
+ η > 0 and

−dik+1
2β

+ η ≤ 0. (13)

Impose constraint 1T si = 1 on Inequality (13), we can
derive

k∑
j=1

(
−dik
2β
+ η

)
= 1⇒ η =

1
k
+

1
2kβ

k∑
j=1

dij. (14)

Learning the self-adaptive s̄i of k neighbors according to
Formula (13) and Formula (14), β is represented by

β =
k
2
dik+1 −

1
2

k∑
j=1

dij. (15)

According to Formula (13), Formula (14) and For-
mula (15), the jth element sij of si can be defined as

sij =


dik+1 − dij

kdik+1 −
k∑

h=1
dih

j ≤ k

0 j > k

(16)

Finally, we summarize the pseudo code of ARG in
Algorithm 1.
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Algorithm 1: The Algorithm ARG
Input: Data matrix X , number of adaptive neighbors k
Output: Initial graph matrix S
for i = 1 to n do

for j = 1 to k do
Calculate the Lagrange function via Eq.(10);
Calculate the Lagrange coefficient η via Eq.(14);
Calculate the maximize parameter β via Eq.(15);
Calculate the element sij in si via Eq.(16);

return S;

B. OPTIMIZATION ALGORITHM FOR FORMULA (8)
Formula (8) is a non-convex optimization problem with two
unknown parameters, Z and W . Many methods can address
this kind of problem, such as alternating direction method
(ADM) [52] and accelerated proximal gradient (APG) [53].
Because of the characteristics of the issue and the efficacy of
the ADM approach, we employ the ADM approach to opti-
mally solve the Formula (8). To make the problem simpler,
we introduce two auxiliary variables E and U , and then turn
Formula (8) into

min
Z

∥∥∥∥W 1
2 � (X − XZ )

∥∥∥∥2
F
+
λ1

2
‖W‖2F

+ λ2‖Z‖2,1 + λ3Tr
(
DTZ

)
s.t. W ≥ 0,W T 1 = 1, Z ≥ 0, Z1 = 1,

diag(Z ) = 0,E = X − XZ ,U = Z . (17)

We first rewrite Eq.(17) into Augmented Lagrangian
function [54]

L (ϒ) =
∥∥∥W 1

2 � E
∥∥∥2
F
+
λ1

2
‖W‖2F + λ2‖U‖2,1

+ λ3Tr
(
DTZ

)
+
µ

2


∥∥∥X−XZ−E + C1

µ

∥∥∥2
F

+

∥∥∥Z−U + C2
µ

∥∥∥2
F

 ,
(18)

where the penalty parameter is µ (µ > 0), C1 and C2 are
Lagrange multipliers, ϒ is a constrained set, with ϒ =

{Z ,W ,E,U ,C1,C2}. Then, fixing the remaining variables,
the optimal value of the current variable is iteratively
obtained.

Step 1. Update W and fix the other variables:

min
W≥0,W T 1=1

∥∥∥W 1
2 � E

∥∥∥2
F
+
λ1

2
‖W‖2F . (19)

Since E is a fixed variable, Formula (19) can be converted
into

min
W≥0,W T 1=1

m∑
i=1

n∑
j=1

(
wije2ij +

λ1

2
w2
ij

)

⇔ min
W≥0,W T 1=1

m∑
i=1

n∑
j=1

(
wij +

e2ij
λ1

)2

. (20)

Formula (20) and Formula (9) are optimized in a similar
way, for further details, please see Formula (9). Finally, vari-
ableW can be calculated as follows,

wi = max
(
ηi1−

1
λ1
fi, 0

)
. (21)

Because of wTi 1 = 1 constraint, we have

m∑
j=1

(
ηi1−

1
λ1
fij, 0

)
=1⇒ηi=

1
m
+

1
mλ1

m∑
j=1

fij. (22)

Step 2. Update E and fix the other variables:

min
E

∥∥∥W 1
2 � E

∥∥∥2
F
+
µ

2

∥∥∥∥X−XZ−E + C1

µ

∥∥∥∥2
F
. (23)

Define G = X − XZ + C1
µ
, Formula (23) can turn into

min
E

∥∥∥W 1
2 � E

∥∥∥2
F
+
µ

2
‖E − G‖2F

⇔ min
eij

m∑
i=1

n∑
j=1

(
wije2ij +

µ

2

(
eij − gij

)2)
⇔

m∑
i=1

n∑
j=1

min
eij

(
eij −

µgij
µ+ 2wij

)2

. (24)

