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ABSTRACT This study presents an effective data-driven anomaly detection scheme for drunk driving
detection. Specifically, the proposed anomaly detection approach amalgamates the desirable features of the
t-distributed stochastic neighbor embedding (t-SNE) as a feature extractor with the Isolation Forest (iF)
scheme to detect drivers’ drunkenness status. We used the t-SNE model to exploit its capacity in reducing
the dimensionality of nonlinear data by preserving the local and global structures of the input data in the
feature space to obtain good detection. At the same time, the iF scheme is an effective and unsupervised
tree-based approach to achieving good detection of anomalies in multivariate data. This approach only
employs normal events data to train the detection model, making them more attractive for detecting drunk
drivers in practice. To verify the detection capacity of the proposed t-SNE-iF approach in reliably detecting
drivers with excess alcohol, we used publically available data collected using a gas sensor, temperature
sensor, and a digital camera. The overall detection system proved a high detection performance with AUC
around 95%, demonstrating the proposed approach’s robustness and reliability. Furthermore, compared to the
Principal Component Analysis (PCA), Incremental PCA (IPCA), Independent component analysis (ICA),
Kernel PCA (kPCA), and Multi-dimensional scaling (MDS)-based iForest, EE, and LOF detection schemes,
the proposed t-SNE-based iF scheme offers superior detection performance of drunk driver status.

INDEX TERMS Anomaly detection, driver drunk detection, t-distributed stochastic neighbor embedding,
isolation forest.

I. INTRODUCTION
The number of traffic accidents keeps increasing and causing
more damage to society even with the advanced intelligent
transportation systems. As reported by the World Health
Organization, since 2016, traffic accidents are becoming
among the top 10 causes of death [1]. Moreover, according
to the WHO, about 1.3 million deaths each year are due to
car crashes [2]. The risk of traffic accidents could be signif-
icantly increased when driving under the impact of alcohol
and any psychoactive substance or drug. The WHO declared
that approximately 40% of road traffic accidents are mainly
caused by driving under the influence of alcohol [3], the fifth
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most common on-the-roads death cause [4]. In addition,
driving drinking not only causes road traffic injuries but
also causes financial losses of up to 500 million $ per year
worldwide [5]. Therefore, accurate detection of drunk drivers
is vital to mitigate road traffic accidents.

Automatically and accurately detecting car drivers under
excess alcohol is essential for reducing road traffic acci-
dents. Over the last decade, increasing interest in developing
advanced technologies for detecting driving drinking. Gener-
ally speaking, there are two categories of driver alcohol detec-
tion: obtrusive-based and unobtrusive-based detectors [6].
Detecting drunk driving via the obtrusive-based techniques
is carried out using physiological state changes of a driver,
including blood alcohol concentration (BAC), breath alcohol
concentration [7], electroencephalogram (EEG) signals [8],
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and electrocardiogram (ECG) signals changes [9]. How-
ever, acquiring these data types (e.g., EEG signals and heart
rate) is not accessible, particularly in driving. In addition,
drivers may be troubled because of the surrounding envi-
ronment with intrusive equipment. On the other hand, the
unobtrusive techniques for detecting drunk driving are based
on vehicle-based features and driving behavior. Different
vehicle-based measures are generally used to detect drunk
driving, including vehicle speed, acceleration, steering wheel
movements, and lateral position. Other unobtrusive tech-
niques employed image-based features to monitor the driver’s
face and state [10], [11]. For instance, authors in [12] intro-
duced a breath-based alcohol detection system to control the
ignition of the engine alcohol if the driver is drinking. This
embedded system can be employed to prevent drunk driving
and thus enhance traffic safety by reducing traffic accidents
due to drunk driving. For instance, in [13], an Internet of
Things (IoT)-based drunk detection strategy is introduced to
prevent traffic accidents due to drunken driving. To this end,
this IoT system is equipped with a set of sensors, including
Heartbeat rate, Facial recognition, and alcohol concentration
detection sensor.

