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ABSTRACT Background: Software defect prediction models aim at identifying the potential faulty
modules of a software project based on historical data collected from previous versions of the same
project. Due to the lack of availability of software engineering data from the same project, the researchers
proposed cross-project defect prediction (CPDP) models where the data collected from one or more projects
are used to predict faults in other project. There are a number of approaches proposed with different
levels of success and very limited repeatability. Goals: The purpose of this paper is to investigate the
existing studies of cross-project models for defect prediction. It synthesizes the literature focusing on
characteristics such as project type, software metrics, data preprocessing techniques, features selection
approaches, classifiers, and performance measures used. Method: This paper follows the well-known
Systematic Literature Review (SLR) approach proposed by Barbara Kitchenham in 2007. Results: Our
finding shows that most of the article was published between 2015 and 2021.Moreover, the studies aremostly
based on open-source datasets and the software metrics used to create the models are mainly product metrics.
We also found out that most studies attempted to improve their models improving data preprocessing and
feature selection approaches. Furthermore, logistic regression followed by naive bayes and random forest are
the most adopted classifier techniques in such models. Finally, the f-measure followed by recall and AUC
are the most preferred evaluation measure used to evaluate the performance of the models. Conclusions:
This study provides an overview of the different approaches used to improve the CPDP models analyzing
the different techniques used for data preprocessing, feature selection, and the selection of the classifiers.
Moreover, we identified some aspects that need further investigation.

INDEX TERMS Software defect prediction, software fault prediction, cross-project defect prediction.

I. INTRODUCTION
Quality plays a major role in the software development life
cycle with a number of different points of view that can be
considered. For instance, many testing approaches focus on
quality interpreted as whether a product meets the require-
ments; if there are mismatches, these are considered defects.
The testing process aims at identifying and measuring soft-
ware defects: the early identification and fixing of defects can
improve the quality of the final product. There are a number
of different approaches that can be used including the ones
based on the analysis of the activities performed by devel-
opers (e.g., [1], [2]), assessment approaches (e.g. [3]), tools
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(e.g., [4], [5]), etc. Software defect prediction models support
the software testing activities helping in the identification of
the modules which are the most likely to fail. During the
testing phase, those modules can be tested more rigorously
to reduce the chance to fail. The early identification of such
modules that require particular care in testing are considered
as defect-prone modules in prediction models. Testing a large
software systems is time-consuming and costly. Due to time
and budget constraints, it is wise to identify the potential
defect-prone modules in the early phases of development to
focus the testing activities on those modules.

The CPDP models have gained significant attention in the
last few years. Large software systems include numerous
functionalities that interact with each other in complex ways.
Therefore, manual testing of those functionalities requires a
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relevant amount of effort. The idea of the defect prediction is
based on the ability to build a model from existing data using
supervised or unsupervised machine learning approaches and
apply such model on a target project to help in the devel-
opment and testing phases. The training data of the model
could be from the same project (i.e., Within-Project) or differ-
ent projects (i.e., Cross-Project). The purposes of the defect
prediction models are the identification the faulty modules
and the estimation of the number of defects, to allocate in an
optimal way the available resources to improve the overall
quality. With the evolution of artificial intelligence (machine
learning in particular), it is possible to identify potential
defect-prone modules automatically based on empirical data
[6], [7]. Therefore, a fault prediction model can identify the
modules that are the most likely to include defects without
testing the entire code base to focus the manual testing effort
on such modules. This kind of approaches can reduce the
overall testing effort and, at the same time, make the effort
spent more effective.

In our previous work, we classified the defect prediction
models into 10 categories [8]. Most of the papers identified
focus on within-project software defect prediction (SDP)
models. Such models are developed using training data from
the same project. Therefore, the source and target data of the
model are homogeneous. However, it is not always possi-
ble to find data from the same project, because either they
do not exist (for instance, in case of the first release of a
product) or they were not collected and stored properly for
future use. Due to the lack of availability of empirical data
from the same project, the researchers look forward to sim-
ilar projects to extract data to train the model (cross-project
models).

Even if there is significant amount of research in software
defect prediction models over last three decades, it fails to
make it useful for the industry due to the difficulty of collect-
ing and organizing defect-related software data [11]. CPDP
models provide an alternative option which does not require
much effort of collecting, storing, and organizing the data.
Moreover, since most of software projects are now devel-
oped with agile approaches, it is not easy to use information
coming from previous development approaches and existing
models may not performwell [12]. In such circumstances, the
CPDP is a convenient model to bring the defect prediction
into practice because it does not rely on the previous data
of the same project. It is possible to use similar and suitable
open source data for train the cross-project models. There-
fore, there is an increasing interest in CPDP research over
last decade [11]. Although, there are few literature reviews
available, none of then performed a detailed analysis of the
approaches used to build the different models. Therefore,
in this study, we performed a details analysis of CPDPmodels
since 2009 [20]. The purpose of this Systematic Literature
Review (SLR) is to provide a fine-grained analysis of applied
software metrics, projects, modeling techniques, evaluation
measures, and tools used in CPDP.

II. RESEARCH METHODOLOGY
A. GOALS OF THE RESEARCH
Due to the increasing level of software adoption in many
companies, the increasing number of start-ups, and the over-
all digital transformation, there is an increasing number of
new software projects that requires accurate SDP models to
achieve high quality levels and increase the customer satis-
faction in a very competitive environment.

Due to the lack of suitable data in such projects/companies,
the only feasible approach is the implementation of mod-
els based on the different flavors of CPDP. The aim of
this paper is to provide a reference to practitioners and
researchers to understand better the complex world of CPDP
and identify the best approach to use in the different
contexts.

B. RESEARCH QUESTIONS (RQ)
In practice, we have identified the following research ques-
tions to investigate:
• RQ1: How has the interest in CPDP models evolved
over time?
This question aims at analyzing the interest of
researchers towards the CPDP models based on the
number of publications appeared every year from 2009
to 2021.

• RQ2: Which projects are used in CPDP models?
This question investigates which kind of projects have
been used in the experimentation of CPDP models: pub-
lic (open source) projects or private ones.

• RQ3: Which software metrics are used in CPDP
models?
Different prediction models require different software
metrics. However, some metrics are more popular than
others for several reasons. This question investigates
such popularity over the investigated timeframe.

• RQ4: Which are the different techniques applied to
improve the performance of CPDP models?
Software fault prediction models mainly include three
steps: project selection, software metrics identification,
and data analysis. This last step also includes three sub-
steps: data preprocessing, feature selection, and classifi-
cation. Project and metrics selection can impact deeply
the performance of the prediction model. Moreover,
the quality of data can improve the performance of
classifiers to distinguish between faulty and non-faulty
modules. Raw data quality can be improved through the
process of preprocessing and feature selection. There-
fore, this question explores how CPDP models changes
over time in terms of project selection, software metrics
identification, data preprocessing, feature selection, and
classification.

• RQ5: Which are the evaluation measures applied to
CPDP models?
The evaluation measures provide a quantitative analysis
of the the performance of a model. In this question,
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we explore the different approaches used so far in CPDP
models and which are the preferred ones.

• RQ6: Which are the different tools used in CPDP
models?
We discuss the tools used by researchers for software
metrics extraction, statistical machine learning, data
analysis, parsing source code, etc.

C. METHODOLOGY
We extracted all relevant research papers from the most pop-
ular digital libraries: IEEE Xplore, Springer Link, Elsevier
Science Direct, ACM Digital Library, and Google Scholar.
The number of articles found in each search category is shown
in Table 1. We realized that many articles appeared with
different queries, therefore we filtered out all the duplicates.

TABLE 1. Number of paper extracted in each search category.

Wemerged all the articles fetched removing duplicates and
we identified 2,398 papers. Then, we followed the following
steps to identify the relevant research papers related to CPDP
models:

1) We shortlisted all the papers which contain the term
Cross-Project in the title or abstract.We found 123 such
papers.

2) We went through the abstract of all shortlisted papers
to identify whether those papers are really about CPDP.
We identified 88 papers.

3) Finally, we read all the papers and shortlisted 81.
We removed 7 papers because two papers were related
to data security in SDP and five papers were literature
reviews we discuss in Section 3 of our study.

Table 2 summarizes our inclusion and exclusion criteria.

