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ABSTRACT Satellite image analysis is widely used in many real-time applications, from agriculture to
the military. Due to the wide range of Generative Adversarial Network (GAN) applications in multiple
areas of satellite imaging, a comprehensive review is required in this area. This paper takes the first step
in this direction by categorizing the GAN-based satellite imaging research using seven considerations.
We discuss not only the challenges but also future research trends and directions. Among the major findings,
we have observed increasing componentization and modularization of GANs to be used as elements of larger
systems. In addition to the GAN types used exclusively in each application, we demonstrate the deep neural
network architectures used as the generator structure. Eventually, we summarize the results and evaluate the
significant impact of GANs on improving performance compared to traditional approaches.

INDEX TERMS Generative adversarial network, geo-localization, image to image translation, road extrac-
tion, satellite imaging.

I. INTRODUCTION
Compared to ground view image analysis, satellite imag-
ing [1], [2] is in some ways more challenging, not least
because of the limited availability of datasets and the cost
of data collection. For these reasons, existing high-resolution
satellite datasets are task-specific and provide coverage for a
limited number of cities [3]. The high cost of gaining access
to satellite images and annotating them makes generating a
synthetic training dataset a reasonable solution to the need
for large quantities of training data. Due to the massive cost
of capturing satellite images, Generative Adversarial Neural
Networks (GANs) are widely used for satellite image synthe-
sis in defense and non-defense areas, and substantial work
has been done to explore this area. Data augmentation is
the primary application of GANs to improve classification
scores in many imaging domains. However, the application
of GANs [2], [4], [5], [6] in satellite imaging is not limited
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to data augmentation. A set of satellite imaging applications
with GAN-based solutions already exists in the imaging
research community. The nature of GAN applications in the
field of satellite imaging is so diverse that we need to catego-
rize them into different categories with several functionalities
under each category. To the best of our knowledge, no attempt
has been made to survey previous relevant research in this
area of applications. In this paper, we take the first step in this
direction by assigning GAN applications in satellite imaging
to seven different categories. Afterward, we review each cat-
egory’s functionalities, challenges, results, and datasets. Our
contributions are as follows.

• We categorize GANs application in satellite imaging
into seven different areas, including augmentation, seg-
mentation, localization, translation, object detection,
image reconstruction, and surveillance.

• We provide an in depth review on GANs function-
alities (for each application) including change detec-
tion and prediction (surveillance), cloud removal (image
reconstruction), object enhancement (object detection),
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FIGURE 1. Flowchart of research methodology.

translation (map synthesis), cross-view synthesis (local-
ization), road-building extraction (segmentation) and
image-object augmentation (data augmentation).

• We present the most important GAN types, deep archi-
tectures, datasets, challenges, statistics, evaluation met-
rics, and result summaries related to each functionality.

• We not only summarize the results but also evaluate the
significant impact of GANs using paired and unpaired
t-tests.

• We discuss the future trends and research direction in
GAN-based satellite imaging.

The rest of this paper is organized as follows. Section II
presents the research methodology. Section III introduces
the classification of GAN-based research in the field of
satellite imaging. Section IV reviews the GAN functional-
ities corresponding to each category. Section V introduces
the deep neural networks used for the generator architec-
ture. Section VI summarizes the challenges, and section VII
presents the evaluation metrics. Section VIII reviews the
results summary. Section IX presents likely future research
trends in this area, and finally, section X concludes the paper.

II. METHODOLOGY
This research provides analysis and classification of publica-
tions related to GAN-based satellite imaging. It identifies key
applications, functional datasets, techniques, GAN types, and
challenges. To collect the related research, many published
papers were considered from different resources, including
IEEE, Springer, Elsevier, etc. The following methodology
was used for the paper selection: 1) search Google Scholar
and Google Patents; 2) use defined keywords to find papers
with a potential connection to GAN-based imaging; 3) gather
a list of candidate papers from steps 1 and 2; 4) remove
any sources that are not research studies; 5) remove any
sources in which GANs have not been employed as a part

FIGURE 2. Percentage of satellite image dimensions used in collected
GAN-based research.

of the proposed solution; 6) remove any sources that pro-
posed an adversarial approach but not specifically a GAN-
based method; 7) remove any sources that are not research
studies, and 8) classify papers with respect to their research
applications. The challenge of collecting relevant material is
that many important published papers can not be found by a
simple ‘‘GAN-based satellite imaging’’. To find a wide range
of related works, we narrowed down the main keyword to
more specific keyword phrases such as ‘‘GAN-based seman-
tic segmentation’’, ‘‘GAN-based cross-view synthesis’’, etc.
Figure 1 shows the flowchart of our research method, and
Figure 3 shows the percentage of related works in terms of
venue and publication year.

A. DOMAIN OF DATA
The ability of satellites to capture extraordinary amounts of
data in spatial, temporal, and spectral dimensions has enabled
researchers to developmany algorithms to analyze and extract
meaningful information useful for a variety of downstream
applications. This research can be classified based on the
mentioned dimensions as shown in Figure 2.

III. CLASSIFICATION OF GAN-BASED SATELLITE
IMAGING RESEARCH
In this section, we categorize the GAN-based satellite imag-
ing research into seven categories based on published papers
as follows.
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FIGURE 3. Percentage of collected papers in terms of venue and publication year.

• Segmentation
• Localization
• Image Translation
• Object Detection
• Image Reconstruction
• Surveillance
• Data Augmentation

Figure 4 shows the seven categories with the related func-
tionalities and corresponding GAN types used in previous
research.