Driving with excess alcohol may result in severe traffic
accidents and serious injury, even deaths for the drivers and
the public. Accurately detecting drunken driving is vital to
improving traffic safety and helping avoid traffic incidents.
Most of the developed detection approaches for drinking
driving detection are generally designed using shallow super-
vised methods that require labeled data in training [14], [15],
[16]. However, getting labeled data is not obvious and time-
consuming. Thus, this study aims to design a semi-supervised
data-driven detector for driving drinking detection that does
not require labeled data. Unlike supervised algorithms, semi-
supervised anomaly detection algorithms only employ the
data of normal events to train the detection model, making
them more attractive for detecting drunk drivers since it is
not always easy to get accurately labeled data. Of course, the
contributions of this study are summarized as follows.
• This study introduces an innovative approach for driving
drinking detection by combining the advantages of the
t-distribution stochastic neighbor embedding (t-SNE)
model and isolation forest (iF)-based anomaly detection
scheme. We used the t-SNE model to exploit its capac-
ity in reducing the dimensionality of nonlinear data by
preserving the local and global structures of the input
data in the feature space to obtain good detection [17],
[18]. Essentially, the original data are projected into
the optimal low- dimensional space via the t-SNE, and
then the iF detector is applied to the extracted features
to realize anomaly detection. The key characteristic of
the iF-driven anomaly detection scheme is its capacity
to uncover anomalies without considering any distance
or density metrics, reducing computational costs [19].
At first, the t-SNE-based iF detector is constructed based
on training data (normal driving behaviors) and then
used to detect drunk and driving behaviors. We assessed

the effectiveness of this approach by using experimental
data provided in [15] for alcohol detection in drivers
by sensors and computer vision (i.e., physiological, bio-
logical, and visual characteristics). Specifically, three
sensors are used for driver data acquisition. An MQ-3
gas sensor, which is sensitive to different gases and rapid
to integrate into the system, is employed to sense the
presence of ethanol. An MLX90621 temperature sensor
is used to determine the facial thermal change of the
driver. Also, the Raspberry Pi Camera is employed to
compute pupil ratio. Of course, the multivariate data
contains alcohol concentration and temperature in the
car environment, face temperature, and pupil ratio.

• Furthermore, we compared the detection performance
of the proposed t-SNE-based iF scheme to that of
the Principal Component Analysis (PCA), Incremental
PCA (IPCA), Independent component analysis (ICA),
Kernel PCA (kPCA), and Multi-dimensional scaling
(MDS)-based iForest, EE, and LOF detection schemes.
In addition, the comparison has been performed with
the standalone anomaly detection methods (i.e., iF, EE,
LOF). The considered anomaly detection methods do
not require labeling to identify anomalies. Four statisti-
cal indices are employed to compare the discrimination
accuracy of the consideredmethods: accuracy, precision,
F1-score, and the Area Under the Curve (AUC). Results
demonstrated the superior detection performance of
drunk driver status using the proposed t-SNE-based iF
approach.

The remainder of this paper is organized as follows.
Section II highlights literature reviews on the related works.
Section III briefly describes the preliminarymaterials, includ-
ing the tNSE and the iF anomaly detector. Section IV presents
the proposed drunk driving detection approach. In Section V,
we present the used data and the obtained results. Finally,
we offer conclusions in Section VI.

II. RELATED WORKS
Driving with excess alcohol can result in severe road traf-
fic crashes to drivers and the public. Over the last decade,
many researchers and engineers have developed data-driven
methods to improve drunk driving detection for intelligent
transportation systems [14], [20]. For instance, the authors
in [16] introduced an approach for drunk driving detection
using support vector machines (SVM) classifier. The SVM
is applied to the extracted driving characteristics (i.e., lateral
position and steering angle) to decide the state of the driver
state (normal or drunk). Driving with excess alcohol could
influence the slopes of steering angle and the slopes of vehicle
lateral position. This study is conducted using a fixed-base
driving simulator. Results showed that the SVM classifier
obtained an overall accuracy of 80% in discriminating drunk
driving. In [21], principal component analysis (PCA) has
been employed for features selection, and SVM is applied to
distinguish normal driving from drunk driving. The results
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showed that the SVM classifier achieved an accuracy of
70%, which still needs more improvement. In [22], Random
Forest (RF) is employed to detect drunk driving based on
driving behavior data collected from a driving simulator.
After selecting the important features using the RF algorithm,
SVM, AdaBoost, linear discriminant analysis (LDA), and RF
have been applied to detect drunk driving under different road
conditions. Results showed that RF and AdaBoost achieved
the best classification performance based on seven features.
Specifically, the classification accuracy reached by the RF
and AdaBoost is slightly greater than 80%; while, the LDA
and SVM achieved an accuracy of 75.93% and 74.07%,
respectively.