III. BACKGROUND
According to our findings, most of the available defect pre-
diction papers and review articles focus on within-project
defect prediction models [11]. We only extracted the liter-
ature review articles of CPDP. According to our findings,
there are only five literature reviews on CPDP (all of them
from 2017 to 2021). We analyzed the existing literature
reviews to compare them with our objectives. This section
discusses such aspects.

Lipika Goel et al. [21] performed a Systematic Litera-
ture Review on CPDP to summarize various methodologies

TABLE 2. Number of paper selected at each step.

of CPDP models, data sets used for experiments, software
metrics, classifiers, and evaluation measures of CPDP. This
review consists of 12 research papers from 2009 to 2016.
The data distribution of source and target projects are dif-
ferent in CPDP because, source and target projects data sets
collected from the different projects. The Transfer Learning
approach widely used in CPDP to reduce data difference
between source and target projects. It also defines that source
and target project with similar software metrics is known
as homogeneous transfer learning whereas source and target
project with different software metrics is known as hetero-
geneous transfer learning. It found that most of the CPDP
models evaluated the performance of their models in terms
of false-positive rate (probability of false alarm), accuracy,
precision, recall, f-measure, and area under the curve (AUC).
It showed that product metrics such as Size Metrics, Hal-
stead Metrics, McCabe Metrics, CK Metrics, and Object-
Oriented Metrics, are widely used in CPDP. This literature
also explored the most used classifiers in CPDP. It identified
logistic regression, Naive Bayes, decision tree, random forest,
support vector machine, and artificial neural network, are
most used classifiers. It performed comparative studies on
data set type, transfer learning applied, preprocessing tech-
nique, classifiers used, and f-measure. It shows that hetero-
geneous data sets perform better compare to homogeneous
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data set in terms of f-measure. Finally, it identified the
existing research gaps in CPDP, namely standard training
data selection, class imbalance problem, and heterogeneous
cross-project fault prediction.

Herbold et al. [22] investigated the performance of CPDP.
This study consists of 24 research papers from 2008 to 2015.
It found out that Decision Tree classifier-based CPDP per-
forms better compared to other classifiers. It identified
that no CPDP approach achieves the desired performance
with at least 0.75 recall, 0.75 precision, and 0.75 accu-
racy. It also investigated the impact on the performance of
data filtering approaches. It compared JURECZKO and FIL-
TERJURECZKO datasets to understand whether the perfor-
mances of the model are affected. JURECZKO dataset [23]
includes 48 open source products, 27 proprietary products,
and 17 academic products with a total of 92 products (we
discuss more such datasets in the RQ2). It found out that
there is no significant difference between the two data sets
in terms of AUC, f-measure, g-measure, MCC, and AUCEC.
However, if the filtered datasets are small compared to the
original ones, it can increase the performance up to 5%.
Finally, it concluded that the CPDP models has not reached
the required performance to apply them in practice.

Hosseini et al. [24] investigated software metrics, predic-
tion models, data approaches, datasets, and the level of per-
formance in CPDP. It also compares the performance of
CPDPwithWPDP to explore whether CPDP performance are
comparable with WPDP. This review consists of 30 research
papers on CPDP until 2015. It identified that the performance
of a prediction model depends on the choice of software met-
rics. Therefore, it explores the different software metrics and
their performance in CPDP. It found out that process, product,
and object-oriented metrics are the most popular software
metrics used. Moreover, the combination of object-oriented
metrics and other code metrics shows good performance in
precision, recall, f-measure, and AUC. It identified Naive
Bayes and Logistic Regression as the preferred classifiers in
CPDPwhere Nearest-neighbor, Support VectorMachine, and
Decision Tree achieved the highest performance in terms of
f-measure. This study also identified that recall, false posi-
tives, precision, f-measure, and AUC are the most frequently
used measures to evaluate performance. Most of the older
studies tried to improve the performance of CPDP reducing
the data heterogeneity between source and target projects,
while the most recent ones focus on the class imbalance
problem, noise data, and feature selection. It also mentioned
the preprocessing techniques used to address the data het-
erogeneity: normalization and log-filtering. It compares the
performance betweenWPDP and CPDP showing that WPDP
outperforms CPDP and CPDP challenges WPDP only in
precision. Finally, it noticed that CPDP has not reached the
required level of performance to be used in practice.

Zhou et al. [25] investigated how CPDP models evolved
comparing their performance with WPDP models focusing
on the performance of supervised models for both classi-
fying and ranking defect-prone modules. It identifies two

categories of prediction models based on module size. They
found out that small module size models perform better com-
pared to other CPDP models. Finally, it suggested that future
CPDP studies should use the identified models as a baseline
for comparison.

Khatri et al. [26] analyzed 34 article related to CPDP
from 2008 to 2019. They explored the types of datasets,
modeling techniques, types of software metrics, evaluation
parameters, and statistical tests performed. They identified
that studies used proprietary datasets (6%), open-source
datasets (26%), and mixed datasets (a combination of both
proprietary and open-source datasets) (68%). They showed
that logistic regression and Naive Bayes are the most used
classification techniques. Product metrics were used in 62%
of the studies whereas process metrics in 38%. Moreover, the
f-measure is the preferred evaluation parameter. Additionally,
it was observed that 21% of the studies do not include any
statistical test, while the most used is the Wilcoxon Signed-
Rank test. Finally, they concluded that there is big margin to
improve the performance of the CPDP models.

Our review is different from the ones already available in
several aspects. We consider the timeframe 2009-2021 while
the others do not consider recent studies appeared in 2020 and
2021 (they stop in 2015, 2016, 2017, and 2019). The previous
research articles did not perform fine-grained analysis of
project selection, data preprocessing, feature selection, and
classification. Moreover, we consider several aspects consid-
ered separately in other papers:
• we discuss how the CPDP models evolved over time in
a similar way as Seyedrebvar Hosseini et al. [24]

• we discuss the different kinds of projects used in a
similar way as Steffen Herbold et al. [22]

• we discuss software metrics and evaluation measures in
a similar way as Lipika Goel et al. [21] and Seyedrebvar
Hosseini et al. [24] but our paper includes the recent
literature with a more detailed analysis. Khatri et al. [26]
consider only classifiers as models whereas our study
will consider preprocessing, feature selection, and clas-
sifiers together with the model. In this paper, we analyze
CPDP models considering different dimensions: project
and software metrics selection, data preprocessing and
feature selection, and classifiers.

IV. DISCUSSION
This section focuses on the answers to the research questions
presented in Section 2 investigating the current status of
CPDP models.

A. RQ1: HOW HAS THE INTEREST IN CPDP MODELS
EVOLVED OVER TIME?
Our finding shows that the majority of CPDP studies has been
published since 2015. Figure 1 shows the number of papers
published each year from 2009 to 2021, also showing that
the researcher’s interest in the topic has increased over time.
We can split the time span from 2009 to 2021 into two parts,
namely 2009 to 2014 and 2015 to 2021. 84% of CPDP studies
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were published during the span of 2015 to 2021 whereas 16%
of CPDP studies published during the span of 2009 to 2014.

FIGURE 1. Number of papers published each year in CPDP.

B. RQ2: WHICH PROJECTS ARE USED IN CPDP MODELS?
In this section, we focus on the different software projects
used in the various articles for the cross-project defect predic-
tion model. Software projects follow the iterative approach
which makes them agile in nature. Moreover, the empirical
data from software projects used in the different articles are
from open source data sets. These data sets are not up to
date. For example, the software project data in the PROMISE
repository are from 2004, 2005, and 2006. The researchers
continuously use these old data sets for their experimentation.
It diminishes the agile impact of software projects across the
cross-project models in different research articles. Therefore,
this article does not take into consideration the agility of
the projects. According to our findings, researchers used the
terms dataset and repository interchangeably in their papers,
we do the same. Moreover, datasets and repositories consist
of multiple project.

The recent trend of CPDP experimentation relies on open
source, publicly available datasets. We analyzed 81 CPDP
studies and we found that 78 CPDP studies are based on
public datasets, 1 CPDP study is based on both public and
proprietary datasets [20], and 2 studies do not mention the
datasets used. 54 CPDP studies are based on the PROMISE
repository. PROMISE (as described below) is a very pop-
ular software engineering database designed for research
purposes.

