
Received 16 October 2022, accepted 7 November 2022, date of publication 9 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221121

Couple-Group Consensus of Heterogeneous
Multi-Agents Systems With Markov Switching
and Cooperative-Competitive Interaction
XINGCHENG PU 1,2, LINGXIA ZHANG2, AND XIA SUN 3
1College of Mathematics and Computer Science, Tongling University, Tongling 244061, China
2School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
3Chongqing Institute of Engineering, Chongqing 400056, China

Corresponding authors: Xingcheng Pu (1662598286@qq.com), Lingxia Zhang (1174504179@qq.com), and Xia Sun (sunxia@cqie.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61876200, in part by the Natural
Science Foundation Project of Chongqing Science and Technology Commission under Grant cstc2018jcyjAX0112, in part by the
Educational Reform Project of the Chongqing University of Posts and Telecommunications under Grant XJG1635, in part by the Scientific
and Technological Research Program of Chongqing Municipal Education Commission under Grant KJ1400432, in part by the Chongqing
Postgraduate Research Innovation Project under Grant CYS21312, and in part by the Science and Technology Research Project of
Chongqing Education Commission under Grant KJZD-M202001901.

ABSTRACT In this paper, couple-group consensus is investigated for a kind of heterogeneous multi-agent
systems (HMASs) with Markov switching. Some novel couple-group consensuses have been proposed,
in which cooperative-competitive interaction, Markov switching and time delay are all considered. For
Markov switching, the transitive rate of probability can be divided into two cases: known or partly known.
Based on stochastic delta operator, probability, graph and stability theories, the leader-following and pinning
couple-group consensus of this system be converted into analyzing the stability of related switching delta
operator system. In the obtained results, some conservative conditions, such as the balance of in or out
degree, strong connectivity and containing a spanning tree, can be longer strictly demanded. Some numerical
examples are given to show the validity of the acquired results.

INDEX TERMS Leader-following, couple-group consensus, HMASs, Markov switching.

I. INTRODUCTION
Recent years, consensus has become a hot issue in dis-
tributed control of MASs due its promising applications in
many domains, such as the formation of mobile vehicles [1],
[2], distributed control in sensor networks [3], [4], group
decision-making systems [5] and so forth. The mainly ideal
of consensus is to design an effective protocol to make all
agents reach a same state. As an extension of consensus,
group (cluster) consensus means that agents in the whole
system can be divided into several groups. Agents in dif-
ferent groups will reach different states. Agents in the same
group will reach same state. In some extent, consensus or
synchronization, is a special case of group consensus. In fact,
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group consensus is very common in real life [5], [6], [7], [8],
[9], [11], [12]. Hence, it is important for us to investigate
the group consensus of MASs. So far, a lot of meaningful
achievements have been acquired for the group consensus of
MASs [6], [7], [8], [9], [10], [11], [12]. In [6], pinning control
is used to realize group tracking consensus of 2nd-order
nonlinear MASs. In [7], based on cooperative-competitive
relation, some sufficient conditions have been obtained for
the group consensus of a kind of HMASs. In [8] and [9],
group consensus of MASs with switching topology and time
delay has been discussed. In [10], distributed PID controller
is used to discuss the consensus of first-order MASs with
time delay. In [11] and [12], group consensus of 2nd-order
or even high-order MASs have been studied respectively.
It worth pointing out that most of obtained results are needed
to suppose the topologies of MASs are homogeneous. In a
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homogeneous MASs, all agents have the same dynamics.
However, in many practical cases, it is impossible for each
agent to have the identical dynamics. Hence, it is essential for
us to investigate the consensus of heterogeneous MASs [13],
[14], [15], [16], [17]. In [13], Sun and Zhang have focused on
the output sign consensus problem of HMASs with fixed or
switching signed graphs. In [14], time-varying output forma-
tion tracking problem of heterogeneous linearMASs has been
concerned.More correlative results can be found in [15], [16],
and [17]. On the other hand, from the view of control cost, it is
quite difficult for us to control all nodes to achieve consensus
in many large-scale complex networks. For this purpose, the
pinning control method has been proposed. According to
existing results, the pinning control can be used to realize the
consensus or synchronization of MASs [18], [19]. In [18],
event-triggered strategy and pinning control have been used
to achieve consensus of MASs. In [19], predictive pinning
control has been applied to obtain the consensus of MASs
with time delay. In [20], pinning control is applied for the
leader-following synchronization of MASs. Different from
other control protocols, it is not necessary for us to control all
nodes in pinning control strategy. The obtained results have
also shown that the pinning control scheme can reduce the
control cost. Furthermore, most of the topology structures of
MASs are supposed to be fixed when we discuss consensus
of these systems [21], [22]. Nevertheless, in most practical
cases, the topology of MASs may change with time varying,
it is not fixed [23], [24], [25]. Thus, it is also more signif-
icant for us to investigate the consensus of MASs switching
topology [23], [24], [25], [26]. However, amongmost existing
results, the switching ways are usually assumed to obey some
specific rules such as ADT or MDADT [24], [26]. In [24],
MDADT method has been used to address the consensus
problem of HMASs with switching topology. In [26], based
on ADT, switching scheme has been proposed for compen-
sating packet dropout. In fact, various internal and external
disturbances may exist in real system, such as uncertain
distance, time delay, connection failure and so on. All these
reasons can lead to different switching ways. Sometimes,
these switchingways are even stochastic. In this situation, it is
very difficult for us to use the novel mathematical models or
theories to analyze the performance of these systems. How to
describe these various switching manners? How to analyze
the couple-group of these systems with switching, especially
stochastic switching manner is considered? It is very neces-
sary for us to establish new mathematic model and introduce
novel analytic tool. Fortunately,Markov process has excellent
merit in describing uncertain abrupt phenomena. It has been
widely used in robust detection filters, image recognition,
and other fields [27], [28], [29]. Therefore, it is natural for
us to introduce the Markov process to describe MASs with
stochastic switching manner. Of course, the transitive prob-
ability matrix of Markov process may not be fully known in
many situations. It is very significant for us to analyze the
consensus ofMASs underMarkov switching with part known
transitive probability. In this paper, two cases of Markov

process with known or unknown transitive rate matrix
will be discussed when we investigate the couple-group of
HMASs.

Moreover, most of the acquired achievements of MASs
must obey the assumption that relations among agents are
cooperative or competitive [30], [31], [32], [33]. However,
cooperative and competitive relation often coexist in natural
world. Therefore, it is essential for us to study the related
problems of MASs with cooperative and competitive rela-
tions [7], [24]. As we know, delta operator is an effective
tool in analyzing the performance of a system whatever it
is discrete or continuous [34], [35], [36], [37], [38], [39].
In [37], the delta operator has been firstly proposed to unify
the discrete and continuous system into a single framework.
In [38], the delta operator has been used to detect observer-
based fault. In [39], the delta operator has been applied
to analyze sliding mode control. Undoubtedly, based on
delta operator, more and more meaningful results have been
derived [27], [40]. According to existing literature, the delta
operator can also be applied to study the consensus problem
of MASs [24], [41]. In [24], the delta operator has been
used to handle the group consensus problem of HMASs in
cooperative- competitive networks. And in [41], the delta
operator has been utilized to discuss the consensus prob-
lem of MASs with faults and mismatches. Inspired by the
above discussions, this paper will use pinning scheme and
stochastic delta operator to investigate the couple group con-
sensus of HMASs with cooperative-competitive relation and
Markov switching. Compared with the obtained results [42],
[43], [44], [45], [46], [47], [48], there are mainly threefold
contributions in this article. Firstly, based on cooperative-
competitive relation, time-delay, Markov switching and pin-
ning control method, a novel leader-following couple group
consensus protocol has been designed for a kind of HMASs.
Different from literature [42], [43], [44], [45], [46], [47], [48],
heterogeneous, cooperative-competitive relation and Markov
switching are all considered, which make our model be more
related to real situations. Secondly, stochastic delta operator,
stability and graph theory are used to obtain sufficient condi-
tions for the couple-group of this system. The obtained results
show that LMIs (linear matrix inequalities) can be used
to solve the problem of couple-group consensus. Thirdly,
according to the achieved sufficient conditions, the balance
of in or out degree, strong connectivity and containing a span-
ning tree of the topologies of MASs can be longer required.
Some numerical examples will be presented to verify the
correctness of these achievements.

The remainder of this article will be given as follows.
In section II, problem formulation and preliminaries will be
listed. In section III, based on pinning control, stochastic
delta operator and cooperative-competitive relation, a few
novel protocols have been proposed. And some sufficient
conditions have been obtained for the couple-group of a
kind of HMASs with Markov switching. Proofs have also
been finished for these sufficient conditions. In section IV,
some numerical experiments have been given to validate the
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obtained achievements. Finally, conclusion has been drawn
in section V.

II. BASIC KNOWLEDGE AND MODEL DESCRIPTION
In this part, model description and some basic knowledge will
be addressed, such as Markov process, transitive probability,
graph theory and some lemmas.

A. HOMOGENEOUS MARKOV PROCESS
Let {�,F,P} be a given a probability space. � is a sample
space, F is an algebraic event, and P is a probability measure
on F . {σ (t) ∈ S = {1, 2, . . . , s} , t ≥ 0} is a homogeneous
Markov process with finite states.