A. SATELLITE IMAGE SEGMENTATION
Segmentation has found widespread application in the
domain of satellite imaging, including but not limited to
image augmentation, object detection, change detection, geo-
localization, and cross-view image synthesis [7]. Dimension-
ality reduction in satellite images via segmentation has many
applications in satellite image processing, including road
extraction, building extraction, which is important for urban
planning, and climate change detection, which is essential
in sustainable development and forest preservation research.
Road and building extraction and land cover classification in
satellite image analysis are based on the semantic segmenta-
tion task [8], which is the process of associating each pixel
of an image with a class label [9]. According to [8] there
are big differences between satellite imagery and everyday
pictures, such as PASCAL VOC2012 [10] and Microsoft
COCO [11]. Satellite imagery assumes a bird’s view acquisi-
tion, and thus objects lie within a flat 2D plane, and every
pixel in satellite images has semantic meaning. However,
the PASCAL VOC2012 dataset assumes a human-level point
of view and images, thus mainly consisting of meaningless
backgrounds with a few foreground objects of interest [9].
On the other hand, tasks like building extraction have their
own challenges, including the different appearances, shapes,
materials, and surroundings of buildings in different cities.
These challenges make it difficult to test the models in other
cities. For this reason, no generalizable model yet exists that
can achieve the desired accuracy in different satellite images.

As a consequence, a trade-off exists between accuracy and
generalization in all types of ML models trained on satellite
images [12].

B. LOCALIZATION
Training a model to generate realistic scenes has always
been a challenging task in computer vision, especially when
dealing with translating images belonging to drastically dif-
ferent views. This is mainly because extracting the seman-
tic information across the views is not trivial [13]. The
other type of knowledge extraction from satellite images is
called geo-localization. According to [14], the core task in
geo-localization is to determine the real-world geographic
location (e.g. lat-long) given an input image. This image,
in turn, usually has a specific application for scene local-
ization in social media, unmanned driving, navigation, and
augmented reality.

C. IMAGE TRANSLATION
Creating maps is one of the most important tasks from a
commercial value perspective, and is valuable to companies
in different areas, from ride-sharing and food delivery to
military, intelligence, and international security [15]. How-
ever, it is a very expensive and time-consuming process [16].
Generative models can address this problem by finding the
patterns between the input and output image (which is called
image translation) to enable the conversion of satellite images
to the correspondingmap. Different techniques for the image-
to-image translations like Conditional GenerativeAdversarial
Networks (CGANs) are used to generate the corresponding
human-readable maps for that region [16].

D. OBJECT DETECTION
GANs have been widely used to enhance the style or
appearance of satellite images by transferring the images
into a target domain [17]. In general, objects in satellite
images suffer from low resolution and insufficient color
information due to (often widespread) distortion. Because
of this, the detection of weak objects in satellite imagery
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FIGURE 4. GAN-based satellite imaging categories, Functionalities, and GAN types used on each category.

remains a challenge [17]. According to [17], appearances
and qualities of remote sensing images [18] are affected
by different atmospheric conditions, quality of sensors, and

radiometric calibrations. As a consequence, the generaliza-
tion of a deep learning or other machine learning model
would be compromised in the absence of image enhancement
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which can improve the visual effects of remote sensing
images [18].

E. IMAGE RECONSTRUCTION
Removing the clouds in high-resolution satellite imaging is
an essential pre-processing step since the climate inevitably
affects them. According to [19], clouds in satellite images are
assignable to three categories: thin clouds, thick clouds, and
cloud shadows. All three are preferably removed in the pre-
processing step. We will discuss more cloud removal in the
next section.

F. SURVEILLANCE
From monitoring changes in land cover to agricultural
surveillance, the sequence of satellite images as time-series
data offers a rich source of information for the researchers.
Other applications include urban expansion analysis,
coastal/riparian change detection, and flood risk assess-
ment [19]. In this regard, GANs can play a significant role
in synthesizing the forecasting satellite images in a specific
range of time.

G. DATA AUGMENTATION
A large number of training samples is vital for supervised
semantic segmentation. In the absence of sufficient instances
of objects belonging to each class, the trained model will
not be able to correctly learn the characteristics of the target
objects. This will result in poor performance or even failure of
semantic segmentation tasks. To tackle this problem, GAN-
based data augmentation has been used more frequently in
recent years [28]. Abady et al. [29] usedDCGANs to generate
multispectral images taken by aerial devices or remote sens-
ing satellites. Multispectral images are important for provid-
ing additional information that the naked eye cannot detect.
Huang et al. [28] proposed an object-level remote sens-
ing image augmentation approach based on leveraging the
U-Net-based Generative Adversarial Networks. Howe
et al. [30] proposed a two steps data augmentation. First, they
used progressive GANs [12] to generate synthetic segmen-
tation masks. Second, they translated the masks to synthetic
satellite images using conditional GANs.

IV. FUNCTIONALITIES OF SATELLITE IMAGING
This section provides an in-depth review of GAN-based func-
tionalities in each of the categories discussed earlier.

A. OBJECT EXTRACTION
Image segmentation is one of the most important stages in
geospatial information system (GIS) analysis. Elements of
GIS analysis include rare object detection, cross-view image
synthesis, change detection, and urban-infrastructure expan-
sion analysis [25]. In the case of satellite image processing,
previous works have focused on three types of segmentation
tasks: road extraction, building extraction, and general seg-
mentation, which aims to extract not only roads and buildings
but other objects like cars and airplanes. Table 1 summarizes

the most important previous works in GAN-based satellite
image segmentation.

