
Received 20 September 2022, accepted 29 October 2022, date of publication 9 November 2022,
date of current version 6 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221155

Review on 100% Renewable Energy System
Analyses—A Bibliometric Perspective
SIAVASH KHALILI AND CHRISTIAN BREYER
School of Energy Systems, LUT University, 53850 Lappeenranta, Finland

Corresponding authors: Siavash Khalili (siavash.khalili.maybodi@lut.fi) and Christian Breyer (christian.breyer@lut.fi)

This work was supported in part by the Business Finland through the P2XENABLE Project under Grant 8588/31/2019, in part by the
Academy of Finland through the Industrial Emissions & CDR Project under Grant 329313, and in part by the LUT University Research
Platform GreenRenew.

ABSTRACT Concerns related to climate change and global warming caused by anthropogenic activities
and fossil energy use in particular have been increasing lately. Air pollution and volatile conventional fuel
prices emphasize the need to transition global energy systems towards very high shares of renewables. 100%
renewable energy systems have been analyzed by many researchers starting from 1975. This bibliometric
analysis reviews more than 600 scientific articles in which 100% renewable energy systems were surveyed.
This study uses tools of bibliometric analysis based on publication databases and data mining together
with review elements to understand the status and trend of 100% renewable energy systems research. The
focus of results is on quantitative parameters relating to number and publication types, collaborative links
among authors, institutions, and countries. Collaborative networks illustrate the significant concentration
of published papers within organizations and co-authorships globally. The results reveal that the dominant
organizations and thus number of published papers are from Europe and the USA; however, almost all the
established research organizations in the field of energy system analysis are not active in the field of 100%
renewable energy systems analyses. The journals Energy and Applied Energy have the most articles, and
accordingly the most citations. EnergyPLAN and LUT Energy System Transition Model have been the most
active tools used to analyze 100% renewable energy systems according to numbers of articles and received
citations. The topic of modeling approach indicates the term ‘Energy System’ has the highest frequency due
to its emergence in the articles. This research provides a holistic overview on the more than four decades
of research, and it reveals dynamics within the field with a compound annual growth rate of articles of
26% in the 2010s, the trend of increasing the number publications, and author growth that comprises almost
1400 published authors.

INDEX TERMS 100% renewable energy, energy transition, bibliometric analysis, data processing machine,
social networks, collaborative maps, topic model.

ABBREVIATIONS

CAGR Compound Annual Growth Rate.
CDR CO2direct removal.
CO2eq CO2-equivalent, the emissions of CO2 plus

other greenhouse gases.
DACCS Direct air carbon capture and storage.
DIW Deutsches Institut für Wirtschaftsforschung.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

ESMs Energy system models.
IAMs Integrated Assessment Models.
IPCC Intergovernmental Panel on Climate

Change.
GHG Greenhouse gas.
LDA Latent Dirichlet Allocation.
LUT-ESTM LUT Energy System Transition Model.
MINES MINES Paris, officially École Nationale

Supérieure des Mines de Paris.
PIK Potsdam Institute for Climate Impact

Research.
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RE Renewable energy.
RLI Reiner Lemoine Institut.
SAARC South Asian Association for Regional

Cooperation.
SDGs Sustainable Development Goals.

SNA Social Network Analysis.
USA United States of America.
UN United Nation.
VTT Valtion Teknillinen Tutkimuskeskus.
WoS Web of Science.

I. INTRODUCTION
The energy system is the largest contributor to global
greenhouse gas (GHG) emissions, composing of energy
extraction, conversion, storage, transmission, and distribution
activities [1]. Anthropogenic GHG emissions have climbed
from 53 to 58 GtCO2eq/yr (carbon dioxide equivalent emis-
sions per year) between 2010 and 2019 and strongly impact
global climate change [1]. CO2 emissions have risen from
an average of 33.0 GtCO2/yr in the 2000s to an average of
38.9 GtCO2/yr in the 2010s, with a projected 39.3 GtCO2/yr
in 2021 by fossil and land-use change emissions [2]. It is
proven that global warming caused by humans has led to
increased events of heavy precipitation and droughts, soil
erosion, and change in vegetation cover [3]; thus, an uncon-
trolled incremental trend of climate change might lead to
a global societal collapse in the 21st century. Air pollution
triggered by burning fossil fuels is a major health burden
and induces high societal costs [4], [5], and biomass for
cooking causes massive negative impacts in developing coun-
tries, especially for women and children. Such issues are
avoidable by shifting to renewable and sustainable energy
and feedstock sources for the energy-industry system [6].
Furthermore, UnitedNations SustainableDevelopmentGoals
(SDGs) highlight the expansion of renewable energy (RE)
in the energy system and the enhancement of energy effi-
ciency [7]. There are several possibilities to both reduce the
GHG emissions from the energy-industry system and meet
the growing global energy demand. Some options are energy
efficiency, phasing out fossil fuels, and thus the promotion of
RE [8], [9], finally leading to an entirely RE system [10].

100% RE systems have been analyzed by a growing
number of researchers to find solutions for a sustainable
energy system [11] and to understand a feasible approach
to mitigate climate change impacts, air pollution, energy
poverty, and develop the most cost-effective energy systems
[10], [12], [13].

Analyses of 100% RE systems started by Sørensen [14].
In the following year, energy policy analyst Lovins intro-
duced the term ‘soft energy path’ to showcase an alternative
future where RE sources replace the centralized ‘hard’ energy
system [15]. The first global 100% RE systems analysis
article for the world was published by Sørensen [16], more
than 10 years before the second one had been published by

Jacobson and Delucchi [17], [18], which remains the most
cited article on 100% RE systems research.

Czisch published his dissertation showing that a 100%
RE supply could match demand in every hour of the year
in Europe, North Africa, and Western Eurasia [19]. This
had been a methodological breakthrough, as both historic
weather data and an hourly resolution for all regions of a
year had been used for an interconnected multi-node design.
Lund published a paper in which optimal combinations of
renewables were indicated [20]. Before 2006, only 13 arti-
cles on 100% RE systems were published, thereof 7 from
Sørensen. Since 2006, at least 5 articles were published
every year by energy experts worldwide on the transition
from a fossil-nuclear energy system to a 100% renewables-
based system. In his dissertation, Sterner [21] introduced
the Power-to-Gas concept to energy system modeling with
two major new concepts in the field of 100% RE sys-
tems analysis: seasonal storage based on an electricity-to-
molecules concept and sector coupling utilizing renewable
electricity.

The Power-to-Gas concept has since been further devel-
oped into a Power-to-X framework [22]. The concept
of electricity-based sector coupling is equivalent to the
smart energy systems concept introduced by Mathiesen and
Lund [23]. Bogdanov and Breyer et al. [24], [25] advanced
the field of 100% RE systems analysis by introducing a
cost-optimized transition pathway for the world structured
in 145 regions, whereas practically all global models use
20-30 regions. This scenario identified the first cost-neutral
1.5 ◦C compliant pathway without negative CO2 emissions
and assuming substantial increase in energy services demand.
This pathway revealed the impact of low-cost photovoltaics-
battery-electrolyzer systems as the core of modern energy
systems, leading to very high levels of energy system effi-
ciency, overall electrification, and solar photovoltaics (PV)
energy system supply shares on the global average of about
70% [24]. In 2021, the threshold of more than 600 scientific
articles on 100% RE systems was surpassed and was used as
a basis for a bibliometric analysis in this research.

Bibliometric analysis is the use of a quantitative approach
to analyze articles and scientific publications. Bibliometric
analysis is one of the interdisciplinary research methods that
has been expanded to scientific fields to virtually all scientific
fields [26]. The wider field of energy has been covered by
several bibliometric analyses, such as for the specific fields of
energy security [27], energy justice [28], energy performance
contracting [29], energy efficiency [30], bioeconomy [31],
[32], resource use and GHG emissions [33], sustainability
of RE sources [34], hybrid PV-wind-storage systems [35],
sustainable siting and design optimization of hybrid RE sys-
tems, [36], multi-energy systems [37], energy storage for
decarbonization [38], electric vehicles [39], [40], [41], direct
air capture [42], negative emissions [43], transition and trans-
formation [44], [45], and municipal energy system planning
[46]. One recent bibliometric analysis has been published for
the wider field of energy system analysis [47]. This wider
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field is narrowed to the specific field of 100% RE systems
articles in this research.

Bibliometrics are used for statistical analyses to show
the significance of specific topics within a research field as
well as networks of researchers and organizations. They are
also used to identify the impact of specific research articles,
individual researchers, research teams or organizations. Bib-
liometrics are increasingly used to measure research output
among institutions on a national or international level. They
identify research strengths and advise decisions about future
research interests.