The authors in [23] focused on developing driver behavior
states detection strategy to discriminate three driver states:
normal, drowsy, and drunk driving using vehicle-based mea-
sures. This study is conducted using a simulator, which
enables obtaining data difficult to collect under real driving
conditions, such as drowsy or drunk driving. Importantly,
three models are constructed to discriminate the three behav-
ior states: normal, drowsy, and drunk driving. An experi-
ment with free-road driving is performed to get information
about the drowsy and normal state, and another experiment
is implemented under road driving to obtain information
about drunk driving and normal driving. The data used for
the detection is based on acceleration, velocity, yaw rate,
and steering. Essentially, the first model aims to separate
drowsy behavior from the normal one; the second model is
used to discriminate drunk from drowsy states using features
from the free-road data, and the last one, constructed using
event-road driving data, focus on detecting abnormal events.
Of course, each model is used to separate two states. The
states identification is treated as a supervised classification
using a machine learning model, namely Random Forest.
In [24], a two-stage data-driven approach based on Markov
models together with Recurrent Neural Networks is presented
to detect drunk driving using onboard vehicle sensors. Specif-
ically, several sensory data are collected and processed by
Recurrent Neural Networks to predict the longitudinal accel-
eration in a supervised manner. This approach achieved an
overall detection performance of 79%, which makes it very
promising to prevent drunk drivers from driving.

Recently in [25], a two-stage deep learning approach is
proposed to detect drunk driving using a Convolutional Neu-
ral Network (CNN). At first, the simplified VGG (Visual
Geometry Group) network, a standard CNN, is applied to
estimate the driver’s age, and then the simplified Dense-Net
for identifying the facial features of drunk driving for alco-
hol test discrimination. An accuracy of about 86.36% is
achieved in the age discrimination step. The overall accuracy
of 88.53% is obtained for the drunk driving detection stage.
Authors in [26] address the abnormal driving detection using
a stacked sparse autoencoders approach (SdsAEs) to model
driving behavior features, specifically a softmax layer is con-
sidered for a classification task. Results showed the superior
performance of the SdsAEs approach in detecting abnormal

driving behavior compared to softmax regression, SVM, and
a back-propagation neural network. Authors in [15] and [27]
proposed a strategy for in-driver drunk status detection based
on two inputs, a visual via image processing and sensors
data. Specifically, the following input variables are used to
classify normal driving from drinking dring status: the facial
temperature of the driver, the pupil width, and the concen-
tration of alcohol in the car environment. The problem of
drunk detection is addressed via supervised classification
techniques combinedwith a features selection, usingmachine
learning models, such as SVM, k-nearest neighbors (kNN),
Decision Tree, and Neural Network. The authors in [28]
introduced an approach to identify the driver state by using
physiological sensors and a capacitive hand detection sensor.
They use cellular neural networks for monitoring the driver’s
stress level. Results showed promising performance of this
approach in recognizing the driver states (i.e., stress or no
stress) by providing detection accuracy of 92%.

III. MATERIALS AND METHODS
This section presents the materials needed to design the pro-
posed drunk driving detection approach: the t-SNE and the
isolation forest methods.

A. T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING
The t-SNE is a nonlinear dimensionality reduction tech-
nique originally introduced by van der Matten and Hinton in
2008 to visualize high dimensional data in lower-dimensional
space [17]. It is characterized by its capacity to capture much
of the local structure in the high-dimensional data while also
retaining global structure. More explicitly, if the original
data contain numerous clusters, the t-SNE enables revealing
the presence of these clusters in the low dimensional space.
In recent years, the t-SNE has been widely employed in many
research fields for visualizing high dimensional features [29],
[30], [31], [32], [33], [34], [35].

Lets denote D = d1, d2, . . . , dl a high dimensional
datasets, and S = s1, s2, . . . , sl the corresponding visual
space. At first, the t-SNE calculates the dissimilarity sepa-
rating the observation in the input space. To this end, the
similarity between sample data points di and dj is quantified
using the Gaussian distribution in Equation (1), Pij, with σi
denotes the standard deviation of the Gaussian distribution
centered on di,

P(j|i) =
exp(−‖dj − di‖2/2σ 2

i )∑
k 6=i exp(−‖dk − di‖2/2σ

2
i )
,P(i|i) = 0. (1)

It is worth pointing that in t-SNE, we set P(i|i) = 0 because
only pairwise closenesses within data points are of interest.
The joint probabilities of the high-dimensional points, which
is a symmetrized version of the conditional similarity because
it has the property that Pij = Pji for ∀i, j, is expressed as:

Pij =
P(i|j)+ P(j|i)

2l
. (2)
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Using conditional or joint probabilities results in similar
results, but optimizing the joint model is less computationally
expensive [17].