Figure 2 shows the most used projects in all the CPDP
studies. We choose the project’s datasets which were used
by more than 5 times. Lucene, followed by Ant and Xalan,
are the most used projects. Moreover, we found eight
open-source datasets (grouping together a variable number of
projects), namely NASAMDP dataset, AEEEM dataset, Net-
Gene dataset, SeaCraft repository, MORPH dataset, ReLink
dataset, SOFTLAB dataset, and JURECZKO dataset, are
used in CPDP studies:

1) NASA METRICS DATA PROGRAM (MDP) DATASET
[27] NASA MDP Dataset consists of method-level software
metrics related to 13 NASA software projects written in
Java, C, and C++. The software metrics available in all the
projects are not the same. There are two projects (KC1 and
KC2) that contain 21 software metrics, one project (PC2)
contain 36 software metrics, five projects (MW1, PC1, PC3,
PC4, and CM1) contain 37 software metrics, two projects
(MC1 and PC5) contain 38 software metrics, and two projects
(KC3 and MC2) contain 39 software metrics. We exclude the
defective metrics to count the number of software metrics in
all projects. These data are available in two sources, namely
PROMISE andMDP. In this section, all information provided
about the MDP dataset is taken from MDP.

2) AEEEM DATASET
Marco D’Ambros et al. [28] collected and shared the
AEEEM dataset. It consists of five open source projects,
namely Eclipse JDT Core (JDE), Eclipse PDE UI (PDE),
Equinox Framework (EQ), Apache Lucene (LC), and Mylyn
(ML). These projects are written in Java and the data pro-
vided are 110 software metrics including change metrics,
CK metrics, object-oriented metrics, number of previous
defect metrics, the complexity of code metrics, churn of CK
metrics, churn of object-oriented metrics, the entropy of CK
metrics, and entropy of object-oriented metrics. We exclude
the defective metrics to count the number of software metrics
in all projects.

3) NetGene DATASET
Kim Herzig et al. [29] collected and shared the NetGene
dataset. It consists of four open source Java projects, namely
Httpclient, Jackrabbit, Lucene, and Rhino. It includes dif-
ferent metrics, namely complexity metrics, dependency net-
work metrics, and genealogy metrics. The genealogy metrics
include EGO network metrics to capture direct neighbor
dependency, GLOBAL Network Metrics.

4) SeaCraft REPOSITORY
[30] Software Engineering Artifacts Can Really Assist Future
Tasks (SeaCraft) Repository combined software engineering
data from the PROMISE repository and data from several
other sources such as conferences/workshops. The data here
has been used in at least one (or more) other datasets. This
repository includes data from open source projects, namely
Arc, Camel, Lucene, Log4j, Poi, Prop, Synapse, Velocity, and
many more.

5) MORPH DATASET
[31] MORPH dataset consists of 14 open source projects and
11 student projects, all written in Java. The projects include
Ant, Arc, Camel, Poi, Tomcat, Redaktor, Skarbonka, etc. The
data consist of metrics based on CK metrics. The MORPH
dataset is available in the PROMISE repository andMORPH.
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6) ReLink DATASET
[32] This dataset consists of three projects, namely Apache,
Safe, and Zxing. The data contain 26 software metrics similar
for all three projects.

7) SOFTLAB DATASET
[33] This dataset consists of five projects donated by SOFT-
LAB. The data consist of 29 metrics with manually designed
defect levels. These data are available in the PROMISE
repository.

8) JURECZKO DATASET
[23] This dataset consists of 15 open source projects,
namely Ant, Camel, Ckjm, Forrest, Ivy, JEdit, Log4j,
Lucene, PBeans, POI, Synapse, Tomcat, Velocity, Xalan, and
Xerces. These data are available in both in JURECZKO
and PROMISE repositories. It also consists of 6 proprietary
projects and 17 academic projects. Each project includes
20 metrics.

FIGURE 2. Projects used to train CPDP models.

The choice of a dataset is the first step to perform CPDP
research. The performance of the model highly depends on
the choice of the dataset. Hence, to overcome this, many
studies select data from different sources to evaluate the
stability of performance across the different datasets.

C. RQ3: WHICH SOFTWARE METRICS ARE USED IN CPDP
MODELS?
Features in software fault prediction models can be catego-
rized into two types: semantic features and hand-crafted fea-
tures. The hand-crafted features are designed and extracted
from the source code text (e.g., McCabe [34], CK [36]).
Some researchers argue that hand-crafted features lack the
semantics information of source code [37]. Therefore, some
researchers turn towards to extraction of semantic features
that are based on an abstract syntax tree (AST). The semantic
feature is extracted based on transforming the source code
into a token vector usingASTs [37]. In our findings, the appli-
cation of semantic feature extraction techniques in the CPDP
model is limited (about 6%) compared to the hand-crafted
ones (about 94%). After the introduction of deep learning in
software fault prediction, researchers tried to leverage seman-
tic hidden features from source code based on the analysis of
the abstract syntax trees.

The extraction of data from source code in the form
of software metrics is the first stage of fault prediction.
CPDP studies used open source datasets mentioned in
RQ2, consists of software metrics (e.g., AEEEM datasets
consists of 110 software metrics.). Researchers used the
following three techniques to choose the most suitable
software metrics among all available software metrics in a
dataset:

1) No selection: researchers used all the available metrics
in a dataset for analysis [38].

2) Manual selection: researchers choose the most suit-
able metrics manually based on their intuition and
experience [39].

3) Automated selection: researchers applied an auto-
matic feature selection approach to select the most
suitable metrics among all available software metrics
in a dataset [40].

We found that all CPDP studies used a combination of
product and process metrics for their analysis. Table 3 shows
the preferred product and process metrics used in CPDP
studies. We found that the most used product metrics
are:

• Chidamber & Kemerer metrics [36]
• Henderson Sellers Metrics [41]
• Martin Metrics [42]
• QMOOD Metrics [43]
• McCabe Metrics [34]
• Size Metrics [44]
• Halstead Metrics [45]
• Object-Oriented (OO) Metrics [46]

The process metrics are also considered as change metrics
[47]. Therefore, we also categorized [48] the most used pro-
cess metrics as follows:

• Number of Revisions [66]
• Commits [69]
• Modified Code [73]

It is also clear from Table 3 that product metrics are pre-
ferred over process metrics.

FIGURE 3. Metrics used in CPDP models.

Figure 3 presents the most used metrics in the CPDP
studies, we included only the metrics used at least 5 times.
LOC, followed by CBO, LCOM, DIT, NOC, RFC are the
most used metrics.
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TABLE 3. Types of Software Metrics in CPDP.

D. RQ4: WHICH ARE THE DIFFERENT TECHNIQUES
APPLIED TO IMPROVE THE PERFORMANCE
OF CPDP MODELS?
Software defect prediction is a binary classification problem
[53]: the goal is to classify a piece of software as a defective
or a non-defective one. The classification of software is done
based on three different machine learning approaches:

1) Supervised: All training data used to build the predic-
tion model are labeled as defective or a non-defective.

2) Semi-supervised: The model is built using a small
number of labeled training data and a large number of
unlabelled ones.

3) Unsupervised: They do not require any labeled train-
ing data to build the prediction model.

Some supervised learning approaches used are: TCA+
(Transfer Component Analysis) [54], Context-Aware Rank
Transformations [55], Weighting and VAB [56], Hybrid
Instance Selection Using Nearest-Neighbor (HISNN) [57],
FeSCH (Feature Selection using Clusters of Hybrid-data)
approach [58], and many more.

The used semi-supervised learning approaches are: Semi-
Supervised Structured Dictionary Learning (SSDL) [59],
Improved Subclass Discriminant Analysis (ISDA) with
Semi-Supervised Transfer Component Analysis (SSTCA)
[60], and many more.

The unsupervised learning approaches used are: CLA with
CLAMI [31], Cluster Ensembles and Labeling (CEL) [61],
and many more.

We found out that most of the studies use supervised
learning approaches.

FIGURE 4. Menzies et al.’s Framework (built based on Menzies et al.,
2007).