We can obtain each optimization value of eij in e using
Eq.(24),

eij =
µgij

µ+ 2wij
. (25)

Step 3. Update U and fix the other variables:

min
U
λ2‖U‖2,1 +

µ

2

∥∥∥∥Z−U + C2

µ

∥∥∥∥2
F
. (26)

DefineM = Z + C2
µ
, Formula (26) can be turned into

min
U
λ2‖U‖2,1 +

µ

2
‖M − U‖2F . (27)

We can obtain a closed solution by simplifying
Formula (27),

U∗:,i =


∥∥M:,i∥∥2 − λ2

µ∥∥M:,i∥∥2 M:,i if
∥∥M:,i∥∥2 > λ2

µ

0 otherwise.

(28)

Step 4. Update Z and fix the other variables:

min
Z
λ3Tr

(
DTZ

)
+
µ

2


∥∥∥X−XZ−E + C1

µ

∥∥∥2
F

+

∥∥∥Z−U + C2
µ

∥∥∥2
F


s.t. diag (Z ) = 0, Z ≥ 0, Z1 = 1. (29)

Find a latent solution Ẑ by minimizing the following
Formula (30)

Ẑ =
(
XTX + I

)−1 (XT ∗ (X−E + C1
µ

)
+U − C2+λ3∗D

µ

)
, (30)
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then we can obtain a closed solution as

min
diag(Z )=0,Z≥0,Z1=1

∥∥Z − Ẑ∥∥2F . (31)

Referring to Formula (20), the optimization process of
Formula (31) can be solved,

zi = max
(
ζi1

T
+ zi, 0

)
, (32)

where the Lagrange multiplier is ζi, with ζi = (n− 1)−1

(1− zi1); z̄i is the ith row of Ẑ . Eventually, we can obtain
an ideal Z by plugging the value of ζi into Formula (32).
Step 5. Update C1, C2 and µ, and fix the other variables:

C1 = C1 + µ (X−XZ − E) ,

C2 = C2 + µ (Z − U) ,

µ =

{
min (µmax, ρµ) , if π < 0.01
µ, otherwise,

(33)

where π = max

 ‖Zk − Zk−1‖F ,‖Uk − Uk−1‖F ,
‖Ek − Ek−1‖F

 /‖X‖F , Zk , Uk , Ek and
Zk−1, Uk−1, Ek−1 are the value of Z , U , E at the kth iteration
(the current step) and (k − 1)th iteration (the previous step),
respectively. µmax and ρ are positive parameters.
Finally, we summarize our AWSG in Algorithm 2.

Algorithm 2: The Algorithm AWSG
Input: Initial graph matrix S and penalty

parameters λ1, λ2, and λ3;
Output:W and Z ;
Initialize:W , Z , E = X − XZ , U ,
C1 = C2 = 0, ρ, µ, µmax;
while not converged do

Update W via Eq.(21);
Update E via Eq.(25);
Update U via Eq.(28);
Update Z via Eq.(32);
Update C1, C2 and µ via Eq.(33);

returnW and Z ;

C. TIME COMPLEXITY
When constructing the initial graph in Algorithm 1, it only
calculates the distance vectors between the current data and
its k-nearest neighbors, where k � n and n is the number
of points. Hence its time complexity can be ignored com-
pared with the other steps. Obviously, there are five steps
in Algorithm 2. Since steps 1, 2, and 5 are considered the
element-wise operations, they are quickly solved and have
low time complexity. The matrix inversion process in step 4
has high time complexity. However, because the inversion
process is performed outside the iterative loop in our method,
the time complexity is minimal. In Step 3, the procedure of
iteratively updating U has a high time complexity, O

(
t · n2

)
,

where t is the number of iterations. Therefore, the overall time
complexity of ACLWN is O

(
t · n2

)
.

TABLE 1. Description of datasets.

V. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTS ENVIRONMENT
In this section, we compare the performance of ACLWN
to those of its baseline methods on face, object and non-
image datasets, and quantify it with two common evaluation
measures. The baseline methods include k-Means [7], Ncut
[55], SSC [17], LRR [21], NSHLRR [56], AWNLRR [32],
FTRR [57] and SGL [58]. Among them, k-Means directly
runs on the original features, while the other methods clus-
ter by learning various representation graphs from datasets.
In the experiments, Ncut constructs the adjacency graph
through gaussian kernel function. SSC, LRR, AWNLRR and
NSHLRR perform the spectral clustering on the learned
graphs. AWNLRR and NSHLRR utilize the k-nearest graph
method to construct the initial graph. FTRR uses a low-pass
filter to obtain similarity matrix and then uses k-Means to
cluster. SGL is one of the latest graph learning methods.
Moreover, since k-Means is unstable, we run it 30 times and
then calculated its mean values of the measures as its final
results. These experiments are run onWindows 10 system and
MATLAB 2019a, hardware platform of Intel(R) Core(TM)
i7-10510U CPU and 20GB RAM.

B. DATASETS
1) Object datasets: We chose COIL20 from the Columbia
University Object dataset.1 As shown in Figure 2(a), the
dataset includes 1440 32×32 gray-scale images of 20 distinct
points. To verify the proposed clustering performance of
model on the dataset with different numbers of object classes,
we use the top k subsets of the dataset for experiments, with
k = 4, 6, . . . , 20.
2) Face datasets: Face image dataset is the most typi-

cal image dataset for performance testing of graph learning
clustering. We chose three common face datasets in this
paper, which are Extended YaleB,2 ORL3 and MSRA25
[50]. As shown in Figure 2(c), YaleB contains 2414 images
of 38 faces in various lighting conditions; ORL includes
400 faces of 40 people in various times, illuminations and
expressions; MSRA25 contains 1799 images of faces in

1http://www.cs.columbia.edu/CAVE/software/softlib
2http://vision.ucsd.edu/content/yale-face-database
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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12 categories. For the convenience of the experiment, the
image is uniformly processed as a 32× 32 gray-scale image.
3) UCI Datasets:4 To test the performance of our model,

we chose three UCI datasets, which are Cars, Vehicle and
Yeast.

4) Handwritten Digit Datasets: As shown in Figure 2(b),
we chose the Mnist [57] dataset and the Profile view of the
Handwritten [59] datasets, with 10 classes ranging from ‘‘0’’
to ‘‘9’’ and 216 pixel gray levels.

5) UCSC Datasets: We chose the Cora dataset from the
UCSC5 website to evaluate the clustering performance of
ACLWN and its baseline methods, and then turned it into
a form suitable for graph learning clustering. The dataset
includes 2708 scientific papers split into seven categories,
which are case-based, genetic algorithm, neural network,
probabilistic technique, reinforcement learning, rule learning,
and theory. Each paper has a vector of 1433 words, represent-
ing the 1433 features.

C. EVALUATION METRICS
Accuracy and normalized mutual information (NMI ) are two
standard measures that are used to quantitatively evaluate
clustering performance. The ground truth and predicted labels
are denoted by Y and P, respectively.
Accuracy is defined as

Accuracy (Y ,P) =

∑
i
τ (map (Pi) = Yi)

n
,

(34)

where τ (·) denotes indicator function, P is mapped to its best
group label using Kuhn-Munkres method.

Normalized mutual information is defined as

NMI (Y ,P)=
I (Y ,P)

√
H (Y ) · H (P)

, (35)

where I (·) stands for mutual information, while H (·) stands
for information entropy. We can realize standardization by
calculating the information gain.

D. EXPERIMETAL RESULTS AND ANALYSIS
The experimental results of different clustering methods on
the datasets introduced in Section V-B are quantitatively eval-
uated by Accuracy and NMI . The clustering Accuracys are
listed in Tables 2-5, where the bold black numbers indicate
the best results. Tables 2-4 shows the results of our model
ACLWN and its baseline methods on the top k subsets of
COIL20, YaleB, and ORL datasets, respectively. Table 5
summarizes the clustering Accuracys of different methods on
the rest of the datasets. Figure 3 illustrates the NMI results of
our model and its baseline methods on all the datasets. It can
be found that ourmodel ACLWNhas achieved the best results
on these datasets. Specific analysis as follows:

(1) It is clear from Tables 2-5 and Figure 3 that the clus-
tering Accuracys of k-Means are generally lower than those

4http://www.escience.cn/people/fpnie/papers.html
5https://linqs.soe.ucsc.edu/data

of the representation-based clustering models. Therefore,
we can draw a conclusion that representation-based methods
are superior to the methods clustering directly on the original
datasets. Since the representation-based methods eliminate
redundant features to some extent, the representation matrixs
obtained by these methods are more discriminating.