1) ROAD EXTRACTION
According to [23], roads act as a fundamental unit for
many geographic information system applications, such
as vehicle navigation, traffic management, and emergency
response. They are also essential elements of military sur-
veying and mapping. Compared to traditional road network
extraction, which is done manually and requires massive
effort and human resources, aerial images provide a rich
source of information about the ground cover. Given the
high-resolution satellite images, ML-based road extraction
has become the first choice in satellite image processing [23]
and GAN-based methods have been practiced more fre-
quently in this direction. In general, by taking advantage
of CGANs, the road extraction task becomes an image-to-
image translation task [20], [21]. Shi et al. [20] used an
encoder-decoder architecture in the generator and added a
term of entropy loss to the loss function. The main con-
tribution of their work is to use Segnet [31] as the gener-
ator architecture to ensure the consistent resolution which
is required against complex occlusions like cars and trees.
However, pixel-level road extraction needs huge memory.
To address this problem, Costea et al. [21] used a graph
representation for roads. They used a two-stage framework
to extract roads, in which two GANs were first used to
detect roads and intersections. The best covering road graph
was found next by applying a smoothing-based graph opti-
mization procedure. Both methods chose encoder-decoder
architecture in the generator, which makes the generator have
poor ability to generate finer images [23]. To address this
problem, Zhang et al. [23] proposed an improvedGAN archi-
tecture with two advantages compared to previous works: (i) a
simpler architecture compared to [21], which has two stages
method. (ii) the use of a content-based loss function to make
sure that the results are accurate. One of the common prob-
lems of the aforementioned methods is the low performance
against imperfect road structures. To address this problem,
Abdollahi et al. [27] proposed a GAN-based deep learning
approach for road segmentation from high-resolution aerial
imagery with a modified U-Net model (MUNet) in the gen-
erative part of the presented GAN and edge-preserving filter-
ing as the pre-processing phase. To alleviate the overfitting,
Hu et al. [3] proposed a diversity-sensitive loss to force the
generator to produce different synthetic images. They were
also inspired by SinGAN [32] and proposed conditional-
SinGAN (cSinGAN) to restrict the synthesized images to
follow the desired scene structures described by the mask.

2) BUILDING EXTRACTION
Accurate building extraction using semantic segmentation
from high-resolution images is used in applications like
urban planning, updating of geospatial databases, and disaster
management. Building extraction is especially challenging
due to the existence of some obstacles like cars, vegetation
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TABLE 1. Summary of GAN-based satellite image segmentation research.

TABLE 2. Summary of GAN-based cross-view image synthesis research.

cover, and shadow of trees in the satellite images [25],
and most of the non-adversarial methods exhibit poor per-
formance in building segmentation. To tackle these issues,
Aung et al. [24] applied a conditional Generative Adversarial
Network (CGAN) to extract building footprints fromGeoEye
images of Yangon city, Myanmar. The main contribution
of their research is to analyze the performance of pix2pix
with different hyper-parameters to find the best configuration.
However, they didn’t evaluate the flexibility of pix2pix archi-
tecture in the face of occlusion problem. Abdollahi et al. [25]
Showed the failure of traditional conditional GANs to tackle
the heterogeneous occlusions in remote sensing imagery.
To obtain a non-noisy map of segmentation with high spatial
contiguity, they utilized SegNet with BConvLSTMs for the
generator part of the proposed GAN model to generate a
high-quality segmentation map. The advantage of this archi-
tecture is that, a set of convolutional filters coupled with
hyperbolic tangent functions assist the model to learn struc-
tures of data.

3) WEAK OBJECT EXTRACTION
Considering the cumbersome task of satellite image seg-
mentation, research infrequently focuses on extracting mul-
tiple objects in a highly representative and diverse labeled
training set. Desai and Ghose [7] proposed to use an active
learning-based sampling strategy to overcome the challenge
of labeling a highly representative set of training data. Active
learning has been practiced before in semantic segmentation
to detect the most informative patches of the input image.
However, they used active learning as a sampling strategy to
find the most informative images from the given dataset.

B. CROSS-VIEW IMAGE SYNTHESIS
View synthesis is a long-standing problem in computer
vision [13]. This task is more challenging when views are
drastically different, like aerial to ground view synthesis,
due to little overlap and the existence of occluded objects.
The generation of street views from given satellite or aerial
images is thus an attractive and interesting alternative since
the acquisition of street-view images is rather expensive, and
regular updates are required to capture changes. Generating
street-view images is vital in some areas of applications like
virtual or mixed reality, realistic simulations, and gaming,
viewpoint interpolation or cross-view matching, exploring
remote places, strategic ground planning in emergency and
intelligence operations. On the other hand, satellite images
are generally much more widely available than street-view
images since they are regularly captured, easier to obtain,
and have significantly better earth coverage [36]. In contrast,
the task of ground view to aerial view translation can be
applied in different sets of tasks like image localization in
social media, unmanned driving, navigation, and augmented
reality [14]. The main difficulty is that the aerial view of an
object (i.e., a building) reveals very little about the shape and
color in the street view. In a better word, two objects that are
similar in one view may look quite different in another. As a
consequence, the generation process is generally more chal-
lenging when the scene contains multiple objects compared
to the case of a single object at a uniform background which
is basically caused by underlying obstacles that contribute to
the variations like occlusions, shadows, etc [13]. According
to [13], some of the challenges of cross-view image synthesis
tasks are as follows.
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TABLE 3. Summary of GAN-based map synthesis research.

• Information in aerial images is too noisy and less infor-
mative compared to street-view images since street-view
images contain more details about objects (e.g., houses,
roads, trees) than aerial images.

• Aerial images and their corresponding images might
be different because of transient objects like cars and
passengers.

• Houses that are different in street-view look similar in
aerial view because of similar rooftops.