From time t to t +T , the transitive probability distribution
3 = (λij) ∈ Rs×s of Markov process {σ (t), t ≥ 0} is defined
as follows:

Pr(σ (tk + T ) = j|σ (tk ) = i)

=

{
λijT + o(T ), i 6= j
1+ λijT + o(T ), i = j

(1)

T > 0 and lim
T→0

o(T )
T = 0. For all i, j ∈ S, i 6= j, let λij > 0 be

the transition rate from topology i at time t to topology j at

time t + T , and λii = −
s∑

j=1,j 6=i
λij,T > 0. The transitive rate

matrix 6σ is defined as matrix form (2).

6σ =


λ11 λ12 · · · λ1s
λ21 λ22 · · · λ2s
...

...
. . .

...

λs1 λs2 · · · λss

 (2)

Sometimes, all elements of transitive rate matrix cannot be
completely determined. This is to say, some of them are
unknown. For instant, if there are four agents in S, the transi-
tive rate matrix is described as matrix (3).

6σ =


λ̂11 λ12 λ̂13 λ14

λ21 λ̂22 λ23 λ̂24

λ̂31 λ32 λ̂33 λ̂34

λ̂41 λ̂42 λ43 λ̂44

 (3)

λ̂ij and λij are the unknown and known elements in matrix (3),
respectively.8(i)

kn and8
(i)
ukn are used to define two sets for the

known and unknown elements in the ith row of 6σ .{
8

(i)
kn = { j| λij is known}

8
(i)
ukn = { j| λij is uknown}

(4)

Accordingly, λ(i)kn and λ
(i)
ukn are the sum of known and unknown

transitive rates in row i, respectively, then we have

λ
(i)
kn =

∑
j∈8i

kn

λij, λ
(i)
ukn =

∑
j∈8i

ukn

λ̂ij. (5)

Remark 1: As we know, if some elements of transitive rate
matrix are unknown, the conditions for the couple-group of
HMSs will become more difficult to determine. Fortunately,

according to formulas (1) and (5), we have λ(i)kn =
∑
j∈8i

kn

λij =

−λ
(i)
ukn = −

∑
j∈8i

ukn

λ̂ij,

Hence, the sum of given elements can be used to determine
the total of unknown elements. Therefore, it is a chance for
us to find some sufficient conditions for couple-group of this
system.

B. BASIC KNOWLEDGE IN GRAPH
Gσ (t) = (V ,Eσ (t),Aσ (t)) is a weighted digraph with n
nodes, V = {v1, v2, . . . , vn} is the vertex set and Eσ (t) ⊆
V × V is the edge set. The edge of Gσ (t) is described as
eσ (t)ij = (vj, vi) ∈ V × V . The weighted matrix Aσ (t) =

[aσ (t)ij ] ∈ Rn×n is the adjacency matrix of Gσ (t). σ (t)(t ≥
0) is a discrete state homogeneous Markov process with
continuous time, and σ (t) ∈ S = {1, 2, . . . . . . , s}. Ni =
{vj
∣∣vj ∈ V , (vj, vi) ∈ Eσ (t) } is the neighbor set of node vi.

L(Gσ (t)) = [lσ (t)ij ] ∈ Rn×n is the Laplacian matrix of graph
Gσ (t) and

lσ (t)ij =


−aσ (t)ij , j 6= i

n∑
j=1,j6=i

aijσ (t), j = i
(6)

C. HMASs
In our model, the HMASs is composed of m + n agents.
The dynamics of the HMASs are described as differential
equations (7) and (8).{

ẋi(t) = vi(t)
v̇i(t) = ui(t),

i ∈ π1 (7)

ẋi(t) = ui(t), i ∈ π2 (8)

π1 = {1, 2, . . . , n}, π2 = {n + 1, n + 2, . . . , n + m}, π =
π1 ∪ π2, xi(t), ui(t) and vi(t) represent the position, velocity
and input control of agent i, respectively. In equation (7),
the second-order agents belong to group π1 and the first
order-agents belong to group π2.

D. SOME DEFINITIONS AND LEMMAS
Definition 1 [24](Asymptotical Couple-Group Consensus):
HMASs (7) and (8) is called asymptotical Couple-Group
Consensus if the following conditions (9) can be satisfied for
any initial state:

(i) lim
t→∞
||xi(t)− xj(t)|| = 0, i, j ∈ πk , k = 1, 2;

(i) lim
t→∞
||xi(t)− xj(t)|| 6= 0, i ∈ π1 ∧ j ∈ π2;

(ii) lim
t→∞
||vi(t)− vj(t)|| = 0, i, j ∈ π1. (9)

Definition 2 (Asymptotical leader-following Couple-Group
Consensus): HMASs (7) and (8) is called leader-following
couple-group consensus if the following conditions (10) can
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be satisfied for any initial state and velocity.

(i) lim
t→∞
||xi(t)− x0k (t)|| = 0, i ∈ π1 ∪ π2, k = 1, 2;

(ii) lim
t→∞
||vi(t)− v0(t)|| = 0, i ∈ π1. (10)

x0k (t) and v0(t) are position and velocity of the kth leader
respectively and the dynamic equation of leader is same as
HMASs (7) and (8).
Definition 3 [24] (Delta Operator): The delta operator is

defined as

δ =


d
dt
, T = 0

q− 1
T

, T 6= 0
(11)

q is the shift operator which means qz(t) = z(t + T ),
T > 0 is the sampling period, and z(t) denotes the status
vector. According to Definition.3, the delta jump operator
system is given as equation (12).

δz(t) = fσ (t)(z(t), z(t0)), t ≥ t0 (12)

σ (t) is the switching signal, and the equivalent form of system
(12) is described as form (13).

δz(t) =


dz(t)
dt

, T = 0

z(t + T )− z(t)
T

, T 6= 0
(13)

Remark 2: Based on Definition.3, discrete and continuous
systems can be unified by the delta system. When the sam-
pled period is small enough, the jump delta operator system
is approach to a continuous system. Otherwise, it is more
likely approach to a discrete system. In [24], by choosing an
appropriate sampling period, both the continuous and discrete
system can be described by a unified delta system. Based on
delta operator, some more meaningful results can be found in
[40] and [49]. In general, the delta operator system has better
performance in dealing with poor-conditioned phenomena
including consensus of HMASs.
Lemma 1: Let {Pσ (t)}t≥0 be a homogeneous Markov pro-

cess. {σ (t), t ≥ 0} is a finite state homogeneous Markov
process, and σ (t) takes values in S = {1, 2, . . . , s}. If the
mode of the system at the time t is i(σ (t) = i),Pi is the
corresponding stochastic matrix. Pσ (t+T ) is the stochastic
matrix of the system at the time t + T . Obviously, Pσ (t+T ) ∈
� = {P1,P2, . . . . . . ,Ps} is a random variable, and we have

E(Pσ (t+T ))

= Tpi1P1 + Tpi2P2 + . . .+ (1+ Tpii)Pi + . . .+ TpisPs

= T
s∑
j=1

pijPj + Pi (14)

Definition 3 (Stochastic Delta Operator): Let V (z(t), i)
be a stochastic Lyapunov function, then the stochastic delta
operator of V (z(t), i) is defined as following formula (15).

ϑV (z(t), i) =
1
T
{E[V (z(t + T ), j)]− V (z(t))} (15)

Remark 3: Based on lemma.1 and Definition.3, stochastic
delta operator can be used to deal with some problems of
HMASs with Markov switching.
Lemma 2 [49]: Let V (z(t)) be a Lyapunov function

in the δ-domain. A jump delta operator system (12) is
stochastic asymptotic stability if the following conditions
(i) and (ii) can be satisfied: (i) V (z(t)) ≥ 0, and
V (z(t)) = 0 if and only if z(t) = 0; (ii) ϑV (z(t), i) =
1
T {E[V (z(t + T ), j)]− V (z(t))} < 0.
Remark 4 [50]: shows that if T converges to zero, then

the stochastic delta operator on V (z(t)) can be regarded as
a weak infinitesimal operator. Hence, the weak infinitesimal
operator is a special situation of the stochastic delta operator.
Therefore, some less conservative results can be achieved by
using stochastic delta operator approach.
Remark 5: Based on Lemma 2, the stochastic asymptotic

stability can be solved by constructing a Lyapunov function.
In fact, switching systems is a special kind of jump sys-
tem. In this article, Lemma 2 will be utilized to study the
couple-group consensus of HMASs (7) and (8) with Markov
switching.
Lemma 3 [7]: If d̂σ (t)i = 0 and dσ (t)i > 0, i ∈
{1, 2, · · ·,m+ n}, then the couple group consensus of
HMASs (7) and (8) can be realized by pinning control.
It should be pointed out the agents with zero in-degree must
be pinned.
Lemma 4: For any positive semi-definite symmetric

matrix M , if there exist two positive integers f1 and f2 which
satisfy f2 ≥ f1 ≥ 1, then the following inequality (16) holds:

 f2∑
i=f1

z(i)

T

M

 f2∑
i=f1

z(i)

 ≤ (f2 − f1 + 1)
f2∑
i=f1

zT (i)Mz(i)

(16)

III. MAIN RESULTS
In this section, the leader-following couple-group consen-
sus of HMASs (7) and (8) with Markov switching will be
firstly analyzed in the part A. The couple-group consensus of
HMASs with pinning control and Markov switching will be
discussed in the part B.