In this article, a bibliometric analysis is presented for all
100% RE systems articles identified until mid-2021. Since
the 100% RE systems literature is very scattered and has not
been comprehensively gathered via bibliometric analysis, this
research serves to provide a central literature database for
100% RE systems research, which will be especially useful
for researchers who want to enter this growing field and
investigate specific aspects of the available literature. The
purpose of this article is to provide insights into the 100%
RE systems research field, which includes insights on the
full identified spectrum of articles, their analyzed regions,
the growth of the research field, where the research has been
published, and the research groups active in this field. The
most influential articles are identified, and the most used
models are presented. To have a more holistic view on the
research field, in addition to the bibliometric analysis, a liter-
ature review is conducted to provide further insights on facets
of the field. The central research questions addressed in this
paper are:

• What temporal dynamics can be found in the research
field for articles and citations?

• Which teams and countries contribute and how dynamic
is their contribution?

• What collaboration networks for teams and countries
can be observed?

• What regional heterogeneity in researched countries can
be found?

• What are the most influential articles in total and at their
time of publication?

The aim of this research is to answer the research questions
with the full body of literature identified in the field of 100%
RE systems analyses from a comprehensive perspective. The
article is organized as follows: section 2 describes methods
and data, section 3 provides the literature review, section 4
presents results and discussion, and section 5 draws final
conclusions.

II. METHODS AND DATA
As bibliometric analysis is the use of a quantitative approach
to analyze articles and scientific publications, the begin-
ning step is to identify and collect all available literature
for 100% RE systems published in scientific journals. Next,
bibliometric features are extracted to analyze the literature
quantitatively. Finally, bibliometrics tools and models are

applied to investigate the structure of the research field in
detail.

A. ARTICLE SELECTION
The search for 100%RE systems articles was done as follows:
(a) To carry out structured research regarding the field of

energy systems, the search was restricted to using the
keywords renewable energy system, fully sustainable
system analysis, 100% renewable energy, energy sys-
tem transition, and clean energy system in the online
platforms Scopus, Science Direct, and Google Scholar.

(b) Already identified 100% RE systems literature [12],
[13] were collected and added to the database.

(c) Individual tracing (1): back and forth tracing of iden-
tified articles to identify further 100% RE system
articles.

(d) Individual tracing (2): contacting research peers for
complementary articles, both from their research group
and beyond.

The criteria applied for 100% RE systems articles are
classified as follows:
(a) An energy system article should have at least one sys-

tem analysis with a minimum of 95% RE share for at
least one energy sector. This shall ensure all features of
100% RE systems.

(b) The year of the publication is not a limit for an article.
(c) The identified 100%RE systems articles are sorted into

three main categories:
• One: analysis for at least one specific geographic
entity is carried out. The minimum size is a village
and the maximum size the world.

• Two: generic analysis without any geographic con-
text.

• Three: articles with a substantial literature review
on any aspect on 100% RE systems.

In the present research, the bibliometric analysis is per-
formed based on the three given categories with further
emphasis on category one due to the number of identified
publications and focus of the paper. All identified 100% RE
systems articles were linked to scientific literature datasets
for a comprehensive analysis. The collected articles are intro-
duced to the Scopus database. Scopus is the largest database
of abstracts and citation information of scientific literature
and data sources; thus, the most comprehensive analysis was
enabled using this database. Scopus provides diverse data on
each publication with analysis and comparison [48]. Web of
Science (WoS) was also considered; however, Scopus con-
tributes a higher accuracy and more comprehensive article
and journal coverage of scientific publications for all major
disciplines. Thus, WoS was sorted out, and Scopus was used
as the data source [49].

B. BIBLIOMETRIC CHARACTERISTICS
Scientometrics is the science of measuring and analyzing
science. Scientometrics is done by bibliometrics, which
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comprises statistical methods to measure the characteristics
and patterns of publications [50]. The central bibliometric
metrics and parameters to measure the level of influence are
summarized below:

(a) number of citations that an article receives per year and
through the years.

(b) average normalized citations that is calculated by divid-
ing the total number of citations by the average number
of citations published per year in each field [51].

(c) h-index, as the measure of influence, is a dimensionless
number that represents cumulative quantity and quality
or impact of an author’s academic publications and
depends on a set of the author’s most frequently cited
articles. The researcher’s h-index highlights the point
in which the citation number crosses the publication
order, according to Hirsch [52], [53], [54]. The h-index
can also be applied to journals. One may also present
a normalized version of the h-index, i.e., h-index of
100% RE articles as a ratio to the entire h-index of a
researcher, which may indicate the role of the research
field for the researcher.

(d) g-index is defined as a value that the top g articles are
cited by an average of g2 times or more, according to
Egghe [55].

(e) m-index is an alternative form of h-index and is
defined as an individual’s h-index divided by the num-
ber of years since the individual’s first publication
[53]. Hirsch [52] characterizes the m-index values for
m ≈ 1 for a ‘successful scientist’, m ≈ 2 for an
‘outstanding scientist’ and m ≈ 3 for a ‘truly unique
individual’, while he assumes an average of 20 produc-
tive years for this rating.

C. TOOLS AND PROGRAMS
The bibliometric analyses are carried out by applying the
Bibliometrix functions of the R programming environment
to scan the body of the literature [56]. R is a language for
statistical analysis and graphics, which has large numerical
and visualization procedures with a highly scalable function-
ality. Bibliometrix in R is an open-source tool that allows
the user to import bibliography information once the data is
retrieved from the Scopus or WoS database with BibTex and
Plaintext [56].

VOSviewer is a software tool that creates maps and
networks of bibliometric data. To build a network, bibli-
ographic files are extracted from Scopus, WoS, or other
databases. VOSviewer can create a map through three ways:
First, map creation via an adjacency matrix of a network
in which pairs of items in the network are connected to
each other. Second, a map is created through bibliometric
data, which is gathered from the database. Third, map cre-
ation based on a text corpus in which the data is stored
in a text file. This text is then extracted from the corpus
file and a term map is produced. The second approach
was used in this research to create maps of topographic

networks and clusters consisting of (1) scientific publica-
tions and journals, (2) research and researcher organiza-
tion, and (3) keywords or terms used in the articles. Items
to be provided by such networks can be co-authorship,
co-occurrence, citation, bibliographic coupling, or co-citation
links [57].

Topic modeling has been broadly used by scientists to
analyze the incremental amount of text documents. This is
a machine learning approach for forming a set of documents
based on their semantic themes. There are several techniques
for the topic modeling used by data experimenters. Latent
Dirichlet Allocation (LDA), which is extensively used for the
topic modeling method, is used in this research. Every topic
is modeled by a probability distribution over words with the
number of predefined topics. Topic models predominantly
reduce the extension of a set of words in documents into
compact and purposeful topics. LDA analyzes the relation-
ships between topics and keywords using a Python library for
coding and visualization by the tool Gephi [58].

UCINET is a tool used to perform the social network analy-
sis (SNA) of authors’ organizations [59]. Typically, UCINET
is used to analyze one-mode and two-modematrix data to find
a spot for nodes, groups, and items. The two-mode matrix
is used in this research to analyze the SNA of organizations.
An outline on the methods and results is provided in Figure 1,
where the methods consist of different statistical techniques
and tools to achieve the respective results.

FIGURE 1. Flow of the methodological scheme of the applied bibliometric
analysis representing databases, tools, and output data with diagrams.
Scopus and Google Scholar are input databases, R and Python are
programming languages, and VOSviewer, Gephi, and UCINET are software
tools.

III. LITERATURE REVIEW
According to the definition of category one, a 100% RE
systems article should consider at least one geographic entity.
Based on that central criterion, 550 related category one
articles have been identified. The geographic entities can
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be global, continent, country, state, county, city, village,
and island. In addition, 37 articles were classified for cat-
egory two with no geographic consideration, and thus a
more generic 100% RE systems analysis. Finally, 37 articles
were classified as category three, which covers substantial
literature reviews typically without a concrete geographic
analysis. Additionally, the combination of category one and
three can be found, which applies to 4 articles. In total,
620 articles have been identified in the field of 100% RE
systems analyses. All category one, two, and three arti-
cles are listed in the Supplementary Material. The num-
ber of articles were fixed at mid-2021 for this research.
Table 1 provides a structured overview on the 550 iden-
tified articles for category one, based on their geographic
context.

The articles are structured according to their world regions,
the level of investigation from world region to country or
sub-country (e.g. state or region; city, village or off-grid;
islands). Islands are researched globally with 65 publications
identified until mid-2021, with almost 100 articles by mid-
2022 [60]; however, most of the island states in the Caribbean
and the Pacific are still not researched as shown in Table 1.
The roughly 100 articles on 100% RE systems on islands
are reviewed in more detail [60], along with further review
articles with an island focus [61], [62], [63], [64], [65]. Other
geographic entities have not yet been reviewed in detail,
except some overviews on selected global 100% RE systems
analyses in general [10], [12], [66], [67], and sector-specific
analyses for the transport sector [68], heat sector [69], and
storage [70]. The most studied cities in the world are New
York City [71], [72], [73], [74], [75], [76] and Aalborg in
Denmark [77], [78], [79], [80] with six and four studies,
respectively, but no further city with more than two detailed
studies could be identified. Only a very few articles focus on
city level, such as cities on global level [71], in the US [72],
in China [81], and in Morocco [82]. The megacities of the
world [83], [84] are practically not yet investigated for their
individual 100% RE supply options, with Delhi, the largest
megacity by mid-century, analyzed recently [85]. Remote
and off-grid 100% renewable and decentralized autonomous
energy systems are reviewed [61], [86], [87], [88]. The coun-
try distribution is discussedmore in section 4.3 and visualized
in Figure 8. All 550 category one articles are listed in the
Supplementary Material.