• Road edges are often occluded by dense vegetation and
contortion in aerial view

While single street-view image synthesis has recently been
investigated [13], [38] panoramic view generation methods
are more suitable to create continuous viewpoint creation
around a given location since they are built upon geometri-
cally consistent image sequences with constraints on the cor-
respondence between frame pixels [36]. Table 2 summarizes
the most important research in the field of cross-view image
synthesis.

C. MAP SYNTHESIS
Map generation is a very expensive and time-consuming
process with commercial value to companies in multiple
sectors of the economy [15]. On the other hand, it is
challenging to generate maps quickly and efficiently for
emergency rescue operations such as earthquakes, fire dis-
asters, or tsunamis [44]. In this section, we review the most
important research in this area as tabulated in Table 3. The
pix2pix [40] was the first type of conditional GANs used for
map synthesis given paired training data. However, obtaining
paired training data can be costly and cumbersome, especially
for map synthesis. To address this problem, Zhu et al. [41]
proposed CycleGAN, which can learn to translate between
domains without paired input-output examples. While Cycle-
GAN counts on L1 norm to calculate cycle-consistency loss,
Ganguli et al. [15] observed that the L2 norm performs
better for map synthesis. They also proposed GeoGAN,
a model that takes a satellite image as input with a specified
zoom level and resolution and synthesizes the corresponding
human-readable map for that location. However, the conver-
sion may become more challenging when some objects are
hardly visible from the satellite images (e.g., an underpass,
or a route with a similar color to its environment). There-
fore, the solely image-based GAN framework is not suffi-
cient for this specific satellite-to-map image conversion task.

To overcome the above obstacles, Zhang et al. [42] proposed
an enhanced GAN model to generate improved-quality map
images using the GPS coordinates as additional knowledge.
In addition to circularity constraint, Song et al. [44] integrated
geometrical consistency constraint into the whole architec-
ture to reduce the translation’s semantic distortions. They
proposed a novel unsupervised domain mapping framework
called MapGen-GAN for the quick transformation of remote
sensing images tomaps to be used in emergency response sce-
narios. Andrade and Fernandes [43] used CGANs to convert
historical maps into satellite view images.

D. IMAGE ENHANCEMENT
Many object detection methods obtain high detection scores
on high-resolution aerial images. However, in some cases,
objects like airplanes or vehicles may be ‘‘weak’’, a term
meaning that they are occluded by other objects. As a con-
sequence, details are often lost in the absence of sufficient
color information [18]. Li et al. [17] used GAN-based image-
level domain adaptation to transfer the style of the target
image to a new space with a similar distribution to the source
image space in order to improve the detection scores. Table 4
shows a summary of research related to satellite object detec-
tion. Gao et al. [18] proposed a detection-guided CycleGAN
(DE-CycleGAN) to enhance the weak targets for the purpose
of accurate vehicle detection in the absence of paired images.
Although Enhanced Super-Resolution GAN (ESRGAN) [53]
showed remarkable image enhancement performance, recon-
structed images usually miss high-frequency edge informa-
tion. To address this problem, Rabbi et al. [48] proposed
a new edge-enhanced super-resolution GAN (EESRGAN)
and detector network whose loss is back-propagated into the
EESRGAN in an end-to-end manner to improve the detection
performance.

E. CLOUD REMOVAL
Clouds can impact the quality of satellite remote-sensing
images. With the prevalence of deep learning techniques in
recent years, a variety of techniques have been tried for
cloud removal. Image restoration or the removal of certain
objects such as rain and snow has been widely applied before.
Compared to deep learning approaches, generative model-
ing has proven to be a more effective method for recov-
ering missing information based on a learned distribution.
This section reviews the GAN-based cloud removal research
as tabulated in Table 5. In the first research in this direc-
tion, Enomoto et al. [50] extended the input channels of
CGANs to be compatible with multispectral images in order
to remove clouds from visible light RGB satellite images.
However, they rely on just a single cloudy image instead
of multiple cloudy images taken at different times. As a
consequence, generated images often lack detail and speci-
ficity in partially occluded cloudy regions. To overcome this
issue, Uzkent et al. [51] collected two new paired datasets,
one including a cloud-free image in a given location as

VOLUME 10, 2022 118129



H. Mansourifar et al.: GAN-Based Satellite Imaging: A Survey on Techniques and Applications

TABLE 4. Summary of GANs application in satellite object detection research.

TABLE 5. Summary of GANs application in cloud removal from satellite images.

well as corresponding cloudy images from publicly available
Sentinel-2 satellite images [54].

F. CHANGE DETECTION AND PREDICTION
Satellite image computational surveillance refers to change
detection or change prediction over the same geographical
area at different periods. According to [56], it is widely
used in disaster assessment [63], environmental monitoring
[64], and urban expansion [65], among other applications.
For example, Boulila et al. [61] evaluated the performance
of pix2pix and Dual-GAN to predict urban expansion in
the three largest cities in Saudi Arabia. Supervised and
unsupervised techniques are both commonly used in change
detection. Supervised methods usually transform change
detection tasks into a classification that divides each pixel into
two different classes, while unsupervised methods usually
identify changes via thresholding or clustering. Although it
is expensive to obtain large amounts of annotated data, the
quality of synthesized change maps is higher in supervised
approaches. High-level features are crucial for extracting a
semantic change map that is invariant against distracting
factors such as noise and scale variations. Table 6 summarizes
the research in this area.

G. CLASSIFICATION
Classification is one of the pillars of ML-based surveil-
lance tasks. Perez et al. [55] trained a WGAN [66] for
semi-supervised poverty prediction given a set of limited
labeled data in which the task of the discriminator is to distin-
guish not only the fake and real instances but to distinguish
the correct class of unlabelled training data.