On the basis of cooperative-competitive relation and
Markov switching, a novel leader-following couple-group
consensus protocol (17) is designed for HMASs (7) and (8)
as follows.

ui(t) = ασ (t)[
∑

j∈Nσ (t)Si

aσ (t)ij ((xj(t − ι(γ ))− xi(t − ι(γ )))

−

∑
j∈Nσ (t)Di

aσ (t)ij ((xj(t − ι(γ ))+ xi(t − ι(γ )))]

−βσ (t)vi(t)

−mi[ασ (t)(xi(t)− x0i(t))+ βσ (t)(vi(t)− v0(t)],

i ∈ π1
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ui(t) = ασ (t)[
∑

j∈Nσ (t)Si

aσ (t)ij ((xj(t − ι(γ ))− xi(t − ι(γ )))

−

∑
j∈Nσ (t)Di

aσ (t)ij ((xj(t − ι(γ ))+ xi(t − ι(γ )))]

−miασ (t)(xi(t)− x0i(t)), i ∈ π2 (17)

x0k (t) and v0(t) have the samemeaning as Definition. 2.N σ (t)Si
andN σ (t)Di denote the neighbor sets of the agent i in the same or
different group, respectively. The positive constant ασ (t) and
βσ (t) are the coordinated coefficients. aσ (t)ij is the element of
adjacency matrix Aσ (t). All these parameters may be varying
with the change of topology. ι(γ ) is the time-varying function
and 0 ≤ ιm ≤ ι(γ ) ≤ ιM , ιm = γmT , ι(γ ) = γT and
ιM = γMT . γm, γ and γM are given positive integers, and
γm ≤ γ ≤ γM . The corresponding adjacent matrix Aσ (t) of
heterogeneous HMASs (7) and (8) can be written as follows:

Aσ (t) =

[
Aσ (t)ss Aσ (t)sf

Aσ (t)fs Aσ (t)ff

]
(18)

The adjacent matrix Aσ (t) is composed of four blocks. The
first block Aσ (t)ss ∈ Rn×n is the adjacent matrix of second-
order agents. The fourth part Aσ (t)ff ∈ Rm×m is the adjacent

matrix of first-order agents. The second part Aσ (t)sf denotes the
adjacent matrix from second order agent to first order agent,
and the third part Aσ (t)fs denotes the adjacent matrix from first
order agent to second order agent.
Accordingly, the Laplacian matrix L of the HMASs (7)

and (8) can be written as matrix form (19).

Lσ (t) = Dσ (t) − Aσ (t) =

[
Lσ (t)ss + D

σ (t)
sf −Aσ (t)sf

−Aσ (t)fs Lσ (t)ff + D
σ (t)
sf

]
(19)

Lσ (t)ss = [lσ (t)sij ] ∈ Rn×n and Lσ (t)ff = [lσ (t)fij ] ∈ Rm×m denote
the Laplace matrices of second-order and first-order agents,
respectively.

Dσ (t) = diag{d̂σ (t)1 , d̂σ (t)2 , . . . , d̂σ (t)n+m},

Dσ (t)sf = diag{
∑
j∈Ni,f

aσ (t)ij , i ∈ ρ1}

and

Dσ (t)fs = diag{
∑
j∈Ni,s

aσ (t)ij , i ∈ ρ2}

denote the in-degree matrices for different order agents.
Moreover, for later analysis, some new matrices are given as
follows.

Hσ (t)
s =

[
hσ (t)sij

]
∈ R(n−1)×(n−1),

Hσ (t)
f =

[
hσ (t)fij

]
∈ R(m−1)×(m−1)

and

hσ (t)sij = lσ (t)sij − l
σ (t)
snj ,

hσ (t)fij = lσ (t)fij − l
σ (t)
s(n+m)j, i ∈ π1 ∧ j ∈ π2.

Remark 6: In protocol (17), xi + xj is used to represent the
competitive relation between agent i and agent j. They belong
to the different groups. And xi − xj is used to represent the
cooperative relation between agent i and j agents, they belong
to the same group. Based on literature [42], [43], [44], [45],
[46], [47], [48], time-delay, cooperative-competitive relation
and Markov switching are all considered in protocol (17),
which make our model be more approach to real situations.

A. THE LEADER-FOLLOWING COUPLE-GROUP
CONSENSUS OF HMASs (7) AND (8) WITH
MARKOV SWITCHING
The following Theorem.1 gives a sufficient condition for
the leader-following couple-group of HMASs (7) and (8).
Theorem 1 If system

κ̇(t) = Âσ (t)κ(t)+ B̂σ (t)κ(t − ι(γ )), σ (t0) = σ (0) (20)

is globally asymptotically stable, then the leader-following
couple-group consensus of heterogeneous multi-agent sys-
tems (7) and (8) can be realized under the control protocol
(17), where

Âσ (t) =

 0 0 In×n
0 −ασ (t)Mσ (t)

f 0

−ασ (t)Mσ (t)
s 0 −βσ (t)M̂σ (t)

s

 (21)

B̂σ (t) =

 0 0 0
ασ (t)Aσ (t)fs −ασ (t)(Lσ (t)ff + D

σ (t)
fs ) 0

−ασ (t)(Lσ (t)ss + D
σ (t)
sf ) ασ (t)Aσ (t)sf 0


Mσ (t)
s = diag[m1, . . . ,mn],

Mσ (t)
f = diag[mn+1, . . . ,mn+m],

M̂σ (t)
s = diag[1+ m1, . . . , 1+ mn], (22)

and

k(t) = [x1(t)− xn(t), · · ·, xn−1(t)− xn(t), xn+1(t)− xn+m(t),

· · ·, xn+m−1 − xn+m, v1(t)− vn(t), vn−1(t)− vn(t)]T .

Proof: Define x̄i(t) = xi(t) − x0i(t), v̄i(t) = vi(t) −
v0(t), x̄s(t) = [x̄T1 (t), . . . , x̄

T
n (t)]

T , x̄f (t) = [x̄Tn+1(t), . . . ,
x̄Tn+m(t)]

T , and v̄(t) = [v̄T1 (t), . . . , v̄
T
n (t)]

T . When i ∈ ρ1,
according to protocol (17), we have

v̄i(t) = ασ (t)[
∑

j∈Nσ (t)Si

aσ (t)ij ((x̄j(t − ι(γ ))− x̄i(t − ι(γ )))

−

∑
j∈Nσ (t)Di

aσ (t)ij ((x̄j(t − ι(γ ))+ x̄i(t − ι(γ )))]

−βσ (t)v̄i(t)− mi[ασ (t)(x̄i(t)− x̄0i(t))

+βσ (t)(v̄i(t)− v̄0(t)] (23)
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Similarly, when i ∈ ρ2, we also have

˙̄xi(t) = ασ (t)[
∑

j∈Nσ (t)Si

aσ (t)ij ((x̄j(t − ι(γ ))− xi(t − ι(γ )))

−

∑
j∈Nσ (t)Di

aσ (t)ij ((xj(t − ι(γ ))+ x̄i(t − ι(γ )))]

−miασ (t)(x̄i(t)− x̄0i(t)), i ∈ ρ2 (24)

Define κ(t) = [x̄Ts (t), x̄
T
f (t), v̄

T (t)]T , based on formulas
(23) and (24), one has as in (25), shown at the bottom of the
page.

Let

Âσ (t) =

 0 0 In×n
0 −ασ (t)Mσ (t)

f 0

−ασ (t)Mσ (t)
s 0 −βσ (t)M̂σ (t)

s

 ,
and, as shown in the equation at the bottom of the page, then
we obtain

κ̇(t) = Âσ (t)κ(t)+ B̂σ (t)κ(t − ι(γ )) (26)

and

Mσ (t)
s = diag[m1, . . . ,mn],

Mσ (t)
f = diag[mn+1, . . . ,mn+m],

M̂σ (t)
s = diag[1+ m1, . . . , 1+ mn].

It is obvious that the leader-following couple-group consen-
sus of heterogeneous multi-agent systems (7) and (8) can be
realized under the protocol (17) if system (26) is globally
asymptotically stable.
Remark 7: According to Theorem.1, a relation has

been established between the couple-group consensus of
HMASs (7)-(8) and a linear switched system (26). In the next
work, delta operator will be introduced to discuss the couple-
group consensus of HMASs (7)-(8). Based on Definition.3,
we have

δκ(t) =
κ(t + T )− κ(t)

T
= Aσ (t)κ(t)+ Bσ (t)κ(t − ι(γ ))

(27)

Let σ (t) = i ∈ S, then differential equations (26) can be
rewritten as follows.

κ̇(t) = Âiκ(t)+ B̂iκ(t − ι(γ )) (28)

δκ(t) =
κ(t + T )− κ(t)

T
= Aiκ(t)+ Biκ(t − ι(γ )) (29)

where

Ai =
eÂih − I

T
, Bi =

∫ T
0 eB̂i(T−s)B̂ids

T
,

and

lim
T→0

Ai = lim
T→0

eÂiT − I
T

= Âi

lim
T→0

Bi = lim
T→0

∫ T
0 eB̂i(T−s)B̂ids

T
= B̂i (30)

Remark 8:By using traditional shift operation on system (26),
we have

z(tk+1) = Azz(tk )+ Bzz(tk − ι(γ )) (31)

where Az = eÂh,Bz =
∫ h
0 e

Â(h−s)B̂ds, and h denotes the
sampling period. When h→ 0, we can easily obtain

lim
h→0

Az = I , lim
h→0

Bz = O.