(2) Table 2, Table 4 and Figure 3 exhibit the compar-
ison of Accuracy and NMI of ACLWN and its baseline
methods on COIL20 and ORL datasets. Ncut outperforms
the representation-based methods, SSC, LRR, NSHLRR,
SGL and AWNLRR in most cases. It is because Ncut is a
distance-based method which captures more local structure
of data than those of methods based on sparse and low-rank
representation.

(3) As can be found from Figure 3 and Table 4 that SSC
and LRR have lower clustering Accuracy and NMI in most
cases compared to NSHLRR, SGL, AWNLRR and ACLWN.
Since SSC employs sparse representation, it only captures the
local structure of data. LRR only obtains the global structure
of data by using low-rank representation. As a result, SSC
and LRR cannot capture both global and local data structures,
and their final representation graphs are weaker than those of
other methods.

(4) Although NSHLRR, SGL, AWNLRR and ACLWN
all use the non-negative sparse low-rank representation,
AWNLRR and ACLWN employ a weight matrix to effi-
ciently reduce the representation of noise and outliers while
improving the weight value of important features. Besides,
the k-nearest neighbor method based on Euclidean distance
is still used in the initial graph construction of AWNLRR,
hence its experimental results are not perfect. To produce a
more robust initial graph, ACLWN uses an adaptive neighbor
graph construction method based on the local structures of
data. Therefore, as shown in Tables 2-5 and Figure 3, our
method has the best clustering Accuracy and NMI results on
the various datasets.

(5)We also select themost recent method, FTRR, to further
prove that the effectiveness of our adaptive graph construction
method is superior to most other graph construction methods.
In FTRR, a low-pass filter construction method is used to cre-
ate the representation graph. As demonstrated in Tables 2-5
and Figure 3, clustering Accuracy and NMI of our method
are generally greater than FTRR, indicating that our method
is still better than the method FTRR.

Therefore, ACLWN has the following advantages in graph
representation: 1) ACLWN jointly employs sparse, low-
rank, distance regular terms and non-negative constraints
to obtain the geometric structure of data. It is the efficient
integration of these constraints that guides the generation of
low-dimensional representation graphs suitable for cluster-
ing. 2) ACLWN uses the weight matrix to eliminate noise
and outliers while increasing the weight of important fea-
tures, resulting in a more accurate low-dimensional rep-
resentation graph. 3) ACLWN uses manifold learning and
sparse representation graph construction methods to produce
a high-quality initial graph.
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FIGURE 2. Typical images of the datasets.

TABLE 2. Clustering Accuracy (%) of different methods on the subsets of COIL20 containing different numbers of clusters.

TABLE 3. Clustering Accuracy (%) of different methods on the subsets of YaleB containing different numbers of clusters.

E. PARAMETER SENSITIVITY ANALYSIS
There are four parameters in ACLWN model, including the
adaptive number of neighbors k in ARGmethod and the three
penalty parameters, λ1, λ2 and λ3 in AWSG method. This
section analyzes the influence of the four parameters on the
clustering accuracy of YaleB, COIL20 and Cora datasets.

Figure 4 shows the relationship between the number of
nearest neighbors k and the clustering accuracy on YaleB,
COIL20 and Cora datasets when the penalty parameters
λ1, λ2 and λ3 are fixed. In Figure 4(a), when k takes differ-
ent values, the minimum and the maximum accuracies are
87.49% and 88.77% respectively. It is only 1.28% difference
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TABLE 4. Clustering Accuracy (%) of different methods on the subsets of ORL containing different numbers of clusters.

TABLE 5. Clustering Accuracy (%) of different methods on the other datasets.

FIGURE 3. Clustering NMI(%) of our method and baselines methods on the (a) COIL20, (b) YaleB, (c) ORL, and (d) other datasets.

between the minimum accuracy and the maximum accuracy
on YaleB dataset. Besides, the difference between the min-
imum accuracy and the maximum accuracy is 3.96% and
7.34% on COIL20 and Cora datasets respectively. As a result,
the adaptive nearest neighbor number k has little influence
on the representation of the current data, and the clustering
accuracy generally tends to be stable when k has different
values. That is, ARG is highly insensitive to the nearest
neighbors number k . We recommend setting k within the

range of [8, 14] to ensure high clustering accuracy and lower
time complexity.