We use Menzies et al.’s framework [62] (Figure 4) of fault
prediction to analyze changes at each stage of the framework
to improve the CPDP model. The framework includes four
stages: project selection, data preprocessing, feature selec-
tion, and classification. Our study analyzes the changes in
CPDP models over the years in all these stages:

1) Project selection: In CPDP, projects consist of two
types, namely training projects, and testing projects.
The datasets from both the training projects and test-
ing projects are extracted in form of software met-
rics. The datasets extracted from the training projects
are utilized to train the fault prediction model. The
appropriate training projects identification to predict
faults in a specific target project is also challenging
in the cross-project fault prediction paradigm. Thomas
Zimmermann et al. [20] evaluated the performance of
CPDP on 622 different combinations of source and tar-
get projects. This research considered a source project
as a strong predictor on a target project when precision,
recall, and accuracy are over 0.75. It shows that only
about 3% of combinations of source and target projects
achieved the required performance. For instance, Fire-
fox is a strong predictor for Internet Explorer but
the opposite is not true. Therefore, we analyze the
approaches to the identification of suitable source
projects as predictors for a specific target project.

2) Data Preprocessing: The raw data collected may
consist of irrelevant data, noisy data, etc. Therefore,
it is required to clean the data through preprocess-
ing to achieve the best possible performance of the
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model. Data preprocessing is a data mining technique
used to transform the raw data into a meaningful for-
mat improving the performance of classifiers. In our
study, data preprocessing consists of three components:
data normalization, data imbalance, and data filtering.
We discuss more about those components in the fol-
lowing section. Tim Menzies et al. [63] identified data
preprocessing as more important than the choice of
the classifier for the overall performance of the model.
Therefore, we analyze the application of data prepro-
cessing approaches over the years.

3) Feature Selection: It is a process to reduce the number
of features to reduce computational cost and to improve
the performance of the model. It reduces data dis-
crepancy by reducing unstable and redundant features.
Moreover, in CPDP, it is not always possible to collect
the same set of software metrics for both source and
target projects. Therefore, it is possible to use feature
selection [64] to extract a similar set of metrics from
both source and target projects.We analyze the applica-
tion of different feature selection approaches in CPDP
over the years.

4) Classification: The defect prediction is a binary clas-
sification of software artifacts [65] (faulty and non-
faulty).There are many papers in CPDP focusing on
improving the performance of the overall model by
selecting and improving appropriate classifiers. There-
fore, we analyze the application of different classifiers
over the years in CPDP.

FIGURE 5. Papers focusing on different stages of the Menzies et al.’s
framework.

In the following sub-sections, we present the different
approaches of CPDP model considering the four stages:
project selection, data preprocessing, feature selection, and
classification stages. Therefore, we identify how the CPDP
models develop in each stage. Moreover, we also present
the evolution of the classifier over the base line classifier.
Figure 5 shows the percentage of papers involved in the
different stages of the framework. We represent those stages
as projects and metrics selection (Only PSM), data prepro-
cessing and feature selection (Only PFS), and classification
(Only CLS). We noticed that the CPDP studies are based on:

Only PSM,Only PFS, Only CLS, the combination of PFS and
CLS, and combination of PSM and PFS. Most of the studies
tried to improve performance based on the only PFS (37%)
followed by combined PFS and CLS (33%).

1) PROJECTS AND METRICS SELECTION
In CPDPmodels, datasets used in the training phase are likely
to be different that the ones available in the target project and
the selection of the metrics also impacts the performance of
the model. Raimund Moser et al. [66] analyzed the Eclipse
project and they found out that process metrics were a better
choice than code metrics. Moreover, due to data divergence
among source and target projects, it is difficult to achieve
reasonable performances. Thomas Zimmermann et al. [20]
evaluated the performance of CPDP models on 622 differ-
ent combinations of source and target projects. Only 3.4%
combination of source and target project actually provide
a sufficient level of performance to be useful in practice.
Therefore, we analyzed the studies focusing to improve the
performance of the prediction model based on projects and
software metrics selection. We identified eight studies and
Table 4 provides a short overview. All the studies are based
on supervised learning.

Zimmermann et al. [20] experimented with large-scale
Cross-Project Defect Prediction Models on 12 real-world
applications with 622 combinations of source and target
projects. They investigated whether any source project-based
training model can predict fault to any target project. They
used both proprietary projects (Microsoft’s Internet Explorer
(IE), Direct-X, Internet Information Services (IIS), Win-
dows Clustering, Windows Printing, Windows File System,
Windows Kernel, and SQL Server 2005) and open source
ones (Apache’s Derby and Tomcat, Firefox, and Eclipse).
Metrics used in this study are Added LOC/Total LOC,
Deleted LOC/Total LOC, Modified LOC/Total LOC, Pre-
release bugs/Total LOC, (Added + Modified + Deleted
LOC) / (Commits + 1) and Cyclomatic complexity/Total
LOC. They considered a project as a strong defect prediction
for another target project when precision, recall, and accuracy
are above 0.75. Only 21 (3.4%) combinations out of 622 met
such levels.

Rahman et al. [67] investigated whether the performance
of CPDP depends on size-based metrics. The projects used
in this study were from the Apache git repository (Axis2,
CXF, Camel, Cayenne, Derby, Lucene, OpenEJB, Wicket,
and XercesJ). They extracted the defects information about
the modules from the related Jira issue tracking system. The
metrics used in this research are Commits, ActiveDevelopers,
Added LOC, Deleted LOC, Changed LOC, NEW Features
Added, Improvements, Log SLOC, and many more. The
results showed that size-based metrics perform worse.

Zhang et al. [55] proposed a universal defect prediction
model instead of separate models for individual projects.
The universal defect prediction model is a combination
of within-project and cross-project defect prediction mod-
els. The proposed model is based on context-aware rank
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transformations to cluster projects based on similarity with
rank transformation to manage diverse datasets distribution.
It uses code metrics at file level, class level, and method level.
The chosen code metrics are LOC, Comment Lines, Number
of Statements, Number of Functions, Weighted Methods per
Class, Depth of Inheritance Tree, Response For a Class, Num-
ber of Immediate Sub-classes, Coupling Between Objects,
Lack of Cohesion in Methods, Number of instance variables,
Number of instance methods, and many more. They found
out that the universal defect prediction model performs better
using code metrics, process metrics, and contexts together
compared to using only code metrics or, code metrics and
process metrics. Moreover, the within-project model per-
forms better than the universal model but the universal model
achieve reasonable results in the cross-project model.

Aarti et al. [68] investigated defect prediction models
based on cross-projects and mixed-project (using both class
level and method level metrics) model. The mixed-project
model is the combination of both within-project and cross-
project models. The datasets collected from the PROMISE
repository in this study are NASA, SOFTLAB, and
JURECZKO. They concluded that cross-project prediction
models with common features for method-level prediction
models achieve significantly better performances.

Wen et al. [70] conducted an empirical study on fea-
ture and project selection and proposed an approach based
on TCA+ transfer learning. Moreover, they proposed the
MZTCA+ (median_zscore TCA+) approach for cross-project
models. This study used mean_log, std_log, median_log,
median_zscore, and TDS for source project selection. The
study uses the JURECZKO dataset with the following met-
rics: Weighted methods per class, Depth of Inheritance Tree,
Number of Children, Coupling between objects, Response for
a Class, Lack of cohesion in methods, Lack of cohesion in
methods, Number of Public Methods, Data Access Metric,
and many more. They concluded that the proposed combina-
tion of source project selection approach and TCA+ perform
better compared to other approaches such as only TCA+.

Liu et al. [71] proposed a two stages cross-project predic-
tion model. They select the two most suitable source projects
at the first stage. After that, they apply TCA+ on both project
separately to train the model. The selection of the projects
is based on values of f1-score and cost-effectiveness. The
JURECZKO dataset was used in this study. The metrics
included are Number of methods in the class, Depth of inher-
itance tree, Number of children, Coupling between objects,
Response for a class, Lack of cohesion in methods, and many
more. The concluded that the proposed approach outperforms
other models such as TCA+, TDS, LT, and Dycom in terms
of F1-score and cost-effectiveness and it solves the instability
problem of TCA+.