As can be seen from Table 1, the largest portion of the
research is done for Europe, the Americas, and Australia,
which reflects a substantial research gap for other regions,
especially for the Global South and Eurasia. The Global
South is defined according to [617]. Figure 2 shows the
countries in the world where 100%RE systems analyses have
been conducted at the country-level (refer to Table 1). The
USA is the country for which the most category one studies
have been performed, with 45 studies in total. Europe leads
with 181 studies in total, thereof Denmark with 39 studies,
followed by Germany and the United Kingdom, with 35 and
14, respectively, and Finland and Sweden with 13 studies

FIGURE 2. Global distribution of 100% RE systems studies for countries
und sub-country regions around the world. The white areas show no
single study published for the respective country. Details for all countries
are listed in the Supplementary Material.

each. Australia, the world’s 6th largest country, has been
analyzed with 30 studies.

Even though Africa has an excellent RE potential, only
15 country-level research studies are known for Africa,
thereof 6 studies for La Réunion, which is geographically
Africa, but politically an overseas territory of France. This
strongly showcases the massive gap of energy system tran-
sition insights for the Global South, which requires more
concentrated research efforts [10]. TheMiddle East countries
comprise 4% of the research, while this region contributes
very high shares in the fossil energy system. China and India,
the two most populous countries, and Russia, the largest
country by area in the world, have been investigated by 17,
5, and 2 studies on 100% RE systems analyses, respectively.
These low numbers for these countries indicate substantially
higher research demand for investigating the opportunities of
the energy system transition ahead.

A 100% RE systems analysis requires a modeling tool,
which either simulates or optimizes an energy system cost for
a concrete geographic entity. An energy systemmodel (ESM)
can cover a single or a multi-sector energy system, the latter
of which can enable sector coupling from hourly to annual
resolution. Many studies focus only on the power sector,
whereas an incremental share of research in the past five years
has focused on the entire energy system, including heat and
transport sectors [12]. Sector coupling can reduce the overall
system cost in a region, and simultaneously reduce the energy
demand through the efficiency gains across sectors [285],
[500], [618]. Additional segments including the industry sec-
tor and negative CO2 emission options have not yet been
covered well in the research of 100% RE systems [10].

ESMs that have been used at least five times to ana-
lyze 100% RE systems are EnergyPLAN [619], [620],
the LUT Energy System Transition Model (LUT-ESTM)
[24], [25], [500], TIMES [101], HOMER [621], [622],
REMix [264], [493], [623], AU model [267], PyPSA [277],
[285], [624], LOADMATCH [95], [111], NEMO [578], ISA
model [588], H2RES [490], GENeSYS-MOD [96], [625],
and MESAP/PlaNet [99], [116].
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TABLE 1. Articles analyzed in this research with a geographic focus. The global articles are structured to their features on energy, energy-related for jobs,
material availability, specific technology focus, and water. The world regions are structured into Global, Africa, Americas, Europe, Eurasia, Middle East,
Sub-Saharan Africa, South Asian Association for Regional Cooperation (SAARC), East Asia, Northeast Asia and Southeast Asia and Pacific. Island countries
are listed in the category Country. For a better overview, articles for a region on a sub-country level are sorted in columns for state or region, city, village
or off-grid, and island.
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TABLE 1. (Continued.) Articles analyzed in this research with a geographic focus. The global articles are structured to their features on energy,
energy-related for jobs, material availability, specific technology focus, and water. The world regions are structured into Global, Africa, Americas, Europe,
Eurasia, Middle East, Sub-Saharan Africa, South Asian Association for Regional Cooperation (SAARC), East Asia, Northeast Asia and Southeast Asia and
Pacific. Island countries are listed in the category Country. For a better overview, articles for a region on a sub-country level are sorted in columns for state
or region, city, village or off-grid, and island.

EnergyPLAN is one of the most widely used ESM tools
to evaluate energy systems with high shares of RE, applying
simulation assumptions. The main target of EnergyPLAN is
to design a local to national-scale energy system with tech-
nical and economic parameters. EnergyPLAN is not used to
project a future energy system based on a transition pathway,
but rather to enable a comparison of diverse alternative devel-
opment strategies for an energy system [619]. LUT-ESTM
is a linear optimization ESM operated under certain con-
straints for a full set of energy supply, conversion, storage,
and transmission technologies to find the most cost-optimal
transition solution including the legacy system. It can be
applied to entire energy-industry systems on local, national,
continental, or global level. LUT-ESTM performs multi-node
system designs on an hourly resolution for each time step,
which increases the reliability of the results compared with
annual energy balancing [24], [500]. Similar to LUT-ESTM,
TIMES uses linear programming to find the minimized total
integrated energy system cost for comprehensive energy-
industry transition investigations. Within the model, there

are several interconnected regions regarding energy com-
modity and GHG emissions trade [101]. HOMER is an
ESM tool for designing hybrid RE systems often applied to
off-grid cases to find optimal sizes of the used components
by carrying out techno-economic analyses. Essential input
data for simulations using HOMER are meteorological data,
load profile, equipment characteristics, search space, and
economic and technical data, among others [621]. REMix
is a deterministic model, which keeps the running times as
low as possible. Similar to LUT-ESTM and TIMES, the
objective of REMix is to minimize the total system costs
under certain restrictions. The inputs are fixed parameters for
costs, hourly data of energy demand, generation profiles, and
resource potentials. REMix is designed to provide the least-
cost energy supply structure in the long term for the area
under investigation. PyPSA is a comprehensive ESM for sim-
ulating and optimizing modern energy systems over multiple
time periods. PyPSA consists of a model for conventional
generators, renewable generation, storage, sector coupling,
and alternating and direct current grids. It is designed in a
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TABLE 2. Energy system models used for 100% RE systems analyses. All models used at least five times for 100% RE systems analyses are listed and
ranked to the number of published articles applying the model. Some key features of the leading ESMs are indicated. Citations for the 550 category one
articles are allocated to the models used as of mid-2022.

way to be expandible, to scale with sizable networks, and to
have long time series. PyPSA has the capability to perform
various network clustering algorithms to reduce the number
of buses in a network while maintaining significant transmis-
sion lines [624].

The ESM NEMO comprises three core elements: a frame-
work that supervises the simulation, a sizable integrated
database of historical meteorology and electricity sector data,
and a library of simulated power generators. NEMO assumes
ideal generator and transmission network availability with
excellent meteorological predicting. The simulation can be
described as a bottom-up tool, which is used tomodel national
energy systems [578], while it is applied in publications
exclusively on investigations for Australia. GENeSYS-MOD
targets national, continental, and global energy issues, and
for this aim, it divides the investigated geographic entity in
regions. Each region acts as a node connecting with other
regions for the exchange of fuels and electricity, but not heat.
Regions can trade fuels with one another. For the analysis, all
hours throughout a year are summed up into a few time slices,
which represent seasonal and daily variations of demand and
supply [96], [625]. LOADMATCH is coupled with GATOR-
GCMOM and used to match the power demand with variable
supply. GATOR-GCMOM provides a five-year time series
of renewable resources, with output each 30 s, for usage in
LOADMATCH [95].

All mentioned ESMs are summarized in Table 2 according
to their key model features, number of articles applying the

model, and received citations until mid-2022 for the basis of
the 550 category one articles. The used modelling tools are
identified in the Supplementary Material for the 550 articles.

The two leading models applied for 100% RE systems
analyses are EnergyPLAN and LUT-ESTM. EnergyPLAN
and LUT-ESTMmodel have been used for 74 and 63 articles,
receiving 7797 and 2833 citations and thereof 1293 and 939 in
the year 2021, respectively. The core difference between the
two models is the target functionality of each. While Energy-
PLAN simulates an energy system, LUT-ESTM is used for
energy system optimization. EnergyPLAN was introduced
in 2006 by Aalborg University [20] and is the ESM that
has been used for the longest period for 100% RE systems
research, whereas the LUT model is relatively young, as it
was introduced [536]. The only discontinued models are
H2RES and the AU model, while the AU model has been
embedded in PyPSA. Virtually all ESMs can cover multi-
sector modelling, and only the LUT-ESTM and PyPSA are
capable of detailed industry modelling [500], [626].