For the lower space, the student-t probability distribution
with one degree of freedom has been employed to compute
the similarity between sample data points si and sj, as in
Equation (3).

qij =
(1+ ||si − sj||2)−1∑N

k=1,k6=1(1+ ||sk − s1||2)−1
(3)

Indeed, the student-t distribution has heavy tails than the
Gaussian distribution, making it more suitable for discrim-
inating crowded points in the inputs. Crucially, Student-t
distribution is appropriate for representing dissimilar points
in the input space by a larger distance in low-dimensional
space. Then, the Kullback-Leibler divergence (KL) is applied
to quantify the distance between distributions of data in orig-
inal space and low-dimensional space. The KL distance is
minimized to get coordinates of the data points in lower-
dimensional space. The objective function L is defined as
follows [36]:

L =
∑
i

KL(Pi‖Qi) =
∑
i

∑
j

P(j|i)log(
P(j|i)
Q(j|i)

). (4)

P(j|i) represents the similarity between di and dj while
Q(j|i) is used for yi and yj. Indeed, P (data distribution of the
input data of higher dimension) equation (3), while Q (data
distribution of the output data of low dimension).

The cost function L is minimized based on a gradient
descent algorithm; the t-SNE stochastic gradient descent is
achieved as follows:

δL
δsi
= 4

∑
(Pij − Qij)(si − sj)

(
1+ (‖si − sj‖2)

)−1 (5)

After that, si is updated by the following equation:

sti = st−1i + η
∂L
∂si
+ αt (s

t−1
i − st−2i ), (6)

where sti represents the solution at iteration t , η denote the
learning rate and α refers to momentum at iteration t . The
learning rate decides the step size used at each iteration to
optimize the objective function L, while a relatively large
momentum term could be introduced for accelerating the
optimization procedure and avoiding poor local minimums.

Note that in the t-SNE approach, the most important
hyper-parameter is the perplexity, which defines the effec-
tive number of neighbors. In other words, the t-SNE output
generated depends on the select values of its input, especially
the Perplexity parameter. The value assigned to the Perplexity
P is proportional to the σ 2

i , which means a small value will
correspond to a small distance between to data points di and
dj. The perplexity is expressed as:

P(Pi) = 2E(Pi), (7)

With E(Pi) denotes the Shannon’s entropy of Pi [17].
There is no automatic way to choose the optimal perplexity

FIGURE 1. Isolation Forest for anomaly detection.

value. Larger values of the perplexity leads could eliminate
small-scale structures in the manifold; however, smaller per-
plexity values could falsely generate several sub-manifolds
by using a small number of nearest neighbors. The optimal
value of the Perplexity can be obtained byminimizing the cost
function,L, with respect to the Perplexity. The authors in [17]
recommend choosing a perplexity value with the interval
of [5, 50].

The time complexity of the t-SNE model is O(N 2),
where N denotes the number of data points [18]. In 2014,
an improved t-SNE version, called Barnes Hut SNE, was
developed to enhance time complexity and reduce it to
O(NlogN ) [18]. More details about the t-SNE could be
found [17], [37].

B. ISOLATION FOREST-BASED ANOMALY DETECTION
The Isolation Forest approach was primarily designed by Lui
in 2008 [19] and improved later in 2011 [38] to deal with
anomaly detection problems where only normal observations
are available. Importantly, it is an unsupervised anomaly
detection approach since it is designed without the need for
labeled data. The essence of the approach is founded on the
principle of the Decision Tree algorithm, and it identifies
anomalies by isolating outliers from the data [38]. The iF
is based on the well-known Random Forest, which consists
of a set (ensemble) of decision trees constructed during
the training phase [39]. Isolation Forest can be considered
an ensemble learning approach to deal with classification
and regression problems [40], [41]. For instance, in [40],
a similarity-measured isolation forest is considered to detect
anomalies in machine monitoring data. In [41], a combined
approach using principal component analysis with the iF
algorithm is introduced for partial discharge detection. Impor-
tantly, PCA is adopted to reduce the feature space to 2-D
space, and the iF is applied to discriminate multi-source
partial discharge signals.

Figure 1 illustrates the basic structure of the iF algorithm,
which consists in building an ensemble of trees for a given
data set. Essentially, the iF algorithm recursively splits the
data by constructing an ensemble of trees until isolating all
samples. Anomalies can be characterized by a short average
path length on the trees. In other words, shorter paths are
indicators for potential anomalies because a few numbers of
anomalies lead to a smaller number of partitions [19].
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Implementing the iF-based anomaly detection approach
demands only two parameters specified: the number of trees
and the size of sub-samples used for the splitting operations
to build the forest. In [19], it has been shown that the detection
performance of the iF approach can converge fast based on a
small number of trees, and it only needs a small sub-sampling
size to reach high detection accuracy. In the iF approach,
anomalies in a dataset can be detected by analyzing the path
lengths for the anomaly data points, with the splitting process
being short, which mean that anomalies require few splits in
isolation Trees to be isolated [42]. Furthermore, the anomaly
score is computed from the mean path length across all the
isolation trees in the forest.