H. CHANGE MAP EXTRACTION
Change map extraction is the most frequently used func-
tionality in GAN-based surveillance of satellite images. The
traditional GANs learn amapping from a random noise vector
z ∼ pz(z) to the output image. Given two input images X t1

and X t2 and an input noise variable z, the change detection

GAN (CDGAN) can bemodeled as inferring the changemaps
from the joint distribution of p(X t1,X t2, z). It can be rewritten
as a conditional density estimation model p(CM |X t1,X t2, z)
where CM is the inferred changed map. Hou et al. [56]
employed CGANs by adopting W-Net as the generator for
change detection in satellite images. However, The change
detection based on generative models given just the pixel
distributions of the input images proved to be vulnerable
to noise or temporary occlusions like clouds. To tackle this
problem, Gong et al. [67] used Convolutional Neural Net-
works to transfer the input image and obtain a feature image.
Afterward, they applied CGANs on feature images to infer
the changed map.

I. OUTLIER DETECTION
GAN-based anomaly detection has proven to be successful
even in high-dimensional non-image data [68]. In the field
of satellite imaging, an outlier detector GAN was originally
proposed by [62] to address the change detection problem.
In this research, Jian et al. [62] used a generator to synthesize
unchanged data, while the discriminator was responsible for
distinguishing between changed and unchanged data.

J. TIME SERIES IMAGE SYNTHESIS
Generating a sequence of images is crucial to predicting
the weather by synthesizing sequences of cloud images.
Xu et al. [57] proposed a Generative Adversarial Networks-
Long Short-Term Memory (GANLSTM) model for satellite
image prediction by combining the generating ability of the
GANwith the forecasting ability of the LSTMnetwork. Their
proposed training process is divided into two steps. First,
a GAN model is trained given the real satellite image data.
Second, the parameters of the generator are kept fixed, and an
LSTM network is attached and trained to produce the genera-
tor inputs. The LSTM network will try to capture the implicit
features which contain the evolution information about the
clouds. Finally, the generator translates the implicit features
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TABLE 6. Summary of GAN-based surveillance research on satellite images.

received from the trained LSTM network to synthesize the
final predictions.

K. SPATIAL ATTENTION MAP GENERATION
Spatial Attention Maps are used to learn and focus more
on the important information rather than learning non-useful
background information. SpA-GAN is a type of GAN in
which the generative network is a Spatial Attentive Network
(SPANet) [19]. SPANet is used to discover and extract atten-
tion maps from the input feature maps. The output attention
map is an image in which each pixel value indicates the
importance of that pixel and how much attention should be
allocated to the pixel. The larger the value, the more attention
should be given. It indicates the spatial distribution of the
target objects, which can guide the subsequent steps for the
removal or extraction of that object.

L. OBJECT ENHANCEMENT
The goal of image enhancement is to improve the perfor-
mance of weak object detection by enhancing image qual-
ity. This is addressed via two different methodologies [18]:
(i) image prepossessing, such as denoising [69], image sharp-
ening [70], and histogram equalization. (ii) Supervised meth-
ods to provide external information like super-resolution
(SR) [71], high dynamic range (HDR) [72], and salience
enhancement [73]. In one of the rare GAN-based works in
this area, Gao et al. [18] used an enhanced CycleGAN called
DE-CycleGAN for vehicular image enhancement by image-
to-image translation.

M. OBJECT AUGMENTATION
The goal of object augmentation is to insert a particular object
into an already available satellite image. The advantage of
object augmentation is that we can augment a limited number
of objects to different positions of many available satellite
images. Martinson et al. [49] obtained a range of 3D mod-
els for three different categories of objects. Blender3D was
next used to generate images from 3D models that contain
a specified viewing angle, lighting condition, and shadow.
Finally, the acquired object was merged with a designated
satellite image via CycleGAN. Table 7 shows the list of GANs
adopted to be used for each functionality.

V. GENERATOR ARCHITECTURES
In this section, we review different deep neural network
architectures used as generators in satellite imaging tasks.

A. U-NET
U-Net [74], [75] is one of the well-known deep neural net-
work architectures with a symmetrical structure that looks
like a U letter. U-Net includes iterative 3 × 3 convolution
and max-pooling layers, followed by copy and crop opera-
tions on the output of the last layer. This is considered as
one of the factors making U-Net so successful in semantic
segmentation. In this regard, skip connections play a very
important role in the U-Nets by passing the information from
the down-sampling blocks to the corresponding up-sampling
blocks. In the GANs context, U-Nets have been used in both
discriminator [76] and generator [40] architectures. Unlike
traditional GAN models, the source of randomness does
not come from latent space in the U-net based generators.
Instead, dropout layers are used as a source of randomness
during both training and inference. In the object augmentation
architecture proposed by [28], the ship objects are randomly
selected from the existing library (extracted from the training
set). Then they are merged with background and land and
finally, the U-net generator is used as a translator to synthe-
size a realistic image. According to [77], U-Nets have two
limitations: (i) Finding the optimal network depth needs an
extensive architecture search. (ii) Aggregate features from the
skip connections have fixed semantic scales at the decoder
sub-networks leading to an inflexible feature fusion scheme.