A clear deficit of all ESMs for 100% RE systems analysis
is that none of them have the capability to describe the most
relevant CO2 direct removal (CDR) options [10], [627], while
the LUT-ESTM has recently embarked to introduce the direct
air carbon capture and storage (DACCS) [134] applied in
full energy system integration for Egypt [628]. All ESMs
are capable of so-called overnight [629] solutions excluding
GENeSYS-MOD. The LUT-ESTM and PyPSA are the only
ESMs consisting of the pivotal characteristics for thorough
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FIGURE 3. Number of articles on 100% RE systems for categories one, two, and three according to year of publication.
Category one considers at least one geographic entity for which the 100% RE research was carried out. Category two
is a generic analysis, not mentioning a concrete region. Category three is dedicated to review articles with or without
a concrete geographic analysis Category one starts in 1975 with at least one article per year since 2004. Category two
starts in 1996 with almost regular articles since 2008. Category three starts in 1981 with regular articles since 2013. All
articles per category are listed in the Supplementary Material.

energy system analyses: multi-node, multi-sector, full hourly
resolution, optimization, and transition model, with detailed
industry representation. Some core facets of ESMs include
full hourly resolution, an overnight and transition approaches,
sector coupling, and simulation and optimization approaches.

In the recorded 550 journal articles on a 100% RE system,
72% are in full hourly resolution. Roughly 75% of all articles
utilize an overnight approach analyzing 100% RE systems.
Almost half of all 100% RE systems analyses research the
power sector without other energy sector integration. Con-
versely, 29% of all articles target power, heat, and transport
sectors, approximately 10% of all articles cover power and
heat, and about 5% investigate power and desalination sec-
tors. Around three-fifths of all 100% RE systems analyses
have an optimization target, and the rest are of the simulation
type.

Not a single ESM has the functionality for off-grid integra-
tion, which would be of highest importance for energy tran-
sition studies in sub-Saharan Africa [10]. Further, no ESM
is able to provide an alternative for Integrated Assessment
Models (IAMs) for complex energy system analyses under
long-term climate change constraints, which has been iden-
tified as a relevant target, as IAMs largely ignore 100% RE
systems research [10], though there has been some recent
progress [630].

Several review articles feature the models used for 100%
RE systems analyses in general [629], [631], [632], [633],
[634], [635], [636], while some analyze the progress achieved
for a single model [619], [620], [625], or single geographic
applications [64], or limit their focus only on the group
of open-source models [637], [638]. Three reviews analyze
models in concrete test cases for model intercomparison
[629], [636], [639].

IV. RESULTS AND DISCUSSION
A. THE EVOLUTION OF ARTICLES AND CITATIONS
The evolution of journal articles published per year for cat-
egories one, two, and three through the years until 2021 is
shown in Figure 3. In category one, the growth in the number
of articles published over the last decade has been quite
dynamic, increasing from 8 articles in 2010 to 80 in 2020,
documenting a compound annual growth rate (CAGR) of
26%. Thus, a large portion of all the publications is concen-
trated in the last five years, with around 66% of the 550 arti-
cles. This trend also indicates the steeply rising interests in
this research field. The first article was published for category
two in 2008. There is moderate growth in the number of
publications for this category, with more articles in 2017 and
2020, reaching a total of 37. In the year 1981, the first article
with substantial review elements was published in the field
of 100% RE systems. In total, 37 review articles have been
published within this category; however, several facets of the
field are not yet reviewed intensively.

In category three, one-third of the total articles were pub-
lished until 2017, and two-thirds since 2018. Most articles
in the field have been published since 2017. However, until
2013, the year before the fifth assessment report of the
Intergovernmental Panel on Climate Change (IPCC) [640],
98 articles have been identified, which was not sufficient to
even mention this research field in that report. It required the
279 articles until 2017 for the existence of a 100% RE system
opportunity for mitigating climate change and diminishing
low-cost fossil fuels to be mentioned in the special report
on global warming of 1.5 ◦C [3], more than 40 years after
the first 100% RE system study [14], and more than 20 years
after the first global 100% RE systems analysis [16]. In the
recent sixth assessment report of the IPCC, 100%RE systems
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FIGURE 4. Evolution of annual citations of 100% RE systems articles for the three categories from 2000 to 2021. Citations
are recorded as of May 2022 in the Scopus database. All citations per article, year and category are listed in the
Supplementary Material.

are mentioned as a technical feasible solution [1], but are not
yet recognized as a major opportunity for solving the climate
emergency related energy crisis [10], and only very recently
did the first global IAM scenario fulfill the criteria for 100%
RE systems research [630]. The lack of policy support for
100% RE systems from the local to country and global level
may be related to ignorance on this research field in major
IPCC reports.

The trend in the number of citations within the last two
decades for categories one, two, and three is displayed in
Figure 4. The entire research field received 35,952 citations
until May 2022 for articles published until mid-2021. In the
year 2010, the annual citations rose to 197 for category
one articles. The annual citations experienced a substantial
increase to 1376 in 2015 and 4847 in the year 2020, repre-
senting a CAGR of 38% from 2010 to 2020. The number
of citations in category two grew moderately throughout the
years with 10 citations in the year 2010 and 43 in 2015,
reaching 340 for the year 2020. Category three received
19 citations in the year 2010, growing to 415 in 2015 and
809 for the year 2020, representing a CAGR of 46%. In total,
there are 88 articles with at least 100 citations in the field, and
7 articles with at least 100 annual citations in 2021 [12], [23],
[92], [224], [330], [618], [631].

The ten most cited articles of 100% RE systems research
are presented in Table 3. The most cited article is a review
from Connolly et al. [631] on ESMs with a special focus
on 100% RE systems published in 2010 and has received
1093 citations so far. Jacobson and Delucchi [17] pub-
lished an article in Energy Policy on the options for a
global 100% RE system, which received the highest num-
ber of 912 citations for an original article within this

discipline, following a previous comparable article in Scien-
tific American in 2009 [18].
Lund [330] published an article entitled ‘Renewable

energy strategies for sustainable development’, which
received 900 citations by mid-2022. Three further articles of
Lund [327], [333], [346] are among the most cited articles
with 784, 617, and 449 citations so far. Nine in ten of the
most cited articles were published before 2016. The article of
Kroposki et al. [224] is the only publication after 2015 that
reached the group of the ten most cited articles with 525 cita-
tions so far. Detailed citation data for all articles can be found
in the Supplementary Material.

B. NORMALIZED CITATION SCORE
Citation counts for articles typically have a long-tailed dis-
tribution, i.e., many articles may receive only a few citations
in a field of study whereas some other articles receive a far
higher number of citations within the same period. In addi-
tion, articles published years ago had more opportunity to
receive a high total number of citations. Hence, it is less likely
to effectively interpret an article’s impact by the absolute
number of citations. Applying a normalization allows for a
better understanding of the relative impact of an article of
its time. There is normalization by research field, article age,
document type, citing sources, and citation place. Of these
normalization criteria, the age of an article is an appropriate
normalization in general [641], especially considering that
all articles belong to the same research field.

The year of publication is used for the normalization, and is
applied in three steps: First, each article is allocated to a group
set of articles from the same year. Second, the number of
citations in each group set is averaged. Third, the normalized
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TABLE 3. List of top ten articles ranked by the highest citations number and their journals in the 100% RE systems research field. Abbreviation: original
article (O), review article (R).

citation score is identified as the total number of citations
for a paper divided by the group set average citation [43].
A three-year average of citations has been applied for a better
averaged normalization, considering the previous, same, and
following year for each article. The list of top 21 articles by
their normalization score is shown in Table 4. They are all at
least four times more cited than the average of articles of the
same age group, with 14 articles cited more than five times
than the average of their age group.

However, no article has been cited more than ten times
than the average of its age group. Mathiesen et al. [23] with
the title ‘Smart Energy System for coherent 100% renewable
energy and transport solutions’ received the highest normal-
ized score with 8.63 published in Applied Energy in 2015,
while this article ranked 4th by absolute citations.

Notably, 14 in 21 articles are from the period 2017 to
2021, which indicates several high impact articles published
in recent years. Only one of these articles, though, is part of
the top ten most cited articles according to Table 3.

The leading teams with at least two high impact articles
in Table 4 are Lund/Mathiesen, Breyer, Jacobson, and Brown
with 8, 6, 2, and 2 articles, respectively. The leading journals
with high impact articles are Energy (6 in 21 articles), Renew-
able and Sustainable Energy Reviews (5), andApplied Energy
(4). All other journals do not contribute more than one article.
A normalized score provides a different aspect of an article’s
impact, which reveals rather early, after just a few years of
publication, the articles that will have a strong impact for the
years to come. A high normalized score for recent articles can
therefore be interpreted as an early indicator for high absolute
citations in following years. All top ten most cited articles
are also indicated as impactful by their normalized citation

score. Information for all 620 articles in the research field
indicating their normalized citation score can be found in the
Supplementary Material.