In this situation, traditional shift operator cannot fully
transform the continuous-time system into a discrete-time
system in the z-domain. Especially, when the sampling period
h tends to 0, there will be a huge deviation between the
original system and the converted system. Based on (31),
delta operator method can well make up this defect.
The following Theorem.2 will give a sufficient condition

for the couple group of HMASs (7) and (8) with Markov
switching if all the transitive probability rates are known.
Theorem 2: If transitive probability rates inMarkov switch-

ing process are fully known, and there exist symmetric and
positive matrices Pi > 0,Q > 0,R > 0 satisfying the linear
matrix inequality as in (32), shown at the bottom of the next
page. then the couple-group consensus of HMAS (7) and (8)

κ̇(t) =

 0 0 In×n
0 −ασ (t)Mσ (t)

f 0

−ασ (t)Mσ (t)
s 0 −βσ (t)M̂σ (t)

s

 κ(t)
+

 0 0 0
ασ (t)Aσ (t)fs −ασ (t)(Lσ (t)ff + D

σ (t)
fs ) 0

−ασ (t)(Lσ (t)ss + D
σ (t)
sf ) ασ (t)Aσ (t)sf 0

 κ(t − ι(γ )) (25)

B̂σ (t) =

 0 0 0
ασ (t)Aσ (t)fs −ασ (t)(Lσ (t)ff + D

σ (t)
fs ) 0

−ασ (t)(Lσ (t)ss + D
σ (t)
sf ) ασ (t)Aσ (t)sf 0
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with Markov switching can be realized.
Proof: Construct a multiple stochastic Lyapunov-

Krasovskii function V (κ, t, i) in delta domain as follows.

V (κ, t, i) = V1(κ, t, i)+ V2(κ, t)+ V3(κ, t)+ V4(κ, t)

(33)

where

V1(κ, t, i) = κT (t)Piκ(t),

V2(κ, t) = T
γ∑

γ1=1

κT (t − γ1T )Qκ(t − γ1T ),

V3(κ, t) = T 2
γM∑

γ1=γm+1

γ1∑
γ2=1

κT (t − γ2T )Qκ(t − γ2T ),

V4(κ, t) =
γ∑

γ1=1

γ1∑
γ2=1

gT (t − γ2T )Rg(t − γ2T ) (34)

where g(t−γ2T ) = κ(t−γ2T )−κ(t−(γ2−1)T ), ι(γ ) = γT ,
then we have δ(κ(t)) = −g(t)/T .

Taking the stochastic delta operator manipulations of
V (κ, t, i) and using Lemma 1, we have

ϑV1(κ, t, σ (t))

=
1
T
{E[κT (t + T )Pσ (t+T )κ(t + T )]

− κT (t)Pσ (t)κ(t)}

=

s∑
j=1

λijκ
T (t + T )Pjκ(t + T )

+
1
T
[κT (t + T )Piκ(t + T )− κT (t)Piκ(t)]

= T 2
s∑
j=1

λijδ
T κ(t)Pjδκ(t)+ T

s∑
j=1

λijδ
T κ(t)Pjκ(t)

+T
s∑
j=1

λijκ
T (t)Pjδκ(t)+

s∑
j=1

λijκ
T (t)Pjκ(t)

+T δT κ(t)Piδκ(t)+ δT κ(t)Piκ(t)+ κT (t)Piδκ(t)

= T 2
s∑
j=1

λijδ
T κ(t)Pjδκ(t)+ T

s∑
j=1

λijδ
T κ(t)Pjκ(t)

+T
s∑
j=1

λijκ
T (t)Pjδκ(t)+

s∑
j=1

λijκ
T (t)Pjκ(t)

+ κT (t)(ATi Pi + PiAi)κ(t)+ κ
T (t − ι(γ ))BTi Piκ(t)

+ κT (t)PiBiκ(t − ι(γ ))

+T δT κ(t)Piδκ(t) (35)

ϑV2(κ, t)

=
1
T
{[T

γ∑
γ1=1

κT (t − (γ1 − 1)T )Qκ(t − (γ1 − 1)T )]

−T
γ∑

γ1=1

κT (t − γ1T )Qκ(t − γ1T )}

≤
1
T
[T

γM∑
γ1=1

κT (t − (γ1 − 1)T )Qκ(t − (γ1 − 1)T )

−T
γ∑

γ1=1

κT (t − iT )Qκ(t − γ1T )]

≤ κT (t)Qκ(t)− κT (t − ι(γ ))Qκ(t − ι(γ ))

+T
γM∑

γ1=γm+1

κT (t − γ1T ))Qκ(t − γ1T ) (36)

ϑV3(κ, t)

= T
γM∑

γ1=γm+1

[
γ1∑
γ2=1

κT (t − (γ2 − 1)T )Qκ(t − (γ2 − 1)T )

−

γ1∑
γ2=1

κT (t − γ2T )Qκ(t − γ2T )

= T
γM∑

γ1=γm+1

[κT (t)Qκ(t)− κT (t − γ1T )Qκ(t − γ1T )]

= T (γM − γm)κT (t)Qκ(t)− TκT (t − γ1T )Qκ(t − γ1T )

= (ιM − ιm)κT (t)Qκ(t)

−T
γM∑

γ1=γm+1

κT (t − γ1T )Qκ(t − γ1T ) (37)

ϑV4(κ, t)

=
1
T
[
γM∑
γ1=1

γ1∑
γ2=1

gT (t − (γ2 − 1)T )Rg(t − (γ2 − 1)T )

−

γM∑
γ1=1

γ1∑
γ2=1

gT (t − γ2T )Rg(t − γ2T )]

=
1
T
[
γM∑
γ1=1

gT (t)Rg(t)−
γM∑
γ1=1

gT (t − γ1T )Rg(t − γ1T )]

≤
γM

T
gT (t)Rg(t)

6 =


T 2

s∑
j=1
λijPj + (T − 2)Pi + dMR T

s∑
j=1
λijPj + PiAi PiBi

∗

s∑
j=1
λijPj + ATi Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi + 1

dM
R

∗ ∗ −Q− 1
dM
R

 < 0 (32)
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−
1

γMT
[
γM∑
γ1=1

g(t − γ1T )]TR
γM∑
γ1=1

gT (t − γ1T )]

= −
1
dM

[κ(t − ι(γ ))− κ(t)]TR[κ(t − ι(γ ))− κ(t)]

+ dMδT κ(t)Rδκ(t)

= −
1
dM
κT (t − ι(γ ))Rκ(t − ι(γ ))

+
1
dM
κT (t − ι(γ ))Rκ(t)+

1
dM
κT (t)Rκ(t − ι(γ ))

−
1
dM
κT (t)Rκ(t)+ dMδT κ(t)Rδκ(t) (38)

Furthermore, equation (39) is always true for any positive
definite real matrix Pi.

0 = −2δT κ(t)Pi[δκ(t)− Aiκ(t)− Biκ(t − ι(γ ))]

= −2δT κ(t)Piδκ(t)+ 2δT κ(t)PiAiκ(t)

+ 2δT κ(t)PiBiκ(t − ι(γ )) (39)

According to (35)-(39), we have

ϑV (κ, t, i) = ϑV1(κ, t, i)+ ϑV2(κ, t)+ ϑV3(κ, t)

+ϑV4(κ, t) ≤ ζ T (t)
∑

ζ (t) ≤ 0 (40)

Here as in (41), shown at the bottom of the page. If inequality
(41) is true, then we have ϑV (κ, t, i) ≤ 0. Therefore,
system (20) is globally asymptotically stable. Based on The-
orem 1, the couple-group consensus of HMASs (7) and (8)
can be realized under protocol (17).The proof of Theorem 2 is
finished.
Remark 9: In Theorem.2, the transitive probability rates

are known, in this case, the stochastic delta operator can be
directly used to deal with the Lyapunov function. However,
in many real situations, the transitive probability rates cannot
be fully known at any time. Therefore, it is necessary for us to

investigate the couple consensus of HMAS (7) and (8) with
part known transitive probability rate in Markov switching.
Theorem.3 gives a sufficient condition for the couple group
consensus of this system.
Theorem 3: For all i, j ∈ S, i 6= j, λij ≥ 0, and λii = −
s∑

j=1,j 6=i
λij, if there exist symmetric and positive matrices Pi >

0,Q > 0,R > 0 satisfying the following two linear matrix
inequalities as in (42) and (43), shown at the bottom of the
page. Case (a): λii is known (i ∈ 8

(i)
kn). Case (b): λ̂ii is

unknown (i ∈ 8
(i)
ukn), then the couple group consensus of

HMAS (7) and (8) with Markov switching can be obtained.
Proof: Similar to Theorem.2, a multiple stochastic

Lyapunov-Krasovskii function V (κ, t, i) is constructed as fol-
lowing form (44).