B. W-NET
Although U-net proved to be successful in supervised seman-
tic segmentation, collecting sufficient supervised pixel-level
labels is difficult to obtain in many applications. To address
this problem, W-Net [78] was designed for unsupervised
change detection. W-Net is a dual-branch network that
accepts two images as input and extracts features from
them independently. It then generates change maps with the
extracted difference features. The W-Net architecture con-
sists of two concatenated U-net architectures. First U-Net
acts as an encoder that outputs the image’s segmentation,
and the second one is a decoder that reconstructs the image
from this segmentation. In the proposed W-Net by [56] for
change detection in satellite images, the encoder contains
four convolutional blocks, and each block consists of one
traditional convolutional layer with stride 1 and one strided
convolutional layer with stride 2. The decoder contains four
deconvolutional blocks, with each consisting of one decon-
volutional layer with stride 1 and one deconvolutional layer
with stride 2. Compared to single-branch architecture, W-Net
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TABLE 7. Summary of GANs functionalities.

architecture can realize the feature expression of each image
and decrease the information lost.

C. MUNet
MUNet [79] is the modified version of U-Net used by
Abdollahi et al. [27] for road extraction. MUNet includes
two corresponding arms, a contracting (downsampling)
encoder and an expanding (upsampling) decoder, with skip-
connections that append every upsampled feature map at
the decoder with the corresponding one in the encoder that
has the same spatial resolution. Compared to the U-Net, the
changes in the MUNet architecture include the introduction
of batch normalization, the use of the ReLU activation func-
tion in the decoder but Leaky ReLU for the encoder, and
the elimination of the pooling layer. The proposed MUNet
does not require high computational time and a large training
dataset. However, it’s sensitive to occlusion by trees and
shadows, which leads to false negative pixel prediction in the
road extraction task.

D. LSTM
LSTM [80] is a type of recurrent neural network proven suc-
cessful for learning long-range dependencies in a sequence
of instances. The building block of LSTM is the cell state
denoted by Ct , which saves the state information. Ct is con-
trolled by three gates. (i) ft to decide when to forget Ct ,
(ii) it to decide when to keep or override Ct and (iii) ot to
decide whether the latest cell output Ct will be propagated to
the final state ht . In GAN-LSTM [57], where the generator
of the GAN is attached to the output of the LSTM network,
the spatiotemporal relationship can be learned without com-
plex atmospheric modeling. In the proposed model by Xu
et al. [57], ht represents the evolutionary information derived
from the sequence of satellite images. Their proposed model
combines the generating ability of GAN with the ability of
LSTM [81] to extract the evolutionary information from the
image sequences to extrapolate the cloud’s motion.

E. BI-DIRECTIONAL CONVOLUTIONAL LSTM
Bi-directional convolutional LSTM (Bi-CLSTM) [82] is a
sequence processing model that consists of two LSTMs:

one taking the input in a forward direction and the other
in a backward direction [83]. BConvLSTM was used by
Abdollahi et al. [25] to obtain a non-noisy map of segmen-
tation with many details that explain the boundary infor-
mation, Their proposed method includes SegNet [31] with
Bi-CLSTM as an encoder-decoder model for the generator
part of the proposed GAN model. The Bi-CLSTM role is to
mix the encoded and decoded features rather than using a
simple concatenation. As a result, the obtained feature maps
contain both semantic and local information.

F. SPATIAL ATTENTION NET
Spatial Attention Net (SpA-Net) [84] is used to extract a
spatial attention map which helps us to focus on the most
informative part of the image. Heng Pan [19] proposed
SpA-GANs for cloud removal in which the generator is
a SpA-Net. In their proposed generator, the input image
first passes through three standard residual blocks to extract
features, then passes through four spatial attentive blocks
(SAB) to identify clouds progressively in four stages, and
then passes through two residual blocks to reconstruct a clean
background. The proposed generator tested on removing thin
clouds from a single optical remote sensing imagery. How-
ever, there are two main challenges, according to [85]: (i) The
traditional SpA-Net does not have the ability to consider the
remote relationship between the image blocks. Second, it fails
to preserve the details of the original image in the face of
serious occlusion caused by thick clouds.

G. BRANCHED ResNet
Branched ResNet as a generator of spatiotemporal genera-
tor networks (STGAN) was proposed by [51] to extract the
features from multiple images taken at the same location to
generate a single cloud-free input. The proposed Branched
ResNet is based on individual encoder-decoder pipelines.
In this architecture, two convolutional layers with stride 2 are
employed to downsample the featuremap. These are followed
by nine residual convolutional layers, followed by two con-
volutional layers with stride 1/2 to upsample the feature map.
The inspiration for the architecture of the encoder-decoder
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TABLE 8. Type of deep neural networks used as the generator in different
satellite imaging tasks.

came from [86] and was previously shown to perform well in
CycleGAN [87].

H. EDGE ENHANCED NET
Due to the noisy nature of some aerial scenes, image enhance-
ment is crucial for object detection in satellite images. One of
the deep architectures used as a generator is the Enhanced
Edge Network (EEN) [88]. The EEN removes noise and
enhances the extracted edges from an image. First, a Lapla-
cian operator [89] is used to extract edges from the input
image. Afterward, the edge information is extracted via pass-
ing through convolutional, residual-in-residual dense blocks
(RRDB) and upsampling blocks. There is a mask branch with
sigmoid activation to remove edge noise as described in [90].
Finally, the enhanced edges are added to the input images
where the edges extracted by the Laplacian operator are sub-
tracted [48]. Table 8 tabulates the deep neural networks used
as a generator in different satellite imaging functionalities.

VI. SUMMARY
In this section, we summarize the covered research with a
focus on challenges and statistics.

A. CHALLENGES
In this section, we review the most important challenges in
GAN-based satellite imaging.

1) OCCLUSION PROBLEM
Weak object detection is a significant challenge in satel-
lite imaging due to the lack of sufficient color information
masked by barriers such as vegetation cover, shadows, over-
lapping, and interlacing sheltering [25]. In addition, compli-
cated backgrounds and occlusions are created by the spatial
and spectral overlapping of roads with other regions such as
parking lots and buildings [27]. Occlusion often leads to poor
unsupervised segmentation, and outlier detection is used to
mitigate the consequences.