Dominković et al. [47] define impactful recent articles by
the average annual citations with a threshold of 50 citations
per year for articles since 2015, and identify 9 articles, thereof
8 within 50 to 75 average citations per year, and one above
an average of 100 citations per year. Applying these criteria
to the field of 100% RE systems analyses leads to 14 articles,
thereof 8 articles with an average of 50 to 75 citations per year
[13], [24], [25], [262], [285], [374], [500], [642], 5 articles
with an average of 75 to 100 Citations [12], [23], [92], [280],
[618], and one article above the average of 100 citations per
year [224].

The teams contributing to these articles more than a single
one are Lund/Mathiesen (6), Breyer/Bogdanov (5), Brown
(2), thereof two articles with a collaboration of two [12] or
even all three [13] of these leading teams. Every single article
following these criteria belongs to the 14 most impactful
articles in the field of 100% RE systems analyses, which
indicates that the normalized citation score is well suited
to identify the most relevant articles, also of recent years.
Interestingly, not a single one of these 14 articles was detected
by Dominković et al. [47], despite applying identical criteria.

C. CITATION AND ARTICLE DISTRIBUTION BY COUNTRY
AND JOURNAL
The total global number of annual citations received for the
550 category one articles was 6226 in 2021, with values of
4847 and 4106 for the years 2020 and 2019, respectively,
indicating a growth of 28% and 18% year-on-year, compared
to the CAGR of 37% from 2010 to 2021. The distribution of
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TABLE 4. The top 21 articles ranked by the maximum normalized citation score within the field of 100% RE systems analyses. Normalization is done by
the average citation of all articles of the previous, same, and following year. Abbreviation: original article (O), review article (R).

citations per country of the first author affiliation is shown in
Figure 5.

The total citations for the 550 articles until 2021 are
27,766. Denmark received the highest number of citations
with 7117, followed by the United States, Germany, and
Finland with 3761, 3416, and 2112 citations, respectively,
representing 25.6%, 13.5%, 12.3%, and 7.6% of all total

citations for these 550 articles, respectively. In total, Euro-
pean countries received the highest number of citations,
which accounts for 71%.

The 550 category one articles identified have been pub-
lished in 91 different journals, thereof 54 journals published
only one article in the field of 100%RE systems analyses. The
leading 20 journals in the field according to published articles
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FIGURE 5. Global distribution of citations for category one articles according to the country of first
author affiliation. The white countries indicate no category one article with first author affiliation. All
citations for category one per country are listed in the Supplementary Material.

are presented in Figure 6. At least 5 articles are required
to belong to the top 20 journals in the field. The journal
Energy has the highest number of published articles with 91,
followed by Applied Energy, Renewable Energy, Energies,
Renewable and Sustainable Energy Reviews with 67, 57, 51,
and 42 articles, respectively. The top five journals shown in
Figure 6 published 56% of all articles in the field. In addition,
the bar diagram in Figure 6 (right) shows the growth trend for
the annually published articles in the resolution per journal.

Citations received by journals is a metric that shows the
relative relevance of a particular journal for the category one
group of the total 550 articles.

The highest number of citations with 7843 was received by
the journal Energy, followed by Applied Energy, Renewable
and Sustainable Energy Reviews, Renewable Energy, and
Energy Policywith 6376, 3650, 3461, and 3334, respectively.

The top five journals shown in Figure 7 received 89% of
all citations in the field. Figure 7 shows the citations per
journal and annual citations for the top 20 journals for the
years 2000 to 2021.

Two further metrics indicate the relative impact and rele-
vance of journals: the h-index of a journal in the field and
the citations per article of a particular journal in the field.
For well averaged results, a threshold of at least 5 articles per
journal was chosen, which was fulfilled by 20 journals. These
20 journals are identified as relevant for the field of 100%
RE systems analyses and ranked according to their highest
h-index in Table 5. The journal Energy is the most produc-
tive journal in number of articles as well as in its impact,
reaching an h-index of 44, while the IEEE Power & Energy
Magazine has received the highest citations per article with a
score of 134. Applied Energy and Renewable and Sustainable
Energy Reviews are comparably ranked given their number of
articles, citations per article, and resulting h-index. Though

the journal Energies has published 51 articles in the field, its
number of citations per articles is comparably low with only
19 resulting in an h-index ranking sixth of all relevant journals
in the field; however, most of the articles have been published
in recent years representing a different age structure than
the aforementioned journals. The lowest number of citations
per article in the list of the 19 leading journals in the field
is found for the journal Sustainability with a score of 17.
Notably, the journal Energy Policy benefits from early and
highly impactful articles in the field until the first half of the
2010s but became almost irrelevant more recently as relevant
articles in the field have not been published in this journal.
Remarkably, the top leading journals in energy science are
almost all missing in the list, except Joule, since 100% RE
systems articles are hardly published in these journals. How-
ever, less ambitious energy transition research can be found
in these journals, which may indicate a less progressive and
more conservative positioning of the otherwise perceived top
leading journals in energy science, as said except Joule, which
seems to be faster in indicating top trends in energy science.
This seems to also reflect the less progressive positioning of
the IPCC as well as the organizational disjunction of overall
energy system analysis and 100% RE systems analysis as
discussed in section 4.4.

On a global scale, 42 countries contributed to articles
on 100% RE systems, counted in the country of the first
author affiliation. Figure 8 represents the distribution of all
countries contributing research in the field, measured by the
total number of articles, aggregated to the country of the first
author affiliation. The top five countries (Germany, Finland,
Denmark, USA, andAustralia) covered about 58%of the total
publications. Germany tops the list with 98 publications, fol-
lowed by Finland and Denmark with 75 and 72, respectively,
and the USA and Australia with 46 and 24, respectively. The
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FIGURE 6. Top 20 journals by number of articles. The pie chart provides the total number of articles per journal
published. The stacked bar diagram in the right shows the annual number of articles for the top 20 journals for
the years 2000 to 2021. Details for all journals are listed in the Supplementary Material.

FIGURE 7. Top 20 journals by citations for category one in the field of 100% RE systems research. The pie chart provides the total
number of received citations of the top 20 journals. The stacked bar diagram shows the annually received number of citations of the
top 20 journals. Details for all journals are listed in the Supplementary Material.

vast share of 100% RE systems research has been carried out
in Europe, North America, and Australia.

In Africa, only Nigeria contributed to the 100% RE
systems research and not a single country in Eurasia
has published a 100% RE article. Research activities in

South America and South and Southeast Asia are similarly
very low on 100% RE systems analyses. All publications per
country are listed in the Supplementary Material.

Comparing the top ten countries in the field of 100% RE
systems analyses with the overall field of energy system
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TABLE 5. Lists of top journals in the field of 100% RE systems analyses. The ranked metrics are: total citations, total number of published articles, the
number of citations per articles, and journal h-index, based on all 550 articles of category one. Details for all journals are listed in the Supplementary
Material.

FIGURE 8. Distribution of articles per country of first author affiliation.
The white countries indicated that no single 100% RE systems article has
been published from this country, dark blue at a minimum indicates 1,
and dark red at a maximum indicates 98 articles as contributed by
Germany.

analysis [47] reveals that six countries belong to both groups
(Germany, Denmark, USA, UK, Italy, and Sweden), and
additional leading countries in the field of 100% RE systems
analyses are Finland, Australia, Croatia, and France, substi-
tuting China, India, Canada, and Spain for the overall field of
energy system analysis.

The specific research output of the leading countries based
on article output reveals another perspective on the true

leaders in the research field according to the relative impact
of research. For deriving the specific output, the articles are
set in ratio to the public energy research and development
expenditures for the year 2020 according to the International
Energy Agency [643], to the gross domestic product for the
year 2020 according to the World Bank [644], and to the
population for the year 2020 according to United Nations
[645]. The specific research output in the field of 100%
RE systems analyses is presented in Figure 9. Dedicated
international research leaders according to specific output
are Finland and Denmark, followed by Croatia. Portugal,
Australia, and Germany, who seem to focus on 100% RE
systems analyses as part of their public research and devel-
opment expenditures, while all other countries would have
more financial resources, but its use is extremely limited for
100% RE systems research.

D. MOST PRODUCTIVE TEAMS
Several leading teams have been identified by highly cited
and impactful articles. For a more detailed analysis of
research teams in the field of 100% RE systems analyses, the
metrics articles and citations per team are analyzed. A team
is defined as having contributed at least five category one
articles to reflect a repetitive character. Different articles
per team are typically identified via the senior scientific
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FIGURE 9. Specific research output in the field of 100% RE systems analyses according to public energy research and development
expenditures (left), gross domestic product (center), and population (right). The countries displayed reach at least 10 articles in the field.