In such an anomaly detection framework, anomalies are
scored depending on the leaf depth and isolated after a
few splits in a tree. Of course, anomalies are identified by
fewer splits or shorter path lengths in the tree. A score is
measured by assigning a score to detect anomalies using
isolation susceptibilities of a given data point. Therefore, high
susceptibilities (anomaly score) indicate potential anomalies,
while data points with low anomaly scores are considered
normal observations or inliers. Note that the iF approach is
trained in an unsupervised manner, and it performs better for
anomaly detection when the training dataset does not contain
anomalies [38].

Lets denote l(d) is the path length of a given data point d ,
and D a dataset composed of N data points. The minimum
depth of a used decision tree is equals to log(N ) while the
maximum depth is N − 1. Essentially, the anomaly score is
computed based on the path length of the trees within the
forest. The anomaly score, A, can be computed using the
following formula [19]:

A(d,N ) = 2
−

E
[
l(d)

]
α(N ) , (8)

where E
[
l(d)

]
denotes the the expected path length of a given

data point d from a collection of isolation trees, and α(N ) is
the average path length, expressed as [19]:

α(N ) = 2λ(N − 1)−
2(N − 1)

N
, (9)

where λ(i) is the harmonic number, which can be estimated
as follows:

λ(y) = ln(y)+ ε, (10)

With ε is the Euler Constant, i.e., ε = 0.5772156649.
Overall, the anomaly score of d , A(d,N ), is obtained by

iTree from the training data of N samples, and the range of
A(d,N ) is within [0, 1]. It is worth pointing out that the
anomaly score is oppositely proportional to the path length.
The smaller the anomaly score, the higher the depth is, which
indicates the higher the probability that the data point belongs
to normal points. Finally, the anomaly detection is performed

as follows.
an anomaly if A(d,N ) is close to 1
Normal instance if A(d,N ) is close to 0
Uncertain decision if A(d,N ) is close to 0.5

(11)

Noteworthy, an anomaly is flagged ifA(d,N ), while when
A(d,N ) is less than 0.5, then the data point is likely typical.
In the final determination of drunk driving, when A(d,N ) is
close to 0.5, then a driver is considered under normal status.

The IF is intuitive, not time-consuming, and sensitive to an
outlier in data, making it particularly suited for applications
where low latency is necessary. The computational cost of
IF in training and testing are is O(t` log `) and O(nt` log `),
respectively. Here, ` refers to the subsampling size of the
dataset [43], n denotes the size of the dataset, and t is the
number of trees in the forest. Interestingly, ` needs to be
small and constant across distinct datasets to reach a more
satisfactory detection performance.

IV. THE T-SNE-BASED ISOLATION FOREST APPROACH
This study addresses the problem of drunk driving detection
as an anomaly detection problem. Specifically, the goal is to
identify the state of the monitored driver (normal or drunk)
based on the collected multivariate time series data. A data-
driven approach for drunk driving detection is presented by
amalgamating the advantages of two unsupervised machine
learning algorithms: manifold learning (i.e., t-SNE) and a
decision-tree-based ensemble learning technique (i.e., Isola-
tion Forest). The general framework of the proposed t-SNE-
based iF detector is schematically illustrated in Figure 2.

At first, after the acquisition of driver data, the t-SNE is
applied and projected the normalized data to feature space
with a lower dimension than the input space, usually for 2D
or 3D for visualization purposes. The input of t-SNE is the
normalized dataset X is transformed in feature space as,

T = tSNE(X ,Components,Perplexity).

The t-SNE features, T , are used as input to the Isolation
Forest detector to identify if the driver’s drunk status. Note
that the iF detector is trained based only on t-SNE features
without anomaly (i.e., data from a driver under normal status).
Then, it is used to decide if the new T is anomaly-free (no
alcohol) or contains anomaly (driver under the impact of
alcohol).

As mentioned above, the Isolation forest training is per-
formed based on transformed data without anomaly (no alco-
hol), and all decision tree’s depth is deeper than anomalies
with a shorter path length accounting from the tree root. This
structure of isolation trees is suitable for detecting alcohol
cases (anomaly) from normal cases during the testing phase.
The transformed testing data via the t-SNE are passed through
the already built iF scheme in the testing stage. Specifi-
cally, the path depth is estimated to compute the anomaly
score, then compared to a decision threshold for anomaly
detection. If the computed anomaly score is greater than 0.5,
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FIGURE 2. The proposed drunk driver detection framework.

an anomaly is declared (i.e., drinking driving); otherwise,
the driver is under normal status (no alcohol). The pro-
posed t-SNE-driven iF detection procedure is summarized in
Algorithm 1.