Agrawal et al. [39] analyzed the feasibility of training and
test datasets for cross-project defect prediction. This research
collected datasets from 13 open source projects from Source-
forge. The metrics extracted for this analysis are Average of
McCabe’s cyclomatic complexity, Coupling between object,

Number of Children, Number of instance methods, Number
of instance variables, Response for a Class, Number of Public
Methods, Lines of Code, Maximum of McCabe’s cyclomatic
complexity, Depth of Inheritance Tree, Lack of cohesion in
methods, and Weighted methods per class. They concluded
that defects from large software systems can not be a good
predictor for small software systems and datasets with the
large differences in the number of classes can not be used
in cross-project defect prediction.

Asano et al. [72] attempted to identify suitable training
projects to improve the performance of the model. They used
the Bandit Algorithm to identify the most suitable project.
Moreover, they also compared the performance of the pro-
posed approach with other baseline approaches. They con-
cluded that the proposed approach was not able to improve
the performance significantly in terms of AUC, and f1-score.

TABLE 4. Project and metrics selection.

We found a significantly smaller number of studies
focusing on the software project and metrics section-based
approaches to improve the performance of the prediction
model. According to our knowledge, Zimmermann et al. [20]
first find out the necessity of identification of suitable
source projects for any specific target project. There-
after, we identified five studies that tried to choose suit-
able source projects which were identified by Thomas
Zimmermann et al. According to our knowledge, we found
one study (i.e., Aarti et al. [68]) that experimented on file
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level, class level, and method level software metrics and
measure their performance accordingly.

2) DATA PREPROCESSING AND FEATURE SELECTION
The quality of data is important to achieve good perfor-
mances in the prediction model. Moreover, it is important
also to identify the features that contribute to achieve such
performances avoiding to include in the models features that
provide no or little contribution but make the model more
complex. Additionally, not all metrics are suitable defect
predictors. The identification of the most suitable metrics
(either automatically or manually) has become one of the
dominant aspects of CPDP.

a: DATA PREPROCESSING APPROACHES
The performance of a CPDP model depends on the quality
of the data. Additionally, source and target data are collected
from different projects making them different. Therefore,
preprocessing becomes really important to achieve good per-
formances. We divided the preprocessing approaches into
three different sub-categories, namely data normalization,
data imbalance, and data filtering.

The datasets in CPDP are complex and heterogeneous.
Moreover, each software metric is calculated in different
ways with different bounds and scales. Transfer learning
approaches are also proposed by various researchers to reduce
heterogeneity among the source and target data. We also
consider transfer learning approaches in the normalization of
data.

The approaches applied to normalize the data are:
• log transformation [57], [70], [74], [75], [76], [77], [78],
[79], [80]

• Z-Score Transformation [54], [56], [60], [70], [71], [75],
[77], [78], [81], [82], [83]

• mean-median-standard deviation [54], [56], [70], [71],
[82], [84]

• context-aware-rank transformations [55]
• multi-collinearity [85]
• min-max approach [56]
• inter-quartile-range approach [56]
• data-discretization for skewed data [64]
• credibility factor based data re-weighting [86]
• rank transformation [78]
• box-cox transformation [78]
• multiple-components weights with kernel mean match-
ing algorithm [87]

• vectorization based on Abstract Syntax Tree [88], [89]
• balanced distribution adaptation [90]
• discriminant subspace alignment [83]
• TrAdaBoost method based weight measure [91]
Log transformation, z-score transformation, and mean-

median-standard deviation are the most used approaches.
When dealingwith the transfer learning approach, researchers
try to reduce the divergence between source and tar-
get projects using the transfer component analysis [54].
It consists of a combination of log transformation, z-score

transformation, and mean-standard deviation transforma-
tion. Therefore, we analyze those transformations separately.
Additionally, the imbalanced data also impact the perfor-
mance of a prediction model. Faulty and non-faulty modules
in the training datasets are not equally distributed, affecting
the performance of a model. Different approaches are applied
to address the data imbalance problem:
• data weighting [76], [84]
• undersampling [64] (e.g., Tomek links [81])
• re-sampling [85]
• value aware boosting [56]
• multi-objective classifier [77]
• semi-supervised transfer component analysis [60]
• over-samples (e.g., SMOTE [81], [87], [92])
• SMOTE-PENN [79]
• class distribution estimation with synthetic
minority [93])

• stratification embedded in nearest neighbor [82]
• improved K-Means clustering cleaning [80]
• ada-boost technique [40]
We found out that over-sampling is the most used approach

to manage the data imbalance problem. Moreover, data fil-
tering approach is widely applied to choose a similar set of
data from source project and to remove noisy data from the
training data to increase the performance of the model. The
subset of training data selected is based on the specific target
project. Different approaches are applied for data filtering:
• nearest-neighbor [64], [70], [74], [84], [94], [95], [96]
(e.g., using Minimum Hamming Distance [57], using
genetic instance selection [97], using Euclidean Dis-
tance [98], using fuzzy-rough instance selection [92])

• EM-clustering [70], [84]
• k-means [94]
• instance clustering [31]
• metric violation scores [31]
• burak-filter [76], [91], [96]
• density-based spatial clustering [99]
• mahalanobis distance [57]
• similarity weight computation [81] (e.g., dataset charac-
teristic vector [78])

• patterns by ordered projections [100]
• Bayesian formula based filtering [101]
• harmony search algorithm [77]
• hierarchical select based filter [23]
• global filter [96]
• local filter [96]
• peters filter [96]
• kawata filter [96]
• He filter [96]
• HeBurak filter [96]
• HePeters filter [96]
• mean_log-std_log-median_log-median_zscore [70]
• improved K-Means clustering cleaning approach [80]
• iForest machine learning method [38]
Nearest-neighbor is the most used filtering approach

in CPDP models. CPDP studies attempt to improve the
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TABLE 5. Frequencies of different preprocessing approaches.

performance of the model based on the combination of differ-
ent approaches to preprocessing. Table 5 shows the different
approaches applied in different studies. We found out that
most of the studies are based on normalization, filtering, and
their combinations. Just a few studies focus on solving the
data imbalance problem.Additionally, Figure 6 shows the fre-
quency of different approaches of data preprocessing over the
years. In this figure, we consider all approaches separately.
For instance, if any study applied both normalization and
filtering approaches, we consider normalization and filtering
separately in the figure.

b: FEATURE SELECTION APPROACHES
The approaches applied for feature selection are:

• feature subset selection with Bagging [64]
• subset of relevant features [114]
• metric violation scores [31]
• deep belief network based on abstract syntax tree
[106], [111]

• correlation-based feature selection for feature subset
selection [98], [109]

• improved subclass discriminant analysis [60]
• information flow algorithm [95]
• feature selection using clusters of hybrid-data
approach [58]

• top-k feature subset based on number of occurrences of
different metrics [107]

• geodesic flow kernel feature selection [108]
• similarity measure [109]
• correlation [70], [109]
• gain ratio [70], [109]
• reliefF [70]
• InfoGain [70]
• OneR [70]
• Symmetrical Uncertainty [70]
• tree-based-embedding convolutional neural network
with transferable hybrid feature learning [88]

• bi-directional long short-term memory based automatic
feature selection from vectorized token sequences [89]

• source code image generation based on source code
visualization to extract feature [110]

• chi-square feature selection technique [40]
• Spearman’s Rank Correlation [40]
• adaptive distributed convolutional neural network based
abstract syntax trees [37]

Figure 6 shows the frequency of feature selection
approaches applied over the years to improve the perfor-
mance of the prediction model. Most of the studies used open
source datasets and selected common software metrics for
both source and target projects manually, instead of using an
automatic feature selection method.

FIGURE 6. Frequency of approaches of data preprocessing and feature
selection.

Most of the CPDPmodels tried to improve the performance
of the model by using data preprocessing, including project
selection and feature selection approaches. Figure 7 shows
the frequency of the combination of preprocessing and feature
selection approaches from 2009 to 2021. According to our
findings, 2019 was the year with the highest number of pub-
lications. Figure 8 shows that most of the studies on prepro-
cessing and feature selection approaches are based supervised
learning. Figure 9 shows the percentage of supervised, semi-
supervised, and unsupervised learning applied over the years
in preprocessing and feature selection.
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FIGURE 7. Frequency of data preprocessing and feature selection papers.

FIGURE 8. Frequency of data preprocessing and feature selection
techniques over time.