V (κ, t, i) = V1(κ, t, i)+ V2(κ, t)+ V3(κ, t)+ V4(κ, t)

(44)

And

V1(κ, t, σ (t) = i) = κT (t)Piκ(t),

V2(κ, t) = T
γ∑

γ1=1

κT (t − γ1T )Qκ(t − γ1T ),

V3(κ, t) = T 2
γM∑

γ1=γm+1

γ1∑
γ2=1

× κT (t − γ2T )Qκ(t − γ2T ),

V4(κ, t) =
γ∑

γ1=1

γ1∑
γ2=1

gT (t − γ2T )Rg(t − γ2T )

(45)

where ι(γ ) = γT , g(t−γ2T ) = κ(t−γ2T )−κ(t−(γ2−1)T ),
then δ(κ(t)) = −g(t)/T . Next, we will discuss in two situa-

ζ T (t) =
[
δT κ(t) κT (t) κT (t − ι(γ )

]

6 =


T 2

s∑
j=1
λijPj + (T − 2)Pi + dMR T

s∑
j=1
λijPj + PiAi PiBi

∗ T
s∑
j=1
λijPj + ATi Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi + 1

dM
R

∗ ∗ −Q− 1
dM
R

 < 0

(41)

60 =
∑
j∈I (i)uk

λ̂ij

−λ
(i)
k


T 2P(i)k − λ

(i)
k T

2Pj + (T − 2)Pi + dMR TP(i)k − λ
(i)
k TPj + PiAi PiBi

∗ P(i)k − λ
(i)
k Pj + A

T
i Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi +

1
dM

R

∗ ∗ −
1
dM

R− Q

 < 0 (42)


T 2[P(i)k + λ

(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]+ (T − 2)Pi + dMR T [P(i)k + λ

(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]+ PiAi PiBi

∗ P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj + A

T
i Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi +

1
dM

R

∗ ∗ −
1
dM

R− Q

 < 0 (43)
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tions (a) and (b). Case (a): λii is known (i ∈ 8
(i)
kn). Taking the

stochastic delta operator manipulation on V (κ, t, i), we have

ϑV1(κ, t, σ (t))

=
1
T
{E[κT (t + T )Pσ (t+T )κ(t + T )]− κT (t)Pσ (t)κ(t)}

=

s∑
j=1

λijκ
T (t + T )Pjκ(t + T )+

1
T
[κT (t + T )Piκ(t + T )

− κT (t)Piκ(t)]

= T 2
s∑
j=1

λijδ
T κ(t)Pjδκ(t)+ T

s∑
j=1

λijδ
T κ(t)Pjκ(t)

+

s∑
j=1

λijκ
T (t)Pjδκ(t)

+

s∑
j=1

λijκ
T (t)Pjκ(t)+ T δT κ(t)Piδκ(t)

+ δT κ(t)Piκ(t)+ κT (t)Piδκ(t) (46)

Formula (46) can be rewritten as follows.

ϑV1(κ, t, σ (t))

= T 2δT κ(t)P(i)k δκ(t)− T
2λ

(i)
k

∑
j∈I (i)uk

λ̂ij

−λ
(i)
k

δT κ(t)Pjδκ(t)

+T δT κ(t)P(i)k κ(t)− Tλ
(i)
k

∑
j∈I (i)uk

λ̂ij

−λ
(i)
k

δT κ(t)Pjκ(t)

+TκT (t)P(i)k δκ(t)− Tλ
(i)
k

∑
j∈I (i)uk

λ̂ij

−λ
(i)
k

κT (t)Pjδκ(t)

+ κT (t)P(i)k κ(t)− λ
(i)
k

∑
j∈I (i)uk

λ̂ij

−λ
(i)
k

κT (t)Pjκ(t)

+ κT (t)(ATi Pi + PiAi)κ(t)+ κ
T (t − ι(γ ))BTi Piκ(t)

+ κT (t)PiBiκ(t − ι(γ ))+ T δT κ(t)Piδκ(t) (47)

Since λ̂ij(∀i ∈ I
(i)
ukn) is the unknown transition probability rate,

then we have

0 ≤ −
λ̂ij

λ
(i)
k

≤ 1 and
∑

j∈I (i)uk
(−
λ̂ij

λ
(i)
k

) = 1.

Hence, formula (47) can be further rewritten as following
form (48).

ϑV1(κ, t, σ (t))

=

∑
j∈I (i)uk

λ̂ij

−λ
(i)
k

[T 2δT κ(t)P(i)k δκ(t)

−T 2λ
(i)
k δ

T κ(t)Pjδκ(t)

+T δT κ(t)P(i)k κ(t)− Tλ
(i)
k δ

T κ(t)Pjκ(t)

+TκT (t)P(i)k δκ(t)− Tλ
(i)
k κ

T (t)Pjδκ(t)

+ κT (t)P(i)k κ(t)− λ
(i)
k κ

T (t)Pjκ(t)

+ κT (t)(ATi Pi + PiAi)κ(t)+ κ
T (t − ι(γ ))BTi Piκ(t)

+ κT (t)PiBiκ(t − ι(γ ))+ T δT κ(t)Piδκ(t)] (48)

ϑV2(κ, t), ϑV3(κ, t) and ϑV4(κ, t) can be computed as
Theorem.2.

Similarly, for any positive definite real matrix Pi, the fol-
lowing equality (49) is always true.

0 = −2δT κ(t)Pi[δκ(t)− Aiκ(t)− Biκ(t − ι(γ ))]

= −2δT κ(t)Piδκ(t)+ 2δT κ(t)PiAiκ(t)

+ 2δT κ(t)PiBiκ(t − ι(γ )) (49)

Therefore, one has

ϑV (κ, t, σ (t))

= ϑV1(κ, t, σ (t))+ ϑV2(κ, t)+ ϑV3(κ, t)+ ϑV4(κ, t)

≤ ζ T (t)60ζ (t) < 0 (50)

Here, ζ T (t) =
[
δT κ(t) κT (t) κT (t − ι(γ )

]
and as in (51) and

(52), shown at the bottom of the next page. The proof of
Case (a) is finished. Case (b): λ̂ii is unknown (i ∈ 8(i)

ukn). In
this situation, λ̂ii is unknown, λ

(i)
k ≥ 0 and λ̂ii ≤ −λ

(i)
k . Sim-

ilarly, when λ̂ii = −λ
(i)
k , all elements are known in ith-row,

then we only need consider this case: λ̂ii < −λ
(i)
k . The mul-

tiple stochastic Lyapunov-Krasovskii function is constructed
as same as case (a), and

ϑV1(κ, t, σ (t))

=
1
T
{E[κT (t + T )Pσ (t+T )κ(t + T )]− κT (t)Pσ (t)κ(t)}

=

s∑
j=1

λijκ
T (t + T )Pjκ(t + T )+

1
T
[κT (t + T )Piκ(t + T )

− κT (t)Piκ(t)]

= T 2
s∑
j=1

λijδ
T κ(t)Pjδκ(t)+ T

s∑
j=1

λijδ
T κ(t)Pjκ(t)

+T
s∑
j=1

λijκ
T (t)Pjδκ(t)+

s∑
j=1

λijκ
T (t)Pjκ(t)

+T δT κ(t)Piδκ(t)

+ δT κ(t)Piκ(t)+ κT (t)Piδκ(t)

= T 2δT κ(t)P(i)k δκ(t)+ T
2δT κ(t)λ̂iiPiδκ(t)

+T δT κ(t)Piδκ(t)+ T δT κ(t)P
(i)
k κ(t)+ T δ

T κ(t)λ̂iiPiκ(t)

+ δT κ(t)Piκ(t)+ κT (t)λ̂iiPiκ(t)+ TκT (t)P
(i)
k δκ(t)

+TκT (t)λ̂iiPiδκ(t)+ κT (t)Piδκ(t)+ κT (t)P
(i)
k κ(t)

+T 2(−λ̂ii − λ
(i)
k )

∑
j∈8(i)

ukn,i 6=j

λ̂ij

−λ̂ij − λ
(i)
k

δT κ(t)Pjδκ(t)

+T (−λ̂ii − λ
(i)
k )

∑
j∈8(i)

ukn,i 6=j

λ̂ij

−λ̂ij − λ
(i)
k

δT κ(t)Pjκ(t)

+T (−λ̂ii − λ
(i)
k )

∑
j∈8(i)

ukn,i 6=j

λ̂ij

−λ̂ij − λ
(i)
k

κT (t)Pjδκ(t)
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+ (−λ̂ii − λ
(i)
k )

∑
j∈I (i)uk ,i 6=j

λ̂ij

−λ̂ij − λ
(i)
k

κT (t)Pjκ(t) (53)

where 0 ≤ − λ̂ij

λ̂ii+λ
(i)
k

≤ 1 and
∑

j∈I (i)uk ,i 6=j
(− λ̂ij

λ̂ii+λ
(i)
k

) = 1.