FIGURE 10. Research teams in the field of 100% RE systems analyses. The
teams are ranked according to the contributed articles in category one.
A minimum of five articles are required to be identified as a repeatedly
active team in the field. All articles are linked to research teams in the
Supplementary Material.

leader in the team. Applying this definition, 21 teams in
the world were identified, which are located at universities,
institutes, and research centers. In total, 318 in 550 articles
can be allocated to these 21 teams, as depicted in Figure 10.
Several articles are counted for more than one team due to
respective collaboration of different teams. Some researchers
have moved from one affiliation to another, such as Breyer,
Brown, Haas, Ma, and the German Aerospace Centre (DLR),
which merged with NEXT Energy in 2017. For individual
researchers, their lifetime publications are counted, and for
DLR and NEXT Energy, their lifetime publications have
been grouped together. For the case of splitting a team with
continuation of both parts in the field, the articles are counted
for both teams; this has been applied to Breyer and the Reiner
Lemoine Institut (RLI).

Breyer et al. (LUT University, Finland) top the list
with 74 journal articles published from 2014 onwards.
Lund/Mathiesen et al. (Aalborg University, Denmark),
Greiner et al. (Aarhus University, Denmark), DLR/NEXT
Energy (Stuttgart and Oldenburg, Germany), and Jacobson
et al. (Stanford University, USA) follow with 40, 27, 26, and
22 articles, respectively. The number of annual citations for
these teams are displayed in Figure 11 for the years 2006 to
2021. The total number of citations for the 620 articles on
100% RE systems analyses for all three categories is 36,075

citations from 1975 until May 2022. The five leading teams
in total citations are Lund/Mathiesen et al., Breyer et al.,
Jacobson et al., Greiner et al., and DLR/NEXT Energy with
10,084, 3913, 3394, 1978, and 1320 total citations for the
620 articles assessed by May 2022. On an annual citation
basis in 2021, the leading teams are Lund/Mathiesen et al.,
Breyer et al., Jacobson et al., Greiner et al., Brown et al.
with 1610, 1264, 500, 389, and 322 citations. Among the five
leading teams, the relative share of citations in 2021 is only
growing for Breyer et al. and Brown et al. Among the other
research teams with at least 100 citations in 2021, the relative
share of citations is growing strongest for German Institute
for Economic Research (DIW) and RLI. The high dynamics
in published articles and relative citations may change the
leading teams in the years to come. Citation statistics for the
identified teams can be found in the Supplementary Material.

Another most interesting result is obtained if the leading
teams in the field of 100%RE systems analyses are compared
to the findings of Dominković et al. [47] for the leading orga-
nizations in the more general field of energy system analysis.
Aalborg University (Lund/Mathiesen et al.) is identified as
a globally leading research hub for both perspectives, and
only Chalmers University (Johnsson et al.) is found among
the top 20 organizations in both research results. Thus, 90%
of all global leading organizations in general energy system
analysis do not contribute to the research of 100%RE systems
analyses at a relevant level, indicating that a strong position
in general energy system analysis leads to a strong bias
against highly RE systems analyses. This surprising but clear
finding requires more research to understand the drivers as
to why newcomer research organizations are in a much better
position to establish 100%RE systems analyses research, and
why those research organization with best preconditions in
researching highly complex energy systems obviously fail to
establish or even contribute to the very fast-growing research
field of 100% RE systems analyses.

E. SOCIAL NETWORKING ANALYSIS
Social networking of author organizations indicates the coop-
eration among authors based on their affiliations. A social
networking analysis (SNA) was performed to understand the
authors’ teamwork contribution and measure different types
of centralities in the networks, such as degree centrality and
betweenness centrality. Degree centrality can be defined as
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FIGURE 11. Annual citations for the identified teams in the field of 100% RE systems analyses for the years
2006 to 2022. A team is defined by at least five articles in the category one group to ensure repeated research
in the field. The dense part of the diagram for the years 2014 to 2021 up to 325 citations per year is enlarged
in the inlet.

the number of links incident around a node [646]. Between-
ness centrality is defined as the degree to which a node acts
as the shortest path among other nodes [647]. Both indexes
are calculated by UCINET 6 designed by Borgatti et al. [59],
and network diagrams were created with the help of NetDraw
developed by Borgatti et al. [648]. Figure 12 (top) shows the
social network diagram of the authors’ organizations. The
diagram is based on the degree centrality in the co-authorship
network that depicts the connected organizations and some
sub-networks of organizations in which the researchers are
affiliated.

In Figure 12 (top), 336 nodes are used, consisting of univer-
sities, institutes, and research centers, out of which the most
dominant organizations based on the number of articles are
universities. The organizations with more than 13 nodes are
the core organizations, which are colored green by the box
indicators. These organizations have at least five published
articles. Organizations with 9 to 13 nodes are considered the
second-ranked organizations, which are colored light blue.
The rest are dark blue with less than nine nodes, connecting
around the core nodes. 97 out of 336 nodes have no central
connection to the core organizations.

These nodes are distributed with their connections around
the core organization. Figure 12 (bottom) focuses the diagram
on the centrally connected organizations. Aalborg University
has the highest number of links at 23, followed by LUT
University and DLR at 22, indicating that the authors in these
organizations have the most external cooperation with their
counterparts in other organizations. The University of Rio de
Janeiro, with only five articles, was able to reach 22 links.

Degree centrality and betweenness centrality for the seven
core organizations with minimum criteria of five articles are
provided in Table 6. It should be noted that these values are
calculated by applying the tool UCINET 6. Aalborg Univer-
sity has the highest number of degree centrality, due to the
high number of nodes, and DLR is ranked first regarding
betweenness centrality.

The SNA diagram in Figure 12 (top) shows that the field
of 100% RE systems analyses is ubiquitous. However, only
a few organizations, such as Aalborg University, LUT Uni-
versity, Aarhus University, Stanford University, and DLR are
among the most influential ones due to a high number of
articles aligned to international cooperation. The key reason
for low or lack of availability of other organizations is that
their publications cover other facets of the energy system
and do not necessarily establish 100% RE scenarios. How-
ever, existing barriers can be overcome due to renewal of
science and changing policy priorities. This can be observed
for the case of Sweden, where Johansson et al. at Chalmers
University recently joined the group of established teams in
the field of 100% RE systems analyses (see section 4.4),
which was also a consequence of lacking interests in new
nuclear power plants and fossil carbon capture and storage
options, making entirely RE systems the logical solution.
Similarly, such a trend can be already observed for the
National Renewable Energy Laboratory in the USA with an
increasing number of articles in the field [211], [212], [224],
which is also a consequence of ongoing policy chances on
the state level. Policy changes are also facilitated by ongoing
pressure of stakeholders from civil society, such as the young
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FIGURE 12. Social network diagram of the authors’ organizations based on degree centrality in full (top) and focusing the central
connections to the core organizations (bottom). The diagram consists of both coupled and decoupled organizations. Decoupled
organizations enjoy less international cooperation with a minimum at two and a maximum at 12 nodes. Social network diagram of
the authors’ organization are based on degree centrality.

generation voiced in actions of Fridays for Future, pushing
the results of the Paris Agreement [649] into political action.
Science is supporting the concern of the young generation
[650], [651], which in turn increases research activities on
100% RE systems analyses [652].

F. MOST PRODUCTIVE AUTHORS BY THEIR PUBLICATIONS
Measures were used to evaluate the researchers’ productivity
through the number of published articles, received citations,
h-index in the field, and for all publications of the researcher,
g-index, andm-index. The h-index for an author is considered
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TABLE 6. Total articles, degree, and betweenness centrality for the seven dominant organizations ranked based on their degree centrality. The quantities
for both centralities have been determined by the tool UCINET 6.

the aggregated impact and relevance of scientific output [52].
The measure shows the number of h papers of an author that
has been cited h times. For instance, if 15 articles of an author
have at least 15 citations, then the author’s h-index is 15.
Hirsch [52] introduced the m-index as a quantity that shows
the time since the first article of an author received citations
per h-index. For example, if an author has an h-index of
15 after ten years of scientific activity, then them-index is 1.5.
An individual with an m-index of m ≈ 1 is regarded a ‘suc-
cessful scientist’, with m ≈ 2 an ‘outstanding scientist’, and
with m ≈ 3 a ‘truly unique individual’ according to Hirsch
[52], assumed for a productive period of about 20 years.