FIGURE 9. Distribution of data preprocessing and feature selection
techniques.

3) CLASSIFIERS
The classification is the last step of the prediction model.
Over the years, researchers attempted to improve the
performance of the CPDP model also by improving the per-
formance of the classifiers. We have identified the following
48 classifiers applied in different studies:

1) Ada Boost (AB)
2) Alternating Decision Tree (ADTree)
3) Artificial Neural Network (ANN)
4) Bayesian Networks (BN)
5) Boost (BT)
6) Boosting-Support Vector Machine (B-SVM)
7) Classification and Regression Tree (CART)
8) Coordinate Ascent (CA)
9) Correlation Metric Selection based Correlation Slign-

ment (CMSCA)
10) Cost-SensitiveKernelized Semi-SupervisedDictionary

Learning (CKSDL)
11) Decision Table (DTa)
12) Decision Tree J48 (DT)
13) Deep Adaptation Networks (DAN)
14) Diffused Bayes Classifier (DBC)
15) Ensemble Learning (EL)
16) Ensemble learning classifier Gradient Boosting

(ELGB)
17) Extra Tree (ET)
18) Genetic Algorithm with Ensemble Learning (GAEL)
19) Gradient Boost (GB)
20) Heterogeneous Ensemble (HE)
21) Kernelized Semi-Supervised Dictionary Learning

(KSDL)
22) K-Nearest Neighbors (KNN)
23) Kstar(K*) (KS)
24) LambdaMART (LM)
25) ListNet (LN)
26) Logistic Model Tree (LMT)
27) Logistic Regression (LR)
28) Logistic Regression using Genetic Algorithm (LRGA)
29) Multi-Objective Decision Tree (MODT)
30) Multi-Objective Logistic Regression (MOLR)
31) Multi-Objective Naive Bayes (MONB)
32) Multi-Objective Naive Bayes with Nearest Neighbors

(MONNB)
33) Multilayer Perceptron (MLP)
34) Naive Bayes (NB)
35) oneR (OR)
36) Radial Basis Function Network (RBF)
37) Random Forest (RF)
38) RankNet (RN)
39) Ridge (RE)
40) Semi-Supervised Structured Dictionary Learning

(SSDL)
41) Semi-Supervised Dictionary Learning (SDL)
42) Spectral Clustering (SC)
43) Spotted Hyena Optimizer (SHO)
44) Support Vector Machine (SVM)
45) Support Vector Machine (SVM) with RBF kernel

(RBF-SVM)
46) Token Based Classifier (TBC)
47) Transfer Naive Bayes (TNB)
48) Value Aware Boosting with Support Vector Machine

(VAB-SVM)
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We found out that Logistic Regression (LR), Naive Bayes
(NB), and Random Forest (RF) are the most used classifiers,
as displayed in Figure 10. Figure 11 shows that LR, NB,
and RF are applied in 21%, 16.1%, and 10.2% of the studies
respectively. There are several classifiers that were experi-
mented with only once. Figure 11 shows the percentage of
the classifiers used.

FIGURE 10. Frequency of classifiers usage.

FIGURE 11. Percentage of Applied Classifiers.

The classifier is an important component of a CPDPmodel
but not all the studies tried to improve them to achieve
better overall predictions. In our study, we grouped the
classification-based studies into three categories:

1) Comparison among classifiers
In this category, the studies compared the prediction
performance of different classifiers to identify the most
suitable classifiers for a given dataset.
Abunadi et al. [117] conducted experiments on open
source datasets, namely Drupal, Moodle, and PHP-
MyAdmin. They attempted to identify suitable classi-
fiers among five popular classifiers: naive bayes, logis-
tic regression, support vector machine, decision tree
J48, and random forest. They showed that in the Drupal
dataset, the decision tree J48 performs better in terms of
precision, and random forest performs better in terms of
recall, and f-measure. In the Moodle dataset, decision
tree J48, and random forest perform similarly in terms
of precision but random forest performs better in terms
of recall, and f-measure. In the PHPMyAdmin datasets,
random forest is the best performing classifier in terms
of precision, recall, and f-measure. It concludes that
decision tree J48, and random forest are the most
suitable classifiers compared to naive bayes, logistic
regression, and support vector machine.

Kaur et al. [100] attempted to understand whether it
is possible to predict defects in real-world software
projects, using academic projects as training data.
They collected academic projects as training data and
open source real-world projects as test data from the
PROMISE repository. They attempted to identify the
most suitable classifier among naive bayes, bayes net-
work, random forest, logistic regression, Kstar, and the
heterogeneous ensemble of these five classifiers. They
concluded that bayes network is the best performing
classifier followed by the heterogeneous ensemble in
terms of mean AUC.
Sohan et al. [104] attempted to measure the perfor-
mance of imbalanced data. They used the SeaCraft
repository. They attempted to identify the most suitable
classifier among decision tree, random forest, extra
tree, ada boost, gradient boost, nave bayes, nearest
neighbors, and artificial neural network. They found
that gradient boost is the best performing classifier
in case of imbalance training data and imbalance test
data in terms of precision, recall, f1-score, accuracy,
and AUC. Extra tree and gradient boost are the best
performing classifier in case of imbalanced training
data and balance test data in terms of precision. Ada
boost is the best performing classifier in case of imbal-
anced training data and balance test data in terms of
recall, f1-score, and AUC. The decision tree is the best
performing classifier in case of imbalanced training
data and balance test data in terms of accuracy. Gra-
dient boost is the best performing classifier in case of
balance training data and imbalance test data in terms of
precision, recall, f1-score, accuracy, andAUC.Random
forest is the best performing classifier in the case of
balance training data and balance test data in terms of
precision. Ada boost is the best performing classifier
in case of balance training data and balance test data in
terms of recall, f1-score, accuracy, and AUC.
Li et al. [118] attempted to compare the performance of
the combination of different popular transfer learning
approaches and classification techniques. The used the
AEEEM,ReLink, and JURECZKOdatasets. They used
transfer learning methods for this experiment, namely
Bruak filter, DS, DSBF, TCA, DBSCAN filter, Uni-
versal, DTB, and Peter filter. They used the following
classifiers: k-nearest neighbor, boost, classification and
regression tree, random forest, support vector machine,
multi-layer perceptron, ridge, and naive Bayes. They
concluded that the combination of the DTB transfer
learning approach with random forest classifier per-
forms the best.

2) Performance of proposed approach in different
classifiers
Different studies proposed different approaches over
the years to improve the performance of CPDP
by improving the data preprocessing, feature selec-
tion, and project selection techniques. These studies

VOLUME 10, 2022 118709



S. Pal, A. Sillitti: Cross-Project Defect Prediction: A Literature Review

experimented their approaches on multiple classifiers
to identify the most suitable ones.
Herbold et al. [84] investigated the appropriate train-
ing data selection based on distance measurements
(i.e., EM-clustering and Nearest Neighbor algorithm).
Moreover, they analyzed the performance of selected
training data on different classifiers: logistic regression,
naive bayes, bayesian networks, SVM with RBF ker-
nel, C4.5 decision trees, random forest, and multilayer
perceptron. They used the PROMISE repository. They
concluded that the performance of classifiers depend on
the performance of data preprocessing. In this exper-
iment they identified SVM with RBF kernel as the
best combination. He et al. [64] investigated whether
it is possible to use open source projects to predict
defect on proprietary ones. They proposed a novel
techniques to reduce data distribution among source
and target data. They applied undersampling to reduce
data imbalance, data normalization to scale data, data
discretization, and nearest-neighbor filter for prepro-
cessing, and applied feature subset selection for feature
selection. They used the PROMISE repository. More-
over, they analyzed the performance of proposed tech-
niques on different classifiers, namely random forest,
naive bayes, and logistic regression, to identify themost
suitable one. They concluded that naive bayes is the
most suitable classifier for their approach.
Qing et al. [94] proposed a feature based transfer learn-
ing approach to reduce data divergence between source
and target projects. They applied the kernel based
principal component analysis for transfer learning to
reduce data divergence. In addition, they experimented
on feature selection approaches, namely chi-square,
Info Gain, Forward Selector, and backward elimination
method. They used the PROMISE repository. More-
over, they analyzed the performance of the proposed
techniques on different classifiers: naive bayes, deci-
sion tree J48, and oneR. They identified the Info Gain
feature selection approach with decision tree J48 as the
best performers in terms of f-measure and AUC.
Nam et al. [31] proposed a novel approach called
CLA (Clustering instances and LAbeling instances in
clusters) and CLAMI (Clustering instances, LAbeling
instances in clusters, Metric selection, and Instance
selection) to predict defect based on unlabeled datasets.
This is the first study which focused on unsupervised
learning. This study used clustering instances in pre-
processing and metric violation score based instance
and feature selection. It used the NetGene and ReLink
datasets. Moreover, it analyze the performance of
proposed techniques on different classifiers: logistic
regression, bayesian network, J48 decision tree, logistic
model tree, naive bayesian, random forest, and sup-
port vector machine. Furthermore, it identified that
CLAMI model with logistic model tree classifier out-
performs CLAMI model with other classifiers in terms