Therefore, we obtain

ϑV (κ, t, σ (t))

=

∑
j∈I (i)uk ,i 6=j

λ̂ij

−λ̂ii − λ
(i)
k

[T 2δT κ(t)P(i)k δκ(t)

+T 2δT κ(t)λ̂iiPiδκ(t)+ T δT κ(t)Piδκ(t)

+T δT κ(t)P(i)k κ(t)+ T δ
T κ(t)λ̂iiPiκ(t)+ δT κ(t)Piκ(t)

+ κT (t)λ̂iiPiκ(t)+ TκT (t)P
(i)
k δκ(t)+ Tκ

T (t)λ̂iiPiδκ(t)

+ κT (t)Piδκ(t)+ κT (t)P
(i)
k κ(t)

+T 2(−λ̂ii − λ
(i)
k )δT κ(t)Pjδκ(t)+ T (−λ̂ii

− λ
(i)
k )δT κ(t)Pjκ(t)

+T (−λ̂ii − λ
(i)
k )κT (t)Pjδκ(t)+ (−λ̂ii − λ

(i)
k )κT (t)Pjκ(t)

+ϑV2(κ, t)+ ϑV3(κ, t)+ ϑV4(κ, t)] (54)

If 80 < 0 and 0 ≤ (λ̂ij/ − λ̂ii − λ
(i)
k ) ≤ 1, then we have

ϑV (κ, t, σ (t)) < 0, and

80 = T 2δT κ(t)P(i)k δκ(t)+ T
2δT κ(t)λ̂iiPiδκ(t)

+T δT κ(t)Piδκ(t)

+T δT κ(t)P(i)k κ(t)+ T δ
T κ(t)λ̂iiPiκ(t)

+ δT κ(t)Piκ(t) + κT (t)λ̂iiPiκ(t)+ TκT (t)P
(i)
k δκ(t)

+TκT (t)λ̂iiPiδκ(t)

+ κT (t)Piδκ(t)+ κT (t)P
(i)
k κ(t)

+T 2(−λ̂ii − λ
(i)
k )δT κ(t)Pjδκ(t)

+T (−λ̂ii − λ
(i)
k )δT κ(t)Pjκ(t)

+T (−λ̂ii − λ
(i)
k )κT (t)Pjδκ(t)

+ (−λ̂ii − λ
(i)
k )κT (t)Pjκ(t)+ ϑV2(κ, t)

+ϑV3(κ, t)+ ϑV4(κ, t) (55)

Let λ(i)d be the lower limit of λ̂ii, then one has

λ̂ii ∈ [λ(i)d ,−λ
(i)
k + ε](ε > 0).

In this case, λ̂ii can be described as a convex linear combina-
tion form:

λ̂ii = −αλ
(i)
k + αε + (1− α)λ(i)d , α ∈ [0, 1].

Then if inequalities (56) and (57) are true, one has, as shown
in the equation at the bottom of the page, and

T 2δT κ(t)[P(i)k + (ε − λ(i)k )Pi − εPj]δκ(t)

+T δT κ(t)[P(i)k + (ε − λ(i)k )Pi − εPj]κ(t)

+TκT (t)[P(i)k + (ε − λ(i)k )Pi − εPj]δκ(t)

+ κT (t)[P(i)k + (ε − λ(i)k )Pi − εPj]κ(t)+ T δT κ(t)Piδκ(t)

+ δT κ(t)Piκ(t)+ κ(t)Piδκ(t)

+ϑV2(κ, t)+ ϑV3(κ, t)+ ϑV4(κ, t) < 0 (56)

and

T 2δT κ(t)[P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]δκ(t)

+T δT κ(t)[P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pjj]κ(t)

+TκT (t)[P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]δκ(t)

+ κT (t)[P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]κ(t)

+T δT κ(t)Piδκ(t)+ δT κ(t)Piκ(t)+ κT (t)Piδκ(t)

+ϑV2(κ, t)+ ϑV3(κ, t)+ ϑV4(κ, t) < 0 (57)

Define ζ T (t) =
[
δT κ(t) κT (t) κT (t − ι(γ )

]
, then we have

ϑV (κ, t, σ (t))

= ϑV1(κ, t, σ (t))+ ϑV2(κ, t)+ ϑV3(κ, t)+ ϑV4(κ, t)

= ζ T80ζ ≤ 0 (58)

Based on Case (a), Case (b) and Theorem.2, the proof of
Theorem.3 has been completed.
Remark 10: According to Theorem.1-Theorem.3, the

couple-group consensus of HMASs (7) and (8) with Markov
switching can be realized only if some linear matrix inequal-
ities are true. Comparing with existing results, there is no
special demand of the topology of the HMASs, such as strong

60 =
∑
j∈I (i)uk

λ̂ij

−λ
(i)
k


T 2P(i)k − λ

(i)
k T

2Pj + (T − 2)Pi + dMR TP(i)k − λ
(i)
k TPj + PiAi PiBi

∗ P(i)k − λ
(i)
k Pj + A

T
i Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi +

1
dM

R

∗ ∗ −
1
dM

R− Q

 < 0 (51)

61 =


T 2P(i)k − λ

(i)
k T

2Pj + (T − 2)Pi + dMR TP(i)k − λ
(i)
k TPj + PiAi PiBi

∗ P(i)k − λ
(i)
k Pj + A

T
i Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi +

1
dM

R

∗ ∗ −
1
dM

R− Q

 < 0 (52)

80 =


T 2[P(i)k + λ

(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]+ (T − 2)Pi + dMR T [P(i)k + λ

(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj]+ PiAi PiBi

∗ P(i)k + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
k Pj + A

T
i Pi + PiAi + (ιM − ιm + 1)Q− 1

dM
R PiBi +

1
dM

R

∗ ∗ −
1
dM

R− Q

 < 0.
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connectivity, containing a spanning tree or the equilibrium of
degree. Furthermore, a similar result has also been obtained
even if the transitive probability rates in Markov switching
are not fully known.

B. COUPLE-GROUP CONSENSUS OF HMASs WITH
PINNING CONTROL AND MARKOV SWITCHING
In this section, pinning control will be used to discuss the
couple group consensus of HMASs (7) and (8) with Markov
switching. Based on the cooperative-competitive relation and
Markov switching, a new pinning couple group consensus
protocol is designed form as in (59), shown at the bottom of
the page. x$ i is the default point and if dσ (t)i > 0, then the
node i will be pinned, otherwise dσ (t)i = 0.
The following Theorem.4 gives a sufficient condition for

the couple-group consensus of HMASs (7) and (8) with
Markov switching under pinning controller (59).
Theorem 4: If the following linear switched system (60)

ε̇(t) = F̂σ (t)ε(t)+ Ĝσ (t)ε(t − l(γ )), ε(t0) = ε(0) (60)

is global asymptotic stabilization, then the couple group con-
sensus of HMASs (7) and (8) with Markov switching under
pinning controller (59) can be realized, where

F̂σ (t) =

 0 0 In×n
0 −ασ (t)Dσ (t)f 0

−ασ (t)Dσ (t)s 0 βσ (t)In×n

 ,
Ĝσ (t) =

 0 0 0
ασ (t)Aσ (t)fs −ασ (t)[Lσ (t)ff + D

σ (t)
fs ] 0

−ασ (t)[Lσ (t)ss + D
σ (t)
sf ] ασ (t)Aσ (t)sf 0


Ds = diag{dσ (t)1 , dσ (t)2 , · · ·, dσ (t)n },

Ds = diag{dσ (t)n+1, d
σ (t)
n+2, · · ·, d

σ (t)
n+m}.

Proof: Define εi(t) = xi(t)− xω̄i, i = 1, 2, · · ·, n+ m,

εs(t) = [ε1(t), ε2(t), · · ·, εn(t)]T ,

εf (t) = [εn+1(t), εn+2(t), · · ·, εn+m(t)]T ,

v(t) = [v1(t), v2(t), · · ·, vn(t)]T ,

ε(t) = [εs(t), εf (t), v(t)]T .

then the following two cases (a) and (b) will be discussed.
Case (a). i ∈ π1, one has

v̇(t) = [u1(t), u2(t), · · ·, un(t)]T

= −ασ (t)[(Lσ (t)ss + D
σ (t)
sf )εs(t − l(γ ))

−Asf εf (t − l(γ ))]

−ασ (t)Dσ (t)s εs(t)− βσ (t)v(t).

ε̇f (t) = [ε̇1(t), ε̇2(t), · · ·, ε̇n(t)]T

= [v1(t), v2(t), · · ·, vn(t)]T = v(t) (61)

Case (b). i ∈ π2, we have

ε̇f (t) = [ε̇n+1(t), ε̇n+2(t), · · ·, ε̇n+m(t)]T

= [un+1(t), un+2(t), · · ·, un+m(t)]T

= −ασ (t)[−Aσ (t)fs εs(t − l(γ ))

+ (Lσ (t)ss + D
σ (t)
fs )εf (t − l(γ ))]

−ασ (t)Dσ (t)f εf (f ) (62)

According to case (a) and (b), the linear switched differen-
tial equation (60) will be obtained.

Based on Theorem.1 and pinning controller (59), the
couple-group consensus of HMASs (7) and (8) with Markov
switching under pinning controller (59) can be realized.
Theorem 5: For all i, j ∈ S, i 6= j, λij ≥ 0, and

λii = −

s∑
j=1,j 6=i

λij,

if there exist symmetric and positive matrices

Pi > 0,Q > 0 and R > 0

satisfying the following linear matrix inequality (63).