Algorithm 1: The Proposed Approach Methodology
Input: : Alcohol Detection Training dataset X
X = Normalization(X );
P = p1, p2, . . . , pk : Set of Perplexities;
C = 2: Components;
N = 150: Number of Isolation Forest;
for Perp in P do

T = tSNE(X ,C,Perp);
TAnomaly, TNormal = Split(T );
IsolFor = IsolationForest(N,TNormal);
prediction = IsolFor.predict(TAnomaly);
AUC = PerformanceEvaluation(prediction);

end
Choose the Perplexity that maximize AUC;
End;

In this study, five statistical scores are employed to quan-
tify the performance of the studied methods computed using
a 2 × 2 confusion matrix: Accuracy, Precision, Recall,
F1-score, and Area under curve (AUC) [44]. For a binary
detection problem, the number of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN)
are used to compute the evaluation metrics.

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
. (12)

Recall =
TP

TP+ FN
. (13)

Precision =
TP

TP+ FP
. (14)

F1− score = 2
Precision.Recall
Precision+ Recall

=
2TP

2TP+ FP+ FN
.

(15)

V. RESULTS AND DISCUSSION
A. DATA DESCRIPTION
This part is devoted to assessing the efficiency of the proposed
approach in detecting drunk driving. The experiments are
accomplished through actual data from a publicly available
database provided in [15]. Three types of sensors are used
to collect this data: a sensor of concentration of alcohol in
the environment (physiological), a sensor that measure the
temperature of the defined points on driver’s face (biological)
and another one that allows to identify and recognize the
thickness of the pupil (visual characteristics). The dataset is
relatively small with 390 data points (217 for no alcohol pres-
ence 173 for alcohol presence with different concentration).
Five variables are collected to decide between drunk and
normal driving behaviors: alcohol concentration in the car
environment in ml/L, car environment temperature in degrees
Celsius, face temperature min in degrees, face temperature
max in degrees Celsius, and pupil ratio. Figure 3 illustrates the
distribution of the five considered attributes, which indicates
that these datasets are non-Gaussian distributed. Those empir-
ical historical datawould challenge traditional dimensionality
reduction methods, such as PCA and MDS, that typically
require linear and Gaussian distributions. Thus, nonlinear
techniques designed without restricting the data distribution
to be Gaussian, such as tNSE and KPCA, could be promising.

B. EXPERIMENTS AND SETTINGS
Three main experiments are conducted in this study:

1) At first, we evaluate the standalone anomaly detection
schemes, including iF, EE, and LOF, in detecting drunk
driving.

2) Then, we evaluate the performance of the t-SNE-based
iF approach to detect drunk driving.

3) After that, we optimized the performance of the
t-SNE-based iF approach detection performance based
on different values of the perplexity parameter.

4) Finally, we compared the performance of the proposed
approach with five commonly used dimensionality
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FIGURE 3. Distribution of the considered alcohol attributes.

reduction-based approaches: PCA, ICA, IPCA, KPCA
and MDS-based anomaly detection.

In the first experiment, we applied three standalone
anomaly detection methods, isolation Forest, Elliptical Enve-
lope (EE) [45], and Local Outlier Factor (LOF) [46]. The
parameters setting of these three detectors is listed in Table 1.
We used the Grid Search approach to determine the optimal
values of hyper-parameters. The three anomaly detectors are
applied to the original data with dimensionality reduction.
In the LOF detector, an anomaly score is computed for each
observation by measuring the local divergence of the density
of a given sample compared to its neighbors. In this study, the
number of neighbors used in LOF is 20. In the EE detector,
which aims to fit an ellipse around the data using a minimum
covariance determinant (MCD), the proportion of points to be
included in the support of the raw MCD estimate is 0.05.

TABLE 1. Values of hyperparameters of the studied models.

The detection results of the three detectors (i.e., iF, EE and
LOF) are listed in Table 2. Results reveal that the iF detector
dominated the EE and LOF detectors by obtaining an AUC
of 0.9452 and F1-score of 0.9448. It is followed by the EE
detector, which showed a satisfactory detection accuracy with
an F1-score of 0.9375 and an AUC of 0.9377. The LOF gives
the lowest detection performance with an AUC of 0.64.

TABLE 2. Detection results of the three anomaly detectors.

TABLE 3. Alcohol detection results using the t-SNE-based iF scheme
under different perplexity values.

TABLE 4. t-SNE Alcohol detection results using LOF, with different
perplexity.