Next, we analyze the sensitivity of the parame-
ters, λ1, λ2 and λ3, in our method. For the sake of
illustration, we define the parameter coarse set 3 as
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. λ1 acts as
the harmonic parameter of the weight matrixW , which avoids
meaningless trivial solutions. Figures 5, 6 and 7 show the
relationship between the three parameters in our method
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FIGURE 4. The relationship between the number of nearest neighbours k and clustering Accuracy on the YaleB, COIL20 and Cora datasets.

FIGURE 5. The relationship between different values of parameters (λ1, λ2 and λ3) and clustering Accuracy on the YaleB dataset.

FIGURE 6. The relationship between different values of parameters (λ1, λ2 and λ3) and clustering Accuracy on the COIL20 dataset.

and the clustering accuracy on YaleB, COIL20 and Cora
datasets. From Figures 5(a), 6(a) and 7(a), we can see that

when the parameters λ2 and λ3 are fixed, the clustering
accuracy is less affected by the selection of parameter λ1 in
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FIGURE 7. The relationship between different values of parameters (λ1, λ2 and λ3) and clustering Accuracy on the Cora dataset.

FIGURE 8. The changing trend of objective function value and clustering Accuracy of the ACLWN on the YaleB, COIL20 and Cora datasets with the
increase of iteration times.

the coarse set3. Hence, λ1 is very insensitive to our method.
In comparison with parameter λ1, parameters λ2 and λ3 have
a huge influence on clustering performance. As shown in
Figures 5(b), 6(b) and 7(b), when fixing λ1 and choosing
various combination parameters of λ2 and λ3, clustering
accuracy are not always maximal, and the gap between the
maximum clustering accuracy and the minimum clustering
accuracy is irregular. This occurs because the parameter
directly affects the quality of the corresponding representa-
tion matrix, and λ2 and λ3 directly determine the function
of the corresponding term in the process of learning graphs.
Thus, these three parameters need to be optimized to achieve
the best clustering performance. Finding common optimal
values for all three parameters is challenging due to the
diversity of datasets. A simple and effective method for
determining the optimal solution is presented in this paper.
Based on the previous analysis, first we can fix λ1 to a value
such as 1, then find the ideal combination of λ2 and λ3 from
the coarse set 3. According to the best combination of the
two parameters, we can further define an ideal candidate

set which may contain the optimal values for these two
parameters. The method is then rerun by selecting a variety
of combinations of the two parameters from the optimal
candidate set. Only in this manner, we can determine the
ideal penalty parameter to ensure the optimal clustering
performance.

F. CONVERGENCE ANALYSIS
In this section, we demonstrate the convergence of the
ACLWN using the YaleB, COIL20 and Cora datasets by
iterating it. The objective function value of ACLWN is

obj =
∥∥∥W 1

2 � E
∥∥∥2
F
+
λ1
2 ‖W‖

2
F +λ2‖U‖2,1+λ3Tr

(
DTZ

)
+

‖X−XZ − E‖2F + ‖Z − U‖
2
F . In Figure 8(a), obj decreases

monotonically and rapidly in the first few iterations,
then briefly increases, and finally trends towards stability.
In Figures 8(b) and 8(c), obj decreases before reaching equi-
librium and then shows a convergence tendency. It can also be
shown in Figures 8(a), 8(b) and 8(c) that clustering accuracy
increases significantly at first and after to be stable trends.
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Therefore, ACLWN has good convergence, which enables it
to obtain the local optimal solution.

VI. CONCLUSION
The present paper proposes a new graph learning clustering
framework ACLWN, which consists of two parts, i.e., ARG
and AWSM. ARG is used to generate the initial graph adap-
tively with the local structure of data. AWSG introduces an
adaptive weight matrix into the graph optimization process
to effectively eliminate representations of redundant features,
noise and outliers. ACLWN jointly employs sparse represen-
tation, low-rank representation, distance regularization term
and non-negative constraints to obtain the geometric structure
of data, so as to form a low-dimensional graph with more
discriminative characteristics. Experiments on objects, faces,
UCI non-image and the other datasets show that the perfor-
mance of our ACLWN is better than those of the baseline
clustering methods.
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