2) GENERALIZATION PROBLEM
Training segmentationmodels is a challenge in satellite imag-
ing because of the similar appearance of rooftops to other
objects such as cars. Building shape, building material, and
surrounding land cover varies widely from city to city. As a
consequence, transferring the models between cities may

show a significant inaccuracy. That’s why no generalizable
model yet exists that can accurately detect the objects in
all satellite images, and a trade-off exists between accuracy
and generalization [12]. Image augmentation is regarded as a
data-driven solution to address this problem.

3) THE CHALLENGE OF HIGH-RESOLUTION IMAGES
SYNTHESIS
Synthesizing high-resolution images requires a strong
pixel-level mask which is very hard to collect in satellite
images [3]. In the absence of such accurate masks [12],
GAN-generated satellite images are easy to discriminate from
real ones. Image enhancement can be helpful, especially in
improving the quality of weak objects.

4) THE CHALLENGE OF MULTIMODAL DATA
According to [22], one of the key challenges in satellite
imaging is to integrate the information acquired with different
spatial resolution, spectral bands, and imaging modes from
sensors mounted on satellites, aircraft, and ground platforms.
The final goal is to reach a representation that contains more
detailed information than each of the individual sources.
Transfer learning is supposed to play a key role in this context
in order to extract the best set of representing features of
multimodal Data.

5) SPARSE AREAS PROBLEM
Focusing on a set of limited objects of interest leaves the
majority of unlabeled areas sparse. As a consequence of a
sparse ground-truth mask, a set of unwanted artifacts and
blurry objects may appear in unlabelled areas, which is a
significant challenge for satellite image synthesis [22]. The
characteristics of the ‘‘noise’’ in these sparse areas, however,
may be a means of asserting the origin of synthetic images.
That is, characteristic noise may arise from specific GAN
architectures.

6) RARE OBJECT DETECTION CHALLENGE
Rare object detection is another challenge in satellite imag-
ing. For objects that already have well-supported labeled
training data, there are many existing methods to train a
model. However, in the case of rare objects, it is not easy to
build a reliable model [49]. Object augmentation can play a
positive role in addressing this problem via embedding the
rare objects in different locations of the scene. Figure 5 shows
the challenges-consequences-solutions diagram.

B. STATISTICS
In this section, we summarize some facts in GAN-based
satellite imaging research:

• Segmentation as a backbone of other applications like
object detection is a heavily researched topic, with 23%
of total research as shown in Figure 6.

• Change detection has 68% of all the research in the
surveillance category.
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FIGURE 5. Challenge diagram and corresponding solutions.

FIGURE 6. Percentage of research in GAN-based satellite imaging research categories.

FIGURE 7. Most frequently used datasets in GAN-based imaging research.

• Traditional CGANs and CycleGANs are the most fre-
quently used GAN types in satellite imaging.

• Google maps, UC Merced, CVUSA, and CVACT are
among the most frequently used datasets in GAN-based
satellite imaging, as shown in Figure 7.

• Unsupervised GANs are the most frequently used
GANs, comprising 59% of all research, as shown in
Figure 8.

FIGURE 8. Percentage of GAN types on investigated research.

VII. EVALUATION METRICS
In this section, we review the most frequently used metrics
to evaluate the GAN-based satellite imaging systems. The
description of mentioned metrics is as follows.
• The missed alarm rate (MAR), false alarm rate (FAR),
and overall error rate (OER) are qualitative measures
that are used in change map extraction [62].
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TABLE 9. Evaluation metrics used on GAN-based satellite imaging.

• False negative (FN) denotes the number of pixels
wrongly classified as unchanged ones, false positive
(FP) represents the number of pixels wrongly classified
as changed ones, true negative (TN) means the number
of pixels correctly classified as unchanged ones, and true
positive (TP) is the number of pixels correctly classified
as the changed ones. The metric kappa [67] is usually
used for measuring classification performance, and a
higher kappa value means better performance and PCC
denotes the percentage of correct classifications.

• Two standard metrics used in measuring image sim-
ilarity and degradation are peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [52].
PSNR, largely based on mean-squared error (MSE), is a
metric that is based on the average difference between
corresponding pixels in two images.

• The realism and diversity of the synthesized images are
measured by Inception Score (IS) [42], Top-k prediction
accuracy, Frechet Inception Distance (FID) score [42]
and KL divergence [59].

• The pixel-wise semantic consistency of the synthesized
images is measured using mean Intersection-over-Union
(mIoU). IoU [22] refers to the number of common pixels
(intersection) between the target and prediction masks
divided by the union of existing pixels across bothmasks
and is, in effect, a Jaccard similarity.

Table 9 and Table 10 summarize the evaluation metrics used
on GAN-based satellite imaging.

VIII. RESULTS ANALYSIS
One of the most significant challenges for meta-analysis of
satellite imaging research is their inconsistent nature due to
different applications, tools, and datasets. For this reason,
it is appropriate to focus on the most relevant experimental
results. This section summarizes the most important exper-
imental results in GAN-based satellite imaging. To do so,

we compare GANs in different satellite imaging applications
as shown in Table 11. In this table, each color represents a
different category of research. For example, blue cells rep-
resent the comparison between three different GANs used
for change detection [61] in terms of SSIM and MSE mea-
sures. The facts illustrated in Table 10 can be summarized as
follows.