The second experiment is dedicated to verifying the per-
formance of the proposed t-SNE-driven iF anomaly detec-
tion approach in detecting drunk driving. Detection results
of the t-SNE-driven iF detector, under different perplexity
values between 5 and 100, are listed in Table 3. To visu-
ally show the impact of the perplexity parameter on the
final output of t-SNE, Figure 4 provides visual results of
t-SNE applied to the alcohol dataset using different perplexity
values. Results in Table 3 indicate that the t-SNE with a
perplexity of 30 improves the alcohol detection using the
iF detector by achieving a higher F1-score and AUC of
95.81 and 95.37% respectively. It can also be observed that
perplexity 10 and 20 recorded AUC > 0.9, which is a good
result.

Detection results based on t-SNE-based LOF and EE
schemes under different perplexity values are reported in
Table 4 and Table 5, respectively. The results show that
t-SNE-based LOF and EE schemeswith a perplexity of 20 can
satisfactorily identify drunk driving from normal driving with
an AUC of 93.81% and 93.99%, respectively. These two
approaches provide almost comparable detection results.

In the last experiment, as benchmark methods, we assessed
the performance of five dimensionality reduction techniques,
namely MDS, PCA, ICA, IPCA, and KPCA in detecting
drunk driving. These multivariate techniques are widely used
in the literature by projecting multivariate data into a low-
dimensional space, where most of the variability in data can
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FIGURE 4. Ploting t-SNE with different perplexity values.
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TABLE 5. t-SNE Alcohol detection results using Elliptic Envelope, with
different perplexity.

be maintained [47]. Generally speaking, linear techniques,
including PCA, IPCA, MDS, and ICA, reduce data dimen-
sionality by determining a linear combination of the original
variables. They are suitable for handling data that is inher-
ently linear. Nonlinear techniques, such as KPCA, permitted
modeling and revealing of nonlinear relationships among
multivariate data [47]. Similar to the t-SNE-based approach,
we applied the considered linear and nonlinear dimension-
ality reduction techniques to the multivariate input data for
feature extraction and applied the anomaly detection schemes
(i.e., iF, EE, and LOF) to the extracted features for anomaly
detection. These models are constructed using anomaly-free
data and then used for anomaly detection. The values of the
parameters of each model are listed in Table 1. Table 6 reports
the detection performance achieved by PCA, IPCA, MDS,
ICA, KPCA, and t-SNE-based iF, EE, and LOF detection
methods when applied to detect drunk driving.

Drunk detection results using MDS, PCA, ICA, IPCA,
and t-NSE-based iF, EE, and LOF methods are reported
in Table 6. The proposed t-SNE-based iF detector offers
superior driver drinking status discrimination performance
by achieving an averaged accuracy of 0.9537, F1-Score of
0.9581, and an AUC value of 0.9537. This could be because
the t-SNE preserves the local and global structures of the
input data in the feature space. In addition, the t-NSE is
an efficient nonlinear dimensionality reduction technique
embedding multivariate data in a two-dimensional plane.
Results in Table 6 indicate that the coupled t-SNE-based iF
scheme provides better performance than that of the stan-
dalone detector (iF, EE, and LOF) for drunk driver detection.
This confirms the benefit of using the t-NSEmodel in provid-
ing more relevant features. We observe that the KPCA-based
EE detection scheme achieved the second-best result with an
F1-score and AUC of 0.9466 and 0.9493, respectively. Lin-
ear dimensionality reduction-based detection schemes (PCA,
MDS, ICA, and IPCA) follow it, as shown in Table 6.
Figure 5 displays the barplot of AUC values to visually aid

the comparison of achieved results by the considered twenty-
one detection schemes. Results show that the t-SNE-based
iF detector obtains the most accurate drunk driving detection
with an AUC = 95.37%. Overall, the detection accuracy is

TABLE 6. Drunk detection results using the considered schemes.

FIGURE 5. AUC values of the twenty-one investigated methods.

enhanced when using the t-SNE features compared with the
original features. In other words, the t-SNE-based iF scheme
outperformed the standalone iF, EE, and LOF anomaly detec-
tor in detecting drunk driving. Furthermore, as observed in
Figure 5, using a nonlinear dimensionality technique (i.e, the
t-SNE) for alcohol detection delivers improved detection per-
formance with AUC = 95.37% compared to the approaches
using linear dimensionality reduction techniques for features
extraction; i.e., the PCA and KPCA-based EE achieved AUC
= 94.93%, and the MDS-EE obtained an of AUC= 93.20%.
It could be attributed to the capacity of the t-SNE in capturing
nonlinear features in data and the sensitivity of the iF detector
in uncovering abnormal observations. In short, the obtained
results demonstrate and reveal the promising performance of
the combined t-SNE with isolation forest in detecting drunk
drivers detection.
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TABLE 7. Computation cost.