of AUC. Moreover, CLAMI model with bayesian net-
work, logistic regression, and random forest performs
equally and better than other classifiers in terms of
f-measure.
Amasaki et al. [76] experimented the effects of data
simplification on CPDP. They compared the perfor-
mance of the combination of four classifiers, namely
logistic regression, random forests, naive bayes and
SVM with RBF kernel, with two data selection
approaches: burak-filter and cross-project selection.
They used the PROMISE repository. They compared
the performance of combination of burak-filter with
four classifiers, combination of burak-filter and data
simplification with four classifiers, combination of
cross-project selection with four classifiers, and combi-
nation of cross-project selection and data simplification
with four classifiers, to measure the most suitable
classifiers for data simplification approach. They con-
cluded that the combination of data simplification and
cross-project selection with logistic regression outper-
forms other combinations of classifiers in terms of
f-measure and AUC.
Kawata et al. [99] proposed a novel data filtering
approach based on DBSCAN (Density-Based Spatial
Clustering) to reduce data divergence between source
and target projects. They used the PROMISE reposi-
tory. They compared the performance of the DBSCAN
data filtering approach with four different classifiers:
logistic regression, random forests, naive bayes, and
k-nearest neighbors (with k = 1). They concluded that
the DBSCAN filter perform better with logistic regres-
sion and KNN classifiers but it performs worse with
random forests and naive bayes classifiers.
Yu et al. [98] investigated the performance of feature
selection and instance selection approaches. They used
the PROMISE repository. This study used nearest
neighbor for instance selection and correlation-based
feature selection approach. It also used four classifiers
(k-nearest neighbors, logistic regression, multiLayer
perceptron, and naive bayes) to compare the perfor-
mance feature selection, instance selection and a com-
bination of both. It identified that prediction model
based on combination of feature selection with four
classifiers perform better compared to model based on
only classifiers and a combination of instance selec-
tion with four classifiers in terms of AUC. Moreover,
the prediction model based on combination of fea-
ture selection with four classifiers, model based on
combination of feature selection followed by instance
selection with four classifiers, and model based on
combination of instance selection followed by feature
selection with four classifiers, perform almost equally
in terms of AUC.All the four classifiers perform almost
equally in terms of AUC.
Li et al. [23] compare the previously proposed data
filtering approaches and proposed a novel data
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filtering approach. They used the PROMISE repos-
itory. This study proposed a novel hierarchical
selection-based filter to select the most suitable
instances. Moreover, it compared the performance
hierarchical selection-based filter with two different
classifiers: naive bayes and support vector machine.
It found out that the proposed approach performs better
with naive bayes compared to support vector machine.
Hosseini et al. [119] measured the performance of
search-based datasets selection and the genetic instance
selection approach. They used the PROMISE reposi-
tory. They compared the performance of search-based
instance selection and genetic instance selection
approach with two classifiers: naive bayes and J48
decision tree. They concluded that search-based
instance selection with naive bayes classifier and
genetic instance selection with naive bayes classi-
fier perform better compared to search-based instance
selection with J48 decision tree classifier and genetic
instance selection with J48 decision tree classifier.
Limsettho et al. [93] proposed a novel approach to
reduce class imbalance and data distribution difference.
They used the PROMISE repository. They applied the
proposed approach called Class Distribution Estima-
tion with Synthetic Minority Oversampling Technique
(CDE-SMOTE) on different classifiers (J48 decision
tree, random forest, naive bayes, logistic regression,
k-nearest neighbors, vote ensemble (J48 decision tree
and naive bayes), and vote ensemble (J48 decision
tree, naive bayes and k-nearest neighbors)) to identify
the most suitable classifier for the proposed approach.
They concluded that naive bayes and vote ensemble
(J48 decision tree, naive bayes and k-nearest neighbors)
are the most suitable classifiers.
Yu et al. [109] explored the effectiveness of feature
subset selection and feature ranking approach. They
used NASA and PROMISE datasets. They com-
pared the performance of the feature subset selec-
tion approach and the feature ranking approach using
k-nearest neighbors and naive bayes classifiers. They
found out that the feature subset selection approach
perform better with naive bayes classifier compared to
k-nearest neighbor classifier.
Qiu et al. [120] proposed a novel distribution adapta-
tion approach called joint distribution matching (JDM)
to reduce data divergence between source and tar-
get projects. They used AEEEM and PROMISE
datasets. They compared the performance of JDM
with logistic regression classifier, kernel mean match-
ing (KMM), semi-supervised TCA (SSTCA), transfer
learning approach (TCA), joint distribution adaptation
(JDA), k-nearest neighbours filter, data gravitation, and
only logistic regression classifier in terms of f-measure
and AUC. Additionally, they compared the perfor-
mance of JDM with random forest classifier, with
kernel mean matching (KMM), semi-supervised TCA

(SSTCA), transfer learning approach (TCA), joint dis-
tribution adaptation (JDA), k-nearest neighbours fil-
ter, data gravitation, and only random forest classifier
in terms of f-measure and AUC. The proposed JDM
approach yields better performance compare to other
approaches in both logistic regression and random
forest classifier. This study suggested to apply any
well known classifiers with JDM to achieve better
performance.
Cui et al. [38] proposed the isolation forest (iForest) fil-
ter to reduce dissimilarity of data distribution between
source and target projects. They used the PROMISE
repository. They compared the performance of pro-
posed iForest filter with burak filter and peter filter.
Moreover, they measured the performance of these
three filters with different classifiers: naive bayes,
decision tree, logistic regression, k-nearest neighbor,
and random forest. They concluded that iForest filter
with random forest classifier and iForest filter with
naive bayes classifier perform better in terms of AUC
and f-measure. Moreover, they identified burak filter
with naive bayes classifier perform better in terms of
g-measure, g-mean, and balance.
Vashisht et al. [40] explored the impact of heteroge-
neous software metrics in source and target projects.
They used AEEEM, ReLink, and SOFTLAB datasets.
They measured the performance of three classifiers:
gradient boosting method, naive bayes, and logis-
tic regression. They found out that gradient boosting
method is the most suitable classifier in terms of accu-
racy, f-measure and AUC.