• In most of the cases, conditional GANs show better
performance compared to unconditional GANs [56].

• In all of the cases, Pix2pix outperforms traditional
CGANs except for ground view image synthesis. This
failure is due to the lack of generalization, which causes
more artifacts after transforming fundamentally differ-
ent views. In such cases, when the GAN is too complex,
there is less capability for generalization because of
susceptibility to over-fitting.

• In the field of cloud removal Spa-GANs and STGANs
show superiority over the traditional CGANs, and
CycleGANs [19].

• In urban prediction, the LSTM-GANs can outper-
form the traditional supervised, and unsupervised
GANs [61].

We also need to evaluate the significance of GANs’ impact in
different application categories. To do so, we run the paired
and unpaired t-tests on the reported results in the literature.
The unpaired t-test is run to investigate if the GANs can
improve the performance compared to non-GAN approaches.
For example, the experimental results reported in [42] for the
satellite to map conversion allows us to create distinguished
result populations to run unpaired t-tests. In this research, the
segmentation-based methods and GAN-based methods were
compared in terms of IS, FID, and SSIM. To evaluate the
significance of GANs’ impact, we divided the GAN methods
into two groups to keep the size of the result populations
equal for the t-test. Obtained results show that the two-tailed
p-values are less than 0.0001 in IS, FID, and SSIM, which is
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TABLE 10. Metrics used in GAN-based satellite imaging.

considered to be extremely statistically significant. Table 12
and Table 13 show the related information on IS, where SD
denotes standard deviation and SEM denotes Standard Error
of the Mean, which measures how far the average of the data
is likely from the true population mean.

Furthermore, we evaluated the impact of DE-CycleGAN
on weak object detection based on the results reported
in Gao et al. [18]. In this research, the performance of

weak object detection has been reported with and without
DE-CycleGANs. These results let us run a paired t-test to
evaluate the significance of the impact of DE-CycleGAN.
The paired t-test is run when each experiment has been
repeated two times: with and without GANs. The t-test results
show that the two-tailed p-value equals 0.0090, which is
considered to be very statistically significant by conventional
criteria.

118136 VOLUME 10, 2022



H. Mansourifar et al.: GAN-Based Satellite Imaging: A Survey on Techniques and Applications

TABLE 11. Summary of results in different GAN-based satellite imaging applications.

TABLE 12. Unpaired is results review: GANs vs Non-GAN approaches.

TABLE 13. Paired accuracy results review: GANs vs Non-GAN approaches.

IX. FUTURE RESEARCH DIRECTIONS
This section presents the potential future research directions
in GAN-based satellite imaging.

A. WEAK OBJECT SYNTHESIS
Weak object detectionwasmentioned as one of the challenges
in satellite imaging. Weak object synthesis is even more
challenging due to the highly skewed nature of classes in
the segmented images containing the weak object. Although
object augmentation can be used to fight imbalanced regions,
more advanced architectures to deal with this challenge is
highly anticipated in the future.

B. FORGED IMAGE GENERATION AND DETECTION
Forged image detection has a long history in computer
vision [91], [92]. Satellite images are supposed to con-
tain sensitive scenes and structures. It may lead to some
attempts to hide sensitive regions or objects in satellite
images. Although research in this area is underway [46],
more advanced techniques for GAN-based satellite image
manipulation and forgery detection will be required in the
future.

C. EVENT GENERATION AND DETECTION
With the emergence of event-based cameras, a revolutionary
type of imaging device known as a silicon retina, frame-
based algorithms are no longer applicable. New machine
learningmodels are also required tomeet the event-based data
resources. For example, Spiking Neural Network (SNN) [93]
was proposed to learn discrete events rather than continuous
values. SNNs are also considered more biologically realistic
since biological neurons use discrete spikes to compute and
transmit information [94]. The application of event-based
cameras in satellite imaging [95] has already started, and
the GAN-based event generation and detection are highly
anticipated to be practiced in the near future.

X. CONCLUSION
In this paper, we reviewed GAN-based satellite imaging
research with a focus on GAN applications and function-
alities. First, we categorized the GAN applications in this
area in accordance with seven different categories. After-
ward, the most important related works in each category
were summarized by functionality, GAN type, dataset, and
year of research. The same summary was provided for each
GAN functionality. Next, we reviewed different deep neural
network architectures used as the generator. Finally, we sum-
marized the main challenges in GAN-based satellite imag-
ing. Among the major trends observed for the application
of GANs to satellite images, there are some meta-trends
observed that will impact the continued adoption of GANs
in the near future. The first is the use of GANs for deep
fakes, which is already a concern because of the ability to
continually ‘‘tune’’ GANs to create a greater resemblance
between the target and output images. Deep fakes of satellite
images will be especially concerning where they are used in
order to deceive a real-world adversary, such as in warfare.
They could also be used by terrorists or other rogue organiza-
tions in order to interfere with disaster response, among other
scenarios. The second major trend of note is that, as for other
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AI toolsets, GANs are increasingly being componentized and
modularized in order to work with larger machine intelli-
gence/computer vision systems. Examples of this include the
hybridization of GAN and GPS data for map translation and
the use of GAN and LSTM to extrapolate cloud motion. The
third trend of note, indicated by the combination of GAN
and W-Net technologies, is the possibility of discovering dif-
ferences in background noise by using the different features
between multiple images. Such approaches could be used
as a relatively reliable means of discovering when a deep
fake has occurred since noise differences may persist even
when functional aspects (object recognition, accurate map
translation, etc.) of the GAN output images are equivalent
to target images. We expect to see all three of these areas
of research continue to garner increased attention in the near
future.
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