� =


�(1, 1) �(1, 2) P̃iGi 0
∗ �(2, 2) P̃iGi 1

lM
R̃

∗ ∗ −Q̃ 0
∗ ∗ ∗ −S̃ − 1

lM
R̃

 < 0

�(1, 1) = T 2
s∑
j=1

λijP̃j + (T − 2)P̃i + lM R̃,

�(1, 2) = T
s∑
j=1

λijP̃j + P̃iFi,

�(2, 2) =
s∑
j=1

λijP̃j + FTi P̃i + P̃iFi

+ (lM − lm + T + 1)Q̃+ S̃ −
1
lM
R̃, (63)

ui(t) =



ασ (t)[
∑

j∈Nσ (t)Si

aσ (t)ij ((xj(t − l(γ )− xi(t − l(γ )))−
∑

j∈Nσ (t)Di

aσ (t)ij ((xj(t − l(γ )+ xi(t − l(γ )))]

−ασ (t)dσ (t)i (xi(t)− x$ i)− βσ (t)vi(t), i ∈ π1
ασ (t)[

∑
j∈Nσ (t)Si

aσ (t)ij ((xj(t − l(γ )− xi(t − l(γ )))−
∑

j∈Nσ (t)Di

aσ (t)ij ((xj(t − l(γ )+ xi(t − l(γ )))]

−ασ (t)dσ (t)i (xi(t)− x$ i), i ∈ π2

(59)
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then the couple-group consensus of HMAS (7) and (8)
with Markov switching will be realized under the pinning
controller (59).
Proof: A multiple stochastic Lyapunov-Krasovskii func-

tion V (κ, t, i) is constructed as following form (64).

V (ε(t), σ (t), t) = V1(ε(t), σ (t), t)+ V2(ε(t), t)+ V3(ε(t), t)

+V4(ε(t), t)+ V5(ε(t), t)

where

V1(ε(t), σ (t), t) = εT (t)P̃σ (t)ε(t),

V2(ε(t), t) = T
γ∑

γ1=1

εT (t − γ1T )Q̃ε(t − γ1T ),

V3(ε(t), t) = T
γM∑
γ1=1

εT (t − γ1T )S̃ε(t − γ1T ),

V4(ε(t), t) = T 2
γM∑

γ1=γm

γ1∑
γ2=1

εT (t − γ2T )Q̃ε(t − γ2T ),

And

V5(ε(t), t) =
γM∑
γ1=1

γ1∑
γ2=1

gT (t − γ2T )R̃g(t − γ2T ).

The remainder of proof is similar to Theorem.3, and it is
omitted.
Remark 11: In this paper, Markov switching, cooperative-

competitive relation and time delay are all considered. Dif-
ferent from literature [11], [13], [52], [53], [54], [55], [56],
[57], our models are more related to real situations. For
instance, the dynamics of agents are homogeneous in [11].
In [13], the topology structure of MASs is supposed to be
fixed. In [52], the topology structure of MASs is supposed to
be a special fixed switching situation. In [53], the topology
structure of MASs is supposed to satisfy the condition of
in-degree balance. In [54], [55], [56], and [57], the relations
between agents are supposed to be cooperative or compet-
itive. In [58], a second-order multiple agents are used to
finish optimal persistent monitoring tasks. In [59], the leader-
following consensus problem for a class of identical nonlinear
time delay multiagent systems is studied. Paper [60] investi-
gates the output formation-containment problem of interacted
heterogeneous linear systems with leader or the follower. The
discrete-time communication manner is applied to reduce
the communication consumption. Based on the compensator,
some algorithms are given to deal with the leader-following
output consensus problem for a class of nonlinear time delay
multiagent systems in [61]. Therefore, the obtained results
in this paper have extended the given achievements in [11],
[13], [52], [53], [54], [55], [56], [57], [58], [59], [60], and
[61]. On the other hand, it is not difficult for us to find that
all the sufficient conditions in the Theorem.1-Theorem.5 can
be converted into solving the related LMIs. As we know,
LMI is a very effective tool in dealing with some computing
problems on linear matrix inequalities. Hence, the obtained

results give us some very effective methods in dealing with
the problem of couple-group consensus for HMASs.

IV. SOME NUMERICAL EXAMPLES
In this section, some numerical examples will be given to
verify the validity of the obtained results.
Example.1: In this example, the couple group consensus of

HMASs (7) and (8) withMarkov switching will be discussed.
The Markov transitive rate matrix 3 is given as follows.

3 =


−

2
3

1
6

1
6

1
4 −

1
2

1
4

1
4

1
4 −

1
2


The Markov switching network is composed of three sub

topologies as Fig.1. In each sub topology, there are five
agents. Agents 1,2 and are 2nd-order, agents 4 and 5 are 1st-
order. The five agents are divided into two subgroups: G1 =

{1,2,3} and G2 = {4,5}. In Fig.1.(a), there is a spanning tree:
0→ 1→ 2→ 3→ 5→ 4. In Fig.1.(b), there is a spanning

tree: 0 → 1 →
{
2→ 3
5→ 4

. In Fig.1.(c), there is a spanning

tree: 0→ 1→
{
3→ 2
5→ 4

.

FIGURE 1. The topology of HMASs (7) and (8).

The adjacent matrices A1,A2 and A3 of the three sub
topologies are described as follows.

A1 =


0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1.2 0 0 1
0 0 0 0 0 2
0 0 0 0 1 0

 ,

A2 =


0 1 0 0 1 0
0 0 1 0 0 1.5
0 0 0 1.5 0 0
0 0.75 1.5 0 0 0
0 1 1.2 0 0 1
0 0 0 0 1 0

 ,

A3 =


0 1 0 0 1 0
0 0 0 1.2 0 1.5
0 0.8 0 0 0 0
0 1 1.5 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 .
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In this situation, let {ασ (t), βσ (t)} be {1,2}, {1.5,2.5} and
{0.8,1.8} if σ (t)= 1, σ (t)= 2 and σ (t)= 3, respectively. Let
T, γM, γm, γ , xT (0) and vT (0) be T = 0.002, γM = 550, γm =
50, γ = 100, xT (0) = {1,10,−2,−2,5}, vT (0) = {2,1.5,2.2}.
By using Matlab LMI toolbox, a feasible solution of Pi,
Q, S and R have been obtained, as shown in the equations
at the bottom of the page. Hence, there exist positive and

symmetric matrices Pi > 0(i = 1,2,), Q > 0, S > 0 and
R > 0 satisfying the linear matrix inequality (32). According
to Theorem 1 and Theorem 2, the leader-following couple-
group of HMASs (7) and (8) can be realized. Fig 2 has
verified this kind of validity. The position and velocity
trajectories of agents of HMASs (7) and (8) are shown
in Fig.2.

P1 =



0.0302 0.0119 0 0.0114 0.0062

0.0119 0.0213 0 0.0060 0.0069

0 0 0.0058 0 0

0.0114 0.0060 0 0.0447 0.0109

0.0062 0.0069 0 0.0109 0.0383


,

P2 =



0.0469 0.0196 0 0.0162 0.0090

0.0196 0.0308 0 0.0085 0.0098

0 0 0.0054 0 0

0.0162 0.0085 0 0.0469 0.0168

0.0090 0.0098 0 0.0168 0.0374


,

P3 =



0.0481 0.0229 0 0.0219 0.0116

0.0229 0.0213 0 0.0060 0.0069

0 0 0.0066 0 0

0.0219 0.0121 0 0.0552 0.0155

0.0116 0.0069 0 0.0155 0.0450


,

Q =



0.2596 −0.1615 0 0.0021 −0.015

−0.1615 0.3752 0 −0.015 0.0031

0 0 0.3292 0 0

0.0021 −0.0015 0 0.0845 −0.0011

−0.0015 0.0031 0 −0.0011 0.0852


,

R =



0.0302 0.0119 0 0.0114 0.0057

0.0119 0.0215 0 0.0055 0.0075

0 0 0.0049 0 0

0.0114 0.0055 0 0.0114 0.0063

0.0057 0.0076 0 0.0063 0.0080


,

S =



0.0049 0.00096 0 −0.0021 0.00044

0.00096 0.0042 0 0.00028 −1.5520

0 0 0.0014 0 0

−0.0021 0.00028 0 0.0353 0.0122

0.00044 −1.5520 0 0.0122 0.0286
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FIGURE 2. The position and velocity trajectories of agents in HMASs
(7) and (8) with Markov switching.

Example.2: In this example, the Markov switching net-
work is composed of three sub topologies as Fig.3.
In Fig.3.(a) −Fig.3.(c), there is no path from 1 to 4 and there
is no path from 4 to 1. Therefore, there is no spanning tree in
Fig.3.(a) −Fig.3.(c).

FIGURE 3. The topologies of HMASs (7) and (8).

Similar with Example 1, the adjacent matrices A1,A2 and
A3 of the three sub topologies are described as follows.

A1 =


0 0 0 0 0
1.1 0 1.2 0 0
1 0 0 0 1
0 0 0 0 2
0 0 0 0 0

 ,

A2 =


0 0 1 0 0
0.8 0 1.3 0 0
1.2 0 0 0 1.5
0 0 0 0 1.7
0 0 0 0 0

 ,

FIGURE 4. The position and velocity trajectories of agents in hmass
(7) and (8) under pinning control (58).