Now, the computation cost time of the investigated meth-
ods is examined (Table 7). All experiments have been
conducted via a laptop with CPU intel i3 under Ubuntu
20.04.4 LTS with 8GB of RAM (Random access memory) to
guarantee a fair comparison. The considered methods have
been implemented using Python 3.8 with Keras and Scikit-
Learn 0.22, and the time costs for each method are recorded
and compared. The time cost of each approach can be evalu-
ated with regard to the encoding part of the used dimension-
ality reduction model (E.g., PCA, KPCA, and t-SNE) and
anomaly detection using the iF scheme. The encoding and
detection time of PCA, ICA, IPCA, KPCA, MDS, and t-SNE
are (0.0019, 0.1919), (0.0160, 0.1891), (0.0385, 0.3255),
(0.0471, 0.2327) (7.1721, 0.1826), and (1.4763, 0.1754),
respectively.

We observe that the PCA-based approach requires a lower
runtime requirement than the nonlinear dimensionality meth-
ods. But, its simple structure cannot capture non-Gaussian
and nonlinear features. ICA-based iF scheme follows it, as it
is a linear dimensionality reduction method without restrict-
ing the data distribution to be Gaussian. Both linear methods
(PCA, ICA, and IPCA) achieved lower computational costs
than nonlinear methods (KPCA and t-SNE), but they are
unsuitable for nonlinear processes. MDS is computationally
expensive.

In summary, this study showed that drunk driving detec-
tion using the t-SNE-driven iF anomaly detection approach
is feasible and effective. It could be attributed to the abil-
ity of the t-SNE technique in preserving local geometry
and global information of the multivariate data after dimen-
sionality reduction, which is not the case with the linear
dimensionality reduction techniques (i.e., PCA, MDS, ICA,
IPCA) that may not capture the nonlinear structure in the
data. Thus, the detection accuracy of drunk driving using
the t-SNE method is better than the PCA, ICA, IPCA,
and MDS-based methods. Also, this approach outperformed
KPCA-based schemes in detecting drunk drivers. This is
because the multivariate data collected to detect drunken
driving is non-Gaussian and nonlinear. The t-SNE technique
bypasses the data distribution problem by transforming the
data distance problem into a probability distribution problem.
Moreover, the use of the iF anomaly detector (a sensitive to
uncover anomalies in multivariate data) based on the t-SNE
features improved the drunk driving detection process. It is
found from the results that the perplexity values within [5, 50]
could provide good recognition performance, which is in

concordance with the literature. The best detection perfor-
mance is obtained with a perplexity of 30, so there is no need
to take a large number of neighbors in the t-NSE. Further-
more, this study revealed the good detection capacity of the
t-SNE-based iF approach to deal with a relatively small-sized
dataset.

VI. CONCLUSION
Accurately detecting drunk driving is undoubtedly necessary
for reducing traffic accidents and improving road safety.
In this study, a data-driven methodology to detect drunk
drivers is introduced. Importantly, to enhance drunk driving
detection, this merges the extended capacity of the t-SNE
nonlinear dimensionality reduction as a features extractor and
the discrimination ability of the iF in anomaly detection.
After normalizing the input data, the t-SNE is employed
to extract the characteristics of collected multivariate data.
Then, the iF detector is to t-SNE features to detect potential
drunk driving. The major advantages of this approach are its
assumption-free on data distribution and no need for labeled
data in its design to perform anomaly detection. The detection
effectiveness is assessed on actual public data collected by
sensors and a digital camera. We compared the proposed
t-SNE-iF approach with several semi-supervised detection
approaches, t-SNE-based EE and LOF schemes, PCA, MDS,
ICA, and IPCA-based iF, EE, and LOFmethods, and the stan-
dalone anomaly detection schemes (i.e., iF, EE, and LOF).
Results demonstrated the superior detection performance of
drunk driver status based on the proposed approach. Thus,
this study revealed the promising performance of the t-SNE-
based anomaly detection approach for alcohol detection in
drivers.

Despite the improved detection performance greater than
95%, future works will improve its capacity to discrimi-
nate drunk from normal driving by associating other sources
of input like visual data (facial images) and driver behav-
ior. The t-NSE-based model is relatively computationally
demanding, hence parallel computing could provide pos-
sible solutions. Notably, more computational resources are
needed when a more complex model structure is adopted.
A more computationally-efficient t-SNE version, Barnes Hut
SNE, has been developed in [18]. Another potential amelio-
ration may rely on applying optimization techniques, such
as Bayesian optimization, to select the optimal value of the
perplexity during the training stage. Furthermore, another
direction of improvement consists of using data augmenta-
tion techniques to generate large-sized data, which improves
the construction of models and thus enhances the detection
process. Also, it will be interesting to investigate the detection
capability of this data-driven anomaly detectionmethodology
in engineering applications, such as photovoltaic systems
monitoring.
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