The g-index was introduced by Egghe [55] and reflects the
largest number of top g most cited articles, which received
together at least g2 citations. For instance, considering ten
publications where one is cited 31 times and the others only
once each (40 citations in total), the resulting g-index and
h-index would be six and one, respectively. Table 7 summa-
rizes the most important unitless quantities for the authors
within the field of 100% RE systems analyses based on
the 620 category one articles. Breyer with 79 articles and
4063 citations has contributed the most in terms of arti-
cles within the field. Lund has received 9209 citations with
35 publications, which is the highest number of citations in
the field. Mathiesen has received 7368 citations through 28
publications. It should be noted that the numbers for total
citations, h-index, g-index, and m-index are assessed for the
field of 100% RE systems analysis articles of an author, not
the total research output across all scientific activities of a
researcher. The h-index overall is used for this purpose to
indicate the impact for all authors’ articles. For example,
Lenzen has the highest overall h-index of 76, followed by
Jacobson at 70. Breyer has a m-index of 5.0, Brown of 3.7,
Lund of 2.3, and Mathiesen, Greiner, Lenzen, and Oei all of
2.0, which indicates that the authors are highly productive in
a much shorter period of scientific activity compared to sci-
entific peers. Other researchers in the list with high m-index
values typically belong to the teams of the senior researchers.
The normalized h-index indicates the relevance of the 100%
RE systems analyses field to the overall scientific impact of
the researchers, with the highest team leader values for Breyer
and Greiner with 0.71 and 0.74, respectively, i.e., this field

represents their central research impact. Lund, Mathiesen,
Brown, and Oei all have values around 0.5 indicating that
this field is their strongest research impact, besides other
relevant activities. The analysis also reveals a huge gender
gap in the research community, as the top 25 list (Table 7)
is dominated by male researchers with only three female
contributors in the top 25 in the field: Caldera of LUT Uni-
versity, Finland, Becker of University of Kassel, Germany,
and Maizi of MINES, France, all of whom are located in
Europe. A high dynamic upwards trend is shown by Victoria
of Aarhus University, Denmark, which may lead soon to her
joining the group of top 25 researchers in the field. A more
detailed list of top researchers in the field can be found in the
Supplementary Material.

Comparing the top 25 researchers in the field of 100% RE
systems analyses to the 49 leading and strongly networked
researchers in the field of energy system analysis [47] leads
to only 8 matches (Lund, Mathiesen, Østergaard, Breyer,
Bogdanov, Duić, Krajačić, Robinius). This finding coincides
with the similar one on research organizations, i.e., estab-
lished researchers in energy system analysis avoid research
on 100% RE systems analyses, which creates opportunities
for independent researchers for scientific renewal.

G. AUTHOR GROWTH TREND
Sørensen, in 1975, initiated the research field of 100% RE
systems analyses with the first published article [14]. Several
other authors, such as Lovins [15], Weingart [202], [203],
Meibom [104], Nielsen [250], and Duić [490] contributed
in the field until the year 2004, a year in which only eight
individual researchers contributed to the field of 100% RE
systems analyses. This number grew strongly to 84 authors by
the year 2010. By 2015, 363 authors contributed to the field,
which further increased to 1388 individuals in the year 2021.
The low number of authors until 2010 shows that researchers
did not recognize the significance of the field, and the idea
of powering the entire energy system, or at least the power
system, entirely based on renewables. The CAGR of individ-
ual researchers in the field of 100% RE systems analyses was
30% from the year 2010 to 2020. In total, the field has now
attracted almost 1400 individual researchers as documented
across the 550 articles investigated for category one as shown
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TABLE 7. Top 25 authors in the field of 100% RE systems research ranked by number of total articles. Abbreviation: male (m), female (f). The quantities
for h-index, g-index, and m-index are calculated by the Bibliometrix package. The quantity for the overall h-index is retrieved from the Scopus database.
The normalized h-index indicates the share of 100% RE systems research among the overall research of researchers.

in Figure 13 (top). More detailed author information can be
found in the Supplementary Material.

As shown in Figure 13 (top), a steep growth in the number
of individual authors occurred in the recent couple of years.
Figure 13 (bottom left) shows the number of authors with at
least 3 and 5 publications in the field, with almost 140 authors
with at least 3 articles and more than 60 authors with at least
5 articles in the field. In the meantime, 20 authors managed
to publish at least 10 articles, and 5 authors contribute at least
25 articles to the field of 100% RE systems analyses, who are
Breyer, Bogdanov, Lund, Mathiesen, and Greiner, Figure 13
(bottom right).

H. NETWORK MAP OF CO-AUTHORSHIP ANALYSIS
Scientific collaboration is defined as the interaction hap-
pening within a social context among scientists to fulfill a
mutual goal. Co-authorship analysis in science enables the
investigation of scientific collaboration patterns. In a co-
authorship network, nodes are a proxy of authors, which are
linked when they share the authorship of an article [653].
The size of the circle corresponds to the number of articles
each author in the publication list has published, and the links

between the circles represent co-authorship of articles. The
network map for co-authorship with all the interconnected
links of the authors is represented by Figure 14. Every color
represents a different team, and the authors with the same
color collaborate within one team. The map also shows if
an author from one team had a common authorship with
an author from another team. Breyer has the maximum co-
authorships of 77 articles and a link strength of 238, followed
by Bogdanov, Lund, Greiner, and Jacobson of 44, 34, 27,
and 22 co-authorships with link strengths of 162, 97, 91,
and 118, respectively. These values are extracted from the
VOSviewer tool. Only connected authors to the teams are
shown in Figure 14. However, in Figure 15 disconnected
authors are also included, which increases the total number
of displayed authors from 532 to 1000. It should be noted
that for both networks, the minimum number of articles of
an author is assumed to be one. Several teams are strongly
linked to each other, such as Lund/Mathiesen et al. and Duic
et al., or Greiner et al. and Brown et al. Several teams are
weakly interconnected, such as Lund/Mathiesen et al., Jacob-
son et al., Breyer et al., and DLR/NEXT Energy. Several
teams are very weakly connected or almost disconnected,
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FIGURE 13. Cumulative author growth in the field of 100% RE systems analyses. The 550 category one articles have been used for this analysis
(top). Cumulative author growth with at least 3 and 5 articles (bottom left) and 10 and 25 articles (bottom right) per author in the field of 100% RE
systems analyses. The 550 category one articles have been used for this analysis.

such as DIW, RLI, PIK, Robinius et al., VTT, and
Johansson et al.

Each cluster shows a different team, which is colored for
all the team members with the same color. The leader of
the team has a larger circle. For example, Jacobson, Breyer,
Lund, Greiner, and the team members belonging to a group
are not necessarily from one country and affiliation. One
potential reason is that an author may collaborate with several
teams from different affiliations and countries. According to
the diagram, the number of team members in the team of
Breyer and Greiner seems to be among the highest compared
to other groups. There was no restriction on the number of
teammembers to form a team, and the number of articles was
assumed to be at least five.

Although the circle size shows the number of articles by an
author, it fails to represent how many articles are published.

The authors of each team appear in proximity to their
team members with further concentration, as displayed in
Figure 14. It should be noted that the color used in this
figure does not necessarily match the colors in Figure 15.
This diagram clearly shows the authors who belong to their
teams and authors who have not established a team due to
having less than five articles as a threshold in this study. For
example, Mathiesen, Lund, Østergaard, Skov, and Thellufsen
belong to the Lund/Mathiesen et al. team. However, the tool

failed in some points to form all defined teams, such as for
the Diesendorf et al. and Blakers et al. teams.

I. COLLABORATIVE NETWORK MAP AMONG COUNTRIES
A map of the co-authorship network representing the coop-
eration among the countries is visualized in Figure 16. The
minimum number of documents for a country was set at
one, which means a country with at least one article can
be displayed in the map. The size of each circle, and the
thickness of a link, show the countries’ productivity. The
bigger the circle and link thickness, the more articles and
collaboration for the respective country. The collaborative
network map indicates that a very high share of research for
the 100% RE systems analysis field has been carried out in
Europe and the USA. The top countries publishing a higher
number of articles and collaborating with other countries are
Germany, Denmark, and Finland.

Their publications comprise 158, 113, and 95 articles, and
the link strengths are 125, 82, and 44, respectively. The USA
and Sweden follow with 83 and 25 articles. These values
are obtained from the VOSviewer tool. The countries with
smaller nodes and fewer articles are distributed around the
countries with more research activities. Like the social net-
working analysis in Figure 12 (bottom), the core countries
are in the center with their links to countries with fewer
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FIGURE 14. Network map of co-authorship analysis for all connected authors for the field of 100% RE
systems analysis articles.

FIGURE 15. Network map of co-authorship analysis with all
co-authorship.

publications. For example, Finland has common articles with
India, Bolivia, and Cuba from the top of the diagram. At the
same time, it also has published articles with Germany, Swe-
den, and Denmark, among others.

J. NETWORK OF CO-OCCURRENCE KEYWORDS
Keywords are mainly used to show the pivotal focus of an
article and are of practical use for readers to catch the main
contexts of an article [654]. A network map of a keywords co-
occurrence analysis for all 620 category one, two, and three

articles is shown in Figure 17. All the keywords are extracted
from the Scopus database and analyzed by using the tool
VOSviewer. In the networkmap, nodes indicate the keywords
and links represent the co-occurrence among nodes. The node
size illustrates a keyword’s significance. The larger the nodes,
the more important the respective keywords are [655]. The
large nodes show that the number of occurrences of an item
is higher, and the larger an item, the more relevant it is.
The core keywords of the 100% RE systems analysis articles
are: ‘renewable energy’, ‘solar energy’, ‘energy policy’, and
‘wind energy’, as visualized in Figure 17. Obviously, the
great majority of authors have established scenarios with
solar and wind energy. At the same time, the cost keyword
with further repetition in different forms documents the high
importance of societally affordable energy transition solu-
tions. Moreover, it reveals that the economic perspective has
attracted more attention than social assessment, which is a
central pillar of Sustainable Development. Important topics
are indicated by keywords in light green colors pointing
to studies on pollution (air pollution mortality, atmospheric
pollution, pollution tax, etc.) and various sources of energy
supply (photovoltaic, concentrated solar thermal power,
bioenergy, battery storage system, etc.).