A3 =


0 0 1.2 0 0
1.5 0 1.4 0 0
0 0 0 0 1.3
0 0 0 0 2
0 0 0 1 0

 .
Based on Theorem.4 and pinning control strategy (59), let

the coefficients of pinning control be d1 = 0.75, d2 = d3 =
d5 = 0, d4 = 1.5, and

{ασ (1), βσ (1)} = {1.1, 2.1},

{ασ (2), βσ (2)} = {1.6, 2.6},

{ασ (3), βσ (3)} = {0.9, 1.9}, T = 0.002, γM = 600,

γm = 75, γ = 100,

xT (0) = {1, 10,−2,−2, 5}, vT (0) = {2, 1.5, 2.2},

xω̄i = 2.1, i ∈ {1, 2, 3},

xω̄i = −2, i ∈ {4, 5}.

By usingMatlab LMI toolbox, a feasible solution for P̃i, Q̃, S̃
and R̃ has been obtained, as shown in the equations at the
bottom of the next page.

Fig.4 has described the position and velocity trajectories of
agents in HMASs (7) and (8) under pinning control (59). And
Fig.4.also shows the validity of Theorem.4.
Example 3: In this example, the topology of HMASs (7)

and (8) is composed of three parts as Fig.5. Obviously, there
is no any spanning tree in Fig.5(a)- Fig.5(c). In Fig.5(a), the
out degrees of node 1and node 5 are zero. Both the in degrees
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of node 1 and node 5 are two. This is to say, Fig.5(a) cannot
satisfy the balance of degree. And in pinning control protocol
(59), neither of node 1 and node 5 is pinned. Other parameters

are completely set as Example 2. Fig.6 shows that the couple
group consensus of HMASs (7) and (8) cannot be achieved if
the node 1 and node 5 are not pinned.

P̃1 =



4.6807 −0.1303 −0.0653 0.3704 0.0763 1.4889 0.0308 −0.0680
−0.1303 6.5854 −0.0374 0.2992 0.0220 −0.0121 2.2137 −0.0413
−0.0653 −0.0374 3.8137 −0.1616 0.3259 −0.0580 −0.0204 0.8511
0.3704 0.2992 −0.1616 4.0363 0.0649 0.9257 0.4872 −0.5055
0.0763 0.0220 0.3259 0.0649 5.5043 0.0463 0.0172 0.3408
1.4889 −0.0121 −0.0580 0.9257 0.0463 6.1602 −0.0340 −0.1613
0.0308 2.2137 −0.0204 0.4872 0.0172 −0.0340 4.5593 −0.0746
−0.0680 −0.0413 0.8511 −0.5055 0.3408 −0.1613 −0.0746 4.7395



P̃2 =



5.9479 −0.1394 −0.0508 0.4299 0.1348 1.7548 0.0249 −0.1186
−0.1394 7.1129 −0.0303 0.3744 0.0333 −0.0177 2.6758 −0.0678
−0.0508 −0.0303 4.5108 −0.1172 1.3396 −0.0977 −0.0243 1.0043
0.4299 0.3744 −0.1172 3.1591 0.0383 1.6915 0.6615 −0.7342
0.1348 0.0333 1.3396 0.0383 7.4463 0.0315 0.0089 0.4725
1.7548 −0.0177 −0.0977 1.6915 0.0315 6.3744 −0.0196 −0.3122
0.0249 2.6758 −0.0243 0.6615 0.0089 −0.0196 3.9934 −0.1495
−0.1186 −0.0678 1.0043 −0.7342 0.4725 −0.3122 −0.1495 4.6925



P̃3 =



5.8593 0.0494 −0.1194 0.5854 0.0905 2.2489 0.1071 −0.1090
0.0494 6.6505 −0.0427 0.4480 0.0487 0.0728 2.5772 −0.0511
−0.1194 −0.0427 4.3215 −0.2291 1.4361 −0.0967 −0.0295 1.2961
0.5854 0.4480 −0.2291 4.9156 0.2496 1.1820 0.6333 −0.6313
0.0905 0.0487 1.4361 0.2496 6.7117 0.0689 0.0356 1.1538
2.2489 0.0728 −0.0967 1.1820 0.0689 7.1090 0.0234 −0.2023
0.1071 2.5772 −0.0295 0.6333 0.0356 0.0234 5.3537 −0.0903
−0.1090 −0.0511 1.2961 −0.6313 1.1538 −0.2023 −0.0903 5.5809



Q̃ =



34.5079 −9.4377 0.4369 −8.1099 0.3076 0.9950 0.0376 0.0477
−9.4376 35.1197 −0.5603 −9.7002 −1.3349 0.0998 0.1088 0.0338
0.4368 −0.5603 41.0275 −1.2801 −17.2979 −0.0314 −0.0269 1.5741
−8.1099 −9.7002 −1.2801 35.3935 −3.4639 −0.7797 −0.4607 0.4702
0.3076 −1.3349 −17.2979 −3.4639 41.6305 −0.0563 −0.0132 −0.0905
0.9550 0.0998 −0.0314 −0.7797 −0.0563 12.6718 0.1410 0.0073
0.0376 0.1088 −0.0269 −0.4607 −0.0132 0.1410 13.3623 0.0026
0.0477 0.0338 1.5741 0.4702 −0.0905 0.0073 0.0026 13.2485



R̃ =



4.0412 −0.0342 −0.0610 0.2420 0.0536 1.4612 −0.0015 −0.0797
−0.0342 3.4108 −0.0090 0.0844 0.0182 0.0244 1.0662 −0.0306
−0.0610 −0.0090 2.9440 −0.0615 0.8286 −0.0644 −0.0130 0.9110
0.2420 0.0844 −0.0615 0.4280 0.0048 0.4783 0.1508 −0.1657
0.0536 0.0182 0.8286 0.0048 4.6996 −0.0210 0.0059 0.2887
1.4612 0.0244 −0.0644 0.4783 0.0210 1.3344 0.0182 −0.1349
−0.0015 1.0662 −0.0130 0.1508 0.0059 0.0182 0.7414 −0.0437
−0.0797 −0.0306 0.9110 −0.1657 0.2887 −0.1349 −0.0437 0.7341



S̃ =



1.3806 −0.2357 −0.0145 0.2674 0.0205 −0.4312 0.0935 −0.0657
−0.2357 2.8813 −0.0310 0.0663 −0.0163 0.0726 −0.2516 −0.0254
−0.0145 −0.0310 1.3678 −0.1828 −0.2655 −0.0643 −0.0171 −0.7014
0.2674 −0.0663 −0.1828 4.0076 0.0245 1.4462 0.5864 −0.6481
0.0205 −0.0163 −0.2655 0.0245 1.4440 0.0243 0.0061 0.3489
−4312 0.0726 −0.0643 1.4462 0.0243 5.1601 0.0020 −0.2621
0.0935 −0.2516 −0.0171 0.5864 0.0061 0.0020 3.1507 −0.1174
−0.0657 −0.0254 −0.7014 −0.6481 0.3489 −0.2621 −0.1174 3.8640
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FIGURE 5. The topological structure of HMASs (7) and (8).

FIGURE 6. The position and velocity trajectories of agents in HMASs
(7) and (8).

Remark 12: In Example.1, there exists a spanning tree
in each subgraph, but each sub-topology cannot satisfy the
balance of degree and they are not also strong connectivity.
In Example.2, there is no any spanning tree in each sub-
graph. Compared with the obtained results, the demand of
topology can be relaxed in this paper. Example.3 shows that
the nodes with zero degree must be pinned. Otherwise, the
couple-group of HMASs (7) and (8) will not be realized.

V. CONCLUSION
Based on signed digraphs, paper [62] has studied the tracking
control problem for second-orderMASswith communication
constraint scenarios in real engineering applications on track-
ing dynamics, including external disturbances, asynchronous
clocks, and switching interactive topologies. In [63], a novel
distributed control scheme is designed for the Cucker-Smale
model to examine the leader-follower flocking behavior in
cooperative-competitive networks. In [64], event-triggered
control is used to investigate the synchronization for a class
of switched uncertain neural networks (NNs) with frequent
asynchronism. In [65], leader-following consensus for a class

of high-order nonlinear multi-agent systems has been studied.
Some non-lipschitz continuous control laws have been pro-
posed to realize the finite-time consensus of high-order uncer-
tain nonlinear multi-agent systems. Compared with [58],
[59], [60], [61], [62], [63], [64], and [65], leader-following
and pinning control couple-group consensus of a kind of
HMASs with Markov switching have been studied in this
paper, especially cooperative-competitive relation, heteroge-
neous andMarkov switching are taken into account. Based on
cooperative and competitive relation and Markov switching,
some novel couple group consensus protocols have been
designed for this HMASs. By using graph algebra theory,
matrix theory and stability theory, the couple group con-
sensus problem of HMASs with Markov switching can be
converted into analyzing the stability of a new delta system.
Stochastic delta operator, Lyapunov-krasovskii function and
LMI (Linear Matrix Inequality) skills have been used to
obtain a few sufficient conditions for couple group consensus
of these HMASs with Markov switching. In the end, some
examples have been presented to address the validity of our
achievements. In our future work, event-triggered consensus
of HMASs with Markov switching will be considered.
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