3) Evolution over Baseline Classifiers
We consider conventional machine learning classi-
fiers as baseline classifiers to show the evolution. The
conventional machine learning classifier is the sim-
plest version of any classification model. For instance,
we consider naive bayes classifier as a baseline clas-
sifier and we consider diffused naive bayes classifier
as an evolution over the baseline one. Figure 12 shows
the evolution of classifiers over baseline ones. The right
arrow (→) in the figure represents the development
of the baseline classifier to the higher level classifier.
However, not all baseline classifiers evolved in CPDP
models. The following classifiers did not develop over
time in CPDP:
• Classification and Regression Tree
• Coordinate Ascent
• Extra Tree
• K-Nearest Neighbors
• Kstar(K*)
• LambdaMART
• ListNet
• Logistic Model Tree
• oneR
• Random Forest
• RankNet
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• Ridge
• Spectral Clustering
• Spotted Hyena Optimizer
• Token Based Classifier

The baseline classifiers which evolved over time in
CPDP are:
• Artificial Neural Network [68]
• Boosting [121]
• Bayesian Networks [84]
• Decision Table [122]
• Decision Tree [84]
• Ensemble Learning [123]
• Logistic Regression [84]
• Naive Bayes [74]
• Radial Basis Function Network [122]
• Semi-Supervised Learning [60]
• Support Vector Machine [56]

We found out that:
• Artificial Neural Network evolved to Multi-
layer Perceptron [84] and Deep Adaptation
Networks [110]

• Boosting evolved into Ada Boost [104] and Gradi-
ent Boost [104]

• Decision Tree evolved into C4.5 Decision Trees
[84], Alternating Decision Tree [122] and J48
Decision Trees [94]

• Ensemble Learning evolved into Ensemble Clus-
tering with Labeling [61], Ensemble Learn-
ing (Heterogeneous) [100], Ensemble Learning
(AdaBoost withGenetic Algorithm) [123], Ensem-
ble Learning on Weight Vote [82]

• Logistic Regression evolved into Logistic Regres-
sion (Simple) with one predictor variable [75]
Logistic Regression (Multivariate) with Genetic
Algorithm [10]

• Naive Bayes evolved into Naive Bayes (Transfer)
[56], Bagging or Bootstrap Aggregating (Naive
Bayes) [114], Boosting (Naive Bayes) [114], Naive
Bayes (Diffused Bayes) [95] and Naive Bayes with
Effort-Aware Measure [124]

• Semi-Supervised Learning evolved into Semi-
Supervised Structured Dictionary Learning [59],
Semi-Supervised Dictionary Learning [125],
Kernelized Semi-supervised Dictionary Learn-
ing [125] and Cost-Sensitive Kernelized Semi-
supervised Dictionary Learning [125]

• Support Vector Machine evolved into Support
Vector Machine with Boosting [56], Support Vec-
tor Machine with Radial Basis Function ker-
nel [84], Support Vector Machine with Value
Aware Boosting [56] andWeighted Support Vector
Machine [91]

• J48 Decision Trees evolved into Bagging or Boot-
strap Aggregating (J48 Decision Tree) [114] and
Boosting (J48 Decision Tree) [114]

FIGURE 12. Evolution of baseline classifiers.

Moreover, we noticed that many studies applied more
than one baseline classifiers to create a new one:
• the combination of Ensemble Learning and Gra-
dient Boosting evolved intto Ensemble Learning
with Gradient Boosting [126]

• the combination of Logistic Regression, Bayesian
Network, Radial Basis Function Network, Multi-
Layer Perceptron, Alternating Decision Trees and
Decision Table evolved into Average Voting [121]

• the combination of Logistic Regression, Bayesian
Network, Radial Basis Function Network, Multi-
Layer Perceptron, Alternating Decision Trees
and Decision Table evolved into Maximum
Voting [121]

• the combination of Decision Tree, Logistic Regres-
sion and Naive Bayes evolved into single-objective
classifier [77]

• the combination of Multi-Objective Decision
Tree, Multi-Objective Logistic Regression, Multi-
Objective Naive Bayes and Multi-Objective Naive
Bayes with Nearest Neighbors evolved into
Multi-objective classifier [77]

As shown in Figure 9, most of the classification studies are
based on supervised learning.
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E. RQ5: WHICH ARE THE EVALUATION MEASURES
APPLIED TO CPDP MODELS?
Evaluation is an important stage to understand the perfor-
mance of a prediction model. The preferred evaluation mea-
sures used are:
• precision [67]
• recall [84]
• accuracy [127]
• probability of false positive [64]
• true negative rate [119]
• balance [93]
• ROC-AUC [75]
• F-Measure [70]
• G-Measure [55]
• H-Measure [56]
• G-Mean [78]
• Win/Draw/Loss [58]
• false negative rate [119]
• Matthews correlation coefficient [119]

FIGURE 13. Evaluation measures frequency.

Figure 13 shows that precision, recall, ROC-AUC, and
F-measure are the preferred evaluation measures. Most of the
performancemeasure are organized using a confusionmatrix.
Although the researchers choose various evaluation measures
to measure the performance of the model, none of the articles
explained the purpose of choosing the specific evaluation
measure in the context of the CPDP.

F. RQ6: WHICH ARE THE DIFFERENT TOOLS USED IN
CPDP MODELS?
Nearly half of the studies did not mention the tools used
for their experimentations (Figure 14). Considering only the
papers mentioning tools, WEKA is the preferred one by far.
Figure 15 shows that WEKA is the most used tool followed
by Understand and MATLAB. We identified the following
tools used:
• WEKA [128]: It is a machine learning tool that can be
used for data preprocessing, feature selection, classifi-
cation, and validation.

• Understand [129]: It is a static code analysis tool that
can generate metrics from source code.

FIGURE 14. Tools mentioned and not mentioned in papers.

FIGURE 15. Frequency of used tools.

• MATLAB: It has automatic machine learning features
like feature selection, classification, and many more.
It mainly used for classification purposes.

• Ckjm [130]: The ckjm tool calculates six CK software
metrics: WMC, DIT, NOC, CBO, RFC, and LCOM.

• Buginfo: It can identify bugs based on logs information
of version control system. This tool has not released
officially yet [131].

• MINE [132]: Maximal Information-based Nonparamet-
ric Exploration is used to calculate relevance formulas.

• Prest [133]: It extracts source code metrics and call
graphs.

• CVX [134]: It is a tool for mathematical optimization.
• Javalang [135]: It is used to parse the Java source code.
• Keras: It is a deep learning tool.
• CrossPare [136]: This tool includes of many state-of-
the-art cross-project fault prediction models.

• WALA [137]: TheWALA libraries provide static source
code analysis capabilities for Java bytecode and related
languages and for JavaScript.

• RapidMiner [138]: It is a data science tool that pro-
vides an integrated platform for machine learning, test
mining, data preparation, deep learning, and prediction
analytics.

• Hyperopt [139]: It is a python library for optimizing
hyperparameters of machine learning algorithms.
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V. RESEARCH GAPS
There is a significant amount of work done in CPDP. Still, the
following existing challenges need to be taken into consider-
ation to bring CPDP models into practice:

1) It has been found that most of the CPDP studies
use supervised learning. Semi-supervised learning and
unsupervised learning have not been explored deeply.
There is no clear evidence of which is the best perform-
ing approach and in which conditions.

2) The early identification of appropriate projects to train
the model can be a game-changer for the overall per-
formances. There is a very limited number of papers
dealing with that but they are not sufficient to provide
proper guidelines for projects selection.

3) It is not clear which metrics perform better in cross-
project settings. Most of the CPDP models are built
with the assumption that selected metrics are good
for CPDP. Some studies compared the performance
between process and product metrics. However, it is
required to perform a fine-grained analysis at metric
level.

4) The concept of information content may be useful to
examine the hidden relationship between projects and
features. There are few works based on the concept
of information content but they did not investigate the
hidden relationship between the projects and between
the features.

5) It is clear that almost all the studies tried to improve the
performance of CPDP by improving projects selection
techniques, automatic feature selection techniques, and
proper classifiers. Still, they could not go beyond 70%
performance. This level needs to be improved to bring
CPDP models into practice.

6) The application of deep learning provides interesting
results in many different domains. However, we found
just a few recent studies based on deep learning. This
area could be explored more.

7) Rule-based soft computing model (e.g., Fuzzy Logic)
may be useful in CPDP. Cross-project decision making
is a very complex process and rule-based decision-
making may give interesting results. This area is not
explored yet.

8) None of the studies integrated the reason for the faults
(root cause analysis) in their models. The identification
of the reason for the fault could provide benefits in
practical use of such models.

VI. CONCLUSION
Researchers have worked actively in the area of SDP for the
last three decades. Since the last decade, researchers focused
more on CPDP. The early-stage identification of faults can
reduce risks and costs of production by reducing mainte-
nance costs. In a growing start-up ecosystem and demand for
complex systems (e.g., cyber-physical systems, distributed
systems, cloud services, etc.), CPDP models can reduce dras-
tically the dependence on within-project datasets that are

not always available. In this paper, we analyzed the CPDP
appraoches focusing on projects selection, metrics selection,
data preprocessing, feature selection, and choice of classifica-
tion. This investigation can help researchers and practitioners
to identify proper approaches to apply in their contexts and
improve the state-of-the-art. Finally, we identified some open
questions and areas that need more research to improve the
performances of CPDP models.
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