The yellow keyword group points to heat (heat pump, heat
saving, geothermal heat, etc.). More insights can be identified
by investigating the figure in detail.

K. INTERACTIVE TOPIC MODELING
Topic models have lately appeared as a dominant set of
techniques to uncover the fundamental semantic structure
of sizable disorganized collections of documents [656]. The
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FIGURE 16. Collaborative network map among countries publishing articles in the field
100% RE systems analysis.

FIGURE 17. Co-occurrence keywords analysis by VOSviewer extraction from all identified
620 articles across all categories as extracted from the Scopus database for the field of 100%
RE systems analysis.

approach used in this research for the topic modeling is
LDAvis, which was used to find the theme that designates
the body of the 100% RE systems analysis literature. LDA
produces a list of topics of words that form a list with
allocated probabilities and distributions. As the number of

topics should be identified externally by users, experimen-
tation was done with several different numbers of topics to
observe the most meaningful word distributions. Altogether,
nine topics were found to be themost relevant and purposeful,
covering a proper scope of concepts. The nine illustrative
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TABLE 8. List of evaluated topics and their eminent keywords. The four keywords for each topic are ranked by both the frequency and exclusivity of the
term under that topic [657]. The marginal topic distribution indicates the share of each topic as part of the body of literature. The higher the marginal
distribution of a topic, the more often that topic appears in the body of literature.

names assigned are based on pivotal characteristics and four
eminent keywords, as listed in Table 8. It should be noted that
eminent keywords have the same root as their topics, either
conceptually or lexically. Topics at the top of the table have a
higher marginal topic distribution. For example, (1) ‘Power
System’ has the highest probability distribution of 26.77,
meaning that this topic is the most likely to emerge in the
100% RE systems analysis literature. The topics distribution
using the force-directed algorithm ForceAtlas2 in Gephi is
visualized in Figure 18. The topic modeling figure represents
which topics are closely related with one another based on
their probability to emerge together in the same article [43].
The second most linked topic is (2) ‘Energy System’, which is
interesting, since the overarching theme of the entire research
field should be (2) ‘Energy System’; however, the basis of
the future 100% RE system, the (1) ‘Power System’ shows
an even higher probability distribution, suggesting that it
may also be more researched. Moreover, (1) ‘Power System’
and (6) ‘Optimal Resource Mix’ are very related with each
other since these topics are highly correlated. Hence, a cluster
forms around (2) ‘Energy System’, (4) ‘Island’, and (3) ‘Heat
& Water’. Interestingly, islands research appeared as a topic,
presumably because 12% of the total articles investigated the
100% RE system transition on island, which is increasingly
well reviewed [60], [61], [62], [63], [64], [65]. The other
cluster is (8) ’Transition’ and (9) ‘Heat Integration.’ The
cluster for (5) ‘Transport’ (7) and ‘International Grid’ also
has a strong correlation due to a high thickness of their links.
With a further look at the topics that have few correlations,
it is evident that (8) ‘Transition’, and (7) ‘International Grids’
are to some extent disconnected from the overall topics, i.e.,
the articles that are strongly associated with these topics do
not have a high likelihood to be systematically related with
other individual topics.

L. LIMITATIONS OF THE STUDY
The most relevant critique for both this study and for almost
all bibliometric analyses is that the quantities analyzed are
highly variable over time. For example, the citations received

FIGURE 18. Nine significant correlated structural topics for 100% RE
systems analysis.

per article or journal are highly likely to be changed con-
tinuously. Hence, the document that tops the list by citation
number at the timemay not necessarily remain high sometime
later. However, based on current results, one can estimate,
for instance, what the top articles would be some time later.
A substantial uncertainty of bibliometric research is the num-
ber of detected articles in a field, which is the case for the field
of 100% RE systems analyses, a field that is substantially
scattered and less interconnected, partially because of a lack
of common keywords and used terms. To overcome this
limitation in future research, all identified articles are cited,
so that these articles are linked via this paper and fully acces-
sible. In addition, various authors did not intend to research
100% RE systems but investigated such systems due to the
set research assumptions. The identified 620 articles for this
research increase steadily, so that any bibliometric research
is limited and can only report the insights for the covered
period and the body of identified articles, which is in this
research mainly until mid-2021 for detected articles, where
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the citations have been used for the status as of May 2022.
Also, later identified articles may be published in earlier
periods, which may distort the prepared results. Any impact
assessment of published research is limited, since citations
can be quantified, but how comprehensive the impact had
been cannot. In addition, societal impact beyond scientific
citations such as improved policies and adjusted legislation
is hardly quantifiable.

V. CONCLUSION
In this study, all identified 100% renewable energy systems
articles were analyzed, which are characterized by an expo-
nentially growing total number of articles, authors, and teams.
Scopus and Google Scholar are used as sourcing databases
to identify 620 scientific articles published until mid-2021 in
the field of 100% renewable energy systems analyses. The
research field was established in 1975, and since the mid-
2000s, articles are published every year with a compound
annual growth rate of 26% for the years 2010 to 2020. The
most cited articles in the field analyzing a concrete geo-
graphic context received up to 900 citations so far. The total
citations received in the field until mid-2022 reached 35,952
with a compound annual growth rate of 38% for the years
2010 to 2021. The two journals that are the most relevant
for the field of 100% renewables energy systems analyses are
Energy and Applied Energy, with a total number of published
articles of 91 and 67, leading to a journal related h-index of
44 and 34 and citations per article of 86 and 95. The top five
leading journals according to journal h-index combine 53%
of articles and 82% of total citations.

The most productive teams according to published articles
are from Denmark, Finland, Germany, and the USA, which
also explains the relative strength of these countries in article
output and their strong international networks, documented
by social network analysis of organizations, co-authorship
networks, and collaborative networks. The top five countries
according to first authored articles combine 64% of articles
and 73% of total citations, while the top five leading teams
according to published articles combine 34% of articles, 57%
of total citations, and 52% of all citations in the year 2021.
Finland and Denmark are countries with the most research
output in the field in ratio to public energy research and devel-
opment expenditures by a significant margin. Besides the
strongly networked teams, there are also weakly networked
or even disconnected teams, which repeatedly publish in the
field, but interact little with other teams. The research field is
very weak in countries of the Global South and fossil fuel
supplying countries in the Middle East and Eurasia, with
virtually no teams doing research in Global South countries,
which is partly compensated by established research teams
carrying out research for these regions. The author base in the
field is strongly growing by about 30% per year from 2010 to
2020, reaching almost 1400 authors in the field, thereof more
than 60 authors with at least 5 articles in the field and five
authors have published at least 25 articles in the field.

EnergyPLAN and LUT-ESTM are by far the most applied
tools within the field of 100% renewable energy systems
analyses. These two modelling frameworks are used for 25%
of all articles in the field, whereas no other tool exceeds 4%.
Additionally, these two received 35% of all total citations
and 36% of the citations in the year 2021, while no other
tool received more than 5% of citations either in total or for
the year 2021. Interestingly, the core distinction of the two
modelling frameworks is that EnergyPLAN is of simulation
and overnight type, while the LUT-ESTM is of optimization
and transition type.

The research field of 100% renewable energy systems
analyses lacks diversity in several regards, with a massive
observed gender gap documented in a lack of highly publish-
ing female researchers. Additionally, there is a substantial gap
in research from and for Global South countries.

This is partly balanced with researchers from the Global
South being affiliated in the Global North and active in the
field, but these affiliations vary substantially across teams.
The diversity gap also comprises a lack of several major
energy system models used for 100% renewable energy sys-
tem analyses, in particular the lack of integrated assessment
models.

This research field offers substantial opportunities for aca-
demic renewal since only 10% of the global top 20 research
organizations in the more general field of energy system
analysis play an important role in the field of 100% renewable
energy systems analyses. Comparatively, the other 90% do
not play any relevant role, including several of the global lead-
ing energy research organizations. This strong institutional
bias against highly renewable energy systems research may
be an interesting area for researching self-induced barriers in
scientific renewal, and it opens the space for less prominent
research organizations to head for international leadership in
one of the of the fastest growing and most relevant fields for
global sustainable development.

Trends in bibliometric analyses indicate a further stark
increase in published articles in the field, and even faster
growing citations at growth rates above 25% and close to
40%, respectively. An increasing trend can be observed
with established energy system modelling teams joining the
research field since non-renewable energy system solutions
strongly loose societal attractiveness. For a successful global
energy system transition reaching climate targets and sus-
tainable development goals, substantially more research is
required from and for countries of the Global South.
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